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Abstract

This review presents a general theory of +nancial crashes and of stock market instabilities that his co-workers
and the author have developed over the past seven years. We start by discussing the limitation of standard
analyses for characterizing how crashes are special. The study of the frequency distribution of drawdowns, or
runs of successive losses shows that large +nancial crashes are “outliers”: they form a class of their own as can
be seen from their statistical signatures. If large +nancial crashes are “outliers”, they are special and thus require
a special explanation, a speci+c model, a theory of their own. In addition, their special properties may perhaps
be used for their prediction. The main mechanisms leading to positive feedbacks, i.e., self-reinforcement, such
as imitative behavior and herding between investors are reviewed with many references provided to the relevant
literature outside the narrow con+ne of Physics. Positive feedbacks provide the fuel for the development of
speculative bubbles, preparing the instability for a major crash. We demonstrate several detailed mathematical
models of speculative bubbles and crashes. A +rst model posits that the crash hazard drives the market price.
The crash hazard may sky-rocket at some times due to the collective behavior of “noise traders”, those who
act on little information, even if they think they “know”. A second version inverses the logic and posits that
prices drive the crash hazard. Prices may skyrocket at some times again due to the speculative or imitative
behavior of investors. According the rational expectation model, this entails automatically a corresponding
increase of the probability for a crash. We also review two other models including the competition between
imitation and contrarian behavior and between value investors and technical analysts. The most important
message is the discovery of robust and universal signatures of the approach to crashes. These precursory
patterns have been documented for essentially all crashes on developed as well as emergent stock markets,
on currency markets, on company stocks, and so on. We review this discovery at length and demonstrate
how to use this insight and the detailed predictions obtained from these models to forecast crashes. For this,
we review the major crashes of the past that occurred on the major stock markets of the planet and describe
the empirical evidence of the universal nature of the critical log-periodic precursory signature of crashes. The
concept of an “anti-bubble” is also summarized, with the Japanese collapse from the beginning of 1991 to
present, taken as a prominent example. A prediction issued and advertised in January 1999 has been until
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recently born out with remarkable precision, predicting correctly several changes of trends, a feat notoriously
diAcult using standard techniques of economic forecasting. We also summarize a very recent analysis the
behavior of the U.S. S&P500 index from 1996 to August 2002 and the forecast for the two following years.
We conclude by presenting our view of the organization of +nancial markets.
c© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

The total world market capitalization rose from $3.38 trillion (thousand billions) in 1983 to
$26.5 trillion in 1998 and to $38.7 trillion in 1999. To put these numbers in perspective, the 1999
U.S. budget was $1.7 trillion while its 1983 budget was $800 billion. Market capitalization and
trading volumes tripled during the 1990s. The volume of securities issuance was multiplied by six.
Privatization has played a key role in the stock market growth (Megginson, 2000). Stock market
investment is clearly the big game in town.
A market crash occurring simultaneously on most of the stock markets of the world as witnessed

in October 1987 would amount to the quasi-instantaneous evaporation of trillions of dollars. In
values of January 2001, a stock market crash of 30% indeed would correspond to an absolute loss
of about 13 trillion dollars! Market crashes can thus swallow years of pension and savings in an
instant. Could they make us suNer even more by being the precursors or triggering factors of major
recessions as in 1929–1933 after the great crash of October 1929? Or could they lead to a general
collapse of the +nancial and banking system as seems to have being barely avoided several times
in the not-so-distant past?
Stock market crashes are also fascinating because they personify the class of phenomena known

as “extreme events”. Extreme events are characteristic of many natural and social systems, often
referred to by scientists as “complex systems”.
Here, we discuss how +nancial crashes can be understood by invoking the latest and most sophis-

ticated concepts in modern science, i.e., the theory of complex systems and of critical phenomena.
Our aim is to cover a territory bringing us all the way from the description of how the wonderful
organization around us arises, to the holy grail of crash predictions.
This article is organized in eight parts. Section 2 introduces the fundamental questions: what are

crashes? How do they happen? Why do they occur? When do they occur? Section 2 outlines the
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answers we propose, taking as examples some famous, or we should rather say, infamous historical
crashes. Section 3 discusses +rst the limitation of standard analyses for characterizing how crashes are
special. It presents then the study of the frequency distribution of drawdowns, or runs of successive
losses, and shows that large +nancial crashes are “outliers”: they form a class of their own as can
be seen from their statistical signatures. If large +nancial crashes are “outliers”, they are special
and thus require a special explanation, a speci+c model, a theory of their own. In addition, their
special properties may perhaps be used for their prediction. Section 4 reviews the main mechanisms
leading to positive feedbacks, i.e., self-reinforcement, such as imitative behavior and herding between
investors. Positive feedbacks provide the fuel for the development of speculative bubbles, preparing
the instability for a major crash. Section 5 presents two versions of a rational model of speculative
bubbles and crashes. The +rst version posits that the crash hazard drives the market price. The crash
hazard may sky-rocket at some times due to the collective behavior of “noise traders”, those who
act on little information, even if they think they “know”. The second version inverses the logic
and posits that prices drive the crash hazard. Prices may skyrocket at some times again due to the
speculative or imitative behavior of investors. According the rational expectation model, this entails
automatically a corresponding increase of the probability for a crash. The most important message
is the discovery of robust and universal signatures of the approach to crashes. These precursory
patterns have been documented for essentially all crashes on developed as well as emergent stock
markets, on currency markets, on company stocks, and so on. Section 5 also discusses two simple
models of imitation and contrarian behavior of agents, leading to a chaotic dynamics of speculative
bubbles and crashes and of the competition between value investors and technical analysts. Section 6
takes a step back and presents the general concept of self-similarity, with complex dimensions
and their associated discrete self-similarity. Section 6 shows how these remarkable geometric and
mathematical objects allow one to codify the information contained in the precursory patterns before
large crashes. Section 7 analyzes the major crashes of the past that occurred on the major stock
markets of the planet. It describes the empirical evidence of the universal nature of the critical
log-periodic precursory signature of crashes. It also presents the concept of an “anti-bubble”, with the
Japanese collapse from the beginning of 1991 to present, taken as a prominent example. A prediction
issued and advertised in January 1999 has been until now born out with remarkable precision,
predicting correctly several changes of trends, a feat notoriously diAcult using standard techniques
of economic forecasting. We also summarize a very recent analysis the behavior of the U.S. S&P500
index from 1996 to August 2002 and the forecast for the two following years. Section 8 concludes.

2. Financial crashes: what, how, why and when?

2.1. What are crashes and why do we care?

Stock market crashes are momentous +nancial events that are fascinating to academics and practi-
tioners alike. According to the academic world view that markets are eAcient, only the revelation of
a dramatic piece of information can cause a crash, yet in reality even the most thorough post-mortem
analyses are typically inconclusive as to what this piece of information might have been. For traders
and investors, the fear of a crash is a perpetual source of stress, and the onset of the event itself
always ruins the lives of some of them.



D. Sornette / Physics Reports 378 (2003) 1–98 5

Most approaches to explain crashes search for possible mechanisms or eNects that operate at
very short time scales (hours, days or weeks at most). We propose here a radically diNerent view:
the underlying cause of the crash must be searched months and years before it, in the progressive
increasing build-up of market cooperativity or eNective interactions between investors, often translated
into accelerating ascent of the market price (the bubble). According to this “critical” point of view,
the speci+c manner by which prices collapsed is not the most important problem: a crash occurs
because the market has entered an unstable phase and any small disturbance or process may have
triggered the instability. Think of a ruler held up vertically on your +nger: this very unstable position
will lead eventually to its collapse, as a result of a small (or absence of adequate) motion of your
hand or due to any tiny whiN. The collapse is fundamentally due to the unstable position; the
instantaneous cause of the collapse is secondary. In the same vein, the growth of the sensitivity and
the growing instability of the market close to such a critical point might explain why attempts to
unravel the local origin of the crash have been so diverse. Essentially, anything would work once
the system is ripe. We explore here the concept that a crash has fundamentally an endogenous origin
and that exogenous shocks only serve as triggering factors. As a consequence, the origin of crashes
is much more subtle than often thought as it is constructed progressively by the market as a whole,
as a self-organizing process. In this sense, this could be termed a systemic instability.
Systemic instabilities are of great concern to governments, central banks and regulatory agencies

(De Bandt and Hartmann, 2000). The question that has often arisen in the 1990s is whether the
new, globalized, information technology-driven economy has advanced to the point of outgrowing
the set of rules dating from the 1950s, in eNect creating the need for a new rule set for the New
Economy. Those who make this call basically point to the systemic instabilities since 1997 (or even
back to Mexico’s peso crisis of 1994) as evidence that the old post-world war II rule set is now
antiquated, thus endangering this second great period of globalization to the same fate as the +rst.
With the global economy appearing so fragile sometimes, how big of a disruption would be needed
to throw a wrench into the world’s +nancial machinery? One of the leading moral authorities, the
Basle Committee on Banking Supervision, advises (1997) that, “in handling systemic issues, it will
be necessary to address, on the one hand, risks to con+dence in the +nancial system and contagion
to otherwise sound institutions, and, on the other hand, the need to minimize the distortion to market
signals and discipline”.
The dynamics of con+dence and of contagion and decision making based on imperfect information

are indeed at the core of the present work and will lead us to examine the following questions. What
are the mechanisms underlying crashes? Can we forecast crashes? Could we control them? Or at
least, could we have some inKuence on them? Do crashes point to the existence of a fundamental
instability in the world +nancial structure? What could be changed to mollify or suppress these
instabilities?

2.2. The crash of October, 1987

From the opening on October 14, 1987 through the market close on October 19, major indexes of
market valuation in the United States declined by 30 percent or more. Furthermore, all major world
markets declined substantially in the month, which is itself an exceptional fact that contrasts with
the usual modest correlations of returns across countries and the fact that stock markets around the
world are amazingly diverse in their organization (Barro et al., 1989).
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In local currency units, the minimum decline was in Austria (−11:4%) and the maximum was in
Hong Kong (−45:8%). Out of 23 major industrial countries (Australia, Austria, Belgium, Canada,
Denmark, France, Germany, Hong Kong, Ireland, Italy, Japan, Malaysia, Mexico, Netherland, New
Zealand, Norway, Singapore, South Africa, Spain, Sweden, Switzerland, United Kingdom, United
States), 19 had a decline greater than 20%. Contrary to a common belief, the U.S. was not the +rst
to decline sharply. Non-Japanese Asian markets began a severe decline on October 19, 1987, their
time, and this decline was echoed +rst on a number of European markets, then in North American,
and +nally in Japan. However, most of the same markets had experienced signi+cant but less severe
declines in the latter part of the previous week. With the exception of the U.S. and Canada, other
markets continued downward through the end of October, and some of these declines were as large
as the great crash on October 19.
A lot of work has been carried out to unravel the origin(s) of the crash, notably in the properties of

trading and the structure of markets; however, no clear cause has been singled out. It is noteworthy
that the strong market decline during October 1987 followed what for many countries had been
an unprecedented market increase during the +rst nine months of the year and even before. In the
U.S. market for instance, stock prices advanced 31.4% over those nine months. Some commentators
have suggested that the real cause of October’s decline was that over-inKated prices generated a
speculative bubble during the earlier period.
The main explanations people have come up with are the following.

1. Computer trading. In computer trading, also known as program trading, computers were pro-
grammed to automatically order large stock trades when certain market trends prevailed, in par-
ticular sell orders after losses. However, during the 1987 U.S. Crash, other stock markets which
did not use program trading also crashed, some with losses even more severe than the U.S.
market.

2. Derivative securities. Index futures and derivative securities have been claimed to increase the
variability, risk and uncertainty of the U.S. stock markets. Nevertheless, none of these techniques
or practices existed in previous large and sudden market declines in 1914, 1929, and 1962.

3. Illiquidity. During the crash, the large Kow of sell orders could not be digested by the trading
mechanisms of existing +nancial markets. Many common stocks in the New York Stock Ex-
change were not traded until late in the morning of October 19 because the specialists could
not +nd enough buyers to purchase the amount of stocks that sellers wanted to get rid of at
certain prices. This insuAcient liquidity may have had a signi+cant eNect on the size of the price
drop, since investors had overestimated the amount of liquidity. However, negative news about
the liquidity of stock markets cannot explain why so many people decided to sell stock at the
same time.

4. Trade and budget de>cits. The third quarter of 1987 had the largest U.S. trade de+cit since 1960,
which together with the budget de+cit, led investors into thinking that these de+cits would cause
a fall of the U.S. stocks compared with foreign securities. However, if the large U.S. budget
de+cit was the cause, why did stock markets in other countries crash as well? Presumably, if
unexpected changes in the trade de+cit are bad news for one country, it should be good news for
its trading partner.

5. Overvaluation. Many analysts agree that stock prices were overvalued in September, 1987. While
Price/Earning ratio and Price/Dividend ratios were at historically high levels, similar Price/Earning



D. Sornette / Physics Reports 378 (2003) 1–98 7

and Price/Dividends values had been seen for most of the 1960–1972 period over which no sudden
crash occurred. Overvaluation does not seem to trigger crashes every time.

Other cited potential causes involve the auction system itself, the presence or absence of limits
on price movements, regulated margin requirements, oN-market and oN-hours trading (continuous
auction and automated quotations), the presence or absence of Koor brokers who conduct trades but
are not permitted to invest on their own account, the extent of trading in the cash market versus the
forward market, the identity of traders (i.e., institutions such as banks or specialized trading +rms),
the signi+cance of transaction taxes...
More rigorous and systematic analyses on univariate associations and multiple regressions of these

various factors conclude that it is not clear at all what was the origin of the crash (Barro et al., 1989;
Roll, 1988). The most precise statement, albeit somewhat self-referencing, is that the most statistically
signi+cant explanatory variable in the October crash can be ascribed to the normal response of each
country’s stock market to a worldwide market motion. A world market index was thus constructed
(Barro et al., 1989; Roll, 1988) by equally weighting the local currency indexes of the 23 major
industrial countries mentioned above and normalized to 100 on september 30. It fell to 73.6 by
October 30. The important result is that it was found to be statistically related to monthly returns in
every country during the period from the beginning of 1981 until the month before the crash, albeit
with a wildly varying magnitude of the responses across countries (Barro et al., 1989; Roll, 1988).
This correlation was found to swamp the inKuence of the institutional market characteristics. This
signals the possible existence of a subtle but nonetheless present world-wide cooperativity at times
preceding crashes.

2.3. How? Historical crashes

In the +nancial world, risk, reward and catastrophe come in irregular cycles witnessed by every
generation. Greed, hubris and systemic Kuctuations have given us the Tulip Mania, the South Sea
bubble, the land booms in the 1920s and 1980s, the U.S. stock market and great crash in 1929, the
October 1987 crash, to name just a few of the hundreds of ready examples (White, 1996).

2.3.1. The Tulip mania
The years of tulip speculation fell within a period of great prosperity in the republic of the

Netherlands. Between 1585 and 1650, Amsterdam became the chief commercial emporium, the
center of the trade of the northwestern part of Europe, owing to the growing commercial activity in
newly discovered America. The tulip as a cultivated Kower was imported into Western Europe from
Turkey and it is +rst mentioned around 1554. The scarcity of tulips and their beautiful colors made
them valuable and a must for members of the upper society.
During the build-up of the tulip market, the participants were not making money through the

actual process of production. Tulips acted as the medium of speculation and its price determined
the wealth of participants in the tulip business. It is not clear whether the build-up attracted new
investment or new investment fueled the build-up, or both. What is known is that, as the build-up
continued more and more, people were roped in to invest their hard won earnings. The price of the
tulip lost all correlation to its comparative value with other goods or services.
What we now call the “tulip mania” of the seventeenth century was the “sure thing” investment

during the period from mid-1500s to 1636. Before its devastating end in 1637, those who bought
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tulips rarely lost money. People became too con+dent that this “sure thing” would always make
them money and, at its peak, the participants mortgaged their houses and businesses to trade tulips.
The craze was so overwhelming that some tulip bulbs of a rare variety sold for the equivalent of a
few tens of thousand dollars. Before the crash, any suggestion that the price of tulips was irrational
was dismissed by all the participants.
The conditions now generally associated with the +rst period of a boom were all present:

an increasing currency, a new economy with novel colonial possibilities, an increasingly
prosperous country, all together had created the optimistic atmosphere in which booms are said to
grow.
The crisis came unexpectedly. On february 4th, 1637, the possibility of the tulips becoming

de+nitely unsalable was mentioned for the +rst time. From then to the end of May 1637, all attempts
of coordination between Korists, bulbgrowers as well as by the States of Holland were met with
failure. Bulbs worth tens of thousand of U.S. dollars (in present value) in early 1637 became
valueless a few months later. This remarkable event is often discussed in present days and parallels
are drawn with modern speculation mania and the question is asked: does the tulip market’s build-up
and its subsequent crash has any relevance for today’s times?

