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Abstract
This short review presents a selected history of the mutual fertilization between physics and
economics—from Isaac Newton and Adam Smith to the present. The fundamentally different
perspectives embraced in theories developed in financial economics compared with physics are
dissected with the examples of the volatility smile and of the excess volatility puzzle. The role
of the Ising model of phase transitions to model social and financial systems is reviewed, with
the concepts of random utilities and the logit model as the analog of the Boltzmann factor in
statistical physics. Recent extensions in terms of quantum decision theory are also covered.
A wealth of models are discussed briefly that build on the Ising model and generalize it to
account for the many stylized facts of financial markets. A summary of the relevance of the
Ising model and its extensions is provided to account for financial bubbles and crashes.
The review would be incomplete if it did not cover the dynamical field of agent-based models
(ABMs), also known as computational economic models, of which the Ising-type models are
just special ABM implementations. We formulate the ‘Emerging Intelligence Market
Hypothesis’ to reconcile the pervasive presence of ‘noise traders’ with the near efficiency of
financial markets. Finally, we note that evolutionary biology, more than physics, is now
playing a growing role to inspire models of financial markets.

Keywords: finance, econophysics, Ising model, phase transitions, excess volatility puzzle,
adaptive markets, bubbles

1. Introduction

The world economy is an extremely complex system with
hidden causalities rooted in intensive social and technological
developments. Critical events in such systems caused by
endogenous instabilities can lead to huge crises wiping
out the wealth of whole nations. On the positive side,
positive feedback of education and venture capital investing on
entrepreneurship can weave a virtuous circle of great potential
developments for future generations. Risks, both on the

downside as well as on the upside, are indeed permeating and
controlling the outcome of all human activities and require
high priority.

Traditional economic theory is based on the assumptions
of rationality of economic agents and of their homogeneous
beliefs, or equivalently that their aggregate behaviors can be
represented by a representative agent embodying their effective
collective preferences. However, many empirical studies
provide strong evidence for market agents heterogeneity
and on the complexity of market interactions. Interactions
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between individual market agents for instance cause order book
dynamics, which aggregate into rich statistical regularities at
the macroscopic level. In finance, there is growing evidence
that equilibrium models and the efficient market hypothesis
(EMH), see section 7.3 for an extended presentation and
generalization, cannot provide a fully reliable framework for
explaining the stylized facts of price formation (Fama 1970).
Doubts are further fuelled by studies in behavioral economics
demonstrating limits to the hypothesis of full rationality for real
human beings (as opposed to the homo economicus posited by
standard economic theory). We believe that a complex systems
approach to research is crucial to capture the inter-dependent
and out-of-equilibrium nature of financial markets, whose total
size amounts to at least 300% of the world GDP and of the
cumulative wealth of nations.

From the risk management point of view, it is now well
established that the value-at-risk measure, on which prudential
Basel I and II recommendations are based, constitutes a
weak predictor of the losses during crises. Realized and
implied volatilities as well as inter-dependencies between
assets observed before the critical events are usually low, thus
providing a completely misleading picture of the coming risks.
New risk measures that are sensitive to global deteriorating
economic and market conditions are yet to be fully developed
for better risk management.

In today’s high-tech era, policy makers often use
sophisticated computer models to explore the best strategies
to solve current political and economic issues. However,
these models are in general restricted to two classes: (i)
empirical statistical methods that are fitted to past data and
can successfully be extrapolated a few quarters into the future
as long as no major changes occur; and (ii) dynamic stochastic
general equilibrium (DSGE) models, which by construction
assume a world always in equilibrium. The DSGE models
are actively used by central banks, which in part rely on
them to take important decisions such as fixing interest rates.
Both of these methods assume that the acting agents are fully
rational and informed, and that their actions will lead to stable
equilibria. These models therefore do not encompass out-
of-equilibrium phenomena such as bubbles and subsequent
crashes (Kindleberger 2000, Sornette 2003), arising among
other mechanisms from herding among not fully rational
traders (De Grauwe 2010). Consequently, policy makers
such as central banks base their expectations on models and
processes that do not contain the full spectrum of possible
outcomes and are caught off guard when extreme events, such
as the financial crisis in 2008, occur (Colander et al 2009).
Indeed, during and following the financial crisis of 2007–
2008 in the USA that cascaded to Europe in 2010 and to the
world, central bankers in top policy making positions, such as
Trichet, Bernanke, Turner and many others, have expressed
significant dissatisfaction with economic theory in general
and macroeconomic theory in particular, suggesting even their
irrelevance in times of crisis.

Physics as well as other natural sciences, in particular
evolutionary biology and environmental sciences, may pro-
vide inspiring paths to break the stalemate. The analytical
and computational concepts and tools developed in physics in

particular are starting to provide important frameworks for a
revolution that is in the making. We refer in particular to the
computational framework using agent-based or computational
economic models. In this respect, let us quote Jean-Claude
Trichet, the previous chairman of the European Central Bank
in 2010: ‘First, we have to think about how to characterize the
homo economicus at the heart of any model. The atomistic,
optimizing agents underlying existing models do not capture
behavior during a crisis period. We need to deal better with
heterogeneity across agents and the interaction among those
heterogeneous agents. We need to entertain alternative moti-
vations for economic choices. Behavioral economics draws
on psychology to explain decisions made in crisis circum-
stances. Agent-based modeling dispenses with the optimiza-
tion assumption and allows for more complex interactions be-
tween agents. Such approaches are worthy of our attention’.
In addition, as Alan Kirman (2012) stressed recently, compu-
tational or algorithmic models have a long and distinguished
tradition in economics. The exciting result is that simple inter-
actions at the micro level can generate sophisticated structure
at the macro level, exactly as is observed in financial time se-
ries. Moreover, such ABMs are not constrained to equilibrium
conditions. Out-of-equilibrium states can naturally arise as a
consequence of the agents’ behavior, as well as fast chang-
ing external conditions and impacting shocks, and can lead to
dramatic regime shift or tipping points. The fact that such sys-
temic phenomena can naturally arise in agent-based models
(ABMs) makes this approach ideal to model extreme events
in financial markets. The emphasis on ABMs and computa-
tional economics parallels a similar revolution in Physics that
developed over the last few decades. Nowadays, most physi-
cists would agree that Physics is based on three pillars: exper-
iments, theory and numerical simulations, defining the three
inter-related disciplines of experimental physics, theoretical
physics and computational physics (nowadays, a fourth pillar
is emerging, called ‘big data’). Many scientists have devoted
their life to just one of these three. In comparison, computa-
tional economics and ABMs are still in their infancy but with
similar promising futures.

Given the above-mentioned analogies and relationships
between economics and physics, it is noteworthy that these
two fields have been life-long companions during their mu-
tual development of concepts and methods emerging in both
fields. There has been much mutual enrichment and catalysis
of cross-fertilization. Since the beginning of the formulation
of the scientific approach in the physical and natural sciences,
economists have taken inspiration from physics, in particular
in its success in describing natural regularities and processes.
Reciprocally, physics has been inspired several times by ob-
servations in economics.

This review aims to provide some insights on this
relationship, past, present and future. In the next section,
we present a selected history of mutual fertilization between
physics and economics. Section 3 attempts to dissect the
fundamentally different perspectives embraced in theories
developed in financial economics compared with physics. For
this, the excess volatility puzzle is presented and analyzed
in some depth. We explain the meaning of puzzles and
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the difference between empirically founded science and
normative science. Section 4 reviews how the Ising model of
phase transitions has developed to model social and financial
systems. In particular, we present the concept of random
utilities and derive the logit model describing decisions made
by agents as being the analog of the Boltzmann factor in
statistical physics. The Ising model in its simplest form can
then be derived as the optimal strategy for boundedly rational
investors facing discrete choices. The section also summarizes
the recent developments on a non-orthodox decision theory,
called quantum decision theory. Armed with these concepts,
section 5 reviews non-exhaustively a wealth of models that
build on the Ising model and generalize it to account for the
many stylized facts of financial markets, and more, with still a
rich future to enlarge the scope of the investigations. Section 6
briefly reviews our work on financial bubbles and crashes
and how the Ising model comes into play. Section 7 covers
the literature on ABMs, of which the class of Ising models
can be considered a sub-branch. This section also presents
the main challenges facing agent-based modelling before
standing a chance of being widely adopted by economists and
policy makers. We also formulate the ‘Emerging Intelligence
Market Hypothesis’, to explain the pervasive presence of
‘noise traders’ together with the near efficiency of financial
markets. Section 8 concludes with advice on the need to
combine concepts and tools beyond physics and finance with
evolutionary biology.

2. A short history of the mutual fertilization between
physics and economics

Many physicists and economists have reflected on the
relationships between physics and economists. Let us mention
some prominent accounts (Zhang 1999, Bouchaud 2001,
Derman 2004, Farmer and Lux 2010). Here, we consider
rather the history of the inter-fertilization between the two
fields, providing an hopefully general inspiring perspective,
especially for the physicist aspiring to work in economics and
finance.

2.1. From Isaac Newton to Adam Smith

To formulate his ‘Inquiry into the Nature and Causes of the
Wealth of Nations’, Adam Smith (1776) was inspired by the
Philosophiae Naturalis Principia Mathematica (1687) of Isaac
Newton, which specifically stresses the (novel at the time)
notion of causative forces. In the first half of the nineteenth
century, Quetelet and Laplace among others become fascinated
by the regularities of social phenomena such as births, deaths,
crimes and suicides. They even coined the term ‘social
physics’ to capture the evidence for natural laws (such as the
ubiquitous Gaussian distribution based on the law of large
numbers and the central limit theorem) that govern human
social systems such as the economy.

2.2. Equilibrium

In the second half of the 19th century, the microeconomists
Francis Edgeworth and Alfred Marshall drew on the concept

of macroequilibrium in gas, understood to be the result of the
multitude of incessant micro-collisions of gas particles, which
was developed by Clerk Maxwell and Ludwig Boltzmann.
Edgeworth and Marshall thus developed the notion that
the economy achieves an equilibrium state not unlike that
described for gas. In the same way that the thermodynamic
description of a gas at equilibrium produces a mean-
field homogeneous representation that gets rid of the rich
heterogeneity of the multitude of micro-states visited by all the
particles, the DSGE models used by central banks, for instance,
do not have agent heterogeneity. They focus on a representative
agent and a representative firm, in a way parallel to the
Maxwell Garnett effective medium theory of dielectrics and
effective medium approximations for conductivity and wave
propagation in heterogenous media. In DSGE, equilibrium
refers to clearing markets, such that total consumption equal
output, or total demand equals total supply, and this takes
place between representative agents. This idea, which is
now at the heart of economic modeling, was not accepted
easily by contemporary economists who believed that the
economic world is out-of-equilibrium with heterogeneous
agents who learn and change their preferences as a function of
circumstances. It is important to emphasize that the concept of
equilibrium, which has been much criticized in particular since
the advent of the ‘great financial crisis’ since 2007 and of the
‘great recession’, was the result of a long maturation process
with many fights within the economic profession. In fact,
the general equilibrium theory now at the core of mainstream
economic modeling is nothing but a formalization of the
idea that ‘everything in the economy affects everything else’
(Krugman 1996), reminiscent of mean-field theory or self-
consistent effective medium methods in physics. However,
economics has pushed the role of equilibrium further than
physics by ascribing to it a normative role, i.e. not really
striving to describe economic systems as they are, but rather
as they should be (Farmer and Geanakoplos 2009).

2.3. Pareto and power laws

In his ‘Cours d’Economie Politique’ (1897), the economist and
philosopher Vilfredo Pareto reported remarkable regularities in
the distribution of incomes, described by the eponym power
laws, which have later become the focus of many natural
scientists and physicists attracted by the concept of universality
and scale invariance (Stanley 1999). Going beyond Gaussian
statistics, power laws belong to the class of ‘fat-tailed’ or sub-
exponential distributions.

One of the most important implications of the existence
of the fat-tail nature of event size distributions is that the
probability of observing a very large event is not negligible,
contrary to the prediction of the Gaussian world, which rules
out for all practical purposes events with sizes larger than a few
standard deviations from the mean. Fat-tailed distributions
can even be such that the variance and even the mean are
not defined mathematically, corresponding to the wild class
of distributions where the presence of extreme event sizes is
intrinsic.

Such distributions have later been documented for many
types of systems when describing the relative frequency of
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the sizes of events they generate, for instance earthquakes,
avalanches, landslides, storms, forest fires, solar flares,
commercial sales, war sizes, and so on (Mandelbrot 1982, Bak
1996, Newman 2005, Sornette 2004). Notwithstanding the
appeal for a universal power law description, the reader should
be warned that many of the purported power law distributions
are actually spurious or only valid over a rather limited range
(see e.g. Sornette 2004, Perline 2005, Clauset et al 2009).
Moreover, most data in finance show strong dependence, which
invalidates simple statistical tests such as the Kolmogorov
Smirnov test (Clauset et al 2009). A drastically different
view point is offered by multifractal processes, such as the
multifractal random walk (Bacry et al 2001, 2013, Muzy et al
2001, 2006), in which the multiscale two-point correlation
structure of the volatility is the primary construction brick
from which derives the power law property of the one-point
statistics, i.e. the distribution of returns (Muzy et al 2006).
Moreover, the power law regime may even be superseded
by a different ‘dragon-king’ regime in the extreme right tail
(Sornette 2009, Sornette and Ouillon 2012).

