BANKING SYSTEMS UNDER NETWORK THEORY

CASE: VENEZUELA, 1998–2013 (IN PROCESS)

Adam Avakian, Dror Y. Kenett, H. Eugene Stanley and Sary Levy-Carciente

JUSTIFICATION

- The 2008 financial crisis proved we need new ways to think about systemic risk
 - "Too big to fail" became "Too interconnected to fail"
 - Current regulation stresses the health of the banks, i.e. nodes, but not of the network, i.e. the financial system, as a whole
- Network theory helps expose the effect of connections between banks that can often lead to cascading failures not accounted for by traditional regulations

QUESTIONS

- Can we predict the next financial crisis?
- Can we prevent the next financial crisis?
- Can we influence new financial regulations?

OUR PROJECT

- To describe the topology of the Venezuelan banking system based on Network Theory models
- To explore and show the transformation of the system during the period 1998-2013 and better understand the effects of historical changes to bank laws
- To simulate shock scenarios and evaluate their impacts

Data & Method

Data:

Balance Sheet information of each of the institutions of the banking system in monthly basis, from 1998–2013

Method:

Modeling a Bipartite Network: Assets-Banks Simulation of shock scenarios

BIPARTITE NETWORKS

Edges only exist across two subsets of nodes

BIPARTITE NETWORKS

Edges only exist across two subsets of nodes

BIPARTITE NETWORKS

Edges only exist across two subsets of nodes

CASCADING FAILURE MODEL

ASSET CLASS NETWORK

Credit

December 2013

Cash

NEZUE

ANES

CREDIT CLASS NETWORK

SECURITY CLASS NETWORK

December 2013