2.3.2. The South Sea bubble
The South Sea Bubble is the name given to the enthusiastic speculative fervor ending in the

+rst great stock market crash in England in 1720 (White, 1996). The South Sea Bubble is a fasci-
nating story of mass hysteria, political corruption, and public upheaval. It is really a collection of
thousands of stories, tracing the personal fortunes of countless individuals who rode the wave of
stock speculation for a furious six months in 1720. The “Bubble year” as it is referred to, actually
involves several individual “bubbles” as all kinds of fraudulent joint-stock companies sought to take
advantage of the mania for speculation. The following account borrows from (The) Bubble Project
at http://is.dal.ca/∼dmcneil/bubble.html.
In 1711, the South Sea Company was given a monopoly of all trade to the south seas. The real

prize was the anticipated trade that would open up with the rich Spanish colonies in South Amer-
ica. In return for this monopoly, the South Sea Company would assume a portion of the national
debt that England had incurred during the War of the Spanish Succession. When Britain and Spain
oAcially went to war again in 1718, the immediate prospects for any bene+ts from trade to South
America were nil. What mattered to speculators, however, were future prospects, and here it could
always be argued that incredible prosperity lay ahead and would be realized when open hostilities
came to an end.
The early 1700s was also a time of international +nance. By 1719 the South Sea directors wished,

in a sense, to imitate the manipulation of public credit that John Law had achieved in France with
the Mississippi Company, which was given a monopoly of French trade to North America; Law
had connived to drive the price of its stock up, and the South Sea directors hoped to do the same.
In 1719 the South Sea directors made a proposal to assume the entire public debt of the British
government. On April 12, 1720 this oNer was accepted. The Company immediately started to drive
the price of the stock up through arti+cial means; these largely took the form of new subscriptions
combined with the circulation of pro-trade-with-Spain stories designed to give the impression that
the stock could only go higher. Not only did capital stay in England, but many Dutch investors
bought South Sea stock, thus increasing the inKationary pressure.

http://is.dal.ca/~dmcneil/bubble.html
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South Sea stock rose steadily from January through to the spring. And as every apparent success
would soon attract its imitators, all kinds of joint-stock companies suddenly appeared, hoping to
cash in on the speculation mania. Some of these companies were legitimate but the bulk were
bogus schemes designed to take advantage of the credulity of the people. Several of the bubbles,
both large and small, had some overseas trade or “New World” aspect. In addition to the South
Sea and Mississippi ventures, there was a project for improving the Greenland +shery, another for
importing walnut trees from Virginia. Raising capital sums by selling stock in these enterprises was
apparently easy work. The projects mentioned so far all have a tangible speci+city at least on paper
if not in practice; others were rather vague on details but big on promise. The most remarkable was
“A company for carrying on an undertaking of great advantage, but nobody to know what it is”.
The prospectus stated that “the required capital was half a million, in +ve thousand shares of 100
pounds each, deposit 2 pounds per share. Each subscriber, paying his [or her] desposit, was entitled
to 100 pounds per annum per share. How this immense pro+t was to be obtained, [the proposer]
did not condescend to inform [the buyers] at that time”. As T.J. Dunning (1860) wrote: “Capital
eschews no pro+t, or very small pro+t.... With adequate pro+t, capital is very bold. A certain 1%
percent will ensure its employment anywhere; 20 percent certain will produce eagerness; 50 percent,
positive audacity; 100 percent will make it ready to trample on all human laws; 300 percent and
there is not a crime at which it will scruple, nor a risk it will not run, even to the chance of its
owner being hanged”. Next morning, at nine o’clock, this great man opened an oAce in Cornhill.
Crowds of people beset his door, and when he shut up at three o’cock, he found that no less than
one thousand shares had been subscribed for, and the deposits paid. He was thus, in +ve hours, the
winner of 2000 pounds. He was philosophical enough to be contented with his venture, and set oN
the same evening for the Continent. He was never heard of again.
Such scams were bad for the speculation business and so largely through the pressure of the South

Sea directors, the so-called “Bubble Act” was passed on June 11, 1720 requiring all joint-stock
companies to have a royal charter. For a moment, the con+dence of the people was given an extra
boost, and they responded accordingly. South Sea stock had been at 175 pounds at the end of
February, 380 at the end of March, and around 520 by May 29. It peaked at the end of June at
over 1000 pounds (a psychological barrier in that four-digit number).
With credulity now stretched to the limit and rumors of more and more people (including the

directors themselves) selling oN, the bubble then burst according to a slow, very slow at +rst, but
steady deKation (not unlike the 60% drop of the Japanese Nikkei index after its all time peak at
the end of December 1990). By mid-August, the bankruptcy listings in the London Gazette reached
an all-time high, an indication of how people bought on credit or margin. Thousands of fortunes
were lost, both large and small. The directors attempted to pump-up more speculation. They failed.
The full collapse came by the end of September when the stock stood at 135 pounds. The crash
remained in the consciousness of the Western world for the rest of the eighteenth century, not unlike
our cultural memory of the 1929 Wall Street Crash.

2.3.3. The Great crash of October 1929
The Roaring 1920s—a time of growth and prosperity on Wall Street and Main Street—ended with

the Great Crash of October 1929 (for the most thorough and authoritative account and analysis, see
(Galbraith, 1997)). Two thousand investment +rms went under, and the American banking industry
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underwent the biggest structural changes of its history, as a new era of government regulation
began. Roosevelt’s New Deal politics would follow. The Great Depression that followed put 13
million Americans out of work (that the crash of October 1929 caused the Great Depression is a
part of +nancial folklore, but nevertheless probably not fully accurate. For instance, using a regime
switching framework, Coe (2002) +nds that a prolonged period of crisis began not with the 1929
stock market crash but with the +rst banking panic of October 1930).
The October 1929 crash is a remarkable illustration of several remarkable features often associated

with crashes. First, stock market crashes are often unforeseen for most people, especially economists.
“In a few months, I expect to see the stock market much higher than today”. Those words were
pronounced by Irving Fisher, America’s distinguished and famous economist, Professor of Economics
at Yale University, 14 days before Wall Street crashed on Black Tuesday, October 29, 1929.
“A severe depression such as 1920–1921 is outside the range of probability. We are not facing a

protracted liquidation”. This was the analysis oNered days after the crash by the Harvard Economic
Society to its subscribers. After continuous and erroneous optimistic forecasts, the Society closed
its doors in 1932. Thus, the two most renowned economic forecasting institutes in America at
the time failed to predict that a crash and a depression were forthcoming, and continued with
their optimistic views, even as the Great Depression took hold of America. The reason is simple:
predictions of trend-reversals constitutes by far the most diAcult challenge posed to forecasters and
is very unreliable especially within the linear framework of standard (auto-regressive) economic
models.
A second general feature exempli+ed by the October 1929 event is that a +nancial collapse has

never happened when things look bad. On the contrary, macroeconomic Kows look good before
crashes. Before every collapse, economists say the economy is in the best of all worlds. Everything
looks rosy, stock markets go up and up, and macroeconomic Kows (output, employment, and so
on) appear to be improving further and further. This explains why a crash catches most people,
especially economists, totally by surprise. The good times are invariably extrapolated linearly into
the future. Is it not perceived as senseless by most people in today’s euphoria to talk about crash
and depression?
During the build-up phase of a bubble such as the one preceding the October 1929 crash, there

is a growing interest in the public for the commodity in question, whether it consists in stocks,
diamonds or coins. That interest can be estimated through diNerent indicators: increase in the number
of books published on the topic (see Fig. 1), and increase in the subscriptions to specialized journals.
Moreover, the well-known empirical rule according to which the volume of sales is growing during a
bull market +nds a natural interpretation: sales increases in fact reveal and pinpoint the progress of the
bubble’s diNusion throughout society. These features has been recently re-examined for evidence of
a bubble, a ‘fad’ or ‘herding’ behavior, by studying individual stock returns (White and Rappoport,
1995). One story often advanced for the boom of 1928 and 1929 is that it was driven by the
entry into the market of largely uninformed investors, who followed the fortunes of and invested
in ‘favorite’ stocks. The result of this behavior would be a tendency for the favorite stocks’ prices
to move together more than would be predicted by their shared fundamental economic values. The
comovement indeed increased signi+cantly during the boom and was a signal characteristic of the
tumultuous market of the early 1930s. These results are thus consistent with the possibility that a
fad or crowd psychology played a role in the rise of the market, its crash and subsequent volatility
(White and Rappoport, 1995).
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Fig. 1. Comparison between the number of yearly published books about stock market speculation and the level of stock
prices (1911–1940). Black line: books at Harvard library whose titles contain one of the words “stocks”, “stock market”
or “speculation”; grey line: Standard and Poor index of common stocks. The curve of published books lags behind the
price curve with a time-lag of about 1.5 years, which can be explained by the time needed for a book to get published.
Source: The stock price index is taken from the Historical Abstract of the United States. Reproduced from (Roehner and
Sornette, 2000).

The political mood before the October 1929 crash was also optimistic. In November 1928,
Herbert Hoover was elected President of the United States in a landslide, and his election set oN the
greatest increase in stock buying to that date. Less than a year after the election, Wall Street
crashed.

2.4. Why? Extreme events in complex systems

Financial markets are not the only systems with extreme events. Financial markets constitute one
among many other systems exhibiting a complex organization and dynamics with similar behav-
ior. Systems with a large number of mutually interacting parts, often open to their environment,
self-organize their internal structure and their dynamics with novel and sometimes surprising macro-
scopic (“emergent”) properties. The complex system approach, which involves “seeing” inter-
connections and relationships, i.e., the whole picture as well as the component parts, is nowadays
pervasive in modern control of engineering devices and business management. It is also plays an
increasing role in most of the scienti+c disciplines, including biology (biological networks, ecol-
ogy, evolution, origin of life, immunology, neurobiology, molecular biology, and so on), geology
(plate-tectonics, earthquakes and volcanoes, erosion and landscapes, climate and weather, environ-
ment, and so on), economy and social sciences (including cognition, distributed learning, interacting
agents, and so on). There is a growing recognition that progress in most of these disciplines, in many
of the pressing issues for our future welfare as well as for the management of our everyday life, will
need such a systemic complex system and multidisciplinary approach. This view tends to replace
the previous reductionist approach, consisting of decomposing a system in components, such that
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the detailed understand of each component was believed to bring understanding in the functioning
of the whole.
A central property of a complex system is the possible occurrence of coherent large-scale collective

behaviors with a very rich structure, resulting from the repeated nonlinear interactions among its
constituents: the whole turns out to be much more than the sum of its parts. A part of the scienti+c
community holds that most complex systems are not amenable to mathematical, analytic descriptions
and can only be explored by means of “numerical experiments” (see for instance (Wolfram, 2002)
from an extreme implementation of this view and (KadanoN, 2002) for a enlightening criticism). In
the context of the mathematics of algorithmic complexity (Chaitin, 1987), many complex systems are
said to be computationally irreducible, i.e. the only way to decide about their evolution is to actually
let them evolve in time. Accordingly, the “dynamical” future time evolution of complex systems
would be inherently unpredictable. This unpredictability refers to the frustration to satisfy the quest
for the knowledge of what tomorrow will be made of, often +lled by the vision of “prophets” who
have historically inspired or terri+ed the masses.
The view that complex systems are unpredictable has recently been defended persuasively in

concrete prediction applications, such as the socially important issue of earthquake prediction (Geller
et al., 1997a, b) (see the contributions in (Nature debates, 1999) for arguments put forward by leading
seismologists and geophysicts either defending or +ghting this view). In addition to the persistent
failures at reaching a reliable earthquake predictive scheme, this view is rooted theoretically in the
analogy between earthquakes and self-organized criticality (Bak, 1996). In this “fractal” framework,
there is no characteristic scale and the power law distribution of earthquake sizes reKects the fact that
the large earthquakes are nothing but small earthquakes that did not stop. They are thus unpredictable
because their nucleation is not diNerent from that of the multitude of small earthquakes which
obviously cannot be all predicted.
Does this really hold for all features of complex systems? Take our personal life. We are not really

interested in knowing in advance at what time we will go to a given store or drive to a highway.
We are much more interested in forecasting the major bifurcations ahead of us, involving the few
important things, like health, love and work that count for our happiness. Similarly, predicting the
detailed evolution of complex systems has no real value and the fact that we are taught that it is
out of reach from a fundamental point of view does not exclude the more interesting possibility of
predicting phases of evolutions of complex systems that really count, like the extreme events.
It turns out that most complex systems in natural and social sciences do exhibit rare and sudden

transitions, that occur over time intervals that are short compared to the characteristic time scales
of their posterior evolution. Such extreme events express more than anything else the underlying
“forces” usually hidden by almost perfect balance and thus provide the potential for a better scienti+c
understanding of complex systems.
These crises have fundamental societal impacts and range from large natural catastrophes such as

earthquakes, volcanic eruptions, hurricanes and tornadoes, landslides, avalanches, lightning strikes,
meteorite/asteroid impacts, catastrophic events of environmental degradation, to the failure of en-
gineering structures, crashes in the stock market, social unrest leading to large-scale strikes and
upheaval, economic drawdowns on national and global scales, regional power blackouts, traAc grid-
lock, diseases and epidemics, and so on. It is essential to realize that the long-term behavior of these
complex systems is often controlled in large part by these rare catastrophic events: the universe was
probably born during an extreme explosion (the “big-bang”); the nucleosynthesis of all important
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heavy atomic elements constituting our matter results from the colossal explosion of supernovae
(these stars more heavy than our sun whose internal nuclear combustion diverges at the end of their
life); the largest earthquake in California repeating about once every two centuries accounts for a
signi+cant fraction of the total tectonic deformation; landscapes are more shaped by the “millennium”
Kood that moves large boulders rather than the action of all other eroding agents; the largest vol-
canic eruptions lead to major topographic changes as well as severe climatic disruptions; according to
some contemporary views, evolution is probably characterized by phases of quasi-stasis interrupted
by episodic bursts of activity and destruction (Gould and Eldredge, 1993); +nancial crashes, which
can destroy in an instant trillions of dollars, loom over and shape the psychological state of investors;
political crises and revolutions shape the long-term geopolitical landscape; even our personal life is
shaped on the long run by a few key decisions or happenings.
The outstanding scienti+c question is thus how such large-scale patterns of catastrophic nature

might evolve from a series of interactions on the smallest and increasingly larger scales. In complex
systems, it has been found that the organization of spatial and temporal correlations do not stem,
in general, from a nucleation phase diNusing across the system. It results rather from a progressive
and more global cooperative process occurring over the whole system by repetitive interactions. For
instance, scienti+c and technical discoveries are often quasi-simultaneous in several laboratories in
diNerent parts of the world, signaling the global nature of the maturing process.
Standard models and simulations of scenarios of extreme events are subject to numerous sources

of error, each of which may have a negative impact on the validity of the predictions (Karplus,
1992). Some of the uncertainties are under control in the modeling process; they usually involve
trade-oNs between a more faithful description and manageable calculations. Other sources of errors
are beyond control as they are inherent in the modeling methodology of the speci+c disciplines. The
two known strategies for modeling are both limited in this respect: analytical theoretical predictions
are still out of reach for many complex problems even if notable counter-examples exist (see for
instance (Barra et al., 2002; Arad et al., 2001; Falkovich et al., 2001)). Brute force numerical
resolution of the equations (when they are known) or of scenarios is reliable in the “center of the
distribution”, i.e., in the regime far from the extremes where good statistics can be accumulated.
Crises are extreme events that occur rarely, albeit with extraordinary impact, and are thus completely
under-sampled and thus poorly constrained. Even the introduction of teraKop (or even petaKops in
the future) supercomputers does not change qualitatively this fundamental limitation.
Notwithstanding these limitations, we believe that the progress of science and of its multidis-

ciplinary enterprises make the time ripe for a full-Kedge eNort towards the prediction of complex
systems. In particular, novel approaches are possible for modeling and predicting certain catastrophic
events, or “ruptures”, that is, sudden transitions from a quiescent state to a crisis or catastrophic
event (Sornette, 1999). Such ruptures involve interactions between structures at many diNerent scales.
In the present review, we apply these ideas to one of the most dramatic events in social sciences,
+nancial crashes. The approach described here combines ideas and tools from mathematics, physics,
engineering and social sciences to identify and classify possible universal structures that occur at
diNerent scales, and to develop application-speci+c methodologies to use these structures for pre-
diction of the +nancial “crises”. Of special interest will be the study of the premonitory processes
before +nancial crashes or “bubble” corrections in the stock market.
For this, we will describe a new set of computational methods which are capable of searching

and comparing patterns, simultaneously and iteratively, at multiple scales in hierarchical systems.
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We will use these patterns to improve the understanding of the dynamical state before and after a
+nancial crash and to enhance the statistical modeling of social hierarchical systems with the goal
of developing reliable forecasting skills for these large-scale +nancial crashes.