2.4. Brownian motion and random walks

In order to model the apparent random walk motion
of bonds and stock options in the Paris stock market,
mathematician Louis Bachelier (1900) developed in his thesis
the mathematical theory of diffusion (and the first elements
of financial option pricing). He solved the parabolic diffusion
equation five years before Albert Einstein (1905) established
the theory of Brownian motion based on the same diffusion
equation, also underpinning the theory of random walks.
These two works have ushered research on mathematical
descriptions of fluctuation phenomena in statistical physics, of
quantum fluctuation processes in elementary particles-fields
physics, on the one hand, and of financial prices on the
other hand, both anchored in the random walk model and
Wiener process. The geometric Brownian motion (GBM)
(exponential of a standard random walk) was introduced by
Osborne (1959) on empirical grounds and Samuelson (1965)
on theoretical grounds that prices cannot become negative and
price changes are proportional to previous prices. Cootner
(1964) compiled strong empirical support for the GBM model
of prices and its associated log-normal distribution of prices,
corresponding to Gaussian distributions of returns. The
GBM model has become the backbone of financial economics
theory, underpinning many of its fundamental pillars, such
as Markowitz’ portfolio theory (Markowitz 1952), Black–
Scholes–Merton option pricing formula (Black and Scholes
1973, Merton 1973) and the Capital Asset Pricing Model
(Sharpe 1964) and its generalized factor models of asset
valuations (Fama and French 1993, Carhart 1997). Similarly,
it is not an exaggeratation to state that much of physics is
occupied with modeling fluctuations of (interacting) particles
undergoing some kind of correlated random walk motion. As
in physics, empirical analyses of financial fluctuations have
forced the introduction of a number of deviations from the
pure naive random walk model, in the form of power law
distribution of log-price increments, long-range dependence

of their absolute values (intermittency and clustering) and
absence of correlation of returns, multifractality of the absolute
value of returns (multi-scale description due to the existence
of information cascades) (Mandelbrot 1997, Mandelbrot et al
1997, Bacry et al 2001) and many others (Chakraborti et al
2011). A profusion of models have been introduced to account
for these observations, which build on the GBM model.

2.5. Stable Lévy distributions

In the early 1960s, mathematician Benoit Mandelbrot (1963)
pioneered the use in Financial Economics of heavy-tailed
distributions (stable Lévy laws), which exhibit power law tails
with exponent less than 21, in contrast with the traditional
Gaussian (Normal) law. Several economists at the University
of Chicago (Merton Miller, Eugene Fama, Richard Roll), at
MIT (Paul Samuelson) and at Carnegie Mellon University
(Thomas Sargent) were initially attracted by Mandelbrot’s
suggestion to replace the Gaussian framework by a new one
based on stable Lévy laws. In his PhD thesis, Eugene Fama
confirmed that the frequency distribution of the changes in
the logarithms of prices was ‘leptokurtic’, i.e. with a high
peak and fat tails. However, other notable economists (Paul
Cootner and Clive Granger) strongly opposed Mandelbrot’s
proposal, based on the argument that ‘the statistical theory
that exists for the normal case is nonexistent for the other
members of the class of Lévy laws’. Actually, Fama (1965),
Samuelson (1967) and later Bawa et al (1979) extended
Markowitz’ portfolio theory to the case of stable Paretian
markets, showing that some of the standard concepts and tools
in financial economics have a natural generation in the presence
of power laws. This last statement has been made firmer even
in the presence of non-stable power law tail distributions by
Bouchaud et al (1998). However, the interest in stable Lévy
laws faded as empirical evidence mounted rapidly to show that
the distributions of returns are becoming closer to the Gaussian
law at time scales larger than one month, in contradiction with
the self-similarity hypothesis associated with the Lévy laws
(Campbell et al 1997, MacKenzie 2006). In the late 1960s,
Benoit Mandelbrot mostly stopped his research in the field of
financial economics. However, inspired by his forays on the
application of power laws to empirical data, he went on to show
that non-differentiable geometries (that he coined ‘fractal’),
previously developed by mathematicians (Weierstrass, Hölder,
Hausdorff among others) from the 1870s to the 1940s, could
provide new ways to deal with the real complexity of the
world (Mandelbrot 1982). This provided an inspiration for the
econophysicists’ enthusiasm starting in the 1990s to model
the multifractal properties associated with the long-memory
properties observed in financial asset returns (Mandelbrot et al
1997, Mandelbrot 1997, Bacry et al 2001, 2013, Muzy et al
2001, 2006, Sornette et al 2003).

1 Heavy-tailed distributions are defined in the mathematical literature
(Embrechts et al 1997) roughly speaking by exhibiting a probability density
function (PDF) with a power law tail of the form PDF(x) ∼ 1/x1+µ with
0 < µ < 2 so that the variance and other centered moments of higher orders
do not exist.
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2.6. Power laws after Mandelbrot

Much of the efforts in the econophysics literature of the
late 1990s and early 2000s revisited and refined the initial
1963 Mandelbrot hypothesis on heavy-tailed distribution of
returns. This confirmed, on the one hand, the existence of
the variance (which rules out the class of Lévy distributions
proposed by Mandelbrot), but also suggested a power law tail
with an exponent µ close to 3 (Mantegna and Stanley 1995,
Gopikrishnan et al 1999). Note, however, that several other
groups have discussed alternatives, such as exponential (Silva
et al (2004) or stretched exponential distributions (Laherrere
and Sornette 1999). Moreover, Malevergne et al (2005)
and Malevergne and Sornette (2006, chapter 2) developed
an asymptotic statistical theory showing that the power
law distribution is asymptotically nested within the larger
family of stretched exponential distributions, allowing the
use of the Wilks log-likelihood ratio statistics of nested
hypotheses in order to decide between power law and stretched
exponential for a given data set. Similarly, Malevergne
et al (2011) developed a uniformly most powerful unbiased
test to distinguish between the power law and log-normal
distributions, whose statistics turn out to be simply the sample
coefficient of variation (the ratio of the sample standard
deviation to the sample mean of the logarithm of the random
variable).

Financial engineers actually care about these technicalities
because the tail structure controls the Value-at-Risk and other
risk measures used by regulators as well as investors to assess
the soundness of firms as well as the quality of investments.
Physicists care because the tail may constrain the underlying
mechanism(s). For instance, Gabaix et al (2003) attribute
the large movements in stock market activity to the interplay
between the power-law distribution of the sizes of large
financial institutions and the optimal trading of such large
institutions. Levy and Levy (2003) and Levy (2005) similarly
emphasize the importance of the Pareto wealth distribution in
explaining the distribution of stock returns, pointing out that
the Pareto wealth distribution, market efficiency, and the power
law distribution of stock returns are closely linked and probably
associated with stochastic multiplicative processes (Sornette
and Cont 1997, Sornette 1998a, Malevergne and Sornette 2001,
Huang and Solomon 2002, Solomon and Richmond 2002,
Malcai et al 2002, Lux and Sornette 2002, Saichev et al 2010).
However, another strand of literature emphasizes that most
large events happen at relatively high frequencies, and seem
to be triggered by a sudden drop in liquidity rather than by an
outsized order (Farmer et al 2004, Weber and Rosenow 2006,
Gillemot et al 2007, Joulin et al 2008).

2.7. Full distribution, positive feedback, inductive reasoning

In a seminal Nobel Prize-winning article, Anderson (1958) laid
out the foundation of the physics of heterogenous complex
systems by stressing the need to go beyond the standard
description in terms of the first two moments (mean and
variance) of statistical distributions. He pointed out the
importance of studying their full shape in order to account

for important rare large deviations that often control the long-
term dynamics and organization of complex systems (dirty
magnetic systems, spin-glasses). In the same vein, Gould
(1996) has popularized the need to look at the ‘full house’, the
full distribution, in order to explain many paradoxes in athletic
records as well as in the biology of evolution. The study of
spinglasses (Mézard et al 1987) and of out-of-equilibrium self-
organizing complex systems (Strogatz 2003, Sornette 2004,
Sethna 2006) have started to inspire economists to break the
stalemate associated with the concept of equilibrium, with
emphasis on positive feedbacks and increasing returns (Arthur
1994a, 1997, 2005, Krugman 1996) and on inductive bottom-
up organizational processes (Arthur 1994b, Challet et al 2005).
This is in contrast with the deductive top-down reasoning most
often used in economics, leading to the so-called ‘normative’
approach of economics, which aims at providing recipes on
how economies should be, rather than striving to describe how
they actually are.

3. Thinking as an economist or as a physicist?

3.1. Puzzles and normative science

Economic modeling (and financial economics is just a branch
following the same principles) is based on the hunt for
paradoxes or puzzles. The term puzzle refers to problems
posed by empirical observations that do not conform to
the predictions based on theory. Many puzzles have been
unearthed by financial economists. One of the most famous
of these paradoxes is called the excess volatility puzzle,
which was discovered by Shiller (1981, 1989) and LeRoy and
Porter (1981).

A puzzle emerges typically by the following procedure. A
financial modeler builds a model or a class of models based on a
pillar of standard economic thinking, such as efficient markets,
rational expectations, representative agents, and so on. She
then draws some prediction that is then tested statistically,
often using linear regressions on empirical data. A puzzle
emerges when there is a strong divergence or disagreement
between the model prediction and the regressions, so that
something seems at odds, literally ‘puzzling’ when viewed
from the interpreting lenses of the theory. But rather than
rejecting the model as the falsification process in physics
dictates (Dyson 1988), the financial modeler is excited because
she has hereby identified a new ‘puzzle’: the puzzle is that the
‘horrible’ reality (to quote Huxley) does not conform to the
beautiful and parsimonious (and normative) theoretical edifice
of neo-classical economic thinking. This is a puzzle because
the theory should not be rejected, it cannot be rejected, and
therefore the data has something wrong in it, or there are some
hidden effects that have to be taken into account that will allow
the facts to confirm the theory when properly treated. In the
most generous acceptation, a puzzle points to improvements
that can be brought to the theory. But the remarkable thing
remains that the theory is not falsified. It is used as the
deforming lens to view and interpret empirical facts.

This rather critical account should be balanced with
the benefits obtained from studying ‘puzzles’ in economics.
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Indeed, since it has the goal of formalizing the behavior of
individuals and of organizations striving to achieve desired
goals in the presence of scarce resources, economics has
played, and is still playing, a key role in helping policy makers
shape their decision when governing organization and nations.
To be concerned with how things should be may be a good idea,
especially with the goal of designing ‘better’ systems. If and
when reality deviates from the ideal, this signals to economists
the existence of some ‘friction’ that needs to be considered and
possibly alleviated. Frictions are important within economics
and, in fact, are often modeled.

3.2. The volatility smile

This ideology is no better illustrated than by the concept of
the ‘volatility smile’. The celebrated Black–Scholes–Merton
pricing formula calculates the value of options, derivatives
defined on underlying assets, such as the European call option
that gives the right but not the obligation for its holder to buy
the underlying stock at some fixed exercise price K at a fixed
maturity time T in the future (Black and Scholes 1973, Merton
1973). In addition to the exercise price K and the time T − t to
maturity counted from the present time t , the Black–Scholes–
Merton pricing formula depends on several other parameters,
namely the risk-free interest rate, the volatility σ of the returns
of the underlying asset as well as its present price p(t).

As recounted by MacKenzie (2006), the spreading use
of the Black–Scholes–Merton pricing formula associated with
the opening of the Chicago Board Options Exchange in 1973
led to a progressive convergence of traded option prices to
their Black–Scholes theoretical valuation, legitimizing and
catalyzing the booming derivative markets. This developed
nicely until the crash of 19 October 1987, which, in one stroke,
broke forever the validity of the formula. Since that day,
one literally fudges the Black–Scholes–Merton formula by
adjusting the volatility parameter to a value σimplied such that the
Black–Scholes–Merton formula coincides with the empirical
price. The corresponding volatility value is called ‘implied’,
because it is the value of σ needed in the formula, and thus
‘implied’ by the markets, in order for theory and empirics to
agree. The volatility smile refers to the fact that σimplied is
not a single number, not even a curve, but rather a generally
convex surface, a function of both K and T − t . In order to
reconcile the failing formula, one needs fudged values of σ for
all possible pairs of K and T − t traded on the market for each
underlying asset.

This is in contrast to the theory that assumes a single
unique fixed value representing the standard deviation of
the returns of the underlying asset. The standard financial
rationale is that the volatility smile σimplied(K, T −t) quantifies
the aggregate market view on risks. Rather than improving
the theory, the failed formula is seen as the engine for
introducing an effective risk metric that gauges the market
risk perception and appetites. Moreover, the volatility smile
surface σimplied(K, T −t) depends on time, which is interpreted
as reflecting the change of risk perceptions as a function
of economic and market conditions. This is strikingly
different from the physical approach, which would strive

to improve or even cure the Black–Scholes–Merton failure
(Bouchaud and Sornette 1994, Bouchaud and Potters 2003)
by accounting for non-Gaussian features of the distribution
of returns, long-range dependence in the volatility as well as
other market imperfections that are neglected in the standard
Black–Scholes–Merton theory.

The implied volatility type of thinking is so much
ingrained that all traders and investors are trained in this way, to
think according to the risks supposedly revealed by the implied
volatility surface and to develop correspondingly their intuition
and operational implementations. By their behaviors, the
traders actually justify the present use of the implied volatility
surface since, in finance, if everybody believes in something,
it will happen by their collective actions, called self-fulfilling
prophecies. It is this behavioral boundedly rational feedback of
traders’ perception on risk taking and hedging that is neglected
in the Black–Scholes–Merton theory. Actually, Potters et al
(1998) showed, by studying in detail the market prices of
options on liquid markets, that the market has empirically
corrected the simple but inadequate Black–Scholes formula
to account for the fat tails and the correlations in the scale
of fluctuations. These aspects, although not included in the
pricing models, are found very precisely reflected in the price
fixed by the market as a whole.

Sircar and Papanicolaou (1998) showed that a partial
account of this feedback of hedging in the Black–Scholes
theory leads to increased volatility. Wyart and Bouchaud
(2007) formulated a nice , simple model for self-referential
behavior in financial markets where agents build strategies
based on their belief of the existence of correlation between
some flow of information and prices. Their belief followed
by action makes the former realized and may produce excess
volatility and regime shifts that can be associated with the
concept of convention (Orléan 1995).

