Time-lagged partial correlations of financial time series with high dimensional conditions
 Econophysics PY538

Sebastian Gemsheim

April 28, 2015

Outline

Data

Partial correlation

Results - Synchronous correlation

Results - Time-lagged correlations

Conclusion

- New York Stock Exchange 2001-2003
- Returns of the $N=100$ largest capitalized stocks
- 748 trading days, 78 data points per day, 5 min interval
- Total: $T=58344$ data points
- Data matrix X with dimension $N \times T$

Return distribution

- Rescaled data: zero mean, unit variance $x_{i}(t)=\frac{\tilde{x}_{i}(t)-\mu_{\bar{\chi}, i}}{\sigma_{\bar{\chi}, i}}$

Market mode

Covariance \& Correlation matrix

$$
\Sigma(X, X)=\rho(X, X)=\frac{1}{T} X X^{T}
$$

with Eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \ldots$ and eigenvectors u_{1}, u_{2}, \ldots
Market mode

$$
x_{m}(t)=\sum_{j=1}^{N} u_{1 j} x_{j}(t) \quad \Rightarrow \quad x_{i}(t)=\underbrace{\alpha_{i}}_{=0}+\beta_{i} x_{m}(t)+\epsilon_{i}(t)
$$

\rightarrow Market mode removed data $X_{\text {res }}$ with $\epsilon_{i}(t)$

Partial Correlation

- Question: What is the correlation between two variables x_{1}, x_{2} given y, a third one?

Partial Correlation

- Question: What is the correlation between two variables x_{1}, x_{2} given y, a third one?

- Answer: Partial correlation $\rho\left(x_{1}, x_{2} \mid y\right)$

Partial Correlation

Conditional mean

$$
\hat{x}_{i}(y)=\underbrace{\mathbb{E}\left(x_{i}\right)}_{=0}+\frac{\sigma(x, y)}{\sigma(y, y)}(y-\underbrace{\mathbb{E}(y)}_{=0})
$$

Partial covariance

$$
\sigma\left(x_{1}, x_{2} \mid y\right)=\operatorname{Cov}\left(x_{1}-\hat{x}_{1}(y), x_{2}-\hat{x}_{2}(y)\right)
$$

Partial Correlation

Conditional mean for $X=\left\{x_{1}, x_{2}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots, y_{m}\right\}$

$$
\hat{X}(Y)=\Sigma_{X Y} \Sigma_{Y Y}^{-1} Y
$$

Partial covariance

$$
\begin{aligned}
\Sigma_{X X \mid Y} & =\operatorname{Cov}(X-\hat{X}(Y), X-\hat{X}(Y)) \\
& =\Sigma_{X X}-\Sigma_{X Y} \Sigma_{Y Y}^{-1} \Sigma_{Y X}=\left(\begin{array}{ll}
\sigma_{11 \mid Y} & \sigma_{12 \mid Y} \\
\sigma_{21 \mid Y} & \sigma_{22 \mid Y}
\end{array}\right)
\end{aligned}
$$

Partial correlation

$$
\rho_{12 \mid Y}=\frac{\sigma_{12 \mid Y}}{\sqrt{\sigma_{11 \mid Y} \sigma_{22} \mid Y}}
$$

Synchronous Correlation

Correlation matrices

Synchronous Correlation

- Noise limit: $\rho_{\max } \sim \sqrt{2 \ln \left(N^{2}\right) / T}=0.01777$

Time-lagged correlation

Market mode removed data $X_{\text {res }}$

$$
C_{r e s}^{\tau}=\frac{1}{T-\tau} \sum_{t=1}^{T-\tau} X_{r e s}(t) X_{r e s}^{T}(t+\tau)
$$

Time-lagged partial correlation

High dimensional condition vector, dim: $(\tau N-2) \times(T-\tau)$

$$
\begin{aligned}
Y=\{ & x_{1}(t), \ldots, x_{i-1}(t), x_{i+1}(t), \ldots, x_{N}(t), \ldots, \\
& x_{1}(t+(\tau-k)), \ldots, x_{N}(t+(\tau-k)), \ldots, \\
& \left.x_{1}(t+\tau), \ldots, x_{j-1}(t+\tau), x_{j+1}(t+\tau), \ldots, x_{N}(t+\tau)\right\}
\end{aligned}
$$