2.5. When? Is prediction possible? A working hypothesis

Our hypothesis is that stock market crashes are caused by the slow buildup of long-range corre-
lations leading to a global cooperative behavior of the market eventually ending into a collapse in
a short critical time interval. The use of the word “critical” is not purely literary here: in mathe-
matical terms, complex dynamical systems can go through “critical” points, de+ned as the explosion
to in+nity of a normally well-behaved quantity. As a matter of fact, as far as nonlinear dynamical
systems go, the existence of critical points is more the rule than the exception. Given the puzzling
and violent nature of stock market crashes, it is worth investigating whether there could possibly be
a link between stock market crashes and critical points.

• Our key assumption is that a crash may be caused by local self-reinforcing imitation between
traders. This self-reinforcing imitation process leads to the blossoming of a bubble. If the tendency
for traders to “imitate” their “friends” increases up to a certain point called the “critical” point,
many traders may place the same order (sell) at the same time, thus causing a crash. The interplay
between the progressive strengthening of imitation and the ubiquity of noise requires a probabilistic
description: a crash is not a certain outcome of the bubble but can be characterised by its hazard
rate, i.e., the probability per unit time that the crash will happen in the next instant provided it
has not happened yet.

• Since the crash is not a certain deterministic outcome of the bubble, it remains rational for investors
to remain in the market provided they are compensated by a higher rate of growth of the bubble
for taking the risk of a crash, because there is a +nite probability of “landing smoothly”, i.e., of
attaining the end of the bubble without crash.

In a series of research articles, we have shown extensive evidence that the build-up of bubbles
manifests itself as an over-all power law acceleration in the price decorated by “log-periodic” pre-
cursors, a concept related to fractals as will be become clear later. This article is to tell this story, to
explain why and how these precursors occur, what do they mean? What do they imply with respect
to prediction?
We claim that there is a degree of predictive skill associated with these patterns. This has already

been used in practice and is investigated by our co-workers and us as well as several others,
academics and most-of-all practitioners (see Sornette and Johansen, 2001, and Johansen and Sornette,
2002, for a recent review and assessment and Zhou and Sornette, 2002a, b, c for nonparametric tests
using a generalization of the so-called q-derivative).
The evidence we shall discuss include:

• the Wall street October 1929, the World October 1987, the Hong-Kong October 1987, the World
August 1998, the Nasdaq April 2000 crashes,

• the 1985 foreign exchange event on the U.S. dollar, the correction of the U.S. dollar against the
Canadian dollar and the Japanese Yen starting in August 1998,



D. Sornette / Physics Reports 378 (2003) 1–98 15

• the bubble on the Russian market and its ensuing collapse in 1997–1998,
• twenty-two signi+cant bubbles followed by large crashes or by severe corrections in the
Argentinian, Brazilian, Chilean, Mexican, Peruvian, Venezuelan, Hong-Kong, Indonesian, Korean,
Malaysian, Philippine and Thai stock markets.

In all these cases, it has been found that log-periodic power laws adequately describe speculative
bubbles on the western as well as on the emerging markets with very few exceptions.
Notwithstanding the drastic diNerences in epochs and contexts, we shall show that these +nancial

crashes share a common underlying background as well as structure. The rationale for this rather
surprising result is probably rooted in the fact that humans are endowed with basically the same
emotional and rational qualities in the 21st century as they were in the 17th century (or at any other
epoch). Humans are still essentially driven by at least a grain of greed and fear in their quest for
a better well-being. The “universal” structures we are going to uncover may be understood as the
robust emergent properties of the market resulting from some characteristic “rules” of interaction
between investors. These interactions can change in details due, for instance, to computers and
electronic communications. They have not changed at a qualitative level. As we shall see, complex
system theory allows us to account for this robustness.

3. Financial crashes are “outliers”

In the spirit of Bacon in Novum Organum about 400 years ago, “Errors of Nature, Sports and
Monsters correct the understanding in regard to ordinary things, and reveal general forms. For who-
ever knows the ways of Nature will more easily notice her deviations; and, on the other hand,
whoever knows her deviations will more accurately describe her ways”, we document in this sec-
tion the evidences showing that large market drops are “outliers” and that they reveal fundamental
properties of the stock market.

3.1. What are “abnormal” returns?

Stock markets can exhibit very large motions, such as rallies and crashes. Should we expect these
extreme variations? Or should we consider them as anomalous?
Fig. 2 shows the distribution of daily returns of the DJIA and of the Nasdaq index for the period

January 2nd, 1990 till September 29, 2000. For instance, we read in Fig. 2 that +ve negative and
+ve positive daily DJIA market returns larger or equal to 4% have occurred. In comparison, 15
negative and 20 positive returns larger or equal to 4% have occurred for the Nasdaq index. The
larger Kuctuations of returns of the Nasdaq compared to the DJIA are also quanti+ed by the so-called
volatility (standard deviation of returns), equal to 1.6% (respectively, 1.4%) for positive (respectively,
negative) returns of the DJIA, and equal to 2.5% (respectively, 2.0%) for positive (respectively,
negative) returns of the Nasdaq index. The lines shown in Fig. 2 correspond to represent the data
by an exponential function. The upward convexity of the trajectories de+ned by the symbols for the
Nasdaq quali+es a stretched exponential model (LaherrWere and Sornette, 1998) which embodies the
fact that the tail of the distribution is “fatter”, i.e., there are larger risks of large drops (as well as
ups) in the Nasdaq compared to the DJIA.
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Fig. 2. Distribution of daily returns for the DJIA and the Nasdaq index for the period January 2, 1990 till September 29,
2000. The lines correspond to +ts of the data by an exponential law. The branches of negative returns have been folded
back onto the positive returns for comparison.

Let us use the exponential model and calculate the probability to observe a return amplitude larger
than, say, 10 standard deviations (10% in our example). The result is 0.000045, which corresponds to
1 event in 22,026 days, or in 88 years. The drop of 22.6% of October 19, 1987 would correspond to
one event in 520 million years, which quali+es it as an “outlier”. Thus, according to the exponential
model, a 10% return amplitude does not qualify as an “outlier”, in a clear-cut and undisputable
manner. In addition, the discrimination between normal and abnormal returns depends on our choice
for the frequency distribution. Qualifying what is the correct description of the frequency distribution,
especially for large positive and negative returns, is a delicate problem that is still a hot domain
for research. Due to the lack of certainty on the best choice for the frequency distribution, this
approach does not seem the most adequate for characterizing anomalous events. We now introduce
another diagnostic that allows us to characterize abnormal market phases in a much more precise and
nonparametric way, i.e., without referring to a speci+c mathematical representation of the frequency
distribution.

3.2. Drawdowns (runs)

Extreme value theory (EVT) provides an alternative approach, still based on the distribution of
returns estimated at a +xed time scale. Its most practical implementation is based on the so-called
“peak-over-threshold” distributions (Embrechts et al., 1997; Bassi et al., 1998), which is founded on
a limit theorem known as the Gnedenko–Pickands–Balkema–de Haan theorem which gives a natural
limit law for peak-over-threshold values in the form of the Generalized Pareto Distribution (GPD),
a family of distributions with two parameters based on the Gumbel, Weibull and Frechet extreme
value distributions. The GPD is either an exponential or has a power law tail. Peak-over-threshold
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distributions put the emphasis on the characterization of the tails of distribution of returns and have
thus been scrutinized for their potential for risk assessment and management of large and extreme
events (see for instance, Phoa, 1999; McNeil, 1999). In particular, extreme value theory provides a
general foundation for the estimation of the value-at-risk for very low-probability “extreme” events.
There are however severe pitfalls (Diebold et al., 2001) in the use of extreme value distributions for
risk management because of its reliance on the (unstable) estimation of tail probabilities. In addition,
the EVT literature assumes independent returns, which implies that the degree of fatness in the tails
decreases as the holding horizon lengthens (for the values of the exponents found empirically).
Here, we show that this is not the case: returns exhibit strong correlations at special times precisely
characterized by the occurrence of extreme events, the regime that EVT aims to describe. This
suggests to re-examine EVT and extend it to variable time scales, for instance by analyzing the
EVT of the distribution of drawdowns and drawups.
A drawdown is de+ned as a persistent decrease in the price over consecutive days. A drawdown

is thus the cumulative loss from the last maximum to the next minimum of the price. Drawdowns
embody a rather subtle dependence since they are constructed from runs of the same sign variations.
Their distribution thus captures the way successive drops can inKuence each other and construct in
this way a persistent process. This persistence is not measured by the distribution of returns because,
by its very de+nition, it forgets about the relative positions of the returns as they unravel themselves
as a function of time by only counting their frequency. This is not detected either by the two-point
correlation function, which measures an average linear dependence over the whole time series, while
the dependence may only appear at special times, for instance for very large runs, a feature that will
be washed out by the global averaging procedure.
To demonstrate the information contained in drawdowns and contrast it with the +xed time-scale

returns, let us consider the hypothetical situation of a crash of 30% occurring over three days with
three successive losses of exactly 10%. The crash is thus de+ned as the total loss or drawdown
of 30%. Rather than looking at drawdowns, let us now follow the common approach and examine
the daily data, in particular the daily distribution of returns. The 30% drawdown is now seen as
three daily losses of 10%. The essential point to realize is that the construction of the distribution
of returns amounts to count the number of days over which a given return has been observed. The
crash will thus contribute three days of 10% loss, without the information that the three losses
occurred sequentially! To see what this loss of information entails, we consider a market in which
a 10% daily loss occurs typically once every 4 years (this is not an unreasonable number for the
Nasdaq composite index at present times of high volatility). Counting approximately 250 trading
days per year, 4 years correspond to 1000 trading days and 1 event in 1000 days thus corresponds
to a probability 1=1000 = 0:001 for a daily loss of 10%. The crash of 30% has been dissected as
three events which are not very remarkable (each with a relatively short average recurrence time of
four years). The plot thickens when we ask what is, according to this description, the probability
for three successive daily losses of 10%? Elementary probability tells us that it is the probability of
one daily loss of 10% times the probability of one daily loss of 10% times the probability of one
daily loss of 10%, giving 10−9. This corresponds to a 1 event in 1 billion trading days! We should
thus wait typically 4 millions years to witness such an event!
What has gone wrong? Simply, looking at daily returns and at their distributions has destroyed

the information that the daily returns may be correlated, at special times! This crash is like a mam-
moth which has been dissected in pieces without memory of the connection between the parts and
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we are left with what look as mouses (bear with the slight exaggeration)! Our estimation that three
successive losses of 10% are utterly impossible relied on the incorrect hypothesis that these three
events are independent. Independence between successive returns is remarkably well-veri+ed most
of the time. However, it may be that large drops may not be independent. In other words, there may
be “burst of dependence”, i.e., “pockets of predictability”.
It is clear that drawdowns will keep precisely the information relevant to identify the possible

burst of local dependence leading to possibly extraordinary large cumulative losses. Our emphasis
on drawdowns is thus motivated by two considerations: (1) drawdowns are important measures of
risks used by practitioners because they represent their cumulative loss since the last estimation of
their wealth. It is indeed a common psychological trait of people to estimate a loss by comparison
with the latest maximum wealth; (2) drawdowns automatically capture an important part of the time
dependence of price returns, similarly to the run-statistics often used in statistical testing (Knuth,
1969) and econometrics (Campbell et al., 1997; Barber and Lyon, 1997). As previously showed
(Johansen and Sornette, 1998, 2002), the distribution of drawdowns contains an information which
is quite diNerent from the distribution of returns over a +xed time scale. In particular, a drawndown
embodies the interplay between a series of losses and hence measures a “memory” of the market.
Drawdowns exemplify the eNect of correlations in price variations when they appear, which must
be taken into account for a correct characterisation of market price variations. They are direct
measures of a possible ampli+cation or “Kight of fear” where previous losses lead to further selling,
strengthening the downward trend, occasionally ending in a crash. We stress that drawdowns, by the
“elastic” time-scale used to de+ne them, are eNectively function of several higher order correlations
at the same time.
Johansen and Sornette (2002) have shown that the distribution of drawdowns for independent price

increments x is asymptotically an exponential (while the body of the distribution is Gaussian (Mood,
1940)), when the distribution of x does not decay more slowly than an exponential, i.e., belong to
the class of exponential or super-exponential distributions. In contrast, for sub-exponentials (such as
stable LZevy laws, power laws and stretched exponentials), the tail of the distribution of drawdowns
is asymptotically the same as the distribution of the individual price variations. Since stretched
exponentials have been found to oNer an accurate quanti+cation of price variations (LaherrWere and
Sornette, 1998; Sornette et al., 2000a, b; Andersen and Sornette, 2001) thus capturing a possible
sub-exponential behavior and since they contain the exponential law as a special case, the stretched
exponential law is a good null hypothesis.
The cumulative stretched distribution is de+ned by

Nc(x) = A exp(−(|x|=�)z) ; (1)

where x is either a drawdown or a drawup. When z¡ 1 (resp. z¿ 1), Nc(x) is a stretched exponential
or sub-exponential (resp. super-exponential). The special case z=1 corresponds to a pure exponential.
In this case, � is nothing but the standard deviation of |x|.
Johansen and Sornette (2002) have analyzed the major +nancial indices, the major currencies,

gold, the twenty largest U.S. companies in terms of capitalisation as well as nine others chosen
randomly. They +nd that approximately 98% of the distributions of drawdowns is well-represented
by an exponential or a stretched exponential, while the largest to the few ten largest drawdowns
are occurring with a signi+cantly larger rate than predicted by the exponential. This is con+rmed by
extensive testing on surrogate data. Very large drawdowns thus belong to a diNerent class of their



D. Sornette / Physics Reports 378 (2003) 1–98 19

own and call for a speci+c ampli+cation mechanism. Drawups (gain from the last local minimum
to the next local maximum) exhibit a similar behavior in only about half the markets examined.
We now present some of the most signi+cant results.