3.3. The excess volatility puzzle: thinking as an economist

As another illustration of the fundamental difference between
how economists and physicists construct models and analyze
empirical data, let us dwell further on the ‘excess volatility
puzzle’ discovered by Shiller (1981, 1989) and LeRoy and
Porter (1981). According to this puzzle, observed prices
fluctuate much too much compared with what is expected from
their fundamental valuation.

Physics uses the concept of causality: prices should
derive from fundamentals. Thus, let us construct our best
estimate for the fundamental price p∗(t). The price, which
should be a ‘consequence’ of the fundamentals, should be an
approximation of it. The physical idea is that the dynamics
of agents in their expectations and trading should tend to get
the right answer, that is, p(t) should be an approximation of
p∗(t). Thus, we write

p(t) = p∗(t) + ϵ′(t), (1)

and there is no excess volatility paradox. The large volatility
of p(t) compared with p∗(t) provides an information on the
price forming processes, and in particular tells us that the
dynamics of price formation is not optimal from a fundamental
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valuation perspective. The corollary is that prices move for
other reasons than fundamental valuations, and this opens
the door to investigating the mechanisms underlying price
fluctuations.

In contrast, when thinking in equilibrium, the notion of
causality or causation ceases to a large degree to play a role
in finance. According to finance, it is not because the price
should be the logical consequence of the fundamentals that it
should derive from it. In contrast, the requirement of ‘rational
expectations’ (namely that agents’ expectations equal true
statistical expected values) gives a disproportionate faith in the
market mechanism and collective agent behavior so that, by a
process similar to Adam Smith’s invisible hand, the collective
of agents by the sum of their actions, similar to the action
of a central limit theorem given an average converging with
absolute certainty to the mean with no fluctuation in the large
N limit, converge to the right fundamental price with almost
certainty. Thus, the observed price is the right price and the
fundamental price is only approximately estimated because
not all fundamentals are known with good precision - and here
comes the excess volatility puzzle.

In order to understand all the fuss made in the name
of the excess volatility puzzle, we need to go back to the
definition of value. According to the EMH (Fama 1970,
1991, Samuelson 1965, 1973), the observed price p(t) of a
share (or of a portfolio of shares representing an index) equals
the mathematical expectation, conditional on all information
available at the time, of the present value p∗(t) of actual
subsequent dividends accruing to that share (or portfolio of
shares). This fundamental value p∗(t) is not known at time
t , and has to be forecasted. The key point is that the EMH
holds that the observed price equals the optimal forecast of
it. Different forms of the efficient markets model differ for
instance in their choice of the discount rate used in the present
value, but the general efficient markets model can be written as

p(t) = Et [p∗(t)], (2)

where Et refers to the mathematical expectation conditional on
public information available at time t . This equation asserts
that any surprising movement in the stock market must have, at
its origin, some new information about the fundamental value
p∗(t). It follows from the efficient markets model that

p∗(t) = p(t) + ϵ(t) (3)

where ϵ(t) is a forecast error. The forecast error ϵ(t) must be
uncorrelated with any information variable available at time t ,
otherwise the forecast would not be optimal; it would not be
taking into account all information. Since the price p(t) itself
constitutes a piece of information at time t , p(t) and ϵ(t) must
be uncorrelated with each other. Since the variance of the sum
of two uncorrelated variables is the sum of their variances, it
follows that the variance of p∗(t) must equal the variance of
p(t) plus the variance of ϵ(t). Hence, since the variance of
ϵ(t) cannot be negative, one obtains that the variance of p∗(t)
must be greater than or equal to that of p(t). This expresses
the fundamental principle of optimal forecasting, according
to which the forecast must be less variable than the variable
forecasted.

Empirically, one observes that the volatility of the realized
price p(t) is much larger than the volatility of the fundamental
price p∗(t), as estimated from all the sources of fluctuations
of the variables entering in the definition of p∗(t). This is the
opposite of the prediction resulting from expression (3). This
disagreement between theoretical prediction and empirical
observation is then referred to as the ‘excess volatility puzzle’.
This puzzle is considered by many financial economists
as perhaps the most important challenge to the orthodoxy
of efficient markets of neo-classical economics and many
researchers have written on its supposed resolution.

To a physicist, this puzzle is essentially non-existent.
Rather than (3), a physicist would indeed have written
expression (1), that is, the observed price is an approximation
of the fundamental price, up to an error of appreciation of
the market. The difference between (3) and (1) is at the core
of the difference in the modeling strategies of economists,
that can be called top-down (or from rational expectations
and efficient markets), compared with the bottom-up or
microscopic approach of physicists. According to equation
(1), the fact that the volatility of p(t) is larger than that
of the fundamental price p∗(t) is not a problem; it simply
expresses the existence of a large noise component in the
pricing mechanism.

Black (1985) himself introduced the notion of ‘noise
traders’, embodying the presence of traders who are less than
fully rational and whose influence can cause prices and risk
levels to diverge from expected levels. Models built on the
analogy with the Ising model to capture social influences
between investors are reviewed in the next section, which often
provide explanations for the excess volatility puzzle. Let us
mention in particular our own candidate in terms of the ‘noise-
induced volatility’ phenomenon (Harras et al 2012).

4. The Ising model and financial economics

4.1. Roots and sources

The Ising model, introduced initially as a mathematical model
of ferromagnetism in statistical mechanics (Brush 1967), is
now part of the common culture of physics as the simplest
representation of interacting elements with a finite number
of possible states. The model consists of a large number
of magnetic moments (or spins) connected by links within
a graph, network or grid. In the simplest version, the spins
can only take two values (±1), which represent the direction
in which they point (up or down). Each spin interacts with
its direct neighbors, tending to align together in a common
direction, while the temperature tends to make the spin
orientations random. Due to the fight between the ordering
alignment interaction and the disordering temperature, the
Ising model exhibits a non-trivial phase transition in systems
at and above two dimensions. Beyond ferromagnetism,
it has developed into different generalized forms that find
interesting applications in the physics of ill-condensed matter
such as spin-glasses (Mezard et al 1987) and in neurobiology
(Hopfield 1982).

There is also a long tradition of using the Ising model and
its extensions to represent social interactions and organization
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(Weidlich 1971, 1991, 2000, Callen and Shapero 1974,
Montroll and Badger 1974, Galam et al 1982, Orlean
1995). Indeed, the analogy between magnetic polarization
and opinion polarization was presented in the early 1970s by
Weidlich (1971), in the framework of ‘Sociodynamics’, and
later by Galam et al (1982) in a manifesto for ‘Sociophysics’.
In this decade, several efforts towards a quantitative sociology
developed (Schelling 1971, 1978, Granovetter 1978, 1983),
based on models essentially undistinguishable from spin
models.

A large set of economic models can be mapped onto
various versions of the Ising model to account for social
influence in individual decisions (see Phan et al (2004)
and references therein). The Ising model is indeed one of
the simplest models describing the competition between the
ordering force of imitation or contagion and the disordering
impact of private information or idiosyncratic noise, which
leads to the crucial concept of spontaneous symmetry breaking
and phase transitions (McCoy and Wu 1973). It is therefore
not surprising to see it appearing in one guise or another in
models of social imitation (Galam and Moscovici 1991) and of
opinion polarization (Galam 2004, Sousa et al 2005, Stauffer
2005, Weidlich and Huebner 2008).

The dynamical updating rules of the Ising model can be
shown to describe the formation of the decisions of boundedly
rational agents (Roehner and Sornette 2000) or to result
from optimizing agents whose utilities incorporate a social
component (Phan et al 2004).

An illuminating way to justify the use in social systems of
the Ising model (and of its many generalizations) together with
a statistical physics approach (in terms of the Boltzmann factor)
derives from discrete choice models. Discrete choice models
consider as elementary entities the decision makers who have to
select one choice among a set of alternatives (Train 2003). For
instance, the choice can be to vote for one of the candidates, or
to find the right mate, or to attend a university among several, or
to buy or sell a given financial asset. To develop the formalism
of discrete choice models, the concept of a random utility
is introduced, which is used to derive the most prominent
discrete choice model, the Logit model, which has a strong
resemblance with Boltzmann statistics. The formulation of a
binary choice model of socially interacting agents then allows
one to obtain exactly an Ising model, which establishes a
connection between studies on Ising-like systems in physics
and the collective behavior of social decision makers.

4.2. Random utilities, the Logit model and Boltzmann factor

In this section, our goal is to demonstrate the intimate link
between the economic approach of random utilities and the
framework of statistical physics, on which the treatment of the
Ising model in particular relies.

Random utility models provide a standard framework for
discrete choice scenarios. The decision maker has to choose
one alternative out of a set X of N possible ones. For each
alternative x ∈ X, the decision maker obtains the utility (or
payoff) U(x). The decision maker will choose the alternative
that maximizes their utility. However, neither an external

observer nor the decision maker herself may be fully cognizant
of the exact form of the utility function U(x). Indeed, U(x)

may depend upon a number of attributes and explanatory
variables, the environment as well as emotions, which are
impossible to specify or measure exhaustively and precisely.
This is captured by writing

U(x) = V (x) + ϵ(x) , (4)

where ϵ(x) is the unknown part decorating the normative
utility V (x). One interpretation is that ϵ(x) can represent the
component of the utility of a decision maker that is unknown or
hidden to an observer trying to rationalize the choices made by
the decision maker, as done in experiments interpreted within
the utility framework. Or ϵ(x) could also contain an intrinsic
random part of the decision unknown to the decision maker
herself, rooted in her unconscious. As ϵ(x) is unknown to
the researcher, it will be assumed random, hence the name,
random utility model.

The probability of the decision maker choosing x over all
other alternatives Y = X − {x} is then given by

P(x) = Prob (U(x) > U(y), ∀y ∈ Y )

= Prob (V (x) − V (y) > ϵ(y) − ϵ(x), ∀y ∈ Y ) . (5)

Holman and Marley (as cited in Luce and Suppes (1965))
showed that if the unknown utility ϵ(x) is distributed according
to the double exponential distribution, also called the Gumbel
distribution, which has a cumulative distribution function
(CDF) given by

FG(x) = e−e−(x−µ)/γ

(6)

with positive constants µ and γ , then P(x) defined in
expression (5) is given by the logistic model, which obeys
the axiom of independence from irrelevant alternatives (Luce
1959). This axiom, at the core of standard utility theory,
states that the probability of choosing one possibility against
another from a set of alternatives is not affected by the
addition or removal of other alternatives, leading to the name
‘independence from irrelevant alternatives’.

Mathematically, it can be expressed as follows. Suppose
that X represents the complete set of possible choices and
consider S ⊂ X, a subset of these choices. If, for any element
x ∈ X, there is a finite probability pX(x) ∈]0; 1[ of being
chosen, then Luce’s choice axiom is defined as

pX(x) = pS(x) · pX(S), (7)

where pX(S) is the probability of choosing any element in S

from the set X. Writing expression (7) for another element
y ∈ X and taking the ratios term by term leads to

pS(x)

pS(y)
= pX(x)

pX(y)
, (8)

which is the mathematical expression of the axiom of
independence from irrelevant alternatives. The other direction
was proven by McFadden (1974), who showed that, if the
probability satisfies the independence from the irrelevant
alternatives condition, then the unknown utility ϵ(x) has to
be distributed according to the Gumbel distribution.
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The derivation of the Logit model from expressions (5)
and (6) is as follows. In equation (5), P(x) is written

P(x) = Prob (V (x) − V (y) + ϵ(x) > ϵ(y), ∀y ∈ Y ) ,

=
∫ +∞

−∞

⎛

⎝
∏

y∈Y

e−e−(V (x)−V (y)+ϵ(x))/γ

⎞

⎠ fG(ϵ(x))dϵ(x), (9)

where µ has been set to 0 with no loss of generality and
fG(ϵ(x)) = 1

γ
e−x/γ e−e−x/γ

is the PDF associated with the CDF
(6). Performing the change of variable u = e−ϵ(x)/γ , we have

P(x) =
∫ +∞

0

⎛

⎝
∏

y∈Y

e−ue(V (x)−V (y))/γ

⎞

⎠ e−udu,

=
∫ +∞

0
e−u

∑
y∈Y e−(V (x)−V (y))/γ

e−udu,

= 1
1 + e−V (x)/γ

∑
y∈Y eV (y)/γ

. (10)

Multiplying both numerator and denominator of the last
expression (10) by eV (x)/γ , keeping in mind that Y = X − x,
the well known logit formulation is recovered,

P(x) = eV (x)/γ

∑
y∈X eV (y)/γ

, (11)

which fulfills the condition of independence from irrelevant
alternatives. Note that the Logit probability (11) has the same
form as the Boltzmann probability in statistical physics for a
system to be found in a state of with energy −V (x) at a given
temperature γ .

4.3. Quantum decision theory

There is a growing realization that even these above
frameworks do not account for the many fallacies and
paradoxes plaguing standard decision theories (see for instance
http://en.wikipedia.org/wiki/List of fallacies). A strand of
literature has been developing since about 2006 that borrows
the concept of interference and entanglement used in quantum
mechanics in order to attempt to account for these paradoxes
(Busemeyer et al 2006, Pothos and Busemeyer 2009). A recent
monograph reviews the developments using simple analogs
of standard physical toy models, such as the two entangled
spins underlying the Einstein–Poldovsky–Rosen phenomenon
(Busemeyer and Bruza 2012).