Time-lagged Correlation ($\tau=1$)

Time-lagged Correlation ($\tau=1$)

Time-lagged Correlation ($\tau=1$)

Time-lagged Correlation ($\tau=1$)

Time-lagged Correlation matrices for lag 1

Time-lagged Correlation ($\tau=3$)

Time-lagged Correlation matrices for lag 3

Time－lagged Correlation（ $\tau=6$ ）

Time－lagged Correlation matrices for lag 6

三 \quad 〇Qの

Time－lagged Correlation（ $\tau=15$ ）

Time－lagged Correlation matrices for lag 15

三 \quad 〇の

Autocorrelations - market mode removed

Partial autocorrelations

Fit parameter: exponential decay time

- Consider only if fit amplitude A is outside noise region
- AC: decay time $\sim 3-5 \mathrm{~min}$
- PAC: decay time ~ 7 min

Strong partial cross-correlations

- Filter threshold for lag 1: $0.05 \approx 3 \rho_{\text {max }}$

Partial cross-correlations

Partial cross-correlations

- Same decay time scale as partial autocorrelations, $\tau \approx 7 \mathrm{~min}$

Eigenvalue distribution $(\tau=1)$

Eigenvalue distribution $(\tau=3)$

Eigenvalues of $C_{\text {res }}^{3}, C_{s c r}^{3}$ and C_{p}^{3}

Eigenvalue distribution $(\tau=14)$

Eigenvalues of $C_{r e s}^{14}, C_{s c r}^{14}$ and C_{p}^{14}

Data Partial correlation Results - Synchronous correlation Results - Time-lagged correlations Conclusion

Conclusion

General

Conclusion

General

- good tool to investigate underlying correlation network of a system

Conclusion

General

- good tool to investigate underlying correlation network of a system
- conditions can be extended arbitrarily

Conclusion

General

- good tool to investigate underlying correlation network of a system
- conditions can be extended arbitrarily

Stock market - NYSE

Conclusion

General

- good tool to investigate underlying correlation network of a system
- conditions can be extended arbitrarily

Stock market - NYSE

- typical decay time for correlations: 7 min

Conclusion

General

- good tool to investigate underlying correlation network of a system
- conditions can be extended arbitrarily

Stock market - NYSE

- typical decay time for correlations: 7 min
- raw correlation damped by mutual third party correlations

Conclusion

General

- good tool to investigate underlying correlation network of a system
- conditions can be extended arbitrarily

Stock market - NYSE

- typical decay time for correlations: 7 min
- raw correlation damped by mutual third party correlations
- almost no negative time-lagged cross-correlations

Data Partial correlation Results - Synchronous correlation Results - Time-lagged correlations Conclusion

Outlook

General

Outlook

General
 - Parallel computing could speed up calculations

Outlook

General

- Parallel computing could speed up calculations

Stock market - NYSE

Outlook

General

- Parallel computing could speed up calculations

Stock market - NYSE

- identify sectors and subsectors with synchronous partial correlations and compare to older results

Outlook

General

- Parallel computing could speed up calculations

Stock market - NYSE

- identify sectors and subsectors with synchronous partial correlations and compare to older results
- include time-lagged partial correlations in cluster identification \rightarrow new dimension

Outlook

General

- Parallel computing could speed up calculations

Stock market - NYSE

- identify sectors and subsectors with synchronous partial correlations and compare to older results
- include time-lagged partial correlations in cluster identification \rightarrow new dimension
- Plot correlation network with time dimension

Outlook

General

- Parallel computing could speed up calculations

Stock market - NYSE

- identify sectors and subsectors with synchronous partial correlations and compare to older results
- include time-lagged partial correlations in cluster identification \rightarrow new dimension
- Plot correlation network with time dimension
- Study SVD decompositions

End

Thank you for your attention!

And thanks to Chester!

Backup slides

Backup slides