3.3. Testing outliers

Testing for “outliers” or more generally for a change of population in a distribution is a subtle
problem: the evidence for outliers and extreme events does not require and is not even synonymous
in general with the existence of a break in the distribution of the drawdowns. Let us illustrate this
pictorially by borrowing from another domain of active scienti+c investigation, namely the search for
the understanding of the complexity of eddies and vortices in turbulent hydrodynamic Kows, such
as in mountain rivers or in the weather. Since solving the exact equations of these Kows does not
provide much insight as the results are forbidding, a useful line of attack has been to simplify the
problem by studying simple toy models, such as “shell” models of turbulence, that are believed to
capture the essential ingredient of these Kows, while being amenable to analysis. Such “shell” models
replace the three-dimensional spatial domain by a series of uniform onion-like spherical layers with
radii increasing as a geometrical series 1; 2; 4; 8; : : : ; 2n and communicating with each other typically
with nearest and next-nearest neighbors.
As for +nancial returns, a quantity of great interest is the distribution of velocity variations between

two instants at the same position or between two points simultaneously. Such a distribution for the
square of the velocity variations has been calculated (L’vov et al., 2001) and exhibits an approximate
exponential drop-oN as well as a co-existence with larger Kuctuations, quite reminiscent of our
+ndings in +nance (Johansen and Sornette, 1998, 2002). Usually, such large Kuctuations are not
considered to be statistically signi+cant and do not provide any speci+c insight. Here, it turns out
that it can be shown that these large Kuctuations of the Kuid velocity correspond to intensive peaks
propagating coherently over several shell layers with a characteristic bell-like shape, approximately
independent of their amplitude and duration (up to a re-scaling of their size and duration). When
extending these observations to very long times so that the anomalous Kuctuations can be sampled
much better, one gets a continuous distribution (L’vov et al., 2001). Naively, one would expect that
the same physics apply in each shell layer (each scale) and, as a consequence, the distributions in
each shell should be the same, up to a change of unit reKecting the diNerent scale embodied by each
layer. It turns out that the three curves for three diNerent shells can indeed by nicely collapsed, but
only for the small velocity Kuctuations, while the large Kuctuations are described by very diNerent
heavy tails. Alternatively, when one tries to collapse the curves in the region of the large velocity
Kuctuations, then the portions of the curves close to the origin are not collapsed at all and are
very diNerent. The remarkable conclusion is that the distributions of velocity increment seem to
be composed of two regions, a region of “normal scaling” and a domain of extreme events. The
theoretical analysis of L’vov et al. (2001) further substantiate the fact that the largest Kuctuations
result from a diNerent mechanism.
Here is the message that comes out of this discussion: the concept of outliers and of extreme

events does not rest on the requirement that the distribution should not be smooth. Noise and the
very process of constructing the distribution will almost always smooth out the curves. What is
found by L’vov et al. (2001) is that the distribution is made of two diNerent populations, the body
and the tail, which have diNerent physics, diNerent scaling and diNerent properties. This is a clear
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demonstration that this model of turbulence exhibits outliers in the sense that there is a well-de+ned
population of very large and quite rare events that punctuate the dynamics and which cannot be seen
as scale-up versions of the small Kuctuations.
As a consequence, the fact that the distribution of small events might show up some curvature or

continuous behavior does not tell anything against the outlier hypothesis. It is essential to keep this
point in mind when looking at the evidence presented below for the drawdowns.
Other groups have recently presented supporting evidence that crash and rally days signi+cantly

diNer in their statistical properties from the typical market days. For instance, Lillo and Mantegna
investigated the return distributions of an ensemble of stocks simultaneously traded in the New York
Stock Exchange (NYSE) during market days of extreme crash or rally in the period from January
1987 to December 1998. Out of two hundred distributions of returns, one for each of two hundred
trading days where the ensemble of returns is constructed over the whole set of stocks traded on
the NYSE, anomalous large widths and fat tails are observed speci+cally on the day of the crash
of October 19, 1987, as well as during a few other turbulent days. Lillo and Mantegna document
another remarkable behavior associated with crashes and rallies, namely that the distortion of the
distributions of returns are not only strong in the tails describing large moves but also in their center.
Speci+cally, they show that the overall shape of the distributions is modi+ed in crash and rally days.
Closer to our claim that markets develop precursory signatures of bubbles of long time scales,
Mansilla has also shown, using a measure of relative complexity, that time sequences corresponding
to “critical” periods before large market corrections or crashes have more novel informations with
respect to the whole price time series than those sequences corresponding to periods where nothing
happened. The conclusion is that, in the intervals where no +nancial turbulence is observed, that is,
where the markets works +ne, the informational contents of the (binary-coded) price time series is
small. In contrast, there seems to be signi+cant information in the price time series associated with
bubbles. This +nding is consistent with the appearance of a collective herding behavior modifying
the texture of the price time series compared to normal times.

3.4. The Dow Jones industrial average

Fig. 3 shows the distribution of drawdowns and of drawups for the returns of the DJIA over this
century.
The (stretched) exponential distribution has been derived on the assumption that successive price

variations are independent. There is a large body of evidence for the correctness of this assumption for
most trading days (Campbell et al., 1997). However, consider, for instance, the 14 largest drawdowns
that have occurred in the Dow Jones Industrial Average in this century. Their characteristics are
presented in Table 1. Only 3 lasted one or two days, whereas 9 lasted four days or more. Let us
examine in particular the largest drawdown. It started on October 14, 1987 (1987.786 in decimal
years), lasted four days and led to a total loss of −30:7%. This crash is thus a run of four consecutive
losses: +rst day the index is down by 3.8%, second day by 6.1%, third day by 10.4% and fourth
by 30.7%. In terms of consecutive losses this correspond to 3.8%, 2.4%, 4.6% and with 22.6% on
what is known as the Black Monday of October 1987.
The observation of large successive drops is suggestive of the existence of a transient correlation

as we already pointed out. For the Dow Jones, this reasoning can be adapted as follows. We use a
simple functional form for the distribution of daily losses, namely an exponential distribution with
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Fig. 3. Normalized natural logarithm of the cumulative distribution of drawdowns and of the complementary cumulative
distribution of drawups for the Dow Jones Industrial Average index (U.S. stock market). The two continuous lines show
the +ts of these two distributions with the stretched exponential distribution. Negative values such as −0:20 and −0:10
correspond to drawdowns of amplitude respectively equal to 20% and 10%. Similarly, positive values corresponds to
drawups with, for instance, a number 0:2 meaning a drawup of +20%. Reproduced from Johansen and Sornette (2001c).

Table 1
Characteristics of the 14 largest drawdowns of the Dow Jones Industrial Average in this century

Rank Starting time Index value Duration (days) Loss (%)

1 1987.786 2508.16 4 −30:7
2 1914.579 76.7 2 −28:8
3 1929.818 301.22 3 −23:6
4 1933.549 108.67 4 −18:6
5 1932.249 77.15 8 −18:5
6 1929.852 238.19 4 −16:6
7 1929.835 273.51 2 −16:6
8 1932.630 67.5 1 −14:8
9 1931.93 90.14 7 −14:3
10 1932.694 76.54 3 −13:9
11 1974.719 674.05 11 −13:3
12 1930.444 239.69 4 −12:4
13 1931.735 109.86 5 −12:9
14 1998.649 8602.65 4 −12:4
The starting dates are given in decimal years. Reproduced from (Johansen and Sornette, 2001c).

decay rate 1/0.63% obtained by a +t to the distribution of drawdowns shown in Fig. 3. The quality
of the exponential model is con+rmed by the direct calculation of the average loss amplitude equal
to 0.67% and of its standard deviation equal to 0.61% (recall that an exact exponential would give
the three values exactly equal: 1=decay=average=standard deviation). Using these numerical values,
the probability for a drop equal to or larger than 3.8% is exp(−3:8=0:63) = 2:4 × 10−3 (an event
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Fig. 4. Rank ordering of drawdowns in the Nasdaq Composite since its establishment in 1971 until 18 April 2000.
Rank 1 is the largest drawdown. Rank 2 is the second largest, and so on. Reproduced from Johansen and
Sornette (2000a).

occurring about once every two years); the probability for a drop equal to or larger than 2.4% is
exp(−2:4=0:63)=2:2×10−2 (an event occurring about once every two months); the probability for a
drop equal to or larger than 4.6% is exp(−4:6=0:63)=6:7×10−4 (an event occurring about once every
six years); the probability for a drop equal to or larger than 22.6% is exp(−22:6=0:63)=2:6×10−16
(an event occurring about once every 1014 years). All together, under the hypothesis that daily losses
are uncorrelated from one day to the next, the sequence of four drops making the largest drawdown
occurs with a probability 10−23, i.e., once in about 4 thousands of billions of billions years. This
exceedingly negligible value 10−23 suggests that the hypothesis of uncorrelated daily returns is to be
rejected: drawdowns and especially the large ones may exhibit intermittent correlations in the asset
price time series.

3.5. The Nasdaq composite index

In Fig. 4, we see the rank ordering plot of drawdowns for the Nasdaq composite index, since
its establishment in 1971 until 18 April 2000. The rank ordering plot, which is the same as the
(complementary) cumulative distribution with axis interchanged, puts emphasis on the largest events.
The four largest events are not situated on a continuation of the distribution of smaller events: the
jump between ranks 4 and 5 in relative value is larger than 33% whereas the corresponding jump
between ranks 5 and 6 is less than 1% and this remains true for higher ranks. This means that, for
drawdowns less than 12.5%, we have a more or less “smooth” curve and then a larger than 33%
gap to ranks 3 and 4. The four events are according to rank the crash of April 2000, the crash of
October 1987, a larger than 17% “after-shock” related to the crash of October 1987 and a larger
than 16% drop related to the “slow crash” of August 1998, that we shall discuss later on.
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Fig. 5. Normalized cumulative distribution of drawdowns in the Nasdaq Composite since its establishment in 1971 until
18 April 2000. The 99% con+dence lines are estimated from synthetic tests obtained by generating surrogate +nancial
time series constructed by reshu\ing the daily returns at random. Reproduced from Johansen and Sornette (2000a).

To further establish the statistical con+dence with which we can conclude that the four largest
events are outliers, the daily returns have been reshu\ed 1000 times generating 1000 synthetic data
sets. This procedure means that the synthetic data sets will have exactly the same distribution of
daily returns. However, higher order correlations and dependence that may be present in the largest
drawdowns are destroyed by the reshu\ing. This “surrogate” data analysis of the distribution of
drawdowns has the advantage of being nonparametric, i.e., independent of the quality of +ts with
a model such as the exponential or any other model. We will now compare the distribution of
drawdowns both for the real data and the synthetic data. With respect to the synthetic data, this can
be done in two complementary ways.
In Fig. 5, we see the distribution of drawdowns in the Nasdaq Composite compared with the

two lines constructed at the 99% con+dence level for the entire ensemble of synthetic drawdowns,
i.e. by considering the individual drawdowns as independent: for any given drawdown, the upper
(resp. lower) con+dence line is such that 5 of the synthetic distributions are above (below) it; as
a consequence, 990 synthetic times series out of the 1000 are within the two con+dence lines for
any drawdown value which de+ne the typical interval within which we expect to +nd the empirical
distribution.
The most striking feature apparent in Fig. 5 is that the distribution of the true data breaks away

from the 99% con+dence intervals at approximately 15%, showing that the four largest events are
indeed “outliers”. In other words, chance alone cannot reproduce these largest drawdowns. We are
thus forced to explore the possibility that an ampli+cation mechanism and dependence across daily
returns might appear at special and rare times to create these outliers.
A more sophisticated analysis is to consider each synthetic data set separately and calculate the

conditional probability of observing a given drawdown given some prior observation of drawdowns.
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This gives a more precise estimation of the statistical signi+cance of the outliers, because the pre-
viously de+ned con+dence lines neglect the correlations created by the ordering process which is
explicit in the construction of a cumulative distribution.
Out of 10,000 synthetic data sets that were generated, we +nd that 776 had a single drawdown

larger than 16.5%, 13 had two drawdowns larger than 16.5%, 1 had three drawdowns larger than
16.5% and none had 4 (or more) drawdowns larger than 16.5% as in the real data. This means that,
given the distribution of returns, by chance we have a 8% probability of observing a drawdowns
larger than 16.5%, a 0.1% probability of observing two drawdowns larger than 16.5% and for all
practical purposes zero probability of observing three or more drawdowns larger than 16.5%. Hence,
we can reject the hypothesis that the four largest drawdowns observed on the Nasdaq composite
index could result from chance alone with a probability or con+dence better than 99.99%, i.e.,
essentially with certainty. As a consequence, we are lead again to conclude that the largest market
events are characterised by a stronger dependence than is observed during “normal” times.
This analysis con+rms the conclusion from the analysis of the DJIA shown in Fig. 3, that draw-

downs larger than about 15% are to be considered as outliers with high probability. It is interesting
that the same amplitude of approximately 15% is found for both markets considering the much larger
daily volatility of the Nasdaq Composite. This may result from the fact that, as we have shown,
very large drawdowns are more controlled by transient correlations leading to runs of losses lasting
a few days than by the amplitude of a single daily return.
The statistical analysis of the Dow Jones average and the Nasdaq composite suggests that large

crashes are special. In following sections, we shall show that there are other speci+c indications
associated with these “outliers”, such as precursory patterns decorating the speculative bubbles ending
in crashes.

3.6. The presence of “Outliers” is a general phenomenon

To avoid a tedious repetition of many +gures, we group the cumulative distributions of drawdowns
and complementary cumulative distributions of several stocks in the same Fig. 6. In order to construct
this +gure, we have +tted the stretched exponential model (1) to each distribution and obtained the
corresponding parameters A, � and z given in Johansen and Sornette (2001c). We then construct the
normalized distributions

N (n)
C (x) = Nc((|x|=�)z)=A ; (2)

using the triplet A, � and z which is speci+c to each distribution. Fig. 6 plots the expression (2) for
each distribution, i.e., Nc=A as a function of y ≡ sign(x)(x=�)z. If the stretched exponential model
(1) held true for all the drawdowns and all the drawups, all the normalized distributions should
collapse exactly onto the “universal” functions ey for the drawdowns and e−y for the drawups.
We observe that this is the case for values of |y| up to about 5, i.e., up to typically 5 standard
deviations (since most exponents z are close to 1), beyond which there is a clear upward departure
observed both for drawdowns and for drawups. Comparing with the extrapolation of the normalized
stretched exponential model e−|y|, the empirical normalized distributions give about 10 times too
many drawdowns and drawups larger than |y|= 10 standard deviations and more the 104 too many
drawdowns and drawups larger than |y|= 20 standard deviations. Note that for AT& T, a crash of
≈ 73% occurred which lies beyond the range shown in Fig. 6.
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Fig. 6. Cumulative distribution of drawdowns and complementary cumulative distribution of drawups for 29 companies,
which include the 20 largest USA companies in terms of capitalisation according to Forbes at the beginning of the year
2000, and in addition Coca Cola (Forbes number 25), Qualcomm (number 30), Appl. Materials (number 35), Procter &
Gamble (number 38), JDS Uniphase (number 39), General Motors (number 43), Am. Home Prod. (number 46), Medtronic
(number 50) and Ford (number 64). This +gure plots each distribution Nc normalized by its corresponding factor A as a
function of the variable y ≡ sign(x)(|x|=�)z , where � and z are speci+c to each distribution and obtained from the +t to
the stretched exponential model. Reproduced from Johansen and Sornette (2001c).

The results obtained in Johansen and Sornette (1998, 2000a, 2001c, 2002) can be summarized as
follows:

1. Approximately 1–2% of the largest drawdowns are not at all explained by the exponential
null-hypothesis or its extension in terms of the stretched exponential (1). Large drawdowns up to
three times larger than expected from the null-hypothesis are found to be ubiquitous occurrences
of essentially all the times series that we have investigated, the only noticeable exception being
the French index CAC40. We term “outliers” these anomalous drawdowns.

2. About half of the time series show outliers for the drawups. The drawups are thus diNerent
statistically from the drawdowns and constitute a less conspicuous structure of +nancial markets.

3. For companies, large drawups of more than 15% occur approximately twice as often as large
drawdowns of similar amplitudes.

4. The bulk (98%) of the drawdowns and drawups are very well-+tted by the exponential null-
hypothesis (based on the assumption of independent price variations) or by the stretched expo-
nential model.

The most important result is the demonstration that the very largest drawdowns are outliers. This
is true notwithstanding the fact that the very largest daily drops are not outliers, except for the
exceptional and unique daily drop on October 29, 1987. Therefore, the anomalously large amplitude
of the drawdowns can only be explained by invoking the emergence of rare but sudden persistences
of successive daily drops, with in addition correlated ampli+cation of the drops. Why such succes-
sions of correlated daily moves occur is a very important question with consequences for portfolio
management and systemic risk, to cite only two applications, that we are going to investigate in the
following sections.
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3.7. Implications for safety regulations of stock markets

The realization that large drawdowns and crashes in particular may result from a run of losses over
several successive days is not without consequences for the regulation of stock markets. Following
the market crash of October 1987, in an attempt to head oN future one-day stock market tumbles
of historic proportions, the Securities and Exchange Commission and the three major U.S. stock
exchanges agreed to install the so-called circuit breakers. Circuit breakers are designed to gradually
inhibit trading during market declines, +rst curbing New York Stock Exchange program trades and
eventually halting all U.S. equity, options and futures activity. Similar circuit breakers are operating
in the other world stock markets with diNerent speci+c de+nitions.
The argument is that the halt triggered by a circuit breaker will provide time for brokers and

dealers to contact their clients when there are large price movements and to get new instructions
or additional margin. They also limit credit risk and loss of +nancial con+dence by providing a
“time-out” to settle up and to ensure that everyone is solvent. This inactive period is of further
use for investors to pause, evaluate and inhibit panic. Finally, circuit breakers clarify the illusion
of market liquidity by spelling out the economic fact of life that markets have limited capacity
to absorb massive unbalanced volumes. They thus force large investors, such as pension portfolio
managers and mutual funds, to take even more account of the impact of their “size order”, thus
possibly cushioning large market movements. Others argue that a trading halt can increase risk by
inducing trading in anticipation of a trading halt. Another disadvantage is that they prevent some
traders from liquidating their positions, thus creating market distorsion by preventing price discovery
(Harris, 1997).
For the October 1987 crash, countries that had stringent circuit breakers, such as France, Switzer-

land and Israel, had also some of the largest cumulative losses. According to the evidence presented
here that large drops are created by transient and rare dependent losses occurring over several days,
we should be cautious in considering circuit breakers as reliable crash killers.