From our point of view, the problem however is
that these proposed remedies are always designed for the
specific fallacy or paradox under consideration and require
a specific set-up that cannot be generalized. To address
this, Yukalov and Sornette (2008–2013) have proposed a
general framework, which extends the interpretation of an
intrinsic random component in any decision by stressing the
importance of formulating the problem in terms of composite
prospects. The corresponding ‘quantum decision theory’
(QDT) is based on the mathematical theory of separable
Hilbert spaces. We are not suggesting that the brain
operates according to the rule of quantum physics. It is just
that the mathematics of Hilbert spaces, used to formalized

quantum mechanics, provides the simplest generalization of
the probability theory axiomatized by Kolmogorov, which
allows for entanglement. This mathematical structure captures
the effect of the superposition of composite prospects,
including many incorporated intentions, which allows one
to describe a variety of interesting fallacies and anomalies
that have been reported to particularize the decision making
of real human beings. The theory characterizes entangled
decision making, non-commutativity of subsequent decisions,
and intention interference.

Two ideas form the basement of the QDT developed by
Yukalov and Sornette (2008–2013). First, our decision may be
intrinsically probabilistic, i.e. when confronted with the same
set of choices (and having forgotten), we may choose different
alternatives. Secondly, the attraction to a given option (say
choosing where to vacation among the following locations:
Paris, New York, Rome, Hawaii or Corsica) will depend
in significant part on the presentation of the other options,
reflecting a genuine ‘entanglement’ of the propositions. The
consideration of composite prospects using the mathematical
theory of separable Hilbert spaces provides a natural and
general foundation to capture these effects. Yukalov and
Sornette (2008–2013) demonstrated how the violation of
the Savage’s sure-thing principle (disjunction effect) can be
explained quantitatively as a result of the interference of
intentions when making decisions under uncertainty. The
sign and amplitude of the disjunction effects in experiments
are accurately predicted using a theorem on interference
alternation, which connects aversion-to-uncertainty to the
appearance of negative interference terms suppressing the
probability of actions. The conjunction fallacy is also
explained by the presence of the interference terms. A series of
experiments have been analysed and shown to be in excellent
agreement with a priori evaluation of interference effects. The
conjunction fallacy was also shown to be a sufficient condition
for the disjunction effect, and novel experiments testing the
combined interplay between the two effects are suggested.

Our approach is based on the von Neumann theory of
quantum measurements (von Neumann 1955), but with an
essential difference. In quantum theory, measurements are
done over passive systems, while in decision theory, decisions
are taken by active human beings. Each of the latter is
characterized by its own strategic state of mind, specific for
the given decision maker. Therefore, expectation values in
QDT are defined with respect to the decision-maker strategic
state. In contrast, in standard measurement theory, expectation
values are defined through an arbitrary orthonormal basis.

In order to give a feeling of how QDT works in practice,
let us delineate its scheme. We refer to the published papers
(Yukalov and Sornette 2008, 2009a, 2009b, 2009c, 2010a,
2010b, 2011) for more in-depth presentations and preliminary
tests. The first key idea of QDT is to consider the so-called
prospects, which are the targets of the decision maker. Let a
set of prospects πj be given, pertaining to a complete transitive
lattice

L ≡ {πj : j = 1, 2, . . . , NL}. (12)

The aim of decision making is to find out which of the prospects
is the most favorable.
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Two types of setups can exist. One is when a number of
agents, say N , choose between the given prospects. Another
type is when a single decision maker takes decisions in a
repetitive manner, for instance taking decisionsN times. These
two cases are treated similarly.

To each prospect πj , we put into correspondence a vector
|πj > in the Hilbert space, M, called the mind space, and the
prospect operator

P̂ (πj ) ≡ | πj ⟩⟨ πj |.

QDT is a probabilistic theory, with the prospect probability
defined as the average

p(πj ) ≡ ⟨ s | P̂ (πj ) | s ⟩

over the strategic state |s > characterizing the decision maker.
Though some intermediate steps of the theory may look

a bit complicated, the final results are rather simple and can
be straightforwardly used in practice. Thus, for the prospect
probabilities, we get finally

p(πj ) = f (πj ) + q(πj ), (13)

whose set defines a probability measure on the prospect lattice
L, such that

∑

πj ∈L

p(πj ) = 1, 0 ! p(πj ) ! 1. (14)

The most favorable prospect corresponds to the largest of
probabilities (13).

The first term on the right-hand side of equation (13) is
the utility factor defined as

f (πj ) ≡ U(πj )∑
j U(πj )

(15)

through the expected utility U(πj ) of prospects. The utilities
are calculated in the standard way accepted in classical utility
theory. By this definition

∑

πj ∈L

f (πj ) = 1, 0 ! f (πj ) ! 1.

The second term is an attraction factor that is a
contextual object describing subconscious feelings, emotions,
and biases, playing the role of hidden variables. Despite their
contextuality, it is proved that the attraction factors always
satisfy the alternation property, such that the sum

∑

πj ∈L

q(πj ) = 0 (−1 ! q(πj ) ! 1) (16)

over the prospect lattice L be zero. In addition, the average
absolute value of the attraction factor is estimated by the
quarter law

1
NL

∑

πj ∈L

| q(πj ) | = 1
4
. (17)

These properties (16) and (17) allow us to quantitatively define
the prospect probabilities (13).

The prospect π1 is more useful than π2, when f (π1) >
f (π2). And π1 is more attractive than π2 , if q(π1) > q(π2).
The comparison between the attractiveness of prospects is
done on the basis of the following criteria: more certain gain,
more uncertain loss, higher activity under certainty, and lower
activity under uncertainty and risk.

Finally, decision makers choose the preferable prospect,
whose probability (13) is the largest. Therefore, a prospect
can be more useful, while being less attractive, as a result of
which the choice can be in favor of the less useful prospect.
For instance, the prospect π1 is preferable over π2 when

f (π1) − f (π2) > q(π2) − q(π1). (18)

This inequality illustrates the situation and explains the
appearance of paradoxes in classical decision making, while
in QDT such paradoxes never arise.

The existence of the attraction factor is due to the choice
under risk and uncertainty. If the latter was absent, we
would return to the classical decision theory, based on the
maximization of expected utility. Then we would return to
the variety of known paradoxes.

The comparison with experimental data is done as follows.
Let Nj agents of the total number N choose the prospect πj .
Then the aggregate probability of this prospect is given (for a
large number of agents) by the frequency

pexp(πj ) = Nj

N
. (19)

This experimental probability is to be compared with the
theoretical prospect probability (13), using the standard tools
of statistical hypothesis testing. In this way, QDT provides a
practical scheme that can be applied to realistic problems. The
development of the scheme for its application to various kinds
of decision making in psychology, economics, and finance,
including temporal effects, provides interesting challenges.

Recently, Yukalov and Sornette (2013a) have also been
able to define quantum probabilities of composite events,
thus introducing for the first time a rigorous and coherent
generalization of the probability of joint events. This
problem is actually of high importance for the theory of
quantum measurements and for QDT that is a part of
measurement theory. Yukalov and Sornette (2013a) showed
that Luders probability of consecutive measurements is a
transition probability between two quantum states, and that
this probability cannot be treated as a quantum extension of
the classical conditional probability. Similarly, the Wigner
distribution was shown to be a weighted transition probability
that cannot be accepted as a quantum extension of the classical
joint probability. Yukalov and Sornette (2013a) suggested
the definition of quantum joint probabilities by introducing
composite events in multichannel measurements. Based on the
notion of measurements under uncertainty, they demonstrated
that the necessary condition for mode interference is the
entanglement of the composite prospect together with the
entanglement of the composite statistical state. Examples
of applications include quantum games and systems with
multimode states, such as atoms, molecules, quantum dots, or
trapped Bose-condensed atoms with several coherent modes
(Yukalov et al 2013).
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4.4. Discrete choice with social interaction and Ising model

Among the different variables that influence the utility of the
decision maker, partial information, cultural norms as well
as herding tend to push her decision towards that of her
acquaintances as well as that of the majority. Let us show here
how access to partial information and rational optimization of
her expected payoff leads to strategies described by the Ising
model (Roehner and Sornette 2000).

Consider N traders in a social network, whose links
represent the communication channels between the traders.
We denote N(i) the number of traders directly connected to i

in the network. The traders buy or sell one asset at price p(t),
which evolves as a function of time assumed to be discrete
with unit time step. In the simplest version of the model, each
agent can either buy or sell only one unit of the asset. This is
quantified by the buy state si = +1 or the sell state si = −1.
Each agent can trade at time t − 1 at the price p(t − 1) based
on all previous information up to t − 1. We assume that the
asset price variation is determined by the following equation

p(t) − p(t − 1)

p(t − 1)
= F

(∑N
i=1 si(t − 1)

N

)

+ σ η(t), (20)

where σ is the price volatility per unit time and η(t) is a white
Gaussian noise with unit variance that represents for instance
the impact resulting from the flow of exogenous economic
news.

The first term in the r.h.s. of (20) is the price impact
function describing the possible imbalance between buyers
and sellers. We assume that the function F(x) is such
that F(0) = 0 and is monotonically increasing with its
argument. Kyle (1985) derived his famous linear price
impact function F(x) = λx within a dynamic model of a
market with a single risk neutral insider, random noise traders,
and competitive risk neutral market makers with sequential
auctions. Huberman and Stanzl (2004) later showed that, when
the price impact of trades is permanent and time-independent,
only linear price-impact functions rule out quasi-arbitrage, the
availability of trades that generate infinite expected profits.
We note, however, that this normative linear price impact has
been challenged by physicists. Farmer et al (2013) report
empirically that market impact is a concave function of the
size of large trading orders. They rationalize this observation
as resulting from the algorithmic execution of splitting large
orders into small pieces and executing incrementally. The
approximate square-root impact function has been earlier
rationalized by Zhang (1999) with the argument that the time
needed to complete a trade of size L is proportional to L

and that the unobservable price fluctuations obey a diffusion
process during that time. Toth et al (2011) propose that the
concave market impact function reflects the fact that markets
operate in a critical regime where liquidity vanishes at the
current price, in the sense that all buy orders at prices less
than current prices have been satisfied, and all sell orders at
prices more than the current price have also been satisfied.
The studies (Bouchaud et al 2009, Bouchaud 2010), which
distinguish between temporary and permanent components of
market impact, show important links between impact function,

the distribution of order sizes, optimization of strategies and
dynamical equilibrium. Kyle (private communication, 2012)
and Gatheral and Schied (2013) point out that the issue is far
from resolved due to price manipulation, dark pools, predatory
trading and no well-behaved optimal order execution strategy.

Returning to the implication of expression (20), at time
t − 1, just when the price p(t − 1) has been announced, the
trader i defines her strategy si(t − 1) that she will hold from
t − 1 to t , thus realizing the profit (p(t) − p(t − 1))si(t − 1).
To define si(t − 1), the trader calculates her expected profit
E[P &L], given the past information and her position, and then
chooses si(t − 1) such that E[P &L] is maximal. Within the
rational expectation model, all traders have full knowledge
of the fundamental equation (20) of their financial world.
However, they cannot poll the positions {sj } that all other
traders will take, which will determine the price drift according
to expression (20). The next best thing that trader i can do
is to poll her N(i) ‘neighbors’ and construct her prediction
for the price drift from this information. The trader needs
additional information, namely the a priori probability P+ and
P− for each trader to buy or sell. The probabilities P+ and
P− are the only pieces of information that she can use for all
the traders that she does not poll directly. From this, she can
form her expectation of the price change. The simplest case
corresponds to a neutral market where P+ = P− = 1/2. To
allow for a simple discussion, we restrict the discussion to the
linear impact function F(x) = λx. The trader i thus expects
the following price change

λ

(∑∗ N(i)
j=1 sj (t − 1)

N

)

+ σ η̂i (t) , (21)

where the index j runs over the neighborhood of agent i and
η̂i (t) represents the idiosyncratic perception of the economic
news as interpreted by agent i. Notice that the sum is now
restricted to the N(i) neighbors of trader i because the sum
over all other traders, whom she cannot poll directly, averages
out. This restricted sum is represented by the star symbol. Her
expected profit is thus

E[P &L] =
(

λ

(∑∗ N(i)
j=1 sj (t − 1)

N

)

+ σ η̂i (t)

)

×p(t − 1) si(t − 1). (22)

The strategy that maximizes her profit is

si(t − 1) = sign

⎛

⎝ λ

N

N(i)∗∑

j=1

sj (t − 1) + σ η̂i (t)

⎞

⎠ . (23)

Equation (23) is nothing but the kinetic Ising model with
Glauber dynamics if the random innovations η̂i (t) are
distributed with a Logistic distribution (see the demonstration
in the appendix of (Harras et al 2012)).

This evolution equation (23) belongs to the class of
stochastic dynamical models of interacting particles (Liggett
1995, 1997), which have been much studied mathematically
in the context of physics and biology. In this model
(23), the tendency towards imitation is governed by λ/N ,
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which is called the coupling strength; the tendency towards
idiosyncratic behavior is governed by σ . Thus the value of
λ/N relative to σ determines the outcome of the battle between
order (imitation process) and disorder, and the development of
collective behavior. More generally, expression (23) provides
a convenient formulation to model imitation, contagion and
herding and many generalizations have been studied that we
now briefly review.

5. Generalized kinetic Ising model for financial
economics

The previous section proposes the notion that the Ising model
provides a natural framework to study the collective behavior of
interacting agents. Many generalizations have been introduced
in the literature and we provide a brief survey here.

The existence of an underlying Ising phase transition,
together with the mechanism of ‘sweeping of an instability’
(Sornette 1994, Stauffer and Sornette 1999, Sornette et al
2002), was found to lead to the emergence of collective
imitation that translates into the formation of transient bubbles,
followed by crashes (Kaizoji et al 2002).

Bouchaud and Cont (1998) presented a nonlinear
Langevin equation of the dynamics of a stock price resulting
from the imbalance between supply and demand, themselves
based on two opposite opinions (sell and buy). By taking
into account the feedback effects of price variations, they find
a formulation analogous to an inertial particle in a quartic
potential as in the mean-field theory of phase transitions.

