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The Model

Thanks to Merton’s seminal paper of 1973, continuous-time modeling has
become very popular for asset pricing

Jump-Di↵usions and more generally continuous-time Markov processes are
specified in economics and finance by:

dXt = µ(Xt ; ✓)dt + �(Xt ; ✓)dBt + dJt

µ(Xt ; ✓) is the drift term

�(Xt ; ✓) is the di↵usion term

Bt is a Brownian motion

Jt is a jump process with intensity and size which are state dependent
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Stochastic Volatility(Heston - 1993)

Let introduce Yt = log St (St is the stock price) and let the volatility be
stochastic: we get the famous Heston(1993) square-root stochastic volatility
model:

✓
dYt

dVt

◆
=

✓
µ+ �Vt

(✓ � Vt)

◆
dt +

p
Vt

✓
1 0

⇢�v

p
(1� ⇢2)�v

◆
dWt (1)

Bates(1996) added jumps to the returns only, and solved the model with
GMM (and option data)

Eraker et al.(2003) added jumps to returns and volatility, and solved the
model with MCMC (using prices data)
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Jump Estimation

Todorov(2010) emphasizes the importance of jumps in explaining the
dynamics and pricing of the variance premium

Bollerslev and Todorov (2011) o↵ered a new nonparametric estimation of
jump tails

They found a strong temporal variation in the jump intensity and sizes

Christo↵ersen et al. (2012) also provide evidence for time-varying jump
intensities
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Markov-Switching models

Hamilton(1989) was the first to introduce this notion of regime switching.
He defined the parameters of an autoregression as the outcome of a
discrete-state Markov process.

This triggered a multitude of papers modeling regime-switching

Regarding stochastic volatility, Casarin(2003 and 2013) attempted to
model the volatility parameters as Markov-switching, for a log stochastic
volatility model.

This motivates our choice to model the jump intensity and sizes to follow
Markov process. We would expect:

In stress period: a cluster of jumps, and of possibly big size

In calm period: not many jumps, of medium size
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Let Yt = log St , where St is the stock price. Then:

dYt = (µ+ �Vt�)dt +
p

Vt�dW
y
t + ⇠ystdN

y
st

dVt = (✓ � Vt�)dt + �v

p
Vt�dW

v
t

where Vt� = lims!t Vs , ⇢ = corr(W y
t ,W

v
t ), W

i
t (i = y , v) is a standard

Brownian motion in R2, Ny
st is a Poisson process with Markov-switching

intensity �y
st , and ⇠yst ⇠ N(µy

st ,�
y ) is the Markov-switching jump size in returns.

The Markov chain st have the following transition probability:

P(st = 2|st = 1) = ✏
1

P(st = 1|st = 2) = ✏
2
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MCMC Methods

We use here Markov Chain Monte Carlo methods.

In the bayesian setup, we want to draw our vector of parameters ⇥ from
p(⇥|Y ) (Y is the vector of observations)

problem: we don’t know p(⇥|Y )

We use the Gibbs algorithm
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Data Augmentation

We also have one problem: we have several latent variables (Vt , Jt , ⇠
y
t , st).

Jacquier et al. (1994) were the first to implement a Gibbs cycle to estimate a
stochastic volatility model. For this, they used the concept of data
augmentation of Tanner and Wong (1987).

We cannot draw from p(⇥|Y )

We can then add some parameters, for instance �

Consider then p(⇥,�|Y ) via p(⇥|�,Y ) and p(�|⇥,Y ).
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To apply the Gibbs algorithm here, we also need to discretize our
continuous-time jump-di↵usion:

Y

(t+1)�

� Yt� = µ�+
p

Vt��✏y
(t+1)�

+ ⇠ys
(t+1)�

J

y
s
(t+1)�

V

(t+1)�

� Vt� = (✓ � Vt�)�+ ✏v
p

Vt�✏
v
(t+1)�

(3)

where J

y
s
(t+1)�

equals 1 if a jump occurs, ✏i
(t+1)�

(i = y , v) are standard normal

variables with correlation ⇢, and � is the time-discretization interval (one-day
here). Once discretized, the jump times are Bernoulli random variables with
intensity �y

st�.
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We need to be able to compute the posterior distribution, which summarizes all
the information regarding the latent variables (volatility V , the jump times J
and size ⇠y , the Markov chain S) and the parameters
⇥ = (µ,, ✓,�v , ⇢, µ

y
1

, µy
2

,�y ,�
1

,�
2

, ✏
1

, ✏
2

). The posterior distribution combines
the likelihood and the prior:

p(⇥, J, ⇠y ,V , S |Y ) / p(Y |⇥, J, ⇠y ,V , S)p(⇥, J, ⇠y ,V , S) (4)
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Gibbs Cycle