4. Positive feedbacks

Since it is the actions of investors whose buy and sell decisions move prices up and down,
any deviation from a random walk in the stock market price trajectory has ultimately to be traced
back to the behavior of investors. We are in particular interested in mechanisms that may lead to
positive feedbacks on prices, i.e., to the fact that, conditioned on the observation that the market
has recently moved up (respectively down), this makes it more probable to keep it moving up
(respectively down), so that a large cumulative move ensues. The concept of “positive feedbacks”
has a long history in economics and is related to the idea of “increasing returns”—which says
that goods become cheaper the more of them are produced (and the closely related idea that some
products, like fax machines, become more useful the more people use them). “Positive feedback” is
the opposite of “negative feedback”, a concept well-known for instance in population dynamics: the
larger the population of rabbits in a valley, the less they have grass per rabbit. If the population grows
too much, they will eventually starve, slowing down their reproduction rate which thus reduces their
population at a later time. Thus negative feedback means that the higher the population, the slower
the growth rate, leading to a spontaneous regulation of the population size; negative feedbacks thus
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tend to regulate growth towards an equilibrium. In contrast, positive feedback asserts that the higher
the price or the price return in the recent past, the higher will be the price growth in the future.
Positive feedbacks, when unchecked, can produce runaways until the deviation from equilibrium
is so large that other eNects can be abruptly triggered and lead to rupture or crashes. Youssefmir
et al. (1998) have stressed the importance of positive feedback in a dynamical theory of asset price
bubbles that exhibits the appearance of bubbles and their subsequent crashes. The positive feedback
leads to speculative trends which may dominate over fundamental beliefs and which make the system
increasingly susceptible to any exogenous shock, thus eventually precipitating a crash.
There are many mechanisms in the stock market and in the behavior of investors which may lead

to positive feedbacks. We describe a general mechanism for positive feedback, which is now known
as the “herd” or “crowd” eNect, based on imitation processes. We present a simple model of the best
investment strategy that an investor can develop based on interactions with and information taken
from other investors. We show how the repetition of these interactions may lead to a remarkable
cooperative phenomenon in which the market can suddenly “solidify” a global opinion, leading to
large price variations.

4.1. Herding

There are growing empirical evidences of the existence of herd or “crowd” behavior in speculative
markets (see Shiller, 2000 and references therein). Herd behavior is often said to occur when many
people take the same action, because some mimic the actions of others. The term “herd” obviously
refers to similar behavior observed in animal groups. Other terms such as “Kocks” or “schools”
describe the collective coherent motion of large numbers of self-propelled organisms, such as mi-
grating birds and gnus, lemmings and ants. In recent years, much of the observed herd behavior in
animals has been shown to result from the action of simple laws of interactions between animals.
With respect to humans, there is a long history of analogies between human groups and organized
matter (Callen and Shapero, 1974; Montroll and Badger, 1974). More recently, extreme crowd mo-
tions such as under panic have been remarkably well quanti+ed by models that treat the crowd as
a collection of individuals interacting as a granular medium with friction such as the familiar sand
of beaches (Helbing et al., 2000).
Herding has been linked to many economic activities, such as investment recommendations

(Scharfstein and Stein, 1990; Graham, 1999; Welch, 2000s), price behavior of IPO’s (Initial Public
ONering) (Welch, 1992), fads and customs (Bikhchandani et al., 1992), earnings forecasts (Trueman,
1994), corporate conservatism (Zwiebel, 1995) and delegated portfolio management (Maug and Naik,
1995). Researchers are investigating the incentives investment advisors face when deciding whether
to herd and, in particular, whether economic conditions and agents’ individual characteristics aNect
their likelihood of herding. Although herding behavior appears ineAcient from a social standpoint,
it can be rational from the perspective of managers who are concerned about their reputations in
the labor market, Such behavior can be rational and may occur as an information cascade (Welch,
1992; Bikhchandani et al., 1992; Devenow and Welch, 1996), a situation in which every subsequent
actor, based on the observations of others, makes the same choice independent of his/her private
signal. Herding among investment newsletters, for instance, is found to decrease with the precision
of private information (Graham, 1999): the less information you have, the more important is your
incentive to follow the consensus.
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Research on herding in +nance can be subdivided in the following nonmutually exclusive manner
(Devenow and Welch, 1996; Graham, 1999).

1. Informational cascades occur when individuals choose to ignore or downplay their private infor-
mation and instead jump on the bandwagon by mimicking the actions of individuals who acted
previously. Informational cascades occur when the existing aggregate information becomes so
overwhelming that an individual’s single piece of private information is not strong enough to
reverse the decision of the crowd. Therefore, the individual chooses to mimic the action of the
crowd, rather than act on his private information. If this scenario holds for one individual, then it
likely also holds for anyone acting after this person. This domino-like eNect is often referred to as
a cascade. The two crucial ingredients for an informational cascade to develop are: [1] sequential
decisions with subsequent actors observing decisions (not information) of previous actors; and [2]
a limited action space.

2. Reputational herding, like cascades, takes place when an agent chooses to ignore his or her
private information and mimics the action of another agent who has acted previously. How-
ever, reputational herding models have an additional layer of mimicking, resulting from positive
reputational properties that can be obtained by acting as part of a group or choosing a certain
project. Evidence has been found that a forecaster’s age is positively related to the absolute +rst
diNerence between his forecast and the group mean. This has been interpreted as evidence that
as a forecaster ages, evaluators develop tighter prior beliefs about the forecasters ability, and
hence the forecaster has less incentive to herd with the group. On the other hand, the incen-
tive for a second-mover to discard his private information and instead mimick the market leader
increases with his initial reputation, as he strives to protect his current status and level of pay
(Graham, 1999).

3. Investigative herding occurs when an analyst chooses to investigate a piece of information he
or she believes others also will examine. The analyst would like to be the +rst to discover
the information but can only pro+t from an investment if other investors follow suit and push
the price of the asset in the direction anticipated by the +rst analyst. Otherwise, the +rst analyst
may be stuck holding an asset that he or she cannot pro+tably sell.

4. Empirical herding refers to observations by many researchers of “herding” without reference to a
speci+c model or explanation. There is indeed evidence of herding and clustering among pension
funds, mutual funds, and institutional investors when a disproportionate share of investors engage
in buying, or at other times selling, the same stock. These works suggest that clustering can result
from momentum-following also called “positive feedback investment”, e.g., buying past winners
or perhaps from repeating the predominant buy or sell pattern from the previous period.

There are many reported case of herding. One of the most dramatic and clearest in recent times is
the observation (Huberman and Regev, 2001) of a contagious speculation associated with a nonevent
in the following sense. A Sunday New York Times article on a potential development of a new
cancer-curing drugs caused the biotech company EntreMed’s stock to rise from 12.063 at the Friday
May 1, 1998 close to open at 85 on Monday May 4, close near 52 on the same day and remain
above 39 in the three following weeks. The enthusiasm spilled over to other biotechnology stocks. It
turns out that the potential breakthrough in cancer research already had been reported in one of the
leading scienti+c journal ‘Nature’ and in various popular newspaper (including the Times) more than
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+ve months earlier. At that time, market reactions were essentially nil. Thus the enthusiastic public
attention induced a long-term rise in share prices, even though no genuinely new information had
been presented. The very prominent and exceptionally optimistic Sunday New York Times article of
May 3, 1998 led to a rush on EntreMed’s stock and other biotechnology companies’ stocks, which is
reminiscent of similar rushes leading to bubbles in historical times previously discussed. It is to be
expected that information technology, the internet and biotechnology are among the leading new fron-
tiers on which sensational stories will lead to enthusiasm, contagion, herding and speculative bubbles.

4.2. It is optimal to imitate when lacking information

All the traders in the world are organized into a network of family, friends, colleagues, contacts,
and so on, which are sources of opinion and they inKuence each other locally through this network
(Boissevain and Mitchell, 1973). We call “neighbors” of agent Anne on this world-wide graph the
set of people in direct contact with Anne. Other sources of inKuence also involve newspapers, web
sites, TV stations, and so on. Speci+cally, if Anne is directly connected with k “neighbors” in the
worldwide graph of connections, then there are only two forces that inKuence Anne’s opinion: (a)
the opinions of these k people together with the inKuence of the media; and (b) an idiosyncratic
signal that she alone receives (or generates). According to the concept of herding and imitation, the
assumption is that agents tend to imitate the opinions of their “neighbors”, not contradict them. It is
easy to see that force (a) will tend to create order, while force (b) will tend to create disorder, or
in other words, heterogeneity. The main story here is the +ght between order and disorder and the
question we are now going to investigate is: what behavior can result from this +ght? Can the system
go through unstable regimes, such as crashes? Are crashes predictable? We show that the science of
self-organizing systems (sometimes also referred to as “complex systems”) bears very signi+cantly
on these questions: the stock market and the web of traders’ connections can be understood in large
part from the science of critical phenomena, in a sense that we are going to examine in some depth
in the following sections, from which important consequences can be derived.
To make progress, we formalize a bit the problem and consider a network of investors: each one

can be named by an integer i = 1; : : : ; I , and N (i) denotes the set of the agents who are directly
connected to agent i according to the world-wide graph of acquaintances. If we isolate one trader,
Anne, N (Anne) is the number of traders in direct contact with her and who can exchange direct
information with her and exert a direct inKuence on her. For simplicity, we assume that any investor
such as Anne can be in only one of several possible states. In the simplest version, we can consider
only two possible states: sAnne = −1 or sAnne = +1. We could interpret these states as “buy” and
“sell”, “bullish” and “bearish”, “optimistic” and “pessimistic”, and so on. In the next paragraph, we
show that, based only on the information of the actions sj(t−1) performed yesterday (at time t−1)
by her N (Anne) “neighbors”, Anne maximizes her return by having taken yesterday the decision
sAnne(t − 1) given by the sign of the sum of the actions of all her “neighbors”. In other words, the
optimal decision of Anne, based on the local polling of her “neighbors” who she hopes represents
a suAciently faithful representation of the market mood, is to imitate the majority of her neighbors.
This is of course up to some possible deviations when she decides to follow her own idiosyncratic
“intuition” rather than being inKuenced by her “neighbors”. Such an idiosyncratic move can be
captured in this model by a stochastic component independent of the decisions of the neighbors
or of any other agent. Intuitively, the reason why it is in general optimal for Anne to follow the
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opinion of the majority is simply because prices move in that direction, forced by the law of supply
and demand. This apparently innocuous evolution law produces remarkable self-organizing patterns.
Consider N traders in a network, whose links represent the communication channels through

which the traders exchange information. The graph describes the chain of intermediate acquaintances
between any two people in the world. We denote N (i) the number of traders directly connected to
a given trader i on the graph. The traders buy or sell one asset at price p(t) which evolves as a
function of time assumed to be discrete and measured in units of the time step ]t. In the simplest
version of the model, each agent can either buy or sell only one unit of the asset. This is quanti+ed
by the buy state si = +1 or the sell state si = −1. Each agent can trade at time t − 1 at the price
p(t− 1) based on all previous information including that at t− 1. The asset price variation is taken
simply proportional to the aggregate sum

∑N
i=1 si(t − 1) of all traders’ actions: indeed, if this sum

is zero, there are as many buyers as there are sellers and the price does not change since there is
a perfect balance between supply and demand. If, on the other hand, the sum is positive, there are
more buy orders than sell orders, the price has to increase to balance the supply and the demand, as
the asset is too rare to satisfy all the demand. There are many other inKuences impacting the price
change from one day to the other, and this can usually be accounted for in a simple way by adding a
stochastic component to the price variation. This term alone would give the usual log-normal random
walk process (Cootner, 1967) while the balance between supply and demand together with imitation
leads to some organization as we show below.
At time t − 1, just when the price p(t − 1) has been announced, the trader i de+nes her strategy

si(t − 1) that she will hold from t − 1 to t, thus realizing the pro+t (or loss) equal to the price
diNerence (p(t) − p(t − 1)) times her position si(t − 1). To de+ne her optimal strategy si(t − 1),
the trader should calculate her expected pro+t PE, given the past information and her position, and
then choose si(t − 1) such that PE is maximum. Since the price moves with the general opinion∑N

i=1 si(t − 1), the best strategy is to buy if it is positive and sell if it is negative. The diAculty is
that a given trader cannot poll the positions sj that will take all other traders which will determine
the price drift according to the balance between supply and demand. The next best thing that trader
i can do is to poll her N (i) “neighbors” and construct her prediction for the price drift from this
information. The trader needs an additional information, namely the a priori probability P+ and P−
for each trader to buy or sell. The probabilities P+ and P− are the only information that she can
use for all the traders that she does not poll directly. From this, she can form her expectation of the
price change. The simplest case corresponds to a market without drift where P+ = P− = 1=2.
Based on the previously stated rule that the price variation is proportional to the sum of actions

of traders, the best guess of trader i is that the future price change will be proportional to the
sum of the actions of her neighbors that she has been able to poll, hoping that this provides a
suAciently reliable sample of the total population. Traders are indeed constantly sharing information,
calling each other to “take the temperature”, eNectively polling each other before taking actions. It
is then clear that the strategy that maximizes her expected pro+t is such that her position is of
the sign given by the sum of the actions of all her “neighbors”. This is exactly the meaning of
expression (3)

si(t − 1) = sign

K

∑
j∈Ni

sj + ji


 (3)
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such that this position si(t − 1) gives her the maximum payoN based on her best prediction of the
price variation p(t) − p(t − 1) from yesterday to today. The function sign(x) is de+ned by being
equal to +1 (to −1) for positive (negative) argument x, K is a positive constant of proportionality
between the price change and the aggregate buy-sell orders. It is inversely proportional to the “market
depth”: the larger the market, the smaller is the relative impact of a given unbalance between buy
and sell orders, hence the smaller is the price change. ji is a noise and N (i) is the number of
neighbors with whom trader i interacts signi+cantly. In simple terms, this law (3) states that the
best investment decision for a given trader is to take that of the majority of her neighbors, up to
some uncertainly (noise) capturing the possibility that the majority of her neighbors might give an
incorrect prediction of the behavior of the total market.
Expression (3) can be thought of as a mathematical formulation of Keynes’ beauty contest. Keynes

(1936) argued that stock prices are not only determined by the +rm’s fundamental value, but, in
addition, mass psychology and investors’ expectations inKuence +nancial markets signi+cantly. It was
his opinion that professional investors prefer to devote their energy, not to estimating fundamental
values but rather, to analyzing how the crowd of investors is likely to behave in the future. As a
result, he said, most persons are largely concerned, not with making superior long-term forecasts
of the probable yield of an investment over its whole life but, with foreseeing changes in the
conventional basis of valuation a short time ahead of the general public. Keynes uses his famous
beauty contest as a parable for stock markets. In order to predict the winner of beauty contest,
objective beauty is not much important, but knowledge or prediction of others’prediction of beauty
is much more relevant. In Keynes’view, the optimal strategy is not to pick those faces the player
thinks the prettiest, but those the other players are likely to think the average opinion will be, or
those the other players will think the others will think the average opinion will be, or even further
along this iterative loop. Expression (3) precisely captures this concept: the opinion si at time t of an
agent i is a function of all the opinions of the other “neighboring” agents at the previous time t−1,
which themselves depend on the opinion of the agent i at time t − 2, and so on. In the stationary
equilibrium situation in which all agents +nally form an opinion after many such iterative feedbacks
have had time to develop, the solution of (3) is precisely the one taking into account all the opinions
in a completely self-consistent way compatible with the in+nitely iterative loop. Similarly, OrlZean
(1984, 1986, 1989a, b, 1991, 1995) has captured the paradox of combining rational and imitative
behavior under the name “mimetic rationality” (rationalit&e mim&etique). He has developed models
of mimetic contagion of investors in the stock markets that are based on irreversible processes of
opinion forming. See also Krawiecki et al. (2002) for a recent generalization with time-varying
coupling strength K leading to on-oN intermittency and attractor bubbling.