Brock and Durlauf (1999) constructed a stylized model
of community theory choice based on agents’ utilities that
contains a term quantifying the degree of homophily which,
in a context of random utilities, leads to a formalism
essentially identical to the mean field theory of magnetism.
They find that periods of extended disagreement alternate
with periods of rapid consensus formation, as a result of
choices that are made based on comparisons between pairs
of alternatives. Brock and Durlauf (2001) further extend their
model of aggregate behavioral outcomes, in the presence of
individual utilities that exhibit social interaction effects, to
the case of generalized logistic models of individual choice
that incorporate terms reflecting the desire of individuals to
conform to the behavior of others in an environment of non-
cooperative decision making. A multiplicity of equilibria
is found when the social interactions exceed a particular
threshold and decision making is non-cooperative. As
expected from the neighborhood of phase changes, a large
susceptibility translates into the observation that small changes
in private utility lead to large equilibrium changes in average
behavior. The originality of Brock and Durlauf (2001) is to
be able to introduce heterogeneity and uncertainty into the
microeconomic specification of decision making, as well as to
derive an implementable likelihood function that allows one to
calibrate the ABM onto empirical data.

Kaizoji (2000) used an infinite-range Ising model to
embody the tendency of traders to be influenced by the
investment attitude of other traders, which gives rise to regimes
of bubbles and crashes interpreted as due to the collective

behavior of the agents at the Ising phase transition and in
the ordered phase. Biased agent’s idiosyncratic preference
corresponds to the existence of an effective ‘magnetic field’
in the language of physics. Because the social interactions
compete with the biased preference, a first-order transition
exists which is associated with the existence of crashes.

Bornholdt (2001) studied a simple spin model in which
traders interact at different scales with interactions that can
be of opposite signs, thus leading to ‘frustration’, and traders
are also related to each other via their aggregate impact
on the price. The frustration causes metastable dynamics
with intermittency and phases of chaotic dynamics, including
phases reminiscent of financial bubbles and crashes. While
the model exhibits phase transitions, the dynamics deemed
relevant to financial markets is sub-critical.

Krawiecki et al (2002) used an Ising model with stochastic
coupling coefficients, which leads to volatility clustering and
a power law distribution of returns at a single fixed time scale.

Michard and Bouchaud (2005) have used the framework
of the Random Field Ising Model, interpreted as a threshold
model for collective decisions accounting both for agent
heterogeneity and social imitation, to describe imitation and
social pressure found in data from three different sources: birth
rates, sales of cell phones and the drop of applause in concert
halls.

Nadal et al (2005) developed a simple market model
with binary choices and social influence (called ‘positive
externality’ in economics), where the heterogeneity is either
of the type represented by the Ising model at finite temperature
(known as annealed disorder) in a uniform external field
(the random utility models of Thurstone), or is fixed and
corresponds to a a particular case of the quenched disorder
model known as a random field Ising model, at zero
temperature (called the McFadden and Manski model). A
novel first-order transition between a high price and a small
number of buyers to another one with a low price and a
large number of buyers, arises when the social influence is
strong enough. Gordon et al (2009) further extend this model
to the case of socially interacting individuals that make a
binary choice in a context of positive additive endogenous
externalities. Specifically, the different possible equilibria
depend on the distribution of idiosyncratic preferences,
called here idiosyncratic willingnesses to pay, and there are
regimes where several equilibria coexist, associated with non-
monotonous demand function as a function of price. This
model is again strongly reminiscent of the random field Ising
model studied in the physics literature.

Grabowski and Kosinski (2006) modeled the process of
opinion formation in the human population on a scale-free
network, taking into account a hierarchical, two-level structure
of interpersonal interactions, as well as a spatial localization
of individuals. With Ising-like interactions together with a
coupling with a mass media ‘field’, they observed several
transitions and limit cycles, with non-standard ‘freezing of
opinions by heating’ and the rebuilding of the opinions in the
population by the influence of the mass media at large annealed
disorder levels (large temperature).

Sornette and Zhou (2006a) and Zhou and Sornette (2007)
generalized a stochastic dynamical formulation of the Ising
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model (Roehner and Sornette 2000) to account for the fact
that the imitation strength between agents may evolve in time
with a memory of how past news has explained realized
market returns. By comparing two versions of the model,
which differ on how the agents interpret the predictive
power of news, they show that the stylized facts of financial
markets are reproduced only when agents are overconfident
and mis-attribute the success of news to predict return to
the existence of herding effects, thereby providing positive
feedbacks leading to the model functioning close to the critical
point. Other stylized facts, such as a multifractal structure
characterized by a continuous spectrum of exponents of the
power law relaxation of endogenous bursts of volatility, are
well reproduced by this model of adaptation and learning
of the imitation strength. Harras et al (2012) examined a
different version of the Sornette-Zhou (2006a) formulation
to study the influence of a rapidly varying external signal to
the Ising collective dynamics for intermediate noise levels.
They discovered the phenomenon of ‘noise-induced volatility’,
characterized by an increase of the level of fluctuations in
the collective dynamics of bistable units in the presence
of a rapidly varying external signal. Paradoxically, and
different from ‘stochastic resonance’, the response of the
system becomes uncorrelated with the external driving force.
Noise-induced volatility was proposed to be a possible cause of
the excess volatility in financial markets, of enhanced effective
temperatures in a variety of out-of-equilibrium systems, and
of strong selective responses of immune systems of complex
biological organisms. Noise-induced volatility is robust to the
existence of various network topologies.

Horvath and Kuscsik (2007) considered a network with
reconnection dynamics, with nodes representing decision
makers modeled as (‘intra-net’) neural spin network with local
and global inputs and feedback connections. The coupling
between the spin dynamics and the network rewiring produces
several of the stylized facts of standard financial markets,
including the Zipf law for wealth.

Biely et al (2009) introduced an Ising model in which
spins are dynamically coupled by links in a dynamical network
in order to represent agents who are free to choose their
interaction partners. Assuming that agents (spins) strive to
minimize an ‘energy’, the spins as well as the adjacency matrix
elements organize together, leading to an exactly soluble model
with reduced complexity compared with the standard fixed
links Ising model.

Motivated by market dynamics, Vikram and Sinha (2011)
extend the Ising model by assuming that the interaction
dynamics between individual components is mediated by a
global variable, making the mean-field description exact.

Harras and Sornette (2011) studied a simple ABM of
bubbles and crashes to clarify how their proximate triggering
factors relate to their fundamental mechanism. Taking into
account three sources of information: (i) public information,
i.e. news, (ii) information from their ‘friendship’ network,
and (iii) private information, the boundedly rational agents
continuously adapt their trading strategy to the current market
regime by weighting each of these sources of information
in their trading decision according to its recent predicting

performance. In this set-up, bubbles are found to originate
from a random lucky streak of positive news, which, due
to a feedback mechanism of this news on the agents’
strategies develop into a transient collective herding regime.
Paradoxically, it is the attempt of investors to adapt to the
current market regime that leads to a dramatic amplification
of the price volatility. A positive feedback loop is created by
the two dominating mechanisms (adaptation and imitation),
which, by reinforcing each other, result in bubbles and
crashes. The model offers a simple reconciliation of the
two opposite proposals (herding versus fundamental) for
the origin of crashes within a single framework. It also
justifies the existence of two populations in the distribution of
returns, exemplifying the concept that crashes are qualitatively
different from the rest of the price moves (Johansen and
Sornette, 1998, 2001/2002; Sornette 2009, Sornette and
Ouillon 2012).

Inspired by the bankruptcy of the Lehman Brothers and
its consequences on the global financial system, Sieczka et al
(2011) developed a simple model in which the credit rating
grades of banks in a network of interdependencies follow a
kind of Ising dynamics of co-evolution with the credit ratings
of the other firms. The dynamics resemble the evolution of a
Potts spin glass with the external global field corresponding
to a panic effect in the economy. They find a global phase
transition, between paramagnetic and ferromagnetic phases,
which explains the large susceptibility of the system to negative
shocks. This captures the impact of the Lehman default
event, quantified as having an almost immediate effect in
worsening the credit worthiness of all financial institutions
in the economic network. The model is amenable to testing
different policies. For instance, bailing out the first few
defaulting firms does not solve the problem, but does have the
effect of alleviating considerably the global shock, as measured
by the fraction of firms that are not defaulting as a consequence.

Kostanjcar and Jeren (2013) defined a generalized Ising
model of financial markets with a kind of minority-game payoff
structure and strategies that depend on order sizes. Because
their agents focus on the change of their wealth, they find
that the macroscopic dynamics of the aggregated set of orders
(reflected into the market returns) remains stochastic even in
the thermodynamic limit of a very large number of agents.

Bouchaud (2013) proposed a general strategy for
modeling collective socio-economic phenomena with the
random field Ising model (RFIM) and variants, which is argued
to provide a unifying framework to account for the existence of
sudden ruptures and crises. The variants of the RFIM capture
destabilizing self-referential feedback loops, induced either by
herding or trending. An interesting insight is the determination
of conditions under which Adam Smith’s invisible hand can
fail badly at solving simple coordination problems. Moreover,
Bouchaud (2013) stresses that most of these models assume
explicitly or implicitly the validity of the so-called ‘detailed
balance’ in decision rules, which is not a priori necessary
to describe real decision-making processes. The question
of whether the results obtained with detailed balance hold
for models without detailed balance remains largely open.
Examples from physics suggest that much richer behaviors
can emerge.
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Kaizoji et al (2013) introduced a model of financial
bubbles with two assets (risky and risk-free), in which rational
investors and noise traders co-exist. Rational investors form
expectations on the return and risk of a risky asset and
maximize their expected utility with respect to their allocation
on the risky asset versus the risk-free asset. Noise traders
are subjected to social imitation (Ising-like interactions) and
follow momentum trading (leading to a kind of time-varying
magnetic field). Allowing for random time-varying herding
propensity (as in, e.g. Sornette 1994, Stauffer and Sornette
1999, Sornette et al 2002), this model reproduces the most
important stylized facts of financial markets, such as a fat-tail
distribution of returns, volatility clustering , as well as transient
faster-than-exponential bubble growth with approximate log-
periodic behavior (Sornette 1998b, 2003). The model accounts
well for the behavior of traders and for the price dynamics
that developed during the dotcom bubble in 1995–2000.
Momentum strategies are shown to be transiently profitable,
supporting these strategies as enhancing herding behavior.

6. Ising-like imitation of noise traders and models of
financial bubbles and crashes

6.1. Phenomenology of financial bubbles and crashes

Stock market crashes are momentous financial events that are
fascinating to academics and practitioners alike. According to
the standard academic textbook world view that markets are
efficient, only the revelation of a dramatic piece of information
can cause a crash, yet in reality even the most thorough post-
mortem analyses are, for most large losses, inconclusive as to
what this piece of information might have been. For traders
and investors, the fear of a crash is a perpetual source of
stress, and the onset of the event itself ruins the lives of
some of them. Most approaches to explain crashes search
for possible mechanisms or effects that operate at very short
time scales (hours, days or weeks at most). Other researchers
have suggested market crashes may have endogenous origins.

In a culmination of almost 20 years of research
in financial economics, we have challenged the standard
economic view that stock markets are both efficient and
unpredictable. We propose that the main concepts that are
needed to understand stock markets are imitation, herding,
self-organized cooperativity and positive feedbacks, leading
to the development of endogenous instabilities. According
to this theory, local effects, such as interest raises, new tax
laws, new regulations and so on, invoked as the cause of the
burst of a given bubble leading to a crash, are only one of the
triggering factors but not the fundamental cause of the bubble
collapse. We propose that the true origin of a bubble and of its
collapse lies in the unsustainable pace of stock market price
growth based on self-reinforcing over-optimistic anticipation.
As a speculative bubble develops, it becomes more and more
unstable and very susceptible to any disturbance.

In a given financial bubble, it is the expectation of future
earnings rather than present economic reality that motivates the
average investor. History provides many examples of bubbles
driven by unrealistic expectations of future earnings followed

by crashes. The same basic ingredients are found repeatedly.
Markets go through a series of stages, beginning with a
market or sector that is successful, with strong fundamentals.
Credit expands and money flows more easily. (Near the
peak of Japan’s bubble in 1990, Japan’s banks were lending
money for real estate purchases at more than the value of
the property, expecting the value to rise quickly.) As more
money is available, prices rise. More investors are drawn
in, and expectations for quick profits increase. The bubble
expands and then finally has to burst. In other words, fuelled
by initially well-founded economic fundamentals, investors
develop a self-fulfilling enthusiasm by an imitative process or
crowd behavior that leads to the building of castles in the air,
to paraphrase Malkiel (2012). Furthermore, the causes of the
crashes on the US markets in 1929, 1987, 1998 and in 2000
belong to the same category, the difference being mainly in
which sector the bubble was created. In 1929, it was utilities; in
1987, the bubble was supported by a general deregulation of the
market with many new private investors entering it with very
high expectations with respect to the profit they would make;
in 1998, it was an enormous expectation with respect to the
investment opportunities in Russia that collapsed; before 2000,
it was extremely high expectations with respect to the Internet,
telecommunications, and so on, that fuelled the bubble. In
1929, 1987 and 2000, the concept of a ‘new economy’ was
each time promoted as the rational origin of the upsurge of the
prices.

