PCA as a Tool for Analyzing the Market

Efe Yigitbasi

Content

- Modeling the Market
- Dimension Reduction and PCA
- An Example: Stock Market
- Another Example: Bond Market
- Conclusions

Modeling the Market

- We have to find a way to choose parameters for our models.
- Our parameters should be invariant in time.
- We should be able to reconstruct prices from invariants.

Invariants

- Stocks:
- Price is not an invariant.
- Logarithmic returns is.
- Bonds:
- Price is not an invariant.
- Yield to maturity is.

Invariants

- The difference between the invariants and prices:

Invariants

- Logarithmic (compounded) returns for a stock:

$$
C_{t, \tau} \equiv \ln \left(\frac{P_{t}}{P_{t-\tau}}\right) .
$$

- Yield to maturity for bonds:

$$
Y_{t}^{(v)} \equiv-\frac{1}{v} \ln \left(Z_{t}^{(t+v)}\right)
$$

Dimension Reduction

- In general our invariants can be expressed as a single multivariate parameter:

$$
X_{T \times K}(Y, C)
$$

- Price will be a function of this parameter:

$$
P_{T \times K}=f\left(X_{T \times K}\right)
$$

Dimension Reduction

- Usually the dimension of this parameter is larger than the actual degree of randomness in our market.
$K>$ Number of independent dimensions
- Reasons:
- Derivatives.
- Hidden dependencies.

Dimension Reduction

- One method of reducing dimensions is Principal Component Analysis (PCA).
- We assume our parameter is a combination of some common factors and small perturbations:

$$
\mathbf{X} \equiv \mathbf{q}+\mathbf{B F}(\mathbf{X})+\mathbf{U} .
$$

Principal Component Analysis

- Construct the covariance matrix:

$$
C_{K \times K}=\frac{X^{\prime} X}{T}
$$

- Find the eigenvalues and eigenvectors of the covariance matrix.

Principal Component Analysis

- The eigenvectors are the principal axes of the location-dispersion ellipsoid.
- They represent the directions of most variance.
- The dimension of the ellipsoid can be reduced depending on the eigenvalues.

Principal Component Analysis

An Example: Stock Market

- 26 stocks from the Dow-Jones Index.
- Daily close prices from: 1/1/1990 to: 4/20/2015
- Use R-squared for measuring the explanatory power of the first N eigenvalues:

$$
R^{2}=\frac{\sum_{i=1}^{N} \lambda_{i}}{\sum_{i=1}^{K} \lambda_{i}}
$$

An Example: Stock Market

A look at eigenvalues

An Example: Stock Market

A look at eigenvectors

Bar plot of the first eigenvector
Bar plot of the third eigenvector

Another Example: Bond Market

- Daily US Treasury Bond yield rates from: 2/9/2006 to: 4/20/2015.
- Maturities: 1 Mo, 3 Mo, $6 \mathrm{Mo}, 1 \mathrm{yr}, 2 \mathrm{yr}, 3 \mathrm{yr}, 5 \mathrm{yr}, 7$ yr, $10 \mathrm{yr}, 20 \mathrm{yr}, 30 \mathrm{yr}$.
- Using the same R-squared as stock market.

Another Example: Bond Market

- The covariance matrix has some nice properties:
- Smooth in both of its arguments.
- Nearly constant diagonal terms.
- Only depends on one parameter.
- Infinite dimensional case -> Toeplitz Operator.

Another Example: Bond Market

Another Example: Bond Market

Representation of covariance matrix of stocks

Representation of covariance matrix of bonds

Another Example: Bond Market

A look at eigenvalues

Another Example: Bond Market

A look at eigenvectors:
First 4 eigenvectors

Another Example: Bond Market

- How about different countries?
- Monthly Spanish Government Bond yields
- from: 10/1/2004 to: 4/1/2015

Another Example: Bond Market

A look at eigenvalues:

Another Example: Bond Market

A look at eigenvectors:
First 4 eigenvectors

Another Example: Bond Market

- They look similar.
- Maybe we can look for specific years:
- Before 2007.
- After 2007.

Another Example: Bond Market

Eigenvalues for two different years:

2005

2008

Another Example: Bond Market

First eigenvectors for two different years:

First eigenvector in 2005

First eigenvector in 2008

- Stocks:
- Dimension of the stock market is not as easily reducible as the bond market.
- Gives valuable information about common factors, and correlation between different stocks (sectors?)
- Might give better results for larger number of stocks.
- Bonds:
- Number of important dimensions is usually less than 3.
- Different markets and different years tend to give similar results.
- Relation to the continuous case can make it easier to analyze.

Thank you!