4.3. Cooperative behaviors resulting from imitation

The imitative behavior discussed in Section 4.2 and captured by the expression (3) belongs to a
very general class of stochastic dynamical models developed to describe interacting elements, parti-
cles, agents in a large variety of contexts, in particular in physics and biology (Liggett, 1985, 1997).
The tendency or force towards imitation is governed by the coupling strength K ; the tendency towards
idiosyncratic (or noisy) behavior is governed by the amplitude � of the noise term. Thus the value
of K relative to � determines the outcome of the battle between order and disorder, and eventually
the structure of the market prices. More generally, the coupling strength K could be heterogeneous
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Fig. 7. Four snapshots at four successive times of the state of a planar system of 64× 64 agents put on a regular square
lattice. Each agent placed within a small square interacts with her four nearest neighbors according to the imitative rule
(3). White (resp. black) squares correspond to “bull” (resp. “bear”). The four cases shown here correspond to the existence
of a majority of buy orders as white is the predominant color.

across pairs of neighbors, and it would not substantially aNect the properties of the model. Some of
the Kij’s could even be negative, as long as the average of all Kij’s was strictly positive.
Expression (3) only describes the state of an agent at a given time. In the next instant, new ”i’s

are realized, new inKuences propagate themselves to neighbors, and agents can change their decision.
The system is thus constantly changing and reorganizing as shown in Fig. 7. The model does not
assume instantaneous opinion interactions between neighbours. In real markets, opinions tend indeed
not to be instantaneous but are formed over a period of time by a process involving family, friends,
colleagues, newspapers, web sites, TV stations, and so on. Decisions about trading activity of a given
agent may occur when the consensus from all these sources reaches a trigger level. This is precisely
this feature of a threshold reached by a consensus that expression (3) captures: the consensus is
quanti+ed by the sum over the N (i) agents connected to agent i and the threshold is provided by
the sign function. The delay in the formation of the opinion of a given trader as a function of other
traders’ opinion is captured by the progressive spreading of information during successive updating
steps (see for instance Liggett, 1985, 1997).
The simplest possible network is a two-dimensional grid in the Euclidean plane. Each agent has

four nearest neighbors: one to the North, one to the South, the East and the West. The tendency
K towards imitation is balanced by the tendency � towards idiosyncratic behavior. In the context
of the alignment of atomic spins to create magnetisation (magnets), this model is identical to the
two-dimensional Ising model which has been solved explicitly by Onsager (1944). Only its formu-
lation is diNerent from what is usually found in textbooks (Goldenfeld, 1992), as we emphasize a
dynamical view point.
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Fig. 8. K ¡Kc: buy (white squares) and sell (black squares) con+guration in a two-dimensional Manhattan-like planar
network of 256× 256 agents interacting with their four nearest neighbors. There are approximately the same number of
white and black sells, i.e., the market has no consensus. The size of largest local clusters quanti+es the correlation length,
i.e., the distance over which the local imitations between neighbors propagate before being signi+cantly distorted by the
“noise” in the transmission process resulting from the idiosyncratic signals of each agent.

In the Ising model, there exists a critical point Kc that determines the properties of the system.
When K ¡Kc (see Fig. 8), disorder reigns: the sensitivity to a small global inKuence is small,
the clusters of agents who are in agreement remain of small size, and imitation only propagates
between close neighbors. In this case, the susceptibility � of the system to external news is small
as many clusters of diNerent opinion react incoherently, thus more or less cancelling out their
response.
When the imitation strength K increases and gets close to Kc (see Fig. 9), order starts to appear:

the system becomes extremely sensitive to a small global perturbation, agents who agree with each
other form large clusters, and imitation propagates over long distances. In the Natural Sciences,
these are the characteristics of critical phenomena. Formally, in this case the susceptibility � of the
system goes to in+nity. The hallmark of criticality is the power law, and indeed the susceptibility
goes to in+nity according to a power law � ≈ A(Kc − K)−�, where A is a positive constant and
�¿ 0 is called the critical exponent of the susceptibility (equal to 7=4 for the 2-d Ising model).
This kind of critical behavior is found in many other models of interacting elements (Liggett, 1985,
1997) (see also Moss de Oliveira et al. (1999) for applications to +nance among others). The
large susceptibility means that the system is unstable: a small external perturbation may lead to
a large collective reaction of the traders who may revise drastically their decision, which may
abruptly produce a sudden unbalance between supply and demand, thus triggering a crash or a
rally. This speci+c mechanism will be shown to lead to crashes in the model described in the next
section.
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Fig. 9. Same as Fig. 8 for K close to Kc. There are still approximately the same number of white and black cells,
i.e., the market has no consensus. However, the size of the largest local clusters has grown to become comparable to
the total system size. In addition, holes and clusters of all sizes can be observed. The “scale-invariance” or “fractal”
looking structure is the hallmark of a “critical state” for which the correlation length and the susceptibility become in+nite
(or simply bounded by the size of the system).

For even stronger imitation strength K ¿Kc, the imitation is so strong that the idiosyncratic signals
become negligible and the traders self-organize into a strong imitative behavior as shown in Fig. 10.
The selection of one of the two possible states is determined from small and subtle initial biases as
well as from the Kuctuations during the evolutionary dynamics.
These behaviors apply more generically to other network topologies. Indeed, the stock market

constitutes an ensemble of interacting investors who diNer in size by many orders of magnitudes
ranging from individuals to gigantic professional investors, such as pension funds. Furthermore,
structures at even higher levels, such as currency inKuence spheres (U.S.$, DM, YEN ...), exist
and with the current globalization and de-regulation of the market one may argue that structures on
the largest possible scale, i.e., the world economy, are beginning to form. This observation and the
network of connections between traders show that the two-dimensional lattice representation used in
the Figs. 7, 8, 9 and 10 is too naive. A better representation of the structure of the +nancial markets is
that of hierarchical systems with “traders” on all levels of the market. Of course, this does not imply
that any strict hierarchical structure of the stock market exists, but there are numerous examples of
qualitatively hierarchical structures in society. In fact, one may say that horizontal organizations of
individuals are rather rare. This means that the plane network used in our previous discussion may
very well represent a gross over-simpli+cation.
Even though the predictions of these models are quite detailed, they are very robust to model

misspeci+cation. We indeed claim that models that combine the following features would display the
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Fig. 10. Same as Fig. 8 for K ¿Kc. The imitation is so strong that the network of agents spontaneously break the
symmetry between the two decisions and one of them predominates. Here, we show the case where the “buy” state has
been selected. Interestingly, the collapse onto one of the two states is essentially random and results from the combined
eNect of a slight initial bias and of Kuctuations during the imitation process. Only small and isolated islands of “bears”
remain in an ocean of buyers. This state would correspond to a bubble, a strong bullish market.

same characteristics, in particular apparent coordinate buying and selling periods, leading eventually
to several +nancial crashes. These features are:

1. A system of traders who are inKuenced by their “neighbors”.
2. Local imitation propagating spontaneously into global cooperation.
3. Global cooperation among noise traders causing collective behavior.
4. Prices related to the properties of this system.
5. System parameters evolving slowly through time.

As we shall show in the following sections, a crash is most likely when the locally imitative system
goes through a critical point.
In Physics, critical points are widely considered to be one of the most interesting properties of

complex systems. A system goes critical when local inKuences propagate over long distances and
the average state of the system becomes exquisitely sensitive to a small perturbation, i.e. diNer-
ent parts of the system become highly correlated. Another characteristic is that critical systems
are self-similar across scales: in Fig. 9, at the critical point, an ocean of traders who are mostly
bearish may have within it several continents of traders who are mostly bullish, each of which in
turns surrounds seas of bearish traders with islands of bullish traders; the progression continues all
the way down to the smallest possible scale: a single trader (Wilson, 1979). Intuitively speaking,
critical self-similarity is why local imitation cascades through the scales into global coordination.
Critical points are described in mathematical parlance as singularities associated with bifurcation and
catastrophe theory.
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The previous Ising model is one of the simplest possible description of cooperative behav-
iors resulting from repetitive interactions between agents. Many other models have recently been
developed in order to capture more realistic properties of people and of their economic interactions.
These multi-agent models, often explored by computer simulations, support the hypothesis that the
observed characteristics of +nancial prices, such as nonGaussian “fat” tails of distributions of re-
turns, mostly unpredictable returns, clustered and excess volatility, may result endogenously from
the interaction between agents.
Several works have modelled the epidemics of opinion and speculative bubbles in +nancial markets

from an adaptative agent point-of-view (Kirman, 1991; Lux, 1995, 1998; Lux and Marchesi, 1999,
2000). The main mechanism for bubbles is that above average returns are reKected in a generally
more optimistic attitude that fosters the disposition to overtake others’ bullish beliefs and vice versa.
The adaptive nature of agents is reKected in the alternatives available to agents to choose between
several class of strategies, for instance to invest according to fundamental economic valuation or
by using technical analysis of past price trajectories. Other relevant works put more emphasis on
the heterogeneity and threshold nature of decision making which lead in general to irregular cy-
cles (Takayasu et al., 1992; Youssefmir et al., 1998; Levy et al., 1995; Sato and Takayasu, 1998;
Levy et al., 2000; Gaunersdorfer, 2000).

5. Modelling &nancial bubbles and market crashes

In this section, we describe three complementary models that we have developed to describe bub-
bles and crashes. The +rst two models are extensions of the rational expectation model of bubbles
and crashes of Blanchard (1979) and Blanchard and Watson (1982). They originally introduced
the model of rational expectations (RE) bubbles to account for the possibility, often discussed in
the empirical literature and by practitioners, that observed prices may deviate signi+cantly and over
extended time intervals from fundamental prices. While allowing for deviations from fundamental
prices, rational bubbles keep a fundamental anchor point of economic modelling, namely that bubbles
must obey the condition of rational expectations. In contrast, recent works stress that investors are not
fully rational, or have at most bound rationality, and that behavioral and psychological mechanisms,
such as herding, may be important in the shaping of market prices (Thaler, 1993; Shefrin, 2000;
Shleifer, 2000). However, for Kuid assets, dynamic investment strategies rarely perform over simple
buy-and-hold strategies (Malkiel, 1999), in other words, the market is not far from being eAcient
and little arbitrage opportunities exist as a result of the constant search for gains by sophisticated
investors. For the +rst two models, we shall work within the conditions of rational expectations
and of no-arbitrage condition, taken as useful approximations. Indeed, the rationality of both expec-
tations and behavior often does not imply that the price of an asset be equal to its fundamental
value. In other words, there can be rational deviations of the price from this value, called rational
bubbles. A rational bubble can arise when the actual market price depends positively on its own
expected rate of change, as sometimes occurs in asset markets, which is the mechanism underlying
the models of Blanchard (1979) and Blanchard and Watson (1982). The third model proposes to
complement the modelling of bubbles and crashes by studying the eNects of interactions between
the two typical opposite attitudes of investors in stock markets, namely imitative and contrarian
behaviors.
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5.1. The risk-driven model

This +rst model contains the following ingredients (Johansen et al., 1999a, b, 2000a):

1. A system of traders who are inKuenced by their “neighbors”.
2. Local imitation propagating spontaneously into global cooperation.
3. Global cooperation among traders causing crash.
4. Prices related to the properties of this system.

The interplay between the progressive strengthening of imitation controlled by the three +rst
ingredients and the ubiquity of noise requires a stochastic description. A crash is not certain but can
be characterized by its hazard rate h(t), i.e., the probability per unit time that the crash will happen
in the next instant if it has not happened yet.
The crash hazard rate h(t) embodies subtle uncertainties of the market: when will the traders

realize with suAcient clarity that the market is over-valued? When will a signi+cant fraction of
them believe that the bullish trend is not sustainable? When will they feel that other traders think
that a crash is coming? Nowhere is Keynes’s beauty contest analogy more relevant than in the
characterization of the crash hazard rate, because the survival of the bubble rests on the overall
con+dence of investors in the market bullish trend.
A crash happens when a large group of agents place sell orders simultaneously. This group of

agents must create enough of an imbalance in the order book for market makers to be unable to
absorb the other side without lowering prices substantially. A notable fact is that the agents in this
group typically do not know each other. They did not convene a meeting and decide to provoke a
crash. Nor do they take orders from a leader. In fact, most of the time, these agents disagree with
one another, and submit roughly as many buy orders as sell orders (these are all the times when
a crash does not happen). The key question is to determine by what mechanism did they suddenly
manage to organize a coordinated sell-oN ?
We propose the following answer (Johansen et al., 1999a, b) already outline above: all the traders

in the world are organized into a network (of family, friends, colleagues, and so on) and they
inKuence each other locally through this network: for instance, an active trader is constantly on the
phone exchanging information and opinions with a set of selected colleagues. In addition, there are
indirect interactions mediated for instance by the media. Speci+cally, if I am directly connected with
k other traders, then there are only two forces that inKuence my opinion: (a) the opinions of these k
people and of the global information network; and (b) an idiosyncratic signal that I alone generate.
Our working assumption here is that agents tend to imitate the opinions of their connections. The
force (a) will tend to create order, while force (b) will tend to create disorder. The main story
here is a +ght between order and disorder. As far as asset prices are concerned, a crash happens
when order wins (everybody has the same opinion: selling), and normal times are when disorder
wins (buyers and sellers disagree with each other and roughly balance each other out). We must
stress that this is exactly the opposite of the popular characterization of crashes as times of chaos.
Disorder, or a balanced and varied opinion spectrum, is what keeps the market liquid in normal
times. This mechanism does not require an overarching coordination mechanism since macro-level
coordination can arise from micro-level imitation and it relies on a realistic model of how agents
form opinions by constantly interacting.
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5.1.1. Finite-time singularity in the crash hazard rate
In the spirit of “mean +eld” theory of collective systems (Goldenfeld, 1992), the simplest way

to describe an imitation process is to assume that the hazard rate h(t) evolves according to the
following equation:

dh
dt
= Ch� with �¿ 1 ; (4)

where C is a positive constant. Mean +eld theory amounts to embody the diversity of trader actions
by a single eNective representative behavior determined from an average interaction between the
traders. In this sense, h(t) is the collective result of the interactions between traders. The term h�

in the r.h.s. of (4) accounts for the fact that the hazard rate will increase or decrease due to the
presence of interactions between the traders. The exponent �¿ 1 quanti+es the eNective number
equal to � − 1 of interactions felt by a typical trader. The condition �¿ 1 is crucial to model
interactions and is, as we now show, essential to obtain a singularity (critical point) in +nite time.
Indeed, integrating (4), we get

h(t) =
B

(tc − t)�
with � ≡ 1

�− 1 : (5)

The critical time tc is determined by the initial conditions at some origin of time. The exponent �
must lie between zero and one for an economic reason: otherwise, as we shall see, the price would
go to in+nity when approaching tc (if the bubble has not crashed in the mean time). This condition
translates into 2¡�¡+∞: a typical trader must be connected to more than one other trader. There
is a large body of literature in Physics, Biology and Mathematics on the microscopic modelling of
systems of stochastic dynamical interacting agents that lead to critical behaviors of the type (5)
(Liggett, 1985, 1997). The macroscopic model (4) can thus be substantiated by speci+c microscopic
models (Johansen et al., 2000).
Before continuing, let us provide an intuitive explanation for the creation of a +nite-time singularity

at tc. The faster-than-exponential growth of the return and of the crash hazard rate correspond to
nonconstant growth rates, which increase with the return and with the hazard rate. The following
reasoning allows us to understand intuitively the origin of the appearance of an in+nite slope or
in+nite value in a +nite time at tc, called a +nite-time singularity. Suppose for instance that the
growth rate of the hazard rate doubles when the hazard rate doubles. For simplicity, we consider
discrete time intervals as follows. Starting with a hazard rate of 1, we assume it grows at a constant
rate of 1% per day until it doubles. We estimate the doubling time as proportional to the inverse
of the growth rate, i.e., approximately 1=1% = 1=0:01= one hundred days. There is a multiplicative
correction term equal to ln 2 = 0:69 such that the doubling time is ln 2=1% = 69 days. But we
factor out this proportionality factor ln 2 = 0:69 for the sake of pedagogy and simplicity. Including
it multiplies all time intervals below by 0.69 without changing the conclusions.
When the hazard rate turns 2, we assume that the growth rate doubles to 2% and stays +xed until

the hazard rate doubles again to reach 4. This new doubling time is only approximately 1=0:02=50
days at this 2% growth rate. When the hazard rate reaches 4, its growth rate is doubled to 4%.
The doubling time of the hazard rate is therefore approximately halved to 25 days and the scenario
continues with a doubling of the growth rate every time the hazard rate doubles. Since the doubling
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time is approximately halved at each step, we have the following sequence (time=0, hazard rate=1,
growth rate = 1%), (time = 100, hazard rate = 2, growth rate = 2%), (time = 150, hazard rate = 4,
growth rate = 4%), (time = 175, hazard rate = 8, growth rate = 8%) and so on. We observe that the
time interval needed for the hazard rate to double is shrinking very rapidly by a factor of two at
each step. In the same way that

1
2
+
1
4
+
1
8
+
1
16
+ · · ·= 1 ; (6)

which was immortalized by the Ancient Greeks as Zeno’s paradox, the in+nite sequence of doubling
thus takes a +nite time and the hazard rate reaches in+nity at a +nite “critical time” approximately
equal to 100 + 50 + 25 + · · · = 200 (a rigorous mathematical treatment requires a continuous time
formulation, which does not change the qualitative content of the example). A spontaneous singularity
has been created by the increasing growth rate! This process is quite general and applies as soon as
the growth rate possesses the property of being multiplied by some factor larger than 1 when the
hazard rate or any other observable is multiplied by some constant larger than 1.