Several previous works in economics have suggested
that bubbles and crashes have endogenous origins, as we
explain below. For instance, Irving Fisher (1933) and Hyman
Minsky (1992) both suggested that endogenous feedback
effects lead to financial instabilities, although their analysis
did not include formal models. Robert Shiller (2006) has
been spearheading the notion that markets, at times, exhibit
‘irrational exuberance’. While the EMH provides a useful
first-order representation of financial markets in normal times,
one can observe regimes where the anchor of a fundamental
price is shaky and large uncertainties characterize the future
gains, which provides a fertile environment for the occurrence
of bubbles. When a number of additional elements are
present, markets go through transient phases where they
disconnect in specific dangerous ways from this fuzzy concept
of fundamental value. These are regimes where investors are
herding, following the flock and pushing the price up along an
unsustainable growth trajectory. Many other mechanisms have
been studied to explain the occurrence of financial bubbles,
such as constraints on short selling and lack of synchronization
of arbitrageurs due to heterogeneous beliefs on the existence
of a bubble–see Brunnermeier and Oehmke (2012) and Xiong
(2013) for two excellent reviews.

6.2. The critical point analogy

Mathematically, we propose that large stock market crashes
are the social analogues of so-called critical points studied in
the statistical physics community in relation to magnetism,
melting and other phase transformation of solids, liquids, gas
and other phases of matter (Sornette 2000). This theory is

14



Rep. Prog. Phys. 77 (2014) 062001 Key Issues Review

based on the existence of a cooperative behavior of traders
imitating each other which leads to the progressive increase in
the build-up of market cooperativity, or effective interactions
between investors, often translated into accelerating ascent
of the market price over months and years before the crash.
According to this theory, a crash occurs because the market
has entered an unstable phase and any small disturbance or
process may have triggered the instability. Think of a ruler
held up vertically on your finger: this very unstable position
will lead eventually to its collapse, as a result of a small (or
absence of adequate) motion of your hand or due to any tiny
whiff of air. The collapse is fundamentally due to the unstable
position; the instantaneous cause of the collapse is secondary.
In the same vein, the growth of the sensitivity and the growing
instability of the market close to such a critical point might
explain why attempts to unravel the local origin of the crash
have been so diverse. Essentially, anything would work once
the system is ripe. In this view, a crash has, fundamentally,
an endogenous or internal origin and exogenous or external
shocks only serve as triggering factors.

As a consequence, the origin of crashes is much more
subtle than often thought, as it is constructed progressively
by the market as a whole as a self-organizing process. In
this sense, the true cause of a crash could be termed a
systemic instability. This leads to the possibility that the
market anticipates the crash in a subtle self-organized and
cooperative fashion, hence releasing precursory ‘fingerprints’
observable in the stock market prices (Sornette and Johansen
2001, Sornette 2003). These fingerprints have been modeled
by log-periodic power laws (Johansen et al 1999, 2000),
which are beautiful mathematical patterns associated with
the mathematical generalization of the notion of fractals to
complex imaginary dimensions (Sornette 1998a, 1998b). In
the framework of Johansen, Ledoit and Sornette (1999, 2000),
an Ising-like stochastic dynamics is used to describe the time
evolution of imitation between noise traders, which controls
the dynamics of the crash hazard rate (see Sornette et al (2013)
for a recent update on the status of the model).

Our theory of collective behavior predicts robust
signatures of speculative phases of financial markets, both in
accelerating bubbles and decreasing prices (see below). These
precursory patterns have been documented for essentially all
crashes on developed as well as emergent stock markets.
Accordingly, the crash of October 1987 is not unique but
representative of an important class of market behavior,
underlying also the crash of October 1929 (Galbraith 1997)
and many others (Kindleberger 2000, Sornette 2003).

We refer to the book, ‘Why Stock Markets Crash, Critical
Events in Complex Financial Systems’ (Sornette 2003) for a
detailed description and the review of many empirical tests
and of several forward predictions. In particular, we predicted
in January 1999 that Japan’s Nikkei index would rise 50
percent by the end of that year, at a time when other economic
forecasters expected the Nikkei to continue to fall, and when
Japan’s economic indicators were declining. The Nikkei rose
more than 49 percent during that time. We also successfully
predicted several short-term changes of trends in the US market
and in the Nikkei, and we have diagnosed ex-ante several

other major bubbles (see e.g. Jiang et al 2010 and references
therein).

6.3. Tests with the financial crisis observatory

In 2008, we created the Financial Crisis Observatory (FCO)
(http://www.er.ethz.ch/fco) as a scientific platform aimed at
testing and quantifying rigorously, in a systematic way and
on a large scale, the hypothesis that financial markets exhibit
a degree of inefficiency and a potential for predictability,
especially during regimes when bubbles develop. Because
back-testing is subjected to a host of possible biases, in
November 2009, the financial bubble experiment (FBE) was
launched within the FCO at ETH Zurich. Our motivation is
to develop real-time advanced forecast methodology that is
constructed to be free, as much as possible, of all possible
biases plaguing previous tests of bubbles.

In particular, active researchers are constantly tweaking
their procedures so that predicted ‘events’ become moving
targets. Only advanced forecasts can be free of data-snooping
and other statistical biases of ex-post tests. The FBE aims
at rigorously testing bubble predictability using methods
developed in our group and by other scholars over the last
decade. The main concepts and techniques used for the FBE
have been documented in numerous papers (Jiang et al 2009,
Johansen et al 1999, Johansen and Sornette 2006, Sornette
and Johansen 2001, Sornette and Zhou 2006b) and my previous
book (Sornette 2003). In the FBE, we developed a new method
of delivering our forecasts where the results are revealed only
after the predicted event has passed, but where the original
date when we produced these same results can be publicly,
digitally authenticated (see the reports and ex-post analysis of
our diagnostics performed ex-ante at http://www.er.ethz.ch/fco
and resources therein).

Stock market crashes are often unforeseen by most people,
especially economists. One reason why predicting complex
systems is difficult is that we have to look at the forest rather
than the trees, and almost nobody does that. Our approach tries
to avoid this trap. From the tulip mania, where tulips worth tens
of thousands of dollars in present US dollars became worthless
a few months later, to the US bubble in 2000, the same patterns
occur over the centuries. Today we have electronic commerce,
but fear and greed remain the same. Humans remain endowed
with basically the same qualities (fear, greed, hope, lust) today
as they were in the 17th century.

6.4. The social bubble hypothesis

Bubbles and crashes are ubiquitous to human activity. We,
as humans, are rarely satisfied with the status quo; we tend
to be over-optimistic with respect to future prospects and,
as social animals, we herd to find comfort in being (right or
wrong) with the crowd. This leads to human activities being
punctuated by bubbles and their corrections. The bubbles may
come as a result of expectations of the future returns from new
technology, such as in the exploration of the solar system, of
human biology or new computer and information technologies.
I contend that this trait allows us as a species to take risks
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to innovate with extraordinary successes that would not arise
otherwise.

Bubbles defined as collective over-enthusiasm seem a
necessary (and unavoidable) process to foster our collective
attitude towards risk taking, breaking the stalemate of society
resulting from its tendency towards strong risk avoidance
(Sornette 2008). An absence of bubble psychology would
lead to stagnation and conservatism as no large risks are taken
and, as a consequence, no large return can be accrued. We
have coined the term ‘social bubble’ in order to show how
to take advantage of the bubble process to catalyze long-term
investment (Sornette 2008, Gisler and Sornette 2009, 2010,
Gisler et al 2011). A similar conclusion has been reached by
William Janeway (2012), an American venture capital investor
for more than 40 years. His book provides an accessible
pathway to appreciate the dynamics of the innovation economy.
In his understanding, informed by both practice and theory, the
innovation economy begins with discovery and culminates in
speculation, with continuous positive feedback loops between
them. Over some 250 years, so his argument goes, economic
growth has been driven by successive processes of trial and
error: upstream explorations in research and inventions and
downstream experiments in exploiting the new economic space
opened by innovation.

In a nutshell, the ‘social bubble hypothesis’ claims that
strong social interactions between enthusiastic supporters
weave a network of reinforcing feedbacks that lead to
widespread endorsement and extraordinary commitment by
those involved, beyond what would be rationalized by a
standard cost-benefit analysis. It does not cast any value
system however, notwithstanding the use of the term ‘bubble’.
Rather it identifies the types of dynamics that shape scientific
or technological endeavors. In other words, we suggest that
major projects often proceed via a social bubble mechanism
(Sornette 2008, Gisler and Sornette 2009, 2010, Gisler et al
2011, 2013).

Thus, bubbles and crashes, the hallmark of humans, are
perhaps our most constructive collective process. But they
may also undermine our quest for stability. We thus have to
be prepared and adapt to the systemic instabilities that are part
of us, part of our collective organization, and which will no
doubt recur again perhaps with even more violent effects in
the coming decade.

7. ABMs in economics and finance

Our review would be incomplete if it did not cover the
very dynamical field of ABMs, also known as computational
economic models. They provide an alternative to the
econometric and DSGE approaches used by central banks for
instance. They use computer simulated interactions between
agents (decision makers) (Farmer and Foley 2009). The
Ising-type models discussed in the preceding sections can be
considered as special ABM implementations.

ABMs also illustrate vividly the special relations between
economics and physics. Consider Schelling’s work (1971,
1978) that demonstrated how slight differences of micro
motives among heterogenous agents lead to impressive macro

behaviors. Schelling wanted to falsify the standard view
about segregations between black and white communities in
the USA, which assumed strong differences in preferences
in order to explain the observed concentrations. Using
manually implemented ABMs on a check board, he showed
that tiny variations in tastes are sufficient to lead to
macroscopic segregation when allowing the system to evolve
over sufficiently long periods. Small micro-effects lead to
large macro-consequences. This discovery was a breakthrough
in the social sciences and changed the perspective on
community segregation. To the physicist trained in the field
of phase transitions and statistical physics, this result is pretty
obvious: tiny differences in the interactions between pairs of
molecules (oil–oil, water–water and oil–water) are well-known
to renormalize into macroscopic demixing. This is a beautiful
example of the impact of repeated interactions leading to large-
scale collective patterns. In physicist language, in addition to
energy, entropy is an important and often leading contribution
to large-scale pattern formation, and this understanding
requires the typical statistical physics training that economists
and social scientists often lack.

7.1. A taste of ABMs

ABMs have the advantage of facilitating interdisciplinary
collaboration and reveal unity across disciplines (Axelrod
2005, Parisi et al 2013). The possibilities of such models
are a priori almost endless, only limited by the available
computational power as well as the insights of the modeler.
One can simulate very large numbers of different agents
acting (up to tens of millions of agents, as for instance
in www.matsim.org, see (Meister et al 2010) and other
references at this url). Different decision-making rules can
be implemented, including utility maximization or behavioral
decision making. For example, one can have different agents to
model consumers, policy-makers, traders or institutions where
each type follows possibly distinct agendas and obeys different
decision-making rules. Such a simulation is performed in
discrete time steps where, at every time step, each actor has
to take a decision (e.g. buying, selling or staying out of a
stock on the financial market) based on her behavioral rules.
Phenomena such as bubbles and subsequent crashes have
been found to emerge rather naturally from such ABMs as
a consequence of the existence of general interaction effects
among heterogeneous agents. These interactions range from
social herding, rational imitation to information cascades
(Bikhchandani et al 1992).

To study large-scale phenomena arising from micro-
interactions, ABMs have already found numerous applications
in the past (Bonabeau 2002, MacKinzie 2002). Early ABMs
developed for social science applications include Föllmer’s
(1974) mathematical treatment of Ising economies with no
stabilization for strong agent interactions, Schelling’s (1978)
segregation model, Weidlich’s (1991) synergetic approach,
Kirman’s (1991, 1993) ant model of recruitment, and so on.

The Santa Fe Institute Artificial Stock Market is one of the
pioneering ABMs, which was created by a group of economists
and computer scientists at the Santa Fe Institute in New Mexico
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(Arthur et al 1997, LeBaron et al 1999, Palmer et al 1994,
1999). The key motivation was to test whether artificially
intelligent agents would converge to the homogeneous rational
expectations equilibrium or not. To the surprise of the creators,
the artificial stock markets failed to show convergence to the
expected equilibrium, but rather underlined the importance of
the co-evolution of trading strategies adopted by the synthetic
agents together with the aggregate market behavior. However,
the Santa Fe Institute Artificial Stock Market has been shown
to suffer from a number of defects, for instance, the fact that
the rate of appearance of new trading strategies is too fast to
be realistic. Only recently was it also realized that previous
interpretations neglecting the emergence of technical trading
rules should be corrected (Ehrentreich 2008).

Inspired by the El-Farol Bar problem (Arthur 1994b)
meant to emphasize how inductive reasoning together with a
minority payoff prevents agents converging to an equilibrium,
and forces them to continuously readjust their expectation, the
minority game was introduced by Challet and Zhang (1997,
1998) to model prices in markets as reflecting competition
among a finite number of agents for a scarce resource (Marsili
et al 2000). Extensions include the majority game and the
dollar game (a time delayed version of the majority game)
and delayed version of the minority games. In minority
games, which are part of first-entry games, no strategy can
remain persistently a winner; otherwise it will be progressively
adopted by a growing number of agents, bringing its demise
by construction of the minority payoff. This leads to the
phenomenon of frustration and anti-persistence. Satinover
and Sornette (2007a, 2007b, 2009) have shown that optimizing
agents are actually performing worse than random agents, thus
embodying the general notion of the illusion of control. It can
be shown more generally that learning and adaptive agents will
converge to the best dominating strategy, which turns out to be
the random choice strategy for minority or first-entry payoffs.

Evstigneev et al (2009) review results obtained on
evolutionary finance, namely the field studying the dynamic
interaction of investment strategies in financial markets
through ABM implementing Darwinian ideas and random
dynamical system theory. By studying the wealth distribution
among agents over the long-term, Evstigneev et al are able to
determine the type of strategies that over-perform in the long
term. They find that such strategies are essentially derived
from Kelly’s (1956) criterion of optimizing the expected log-
return. They also pave the road for the development of a
generalization of continuous-time finance with evolutionary
and game theoretical components.