volatility: p(Vt�|V
(t�1)�

, V
(t+1)�

, ⇥, J, ⇠y , S , Y ), t = 1, . . . ,T

jump times: p(Jt� = 1|⇥, ⇠y , V , S , Y ), t = 1, . . . ,T

jump sizes: p(⇠yst� |⇥, Jt� = 1, V , S , Y ), t = 1, . . . ,T

states: p(st�|s
(t�1)�

, s
(t+1)�

, ⇥, J, ⇠y , V , Y ), t = 1, . . . ,T

parameters: p(⇥i |⇥�i , J, ⇠
y , V , Y ), i = 1, . . . , k

where ⇥�i denotes the parameter vector except the i

th one, and k is the
number of parameters. Drawing from these distributions is not always
straightforward. We need to add a Metropolis Step to draw the volatility.
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The algorithm will provide a set of draws
{V (m), J(m), ⇠y(m), ⇠v(m), S (m),⇥(m)}Mm=1

, M being the number of Monte Carlo
simulations. These draws are samples from the posterior distribution.
Because the spot volatilities, the jump times and sizes and the states are drawn
from the posterior distribution, the Monte Carlo estimates of these processes is
given by:

E[Xt�|Y ] ⇡ 1
M

MX

m=1

X

(m)

t� (5)

where X can be V , ⇠y , J, S . Eraker et al. (2003) also notes a desirable feature
of the MCMC methods: E[Xt�|Y ] is estimated and not E[Xt�|Y , ⇥̂], which
means that we integrate out all the parameter uncertainty.
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Estimate the models using the S&P500(SPX) and the Nasdaq(NSX)
returns

We use the January 2, 1990 to December 31, 2013 period

We have 6,049 daily observations - all from the CRSP

Table : Summary Statistics

Mean Volatility Skewness Kurtosis Min Max

SP500 90-13 6.82 18.35 -0.24 11.62 -9.47 10.96
Nasdaq 90-13 9.20 24.05 -0.08 9.04 -10.17 13.25
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S&P500, 1990-2013

The intensity of the jumps is Markov-switching (�st ).

0 SVJ SVJMS

µ 0.00289(0.0098) 0.0243(0.0096)
✓ 1.1921(0.3290) 1.2058(0.3137)
 0.0166(0.0026) 0.0180(0.0020)
�v 0.1496(0.0097) 0.1559(0.0089)
⇢ -0.7168(0.0281) -0.7124(0.0303)
µy -1.3900(0.6998) -0.4717(0.5037)
�y 1.7214(0.3475) 3.3840(0.4940)
�
1

0.0094(0.0050) 0.8278(0.1011)
�
2

0 0.0025(0.0014)
✏
1

1 0.0426(0.0165)
✏
2

0 0.0005(0.0003)
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We consider jumps in returns only, and the jump size and the jump intensity to
be Markov-switching (�st , µ

y
st ).

Table : Parameter Comparison for SVJMS model with the SVJ model - NDX

Nasdaq, 1990-2013
SVJ SVJMS

µ 0.10 (0.0160) 0.0721(0.0125)
✓ 1.3874(0.4459) 1.7000(0.4981)
 0.013(0.0020) 0.011(0.0025)
�v 0.1459(0.0124) 0.1405(0.0104)
⇢ -0.5596(0.0407) -0.5224(0.0432)
µy
1

- 0.979(0.2500) -0.4432(0.3032)
µy
2

- 0.979(0.2500) -2.1321 (0.9219)
�y 1.2226(0.1610) 3.0431(0.3005)
�y
1

0.0495(0.0203) 0.8696(0.0616)
�y
2

0.0495(0.0203) 0.0053(0.0019)
✏
1

0.0268(0.0104)
✏
2

0.0011(0.0004)
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Nasdaq, 1998-2003, Tech Bubble
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Nasdaq, 2008-2009, Financial Crisis
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Total variance decomposition

E[(⇠yt )2]�y

V̄ + E[(⇠yt )2]�y

Table : Variance Decompositions

Spot Volatility Total Volatility Jump Variance (% total)

SPX NDX SPX NDX SPX NDX
SVJ 17.33 18.7 17.66 21.15 3.72 8.05
SVJMS 17.43 21.15 18.42 23.78 10.47 20.87

François Guay A Markov-Switching Stochastic Volatility Model with Jumps



Introduction
The model and its estimation

Empirical Results

The data
Estimation of the SVJMS model
Estimation of the SVJMS model

Conclusion and future work for that project

SVJMS model seems promising, we find evidence of two regimes and the
volatility dynamics are changed in crisis times

The convergence of the model can be sensitive to the parameters

Explore option pricing implications of having di↵erent volatility dynamics,
especially during stressed periods

Compute the odds ratios to evaluate which model is more likely
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ANY QUESTIONS ?
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