5.1.2. Derivation from the microscoping Ising model
The phenomenological equations (4) and (5) can be derived from the microscopic model of

agent interactions described by Eq. (3). For this, let us assume that the imitation strength K changes
smoothly with time, as a result for instance of the varying con+dence level of investors, the economic
outlook, and so on. The simplest assumption, which does not change the nature of the argument, is
that K is proportional to time. Initially, K is small and only small clusters of investors self-organize,
as shown in Fig. 8. As K increases, the typical size of the clusters increases as shown in Fig. 9.
These kinds of systems exhibiting cooperative behavior are characterized by a broad distribution of
cluster sizes s (the size of the black islands for instance) up to a maximum s∗ which itself increases
in an accelerating fashion up to the critical value Kc. Right at K = Kc, the geography of clusters
of a given kind becomes self-similar with a continuous hierarchy of sizes from the smallest (the
individual investor) to the largest (the total system). Within this phenomenology, the probability for
a crash to occur is constructed as follows.
First, a crash corresponds to a coordinated sell-oN of a large number of investors. In our simple

model, this will happen as soon as a single cluster of connected investors, which is suAciently
large to set the market oN-balance, decides to sell-oN. Recall indeed that “clusters” are de+ned by
the condition that all investors in the same cluster move in concert. When a very large cluster of
investors sells, this creates a sudden unbalance which triggers an abrupt drop of the price, hence a
crash. To be concrete, we assume that a crash occurs when the size (number of investors) s of the
active cluster is larger than some minimum value sm. The speci+c value sm is not important, only
the fact that sm is much larger than 1 so that a crash can only occur as a result of a cooperative
action of many traders who destabilize the market. At this stage, we do not specify the amplitude of
the crash, only its triggering as an instability. For this explanation to make sense, investors change
opinion and send market orders only rarely. Therefore, we should expect only one or few large
clusters to be simultaneously active and able to trigger a crash.
For a crash to occur, we thus need (1) to +nd at least one cluster of size larger than sm and

(2) to verify that this cluster is indeed actively selling-oN. Since these two events are independent,
the probability for a crash to occur is thus the product of the probability to +nd such a cluster of
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size larger than the threshold sm by the probability that such a cluster begins to sell-oN collectively.
The probability to +nd a cluster of size s is a well-known characteristic of critical phenomena
(Goldenfeld, 1992; StauNer and Aharony, 1994): it is a power law distribution truncated smoothly
at a maximum s∗; this maximum increases without bound (except for the total system size) on the
approach to the critical value Kc of the imitation strength.
If the decision to sell oN by an investor belonging to a given cluster of size s was independent

of the decisions of all the other investors in the same cluster, then the probability per unit time that
such a cluster of size s becomes active would be simply proportional to the number s of investors in
that cluster. However, by the very de+nition of a cluster, investors belonging to a given cluster do
interact with each other. Therefore, the decision of an investor to sell oN is probably quite strongly
coupled with those of the other investors in the same cluster. Hence, the probability per unit time that
a speci+c cluster of s investors becomes active is a function of the number s of investors belonging
to that cluster and of all the interactions between these investors. Clearly, the maximum number
of interactions within a cluster is s × (s − 1)=2, that is, for large s, it becomes proportional to the
square of the number of investors in that cluster. This occurs when each of the s investors speaks
to each of his or her s − 1 colleagues. The factor 1=2 accounts for the fact that if investor Anne
speaks to investor Paul then in general Paul also speaks to Anne and their two-ways interactions
must be counted only once. Of course, one can imagine more complex situations in which Paul
listen to Anne but Anne does not reciprocate but this does not change the results. Notwithstanding
these complications, one sees that the probability h(t)]t per unit time ]t that a speci+c cluster of s
investors becomes active must be a function growing with the cluster size s faster than s but probably
slower than the maximum number of interactions (proportional to s2). A simple parameterization is
to take h(t)]t proportional to the cluster size s elevated to some power � larger than 1 but smaller
than 2. This exponent � captures the collective organization within a cluster of size s due to the
multiple interactions between its investors. It is related to the concept of fractal dimensions.
The probability for a crash to occur, which is the same as the probability of +nding at least one

active cluster of size larger than the minimum destabilizing size sm, is therefore the sum over all
sizes s larger than sm of all the products of probabilities ns to +nd a cluster of a speci+c size s
by their probability per unit time to become active (itself proportional to s� as we have argued).
With mild technical conditions, it can then be shown that the crash hazard rate exhibits a power law
acceleration with a singular behavior. Intuitively, this result stems from the interplay between the
existence of larger and larger clusters as the interaction parameter K approached its critical value
Kc and from the nonlinear accelerating probability per unit time for a cluster to become active as
its typical size s∗ grows with the approach of K to Kc.
The diverging acceleration of the crash probability implies a remarkable prediction for the crash

hazard rate: indeed, the crash hazard rate is nothing but the rate of change of the probability of a
crash as a function of time (conditioned on it not having happened yet). The crash hazard rate thus
increases without bounds as K goes to Kc. The risk of a crash per unit time, knowing that the crash
has not yet occurred, increases dramatically when the interaction between investors becomes strong
enough so that the network of interactions between traders self-organized into a hierarchy containing
a few large spontaneously formed groups acting collectively.
We stress that Kc is not the value of the imitation strength at which the crash occurs, because

the crash could happen for any value before Kc, even though this is not very likely. Kc is the most
probable value of the imitation strength for which the crash occurs. To translate these results as
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a function of time, it is natural to expect that the imitation strength K is changing slowly with time
as a result of several factors inKuencing the tendency of investors to herd. A typical trajectory K(t)
of the imitation strength as a function of time t is erratic and smooth. The critical time tc is de+ned
as the time at which the critical imitation strength Kc is reached for the +rst time starting from some
initial value. tc is not the time of the crash, it is the end of the bubble. It is the most probable time
of the crash because the hazard rate is largest at that time. Due to its probabilistic nature, the crash
can occur at any other time, with a likelihood changing with time following the crash hazard rate.
The critical time tc (or Kc) signals the death of the speculative bubble. We stress that tc is not

the time of the crash because the crash could happen at any time before tc, even though this is not
very likely. tc is simply the most probable time of the crash. There exists a +nite probability

1−
∫ tc

t0

h(t) dt ¿ 0 (7)

of “landing” smoothly, i.e., of attaining the end of the bubble without crash. This residual probability
is crucial for the coherence of the model, because otherwise agents would anticipate the crash and
would exit from the market.

5.1.3. Dynamics of prices from the rational expectation condition
Assume for simplicity that, during a crash, the price drops by a +xed percentage  ∈ (0; 1), say

between 20 and 30% of the price increase above a reference value p1. Then, the dynamics of the
asset price before the crash are given by

dp= !(t)p(t) dt −  [p(t)− p1] dj ; (8)

where j denotes a jump process whose value is zero before the crash and one afterwards. In this sim-
pli+ed model, we neglect interest rate, risk aversion, information asymmetry, and the market-clearing
condition.
As a +rst-order approximation of the market organization, we assume that traders do their best and

price the asset so that a fair game condition holds. Mathematically, this stylized rational expectation
model is equivalent to the familiar martingale hypothesis:

∀t′ ¿t Et[p(t′)] = p(t) ; (9)

where p(t) denotes the price of the asset at time t and Et[ · ] denotes the expectation conditional on
information revealed up to time t. If we do not allow the asset price to Kuctuate under the impact
of noise, the solution to equation (9) is a constant: p(t)=p(t0), where t0 denotes some initial time.
p(t) can be interpreted as the price in excess of the fundamental value of the asset. This rational
expectation bubble model can be extended to general and arbitrary risk-aversion within the general
stochastic discount factor theory (Sornette and Johansen, 2001).
Putting (8) in (9) leads to

!(t)p(t) =  [p(t)− p1]h(t) (10)

using E[dj] = h(t) dt. In words, if the crash hazard rate h(t) increases, the return ! increases
to compensate the traders for the increasing risk. Plugging (10) into (8), we obtain a ordinary
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diNerential equation. For p(t)− p(t0)¡p(t0)− p1, its solution is

p(t) ≈ p(t0) +  [p(t0)− p1]
∫ t

t0

h(t′) dt′ before the crash : (11)

If instead the price drops by a +xed percentage  ∈ (0; 1) of the price, the dynamics of the asset
price before the crash is given by

dp= !(t)p(t) dt −  p(t) dj : (12)

We then get

Et[dp] = !(t)p(t) dt −  p(t)h(t) dt = 0 ; (13)

which yields

!(t) =  h(t) : (14)

and the corresponding equation for the price is

log
[
p(t)
p(t0)

]
=  

∫ t

t0

h(t′) dt′ before the crash : (15)

This gives the logarithm of the price as the relevant observable. These two diNerent scenarios for the
price drops raises a rather interesting question. If the +rst scenario is the correct one, then crashes are
nothing but (a partial) depletion of preceding bubbles and hence signals the markets return towards
equilibrium. Hence, it may as such be taken as a sign of economical health, as also suggested by
Barro et al. (1989) in relation to the crash of October 1987. On the other hand, if the second
scenario is true, this suggest that bubbles and crashes are instabilities which are built-in or inherent
in the market structure and that they are signatures of a market constantly out-of-balance, signaling
fundamental systemic instabilities. We will return to this question in the conclusion. Johansen and
Sornette (2001b) have shown that the +rst scenario is slightly more warranted according to the data.
The higher the probability of a crash, the faster the price must increase (conditional on having

no crash) in order to satisfy the martingale (no free lunch) condition. Intuitively, investors must
be compensated by the chance of a higher return in order to be induced to hold an asset that
might crash. This eNect may go against the naive preconception that price is adversely aNected by
the probability of the crash, but our result is the only one consistent with rational expectations.
Complementarily, from a behavioral and dynamical point of view of the +nancial market, a faster
rising price decreases the probability that it can be sustained much longer and may announce an
instable phase in the mind of investors. We thus face a kind of “chicken and egg” problem.
Plugging (5) into (11) gives the following price law:

p(t) ≈ pc −  B
z

× (tc − t)z before the crash : (16)

where z=1−�∈ (0; 1) and pc is the price at the critical time (conditioned on no crash having been
triggered). The price before the crash thus follows a power law with a +nite upper bound pc. The
trend of the price becomes unbounded as we approach the critical date. This is to compensate for
an unbounded crash rate in the next instant.
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The last ingredient of the model is to recognize that the stock market is made of actors which
diNers in size by many orders of magnitudes ranging from individuals to gigantic professional in-
vestors, such as pension funds. Furthermore, structures at even higher levels, such as currency
inKuence spheres (U.S.$, Euro, YEN ...), exist and with the current globalization and de-regulation
of the market one may argue that structures on the largest possible scale, i.e., the world economy,
are beginning to form. This means that the structure of the +nancial markets have features which
resembles that of hierarchical systems with “traders” on all levels of the market. Of course, this
does not imply that any strict hierarchical structure of the stock market exists, but there are numer-
ous examples of qualitatively hierarchical structures in society. Models of imitative interactions on
hierarchical structures recover the power law behavior (16) (Sornette and Johansen, 1998; Johansen
et al., 2000). But in addition, they predict that the critical exponent � can be a complex number!
The +rst order expansion of the general solution for the hazard rate is then

h(t) ≈ B0(tc − t)−� + B1(tc − t)−� cos[! log(tc − t)−  ] : (17)

Once again, the crash hazard rate explodes near the critical date. In addition, it now displays
log-periodic oscillations. The evolution of the price before the crash and before the critical date
is given by

p(t) ≈ pc −  
z
{B0(tc − t)z + B1(tc − t)z cos[! log(tc − t)− %]} ; (18)

where % is another phase constant. The key feature is that oscillations appear in the price of the
asset before the critical date. This means that the local maxima of the function are separated by time
intervals that tend to zero at the critical date, and do so in geometric progression, i.e., the ratio of
consecutive time intervals between maxima is a constant

& ≡ e2'=! : (19)

This is very useful from an empirical point of view because such oscillations are much more strik-
ingly visible in actual data than a simple power law: a +t can “lock-in” on the oscillations which
contain information about the critical date tc. Note that complex exponents and log-periodic oscil-
lations do not necessitate a pre-existing hierarchical structure as mentioned above, but may emerge
spontaneously from the nonlinear complex dynamics of markets (Sornette, 1998).
To sum up, we have constructed a model in which the stock market price is driven by the risk

of a crash, quanti+ed by its hazard rate. In turn, imitation and herding forces drive the crash hazard
rate. When the imitation strength becomes close to a critical value, the crash hazard rate diverges
with a characteristic power law behavior. This leads to a speci+c power law acceleration of the
market price, providing our +rst predictive precursory pattern anticipating a crash.

5.2. The price-driven model

The price-driven model inverts the logic of the previous risk-driven model: here, again as a result
of the action of rational investors, the price is driving the crash hazard rate rather than the reverse.
The price itself is driven up by the imitation and herding behavior of the “noisy” investors.
As before, a stochastic description is required to capture the interplay between the progressive

strengthening of imitation controlled by the connections and interactions between traders and the
ubiquity of idiosyncratic behavior as well as the inKuence of many other factors that are impossible
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to model in details. As a consequence, the price dynamics are stochastic and the occurrence of a
crash is not certain but can be characterized by its hazard rate h(t), de+ned as the probability per
unit time that the crash will happen in the next instant if it has not happened yet.
Keeping a basic tenet of economic theory, rational expectations, the model developed in Sornette

and Andersen (2002) captures the nonlinear positive feedback between agents in the stock market
as an interplay between nonlinearity and multiplicative noise. The derived hyperbolic stochastic
+nite-time singularity formula transforms a Gaussian white noise into a rich time series possessing
all the stylized facts of empirical prices, as well as accelerated speculative bubbles preceding crashes.
Let us give the premise of the model and some preliminary results. We start from the geometric

Brownian model of the bubble price B(t), dB= !B dt+ �B dWt , where ! is the instantaneous return
rate, � is the volatility and dWt is the in+nitesimal increment of the random walk with unit variance
(Wiener process). We generalize this expression into

dB(t) = !(B(t))B(t) dt + �(B(t))B(t) dWt −  (t)B(t) dj ; (20)

allowing !(B(t)) and �(B(t)) to depend arbitrarily and nonlinearly on the instantaneous realization
of the price. A jump term has been added to describe a correction or a crash of return amplitude
 , which can be a stochastic variable taken from an a priori arbitrary distribution. Immediately after
the last crash which becomes the new origin of time 0, dj is reset to 0 and will eventually jump to
1 with a hazard rate h(t), de+ned such that the probability that a crash occurs between t and t +dt
conditioned on not having occurred since time 0 is h(t) dt.
Following Blanchard (1979) and Blanchard and Watson (1982), B(t) is a rational expectations

bubble which accounts for the possibility, often discussed in the empirical literature and by practition-
ers, that observed prices may deviate signi+cantly and over extended time intervals from fundamental
prices. While allowing for deviations from fundamental prices, rational bubbles keep a fundamen-
tal anchor point of economic modelling, namely that bubbles must obey the condition of rational
expectations. This translates essentially into the no-arbitrage condition with risk-neutrality, which
states that the expectation of dB(t) conditioned on the past up to time t is zero. This allows us to
determine the crash hazard rate h(t) as a function of B(t). Using the de+nition of the hazard rate
h(t) dt = 〈dj〉, where the bracket denotes the expectation over all possible outcomes since the last
crash, this leads to !(B(t))B(t) − 〈 〉B(t)h(t) = 0, which provides the hazard rate as a function of
price:

h(t) =
!(B(t))
〈 〉 : (21)