Darley and Outkin (2007) describe the development of
a Nasdaq ABM market simulation, developed during the
collaboration between the Bios Group (a spin-off of the Santa
Fe Institute) and Nasdaq Company to explore new ways to
better understand Nasdaq’s operating world. The artificial
market has opened the possibility to explore the impact of
market microstructure and market rules on the behavior of
market makers and traders. One obtained insight is that
decreasing the tick size to very small values may hinder the
market’s ability to perform its price discovery process, while at
the same time the total volume traded can greatly increase with

no apparent benefits (and perhaps direct harm) to the investors’
average wealth.

In a similar spirit of using ABM for an understanding of
real-life economic developments, Geanakoplos et al (2012)
have developed an ABM to describe the dynamics that led to
the housing bubble in the USA which peaked in 2006 (Zhou and
Sornette 2006). At every time step, the agents have the choice
to pay a monthly coupon or to pay off the remaining balance
(prepay). The conventional method makes a guess for the
functional form of the prepayments over time, which basically
boils down to extrapolatation into the future past patterns in the
data. In contrast, the ABM takes into account the heterogeneity
of the agents through a parameterization with two variables that
are specific to each agent: the cost of prepaying the mortgage
and the alertness to his financial situation. A simulation of
such agents acting in the housing market is able to capture
the run up in housing price and the subsequent crash. The
dominating factor driving this dynamic could be identified as
the leverage the agents get from easily accessible mortgages.
The conventional model entirely missed this dynamic and was
therefore unable to forecast the bust. Of course, this does not
mean that non-ABM models have not been able or would not
be able to develop the insight about the important role of the
procyclicality of the leverage on real-estate prices and vice-
versa, a mechanism that has been well and repeatedly described
in the literature after the crisis in 2007–2008 erupted.

Hommes (2006) provides an early survey on dynamic
behavioral financial and economic models with rational agents
with bounded rationality using different heuristics. He
emphasizes the class of relatively simple models for which
some tractability is obtained by using analytic methods in
combination with computational tools. Nonlinear structures
often lead to chaotic dynamics, far from an equilibrium
point, in which regime switching is the natural occurrence
associated with coexisting attractors in the presence of
stochasticity (Yukalov et al 2009). By the aggregation of
relatively simple interactions occurring at the micro level,
quite sophisticated structures at the macro level may emerge,
providing explanations for observed stylized facts in financial
time series, such as excess volatility, high trading volume,
temporary bubbles and trend following, sudden crashes and
mean reversion, clustered volatility and fat tails in the returns
distribution.

Chiarella et al (2009) review another branch of
investigation of boundedly rational heterogeneous agent
models of financial markets, with particular emphasis on the
role of the market clearing mechanism, the utility function of
the investors, the interaction of price and wealth dynamics,
portfolio implications, and the impact of stochastic elements
on market dynamics. Chiarella et al find regimes with market
instabilities and stochastic bifurcations, leading to fat tails,
volatility clustering, large excursions from the fundamental,
and bubbles, which are features of real markets that are
not easily reconcilable within the standard financial market
paradigm.

Shiozawa et al (2008) summarize the main properties and
findings resulting from the U-Mart project, which creates a
virtual futures market on a stock index using a computer or
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network in order to promote on-site training, education and
economics research. In the U-Mart platform, human players
can interact with algorithms, providing a rich experimental
platform.

Building on the insight that when past information
is limited to a rolling window of prior states of fixed
length, the minority, majority and dollar games may all be
expressed in Markov-chain formulation (Marsili et al 2000,
Hart et al 2002, Satinover and Sornette 2007a, 2007b),
Satinover and Sornette (2012a, 2012b) have further shown
how, for minority and majority games, a cycle decomposition
method allows one to quantify the inherently probabilistic
nature of a Markov chain underlying the dynamics of the
models as an exact superposition of deterministic cyclic
sequences (Hamiltonian cycles on binary graphs), extending
ideas discussed by Jefferies et al (2002). This provides a
novel technique to decompose the sign of the time-series
they generate (analogous to a market price time-series) into a
superposition of weighted Hamiltonian cycles on graphs. The
cycle decomposition also provides a dissection of the internal
dynamics of the games and a quantitative measure of the
degree of determinism. The performance of different classes
of strategies may be understood on a cycle-by-cycle basis. The
decomposition offers a new metric for comparing different
game dynamics with real-world financial time-series and a
method for generating predictors. A cycle predictor applied to
a real-world market can generate significantly positive returns.

Feng et al (2012) use an ABM that suggests a dominant
role for the investors using technical strategies over those with
fundamental investment styles, showing that herding emerges
via the mechanism of converging on similar technical rules
and trading styles in creating the well-known excess volatility
phenomenon (Shiller 1981, LeRoy and Porter 1981, LeRoy
2008). This suggests that there is more to price dynamics than
just exogeneity (e.g. the dynamics of dividends). Samanidou
et al (2007) review several ABMs of financial markets, which
have been studied by economists and physicists over the last
decade: Kim-Markowitz, Levy-Levy-Solomon (1994), Cont-
Bouchaud, Solomon-Weisbuch, Lux-Marchesi (1999, 2000),
Donangelo-Sneppen and Solomon-Levy-Huang. These ABM
emphasize the importance of heterogeneity, of noise traders
(Black 1986) or technical analysis based investment styles,
and of herding. Lux (2009a) reviews simple stochastic models
of interacting traders, whose design is closer in spirit to models
of multiparticle interaction in physics than to traditional asset-
pricing models, reflecting the fact that emergent properties at
the macroscopic level are often independent of the microscopic
details of the system. Hasanhodzic et al (2011) provides
a computational view of market efficiency by implementing
ABMs in which agents with different resources (e.g. memories)
perform differently. This approach is very promising to
understand the relative nature of market efficiency (relative
to resources such as super-computer power and intellectual
capital) and provides a rationalization of the technological arm
race of quantitative trading firms.

7.2. Outstanding open problems: robustness and
calibration/validation of ABMs

The above short review gives a positive impression on
the potential of ABMs. In fact, orthodox (neoclassical)
economists have in a sense taken stock of the advances
provided by ABMs by extending their models to include
ingredients of heterogeneity, bounded rationality, learning,
increasing returns and technological change. Why then are
not ABMs more pervasive in the work of economists and in
the process of decision making in central banks and regulators?
We think that there are two dimensions to this question, which
are interconnected (see also Windrum et al 2007).

First, ABMs have the disadvantage of being complicated
with strong nonlinearities and stochasticity in the individual
behaviors, made of multiple components connected through
complex interactive networks, and it is often difficult to relate
the resulting outcomes from the constituting ingredients. In
addition, the feedbacks between the micro and macro levels
lead to complex behavior that cannot be analyzed analytically,
for instance by the powerful tool of the renormalization group
theory (Wilson 1979, Goldenfeld 1993, Cardy 1996). This has
been so successful in statistical physics in solving the micro–
macro problem (Anderson 1972, Sornette 2004) by the flow of
the change of the descriptive equations of a complex system
when analyzed at different resolution scales. The different
types of agents and their associated decision-making rules can
be chosen without much restriction to encompass the available
knowledge in decision theory and behavioral economics.
However, the choices made to build a given ABM may
represent the personal preferences or biases of the modeler,
which would not be agreeable to another modeler. ABMs are
often constructed with the goal of illustrating a given behavior,
which is actually already encoded more or less explicitly in
the chosen rules (De Grauwe 2010, Galla and Farmer 2013).
Therefore, the correctness of the model relies mostly on the
relevance of the used rules, and the predictive power is often
constrained to a particular domain so that generalization is
not obvious. This makes it difficult to compare the different
ABMs found in the literature and gives an impression of lack
of robustness in the results that are often sensitive to details of
the modelers choices. The situation is somewhat similar to that
found with artificial neural network, the computational models
inspired by animals’ central nervous systems that are capable
of machine learning and pattern recognition. While providing
interesting performance, artificial neural networks are black
boxes: it is generally very difficult if not impossible to extract
a qualitative understanding of the reasons for their performance
and ability to solve a specific task. We can summarize
this first difficulty as the micro–macro problem, namely
understanding how micro-ingredients and rules transform into
macro-behaviors at the collective level when aggregated over
many agents.

The second related problem is that of calibration and
validation (Sornette et al 2007). Standard DSGE models
of an economy, for instance, provide specific regression
relations that are relatively easy to calibrate to a cross-
sectional set of data. In contrast, the general problem of
calibrating ABMs is unsolved. By calibrating, we refer to
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the problem of determining the values of the parameters (and
their uncertainty intervals) that enter in the definition of the
ABM, which best corresponds to a given set of empirical data.
Due to the existence of nonlinear chaotic or more complex
dynamical behaviors, the likelihood function is in general
very difficult if not impossible to determine, and standard
statistical methods (maximum likelihood estimation (MLE))
cannot apply. Moreover, due to the large number of parameters
present in large scale ABMs, calibration suffers from the
curse of dimensionality and of ill-conditioning: small errors
in the empirical data can be amplified into large errors in the
calibrated parameters. We think that it is not exaggerated
to state that the major obstacle for the general adoption of
ABMs by economists and policy makers is the absence of a
solid theoretical foundation and efficient reliable operational
calibration methods.

This diagnostic does not mean that there have not been
attempts, sometimes quite successful, in calibrating ABMs.
Windrum et al (2007) review the advances and discuss the
methodological problems arising in the empirical calibration
and validation of ABMs in economics. They classify the
calibration methods into three broad classes: (i) the indirect
calibration approach; (ii) the Werker-Brenner approach; and
(iii) the history-friendly approach. They have also identified
six main methodological and operational issues with ABM
calibration: (1) fitness does not imply necessarily that the true
generating process has been correctly identified; (2) the quest
for feasible calibration influences the type of ABMs that are
constructed; (3) the quality of the available empirical data;
(4) the possible non-ergodicity of the real-world generating
process and the issue of representativeness of short historical
time series; (5) possible time-dependence of the micro and
macro parameters.

Restricting our attention to financial markets, an early
effort of ABM calibration is that of Poggio et al (2001),
who constructed a computer simulation of a repeated double-
auction market. Using six different experimental designs, the
calibration was of the indirect type, with an attempt to match
the price efficiency of the market, the speed at which prices
converge to the rational expectations equilibrium price, the
dynamics of the distribution of wealth among the different
types of artificial intelligent agents, trading volume, bid/ask
spreads, and other aspects of market dynamics. Among
the ABM studies touched upon above, that of Chiarella
et al (2009) includes an implementation of the indirect
calibration approach. Similarly, Bianchi et al (2007) develop a
methodology to calibrate the ‘complex adaptive trivial system’
model proposed by Gallegati et al (2005), again matching
several statistical outputs associated with different stylized
facts of the ABM to the empirical data. Fabretti (2013)
uses a combination of mean and standard deviation, kurtosis,
Kolmogorov-Smirnov statistics and Hurst exponent for the
statistical objects determined from the ABM developed by
Farmer and Joshi (2002) whose distance to the real statistics
should be minimized.

Alfarano et al (2005) studied a very simple ABM that
reproduces the most studied stylized facts (e.g. fat tails,
volatility clustering). The simplicity of the model allows the

authors to derive a closed form solution for the distribution of
returns and hence to develop a rigorous MLE approach to the
calibration of the ABM. The analytical analysis provides an
explicit link between the exponent of the unconditional power
law distribution of returns and some structural parameters,
such as the herding propensity and the autonomous switching
tendency. This is a rare example for which the calibration of
the ABM is similar to more standard problems of calibration
in econometrics.

Andersen and Sornette (2005) introduced a direct history-
friendly calibration method of the minority game on the
time series of financial returns, which utilized statistically
significant abnormal performance to detect special pockets
of predictability associated with turning points. Roughly
speaking, this is done by calibrating many times the ABM to the
data and by performing meta-searches in the set of parameters
and strategies, while imposing robustness constraints to
address the intrinsic ill-conditional nature of the problem. One
of the advantages is to remove possible biases of the modeler
(except for the fact that the structure of the model reflects itself
a view of what should be the structure of the market). This
work by Andersen and Sornette (2005) was one of the first
to establish the existence of pockets of predictability in stock
markets. A theoretical analysis showed that when a majority
of agents follows a decoupled strategy, namely the immediate
future which has no impact on the longer-term choice of the
agents, a transient predictable aggregate move of the market
occurs. It has been possible to estimate the frequency of such
prediction days if the strategies and histories were randomly
chosen. A statistical test, using the Nasdaq Composite Index as
a proxy for the price history, confirms that it is possible to find
prediction days with a probability much higher than chance.

Another interesting application is to use the ABM to issue
forecasts that are used to further refine the calibration as well
as test the predictive power of the model. To achieve this, the
strategies of the agents become in a certain sense a variable,
which is optimized to obtain the best possible calibration of
the in-sample data. Once the optimal strategies are identified,
the predictive power of the simulation can be tested on the out-
of-sample data. Statistical tests have shown that the model
performs significantly better than a set of random strategies
used as comparison (Andersen and Sornette 2005, Wiesinger
et al 2012). These results are highly relevant, because they
show that it seems possible to extract from the times series
information about the future development of the series using
the highly nonlinear structure of ABMs. Applied to financial
return time series, the calibration and subsequent forecast show
that the highly liquid financial markets (e.g. S&P500 index)
have progressively evolved towards better efficiency from the
1970s to present (Wiesenger et al 2012). Nevertheless, there
seems to remain statistically significant arbitrage opportunities
(Zhang 2013), which seems inconsistent with the weak form
of the EMH. This method lays down the path to a novel
class of statistical falsification of the EMH. As the method is
quite generic, it can virtually be applied on any time series to
check how well the EMH holds from the viewpoint offered
by the ABM. Further, this approach has wide potential to
reverse engineer many more stylized facts observed in financial
markets.

19



Rep. Prog. Phys. 77 (2014) 062001 Key Issues Review

Lillo et al (2008) present results obtained in the rare
favorable situation in which the empirical data is plentiful,
with access to a comprehensive description of the strategies
followed by the firms that are members of the Spanish Stock
Exchange. This provides a rather unique opportunity for
validating the assumptions about agents preferred stylized
strategies in ABMs. The analysis indicates that three
well-defined groups of agents (firms) characterize the stock
exchange.

Saskia Ter and Zwinkels (2010) have modeled the oil price
dynamics with a heterogeneous agent model that, as in many
other ABMs, incorporates two types of investors: the funda-
mentalists and the chartists, and their relation to the funda-
mental supply and demand. The fundamentalists, who expect
the oil price to move towards the fundamental price, have a
stabilizing effect, while the chartists have a destabilizing ef-
fect driving the oil price away from its fundamental value. The
ABM has been able to outperform in an out-of-sample test both
the random walk model and value-at-risk (VAR) models for the
Brent and West Texas Intermediate (WTI) market, providing
a kind of partial history-friendly calibration approach.

7.3. The ‘Emerging Intelligence Market hypothesis’

Financial markets can be considered as the engines that
transform information into price. The EMH states that the
continuous efforts of diligent investors aggregate into a price
dynamic that does not contain any arbitrage opportunities
(Samuelson 1965, 1973, Fama 1970, 1991). In other words,
the very process of using better information or new technology
to invest with the goal of generating profits in excess to
the long-term historical market growth rate makes the prices
unfathomable and destroys the very goals of the investors.

Farmer (2002) constructed simple set-ups in which the
mean-reversion nature of investors’ strategies stabilize prices
and tends to remove arbitrage opportunities. Satinover and
Sornette (2007a, 2007b, 2009) showed how the ‘whitening’
(i.e. destruction of any predictive patterns) of the prices
precisely occur in minority games (Challet and Zhang 1998,
1999, Challet et al 2005). Specifically, agents who optimize
their strategy based on available information actually perform
worse than non-optimizing agents. In other words, low-
entropy (more informative) strategies under-perform high-
entropy (or random) strategies. This results from an emergent
property of the whole game that no non-random strategy can
outwit. Minority games can be considered as a subset of first-
entry games, for which the same phenomenon holds (Duffy and
Hopkins 2005). In first-entry games, this means that agents
who learn on stochastic fictitious plays will adapt and modify
their strategies to finally converge to the best strategies, which
randomize over the entry decisions. Thus, in minority and
first-entry games, when players think that they can put some
sense to the patterns created by the games—that they have
found a winning strategy and they have an advantage—they
are delusional since the true winning strategies are random.

In reality, efficient markets do not exist. Grossman and
Stiglitz (1980) articulated in a simplified model the essence
of a quite intuitive mechanism: because gathering information

is costly, prices cannot perfectly reflect all the information
that is available since this would confer no competitive
advantage to those who spent resources to obtain it and trade
on it, therefore destroying the very mechanism by which
information is incorporated into prices. As a consequence,
an informationally efficient market is impossible and the
EMH can only be a first-order approximation, an asymptotic
ideal construct that is never reached in practice. It can be
approached, but a convergence towards it unleashes effective
repelling forces due to dwindling incentives. ‘The abnormal
returns always exist to compensate for the costs of gathering
and processing information. These returns are necessary
to compensate investors for their information-gathering and
information-processing expenses, and are no longer abnormal
when these expenses are properly accounted for. The profits
earned by the industrious investors gathering information may
be viewed as economic rents that accrue to those willing to
engage in such activities’ (Campbell et al 1997).

Let us push this reasoning in order to illuminate further the
nature and limits of the EMH, and as a bonus clarify the nature
and origin of ‘noise traders’ (Black 1986). As illustrated by
the short review of section 7.1, the concept of ‘noise trader’ is
an essential constituent of most ABMs that aim at explaining
the excess volatility, fat-tailed distributions of asset returns,
as well as the astonishing occurrence of bubbles and crashes.
It also solves the problem of the no-trade theorem (Milgrom
and Stokey 1982), which in essence shows that no investor
will be willing to trade if the market is in a state of efficient
equilibrium and there are no noise traders or other non-rational
interferences with prices. Intuitively, if there is a well-defined
fundamental value, all well-informed rational traders agree on
it. The market price is the fundamental value and everybody
holds the stock according to their portfolio allocation strategy
reflecting their risk profiles. No trade is possible without the
existence of exogenous shocks, changes of fundamental values
or taste alterations.

In reality, real financial markets are heavily traded, with
at each tick an exact balance between the total volume of
buyers and of sellers (by definition of each realized trade),
reflecting a generalized disagreement on the opportunity to
hold the corresponding stocks. These many investors who
agree to trade and who trade much more than would be
warranted on the basis of fundamental information are called
noise traders. Noise traders are loosely defined as the investors
who makes decisions regarding buy and sell trades without
much use of fundamental data, but rather on the basis of
price patterns and trends, and who react incorrectly to good
and bad news. On one side, traders exhibit over-reaction,
which refers to the phenomenon that price responses to news
events are exaggerated. A proposed explanation is that excess
price pressure is applied by overconfident investors (Bondt
and Thaler 1985, Daniel et al 1998) or momentum traders
(Hong and Stein 1999), resulting in an over- or under-valued
asset, which then increases the likelihood of a rebound and thus
creates a negative autocorrelation in returns. On the other side,
investors may under-react, resulting in a slow internalization
of news into price. Due to such temporally spread-out impact
of the news, price dynamics exhibit momentum, i.e. positive
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return autocorrelation (Lo and MacKinlay 1988, Jegadeesh
1990, Cutler 1990, Jegadeesh and Titman 1993).

In fact, most investors and portfolio managers are
considered noise traders (Malkiel 2012)! In other words, after
controlling for luck, there is a general consensus in the financial
academic literature that most fund managers do not provide
statistically significant positive returns above the market return
that would be obtained by just buying and holding for the
long term (Barras et al 2010, Fama and French 2010). This
prevalence of noise traders is in accord with the EMH. But
are these investors really irrational and mindless? This seems
difficult to reconcile with the evidence that the banking and
investment industry has been able, in the last few decades,
to attract a significant fraction of the best minds and most
motivated persons on Earth. Many have noticed and even
complained that, in the years before the financial crisis of
2008, the best and brightest college graduates were heading
for Wall Street. At ETH Zurich where I teach financial market
risks and tutor master theses, I have observed, even after the
financial crisis, a growing flood of civil, mechanical, electrical
and other engineers choosing to defect from their field and
work in finance and banking.

Consequently, we propose that noise traders are actually
highly intelligent, motivated and capable investors. They are
like noise traders as a result of the aggregation of the collective
intelligence of all trading strategies that structure the price
dynamics, and make each individual strategy look ‘stupid’,
like noise trading. The whole is more than the sum of the
part. In other words, a universe of rational optimizing traders
create endogenously a large fraction of rational traders who
are effectively noise, because their strategies are like noise,
given the complexity or structure of financial and economic
markets that they collectively create. The continuous actions
of investors, which are aggregated in the prices, produce a
‘market intelligence’ more powerful than that of most of them.
The ‘collective intelligence’ of the market transforms most (but
not all) strategies into losing strategies, just providing liquidity
and transaction volume. We call this the ‘Emerging Market
Intelligence hypothesis’ (EIMH). This phrasing stresses the
collective intelligence that dwarfs the individual ones, making
them look like noise when applied to the price structures
resulting from the price formation process.

But for this EIMH to hold, the ‘noise traders’ need a
motivation to continue trading in the face of their collective
dismal performances. In addition to the role of monetary
incentives for rent-seeking that permeates the banking industry
(Freeman 2010) and makes working in finance very attractive,
notwithstanding the absence of genuine performance, there
is a well-documented fact in the field of psychology that
human beings in general, and investors in particular (especially
traders who are (self-)selected for their distinct abilities
and psychological traits), tend to rate their skills over-
optimistically (Kruger and Dunning 1999). When by chance
some performance emerges, we tend to attribute the positive
outcome to our skills. When a negative outcome occurs, this
is bad luck. This is referred to in psychological literature
as ‘illusion of control’ (Langer 1975). In addition, human
beings have evolved the ability to attribute meaning and

regularity when there is none. In psychological literature,
this is related to the fallacy of ‘hasty generalization’ (‘law
of small numbers’) and to ‘retrospective determinism’, which
makes us look at historical events as part of an unavoidable
meaningful laminar flow. All these elements combine to
generate a favorable environment to catalyze trading, by luring
especially young bright graduate students to finance in the
belief that their intelligence and technical skills will allow
them to ‘beat the market’. Thus, building on our cognitive
biases and in particular on over-optimism, one could say that
the incentive structures of the financial industry provides the
remunerations for the individuals who commit themselves to
arbitrage the financial markets, thereby providing an almost
efficient functioning machine. The noise traders naturally
emerge as a result of the emergent collective intelligence. This
concept is analogous to the sandpile model of self-organized
criticality (Bak 1996), which consistently functions at the edge
of chaos, driven to its instability but never completely reaching
it by the triggering of avalanches (Scheinkman and Woodford
1994). Similarly, the incentives of the financial system create
an army of highly motivated and skilled traders who push the
market towards efficiency but rarely allow them to win (except
for the management fees collected from their clients), and make
most of them look like noise.

Expanding on the above remark, it is important to note
that fees (which are explicit and/or hidden) contribute to
sustaining and feeding the professional investment community,
which would otherwise be considerably smaller in the face
of its general sub-performance. This raises the paradox of
why do people continue to entrust fund managers with their
savings, given the overwhelming evidence of sub-performance
compared with simple strategies, such as buy-and-hold. Let us
mention some representative studies in the large literature that
addresses this question (Chordia 1996; Coates and Hubbard
2007; French 2008; Gil-Bazo and Ruiz-Verdu 2008, 2009;
Glode 2011; Golec 1992; Gruber 1996; Harless and Peterson
1998; Huesler et al 2014; Luo 2002; Wermers 2000).

8. Concluding remarks

While it is difficult to argue for a physics-based foundation
of economics and finance, physics still has a role to play as
a unifying framework full of concepts and tools to deal with
complex dynamical out-of-equilibrium systems. Moreover,
the specific training of physicists explains the impressive
number of recruitments in investment and financial institutions,
where their data-driven approach, coupled with a pragmatic
sense of theorizing, has made physicists a most valuable
commodity on Wall Street.

At present, however, the most exciting progress seems
to be unraveling at the boundary between economics and
the biological, cognitive and behavioral sciences (Camerer
et al 2003, Shiller 2003, Thaler 2005). A promising recent
trend is the enrichment of financial economics by concepts
developed in evolutionary biology. Several notable groups
with very different backgrounds have touched upon the concept
that financial markets may be similar to ecologies filled by
species that adapt and mutate. For instance, we mentioned
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earlier that Potters et al (1998) showed that the market
has empirically corrected and adapted to the simple but
inadequate Black–Scholes formula to account for the fat tails
and the correlations in the scale of fluctuations. Farmer
(2002) proposed a theory based on the interrelationships
of strategies, which views a market as a financial ecology.
In this ecology, new and better-adapted strategies exploit
the inefficiencies of old strategies, and the evolution of the
capital of a strategy is analogous to the evolution of the
population of a biological species. Cars Hommes (2001) also
reviewed works modeling financial markets as evolutionary
systems constituting different, competing trading strategies.
Strategies are again taken as the analog of species. It is found
that simple technical trading rules may survive evolutionary
competition in a heterogeneous world where prices and
beliefs co-evolve over time. Such evolutionary models can
explain most of the stylized facts of financial markets
(Chakraborti et al 2011).

Andrew Lo (2004, 2005, 2011) coined the term ‘adaptive
market hypothesis’ in reaction to the ‘EMH’ (Fama 1970,
1991), to propose an evolutionary perspective on market
dynamics in which intelligent but fallible investors learn from
and adapt to changing environments, leading to a relationship
between risk and expected return that is not constant in
time. In this view, markets are not always efficient but
they are highly competitive and adaptive, and can vary in
their degree of efficiency as the economic environment and
investor population change over time. Lo emphasizes that
adaptation in investment strategies (Neelya et al 2009) are
driven by the ‘push for survival’. This is perhaps a correct
assessment of Warren Buffet’s own stated strategy: ‘We do not
wish it only to be likely that we can meet our obligations; we
wish that to be certain. Thus we adhere to policies – both
in regard to debt and all other matters – that will allow us
to achieve acceptable long-term results under extraordinary
adverse conditions, rather than optimal results under a normal
range of conditions’ (Berkshire Hathaway Annuel Report
1987: http://www.berkshirehathaway.com/letters/1987.html).
But the analogy with evolutionary biology, as well as many
studies of the behavior of bankers and traders (e.g. Coates
2012), suggest that most market investors care for much more
than just survival. They strive to maximize their investment
success measured as bonus and wealth, which can accrue with
luck on time scales of years. This is akin to maximizing the
transmission of ‘genes’ in a biological context (Dawkins 1976).
The focus on survival within an evolutionary analogy is clearly
insufficient to account for the extraordinary large death rate of
business companies, and in particular of financial firms such
as hedge-funds (Saichev et al 2010, Malevergne et al 2013 and
references therein).

But evolutionary biology itself is witnessing a revolution
with genomics, benefitting from computerized automation
and artificial intelligence classification (ENCODE Project
Consortium, 2012). (Bio-)physics is bound to continue playing
a growing role to organize the wealth of data in models
that can be handled, playing on the triplet of experimental,
computational and theoretical research. On the question of
what tools could be useful to help understand, use, diagnose,

predict and control financial markets (Cincotti et al 2012;
de S Cavalcante et al 2013), we envision that both physics
and biology are going to play a growing role to inspire models
of financial markets, and the next significant advance will be
obtained by marrying the three fields.
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