Expression (21) quanti+es the fact that the theory of rational expectations with risk-neutrality asso-
ciates a risk to any price: for example, if the bubble price explodes, so will the crash hazard rate,
so that the risk-return trade-oN is always obeyed. We note that it is easy to incorporate risk-aversion
by introducing a risk-premium rate or by amplifying the risk of a crash perceived by traders.
The dependence of !(B(t)) and �(B(t)) is chosen so as to capture the possible appearance of

positive feedbacks on prices. There are many mechanisms in the stock market and in the behavior of
investors which may lead to positive feedbacks. First, investment strategies with “portfolio insurance”
are such that sell orders are issued whenever a loss threshold (or stop loss) is passed. It is clear that
by increasing the volume of sell order, this may lead to further price decreases. Some commentators
have indeed attributed the crash of October 1987 to a cascade of sell orders. Second, there is
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a growing empirical evidence of the existence of herd or “crowd” behavior in speculative markets
(Shiller, 2000), in fund behaviors (Scharfstein and Stein, 1990; Grinblatt et al., 1995) and in the
forecasts made by +nancial analysts (Trueman, 1994). Although this behavior is ineAcient from a
social standpoint, it can be rational from the perspective of managers who are concerned about their
reputations in the labor market. As we have already mentioned, such behavior can be rational and
may occur as an information cascade, a situation in which every subsequent actor, based on the
observations of others, makes the same choice independent of his/her private signal (Bikhchandani
et al., 1992). Herding leads to positive nonlinear feedback. Another mechanism for positive feedbacks
is the so-called “wealth” eNect: a rise of the stock market increases the wealth of investors who
spend more, adding to the earnings of companies, and thus increasing the value of their stock.
The evidence for nonlinearity has a strong empirical support: for instance, the coexistence of the

absence of correlation of price changes and the strong autocorrelation of their absolute values can
not be explained by any linear model (Hsieh, 1995). Comparing additively nonlinear processes and
multiplicatively nonlinear models, the later class of models are found consistent with empirical price
changes and with options’ implied volatilities. With the additional insight that hedging strategies
of general Black–Scholes option models lead to a positive feedback on the volatility (Sircar and
Papanicolaou, 1998), we are led to propose the following simplistic nonlinear model with multi-
plicative noise in which the return rate and the volatility are nonlinear increasing power law of B(t)
(Sornette and Andersen, 2002):

!(B)B=
m
2B
[B�(B)]2 + !0[B(t)=B0]m ; (22)

�(B)B= �0[B(t)=B0]m ; (23)

where B0, !0, m¿ 0 and �0 are four parameters of the model, setting respectively a reference scale,
an eNective drift and the strength of the nonlinear positive feedback. The +rst term in the r.h.s.
(22) is added as a convenient device to simplify the Ito calculation of these stochastic diNerential
equations. The model can be reformulated in the Stratonovich interpretation

dB
dt
= (a!0 + b,)Bm ; (24)

where a and b are two constants and , is a delta-correlated Gaussian white noise, in physicist’s
notation such that , dt ≡ dW . The form (24) exempli+es the fundamental ingredient of the theory
developed in Sornette and Andersen (2002) based on the interplay between nonlinearity and mul-
tiplicative noise. The nonlinearity creates a singularity in +nite time and the multiplicative noise
makes it stochastic. The choice (22), (23) or (24) are the simplest generalization of the standard
geometric Brownian model (20) recovered for the special case m = 1. The introduction of the ex-
ponent m is a straightforward mathematical trick to account in the simplest and most parsimonious
way for the presence of nonlinearity. Note in particular that, in the limit where m becomes very
large, the nonlinear function Bm tends to a threshold response. The power Bm can be decomposed
as Bm = Bm−1 × B stressing the fact that Bm−1 plays the role of a growth rate, function of the price
itself. The positive feedback eNect is captured by the fact that a larger price B feeds a larger growth
rate, which leads to a larger price and so no.
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The solution of (20) with (22) and (23) is given by

B(t) = �� 1
(!0[tc − t]− (�0=Bm

0 )W (t))�
where � ≡ 1

m− 1 (25)

with tc = y0=(m− 1)!0 is a constant determined by the initial condition with y0 = 1=B(t=0)m−1. To
grasp the meaning of (25), let us +rst consider the deterministic case �0 = 0, such that the return
rate !(B)˙ [B(t)]m−1 is the sole driving term. Then, (25) reduces to B(t)˙ 1=[tc − t]1=(m−1), i.e.,
a positive feedback m¿ 1 of the price B(t) on the return rate ! creates a +nite-time singularity at
a critical time tc determined by the initial starting point. This power law acceleration of the price
accounts for the eNect of herding resulting from the positive feedback. It is in agreement with the
empirical +nding that price peaks have sharp concave upwards maxima (Roehner and Sornette, 1998).
Reintroducing the stochastic component �0 �= 0, we see from (25) that the +nite-time singularity
still exists but its visit is controlled by the +rst passage of a biased random walk at the position
!0tc such that the denominator !0[tc− t]− (�0=Bm

0 )W (t) vanishes. In practice, a price trajectory will
never sample the +nite-time singularity as it is not allowed to approach too close to it due to the
jump process dj de+ned in (20). Indeed, from the no-arbitrage condition, expression (21) for the
crash hazard rate ensures that when the price explodes, so does h(t) so that a crash will occur
with larger and larger probability, ultimately screening the divergence which can never be reached.
The endogeneous determination (21) of the crash probability also ensures that the denominator
!0[tc − t]− (�0=Bm

0 )W (t) never becomes negative: when it approaches zero, B(t) blows up and the
crash hazard rate increases accordingly. A crash will occur with probability 1 before the denominator
reaches zero. Hence, the price B(t) remains always positive and real. We stress the remarkably simple
and elegant constraint on the dynamics provided by the rational expectation condition that ensures
the existence and stationarity of the dynamics at all times, notwithstanding the locally nonlinear
stochastic explosive dynamics. When !0¿ 0, the random walk has a positive drift attracting the
denominator in (25) to zero (i.e., attracting the bubble to in+nity). However, by the mechanism
explained above, as B(t) increases, so does the crash hazard rate by relation (21). Eventually, a
crash occurs that reset the bubble to a lower price. The random walk with drift goes on, eventually
B(t) increases again and reaches “dangerous waters”, a crash occurs again, and so on. Note that a
crash is not a certain event: an inKated bubble price can also deKate spontaneously by the random
realization of the random walk W (t) which brings back the denominator far from zero.
Fig. 11 shows a typical trajectory of the bubble component of the price generated by the nonlinear

positive feedback model of Sornette and Andersen (2002), starting from some initial value up to the
time just before the price starts to blow up. The simplest version of this model consists in a bubble
price B(t) being essentially a power of the inverse of a random walk W (t) in the following sense.
Starting from B(0)=W (0)= 0 at the origin of time, when the random walk approaches some value
Wc here taken equal to 1, B(t) increases and vice versa. In particular, when W (t) approaches 1, B(t)
blows up and reaches a singularity at the time tc when the random walk crosses 1. This process
generalizes in the random domain the +nite-time singularities described in Section 5.1.1, such that
the monotonously increasing process culminating at a critical time tc is replaced by the random
walk that wanders up and down before eventually reaching the critical level. This nonlinear positive
feedback bubble process B(t) can thus be called a “singular inverse random walk”. In absence of a
crash, the process B(t) can exist only up to a +nite time: with probability one (i.e., with certainty),
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Fig. 11. Top panel: realization of a bubble price B(t) as a function of time constructed from the “singular inverse random
walk”. This corresponds to a speci+c realization of the random numbers used in generating the random walks W (t)
represented in the second panel. The top panel is obtained by taking a power of the inverse of a constant Wc here taken
equal to 1 minus the random walk shown in the second panel. In this case, when the random walk approach 1, the bubble
diverges. Notice the similarity between the trajectories shown in the top (B(t)) and second (W (t)) panels as long as the
random walk W (t) does not approach too much the value Wc = 1. It is free to wander but when it approaches 1, the
bubble price B(t) shows much greater sensitivity and eventually diverges as W (t) reaches 1. Before this happens, B(t)
can exhibit local peaks, i.e., local bubbles, which come back smoothly. This corresponds to a realization when the random
walk approaches Wc without touching it and then spontaneously recedes away from it. The third (respectively fourth)
panel shows the time series of the increments dB(t)=B(t)−B(t−1) of the bubble (respectively dW (t)=W (t)−W (t−1)
of the random walk. Notice the intermittent bursts of strong volatility in the bubble compared to the featureless constant
level of Kuctuations of the random walk (reproduced from Sornette and Andersen (2002)).

we know from the study of random walks that W (t) will eventually reach any level, in particular
the value Wc = 1 in our example at which B(t) diverges.
The second eNect that tampers the possible divergence of the bubble price, by far the most

important one in the regime of highly over-priced markets, is the impact of the price on the crash
hazard rate discussed above: as the price blows up due to imitation, herding, speculation as well
as randomness, the crash hazard rate increases even faster according to Eq. (21), so that a crash
will occur and drive the price back closer to its fundamental value. The crashes are triggered in a
random way governed by the crash hazard rate which is an increasing function of the bubble price.
In the present formulation, the higher the bubble price is, the higher is the probability of a crash.
In this model, a crash is similar to a purge administered to a patient.
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This model (Sornette and Andersen, 2002) proposes two scenarios for the end of a bubble: either
a spontaneous deKation or a crash. These two mechanisms are natural features of the model and
have not been arti+cially added. These two scenarios are indeed observed in real markets, as will
be described later.
This model has an interesting and far-reaching consequence in terms of the repetition and orga-

nization of crashes in time. Indeed, we see that each time the random walk approaches the chosen
constant Wc, the bubble price blows up and, according to the no-arbitrage condition together with the
rational expectations, this implies that the market enters “dangerous waters” with a crash looming
ahead. The random walk model provides a very speci+c prediction on the waiting times between
successive approaches to the critical value Wc, i.e., between successive bubbles. The distribution of
these waiting times is found to be a very broad power law distribution, so broad that the average
waiting time is mathematically in+nite (Sornette, 2000a). In practice, this leads to two inter-related
phenomena: clustering (bubbles tend to follow bubbles at short times) and long-term memory (there
are very long waiting times between bubbles once a bubble has deKated for a suAciently long time).
The “singular inverse random walk” bubble model thus predicts very large intermittent Kuctuations
in the recurrence time of speculative bubbles.
Solution (25) can be used to invert real data during periods preceding +nancial crashes to obtain the

relevant parameters. We present here some tests using an inversion method based on minimizing the
Kolmogorov–Smirnov (KS) distance between the empirical distribution of returns and the synthetic
one generated by the model, performed on the Hong Kong market prior to the crash which occurred
in early 1994 and on the Nasdaq composite index prior to the crash of April 2000. To construct a
meaningful distribution, we propose to add a constant fundamental price F to the bubble price B(t)
as only their sum is observable in real life:

P(t) = ert[F + B(t)] : (26)

We can also include the possibility for a interest rate r or growth of the economy with rate r. We
denote M = !0=� and

√
V = �0=�Bm

0 . For the Hang Seng index, the best +t is with � = 2:5; V =
1:1 × 10−7; M = 4:23 × 10−5; r = 0:00032 and F = 2267:3. corresponding to a KS con+dence level
of 96:3%. This should be compared with the best Gaussian +t to the empirical price returns giving
a KS con+dence level of 11%. Thus the model “gaussianizes” the data at a very high signi+cance
level: a white-Gaussian noise input is transformed by the nonlinear multiplicative process into a
realistically looking +nancial time series. For the Nasdaq composite index, we obtain � = 2:0; V =
2:1× 10−7; M =−9:29× 10−6; r = 0:00496 and F = 641:5, corresponding to a KS con+dence level
of 85.9%. The corresponding best Gaussian +t to the empirical price gives a KS con+dence level of
73%. Here, the improvement is less impressive but nevertheless present.
With the parameters of the model that have been obtained by the inversion, we can use them to

generate many scenarios that are statistically equivalent to the real history of the Hang Seng and
Nasdaq composite index. Fig. 12 shows 10 synthetic evolutions of the process (26) generated with
the best parameter values for both bubbles. By comparison, the empirical prices are shown as the
thick lines (one time step corresponds approximately to one trading day). The smooth continuous
line close to the horizontal axis is the fundamental price Fert .
This model together with the inversion procedure provides a new direct tool for detecting bubbles,

for identifying their starting times and the plausible ends. Changing the initial time of the time series,
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Fig. 12. Top panel: the Hang Seng index from July 1, 1991 to February 4, 1994 as well as 10 realizations of the “singular
inverse random walk” bubble model generated by the nonlinear positive feedback model. Each realization corresponds to
an arbitrary random walk whose drift and variance as been adjusted so as to +t best the distribution of the Heng Seng
index returns. Bottom panel: the Nasdaq composite index bubble from October 5, 1998 to March 27, 2000 as well as
10 realizations of the “singular inverse random walk” bubble model generated by the nonlinear positive feedback model.
Each realization corresponds to an arbitrary random walk whose drift and variance as been adjusted so as to +t best the
distribution of the Nasdaq index returns (reproduced from Sornette and Andersen (2002)).

the KS probability of the resulting Gaussian +t of the transformed series W (t) should allow us
to determine the starting date beyond which the model becomes inadequate at a given statistical
level. Furthermore, the exponent m (or equivalently �) provides a direct measure of the speculative
mood. m = 1 is the normal regime, while m¿ 1 quanti+es a positive self-reinforcing feedback.
This opens the possibility for continuously monitoring it via the inversion procedure and using it
as a “thermometer” of speculation. Furthermore, the variance V of the multiplicative noise is a
measure of volatility, which is signi+cantly more robust than standard estimators. This is due to
the inversion of the nonlinear formula which removes a large part of the volatility clustering and
of the heavy-tail nature of the distribution of returns. Its continuous monitoring via the inversion
procedure suggests new ways of looking at dependence between assets. Preliminary analyses show
that most of the stylized facts of +nancial time series are reproduced by this approach (Sornette
and Andersen, 2002). These stylized facts concern the absence of two-point correlation between
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returns, the fat-tail structure of distributions of returns, the long-range dependence of the two-point
correlation of volatility and their persistence, the multifractal structure of generalized moments of
the absolute value of the returns, and so on. Application to shorter time scales covering quarters
down to months should be explored to test whether this model and some of its variants may detect
regime of abnormal behavior (m �= 1) in +nancial time series.
We stress that the proposed class of nonlinear rational bubble model is fundamentally diNerent

from bubble models that have been tested previously: all previous models assumed exponentially
growing bubbles and the results of statistical tests have not been convincing (Camerer, 1989; Adam
and Szafarz, 1992). In contrast, bubbles may be super-exponential which make them diNerent in
principle from a fundamental price growing at a constant rate. By this work, we thus hope to
rejuvenate the “old” theory of rational bubbles by extending its universe into the nonlinear stochastic
regime.
An additional layer of re+nement can easily be added. Indeed, following Hamilton (1989) which

introduced the so-called Markov switching techniques for the analysis of price returns, many scholarly
works have documented the empirical evidence of regime shifts in +nancial data sets (Van Norden
and Schaller, 1993; Cai, 1994; Gray, 1996; Van Norden, 1996; Schaller and van Norden, 1997;
Assoe, 1998; Chauvet, 1998; DriAll and Sola, 1998). For instance, Van Norden and Schaller (1997)
have proposed a Markov regime switching model of speculative behavior whose key feature is similar
to ours, namely over-valuation over the fundamental price increases the probability and expected size
of a stock market crash.
This evidence taken together with the fact that bubbles are not expected to permeate the dynamics

of the price all the time suggests the following natural extension of the model. In the simplest and
most parsimonious extension, we can assume that only two regimes can occur: bubble and normal.
The bubble regime follows the previous model de+nition and is punctuated by crashes occurring
with the hazard rate governed by the price level. The normal regime can be for instance a stan-
dard random walk market model with constant small drift and volatility. The regime switches are
assumed to be completely random. This very simple dynamical model recovers essentially all the
stylized facts of empirical prices, i.e., no correlation of returns, long-range correlation of volatilities,
fat-tail of return distributions, apparent fractality and multifractality and sharp peak-Kat trough pat-
tern of price peaks. In addition, the model predicts and we con+rm by empirical data analysis that
times of bubbles are associated with nonstationary increasing volatility correlations. According to this
model, the apparent long-range correlation of volatility is proposed to result from random switching
between normal and bubble regimes. In addition, and maybe most important, the visual appearance
of price trajectories are very reminiscent of real ones, as shown in Fig. 12. The remarkably simple
formulation of the price-driven “singular inverse random walk” bubble model is able to reproduce
convincingly the salient properties and appearance of real price trajectories, with their randomness,
bubbles and crashes.

5.3. Risk-driven versus price-driven models

In common, the risk-driven model of Section 5.1 and the price-driven model of Section 5.2
describe a system of two populations of traders, the “rational” and the “noisy” traders. Occasional
imitative and herding behaviors of the “noisy” traders may cause global cooperation among traders
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causing a crash. The “rational” traders provide a direct link between the crash risks and the bubble
price dynamics.
In the risk-driven model, the crash hazard rate determined from herding drives the bubble price.

In the price-driven model, imitation and herding induce positive feedbacks on the price, which itself
creates an increasing risk for a looming yet unrealized +nancial crash.
We believe that both models capture a part of reality. Studying them independently is the standard

strategy of dividing-to-conquer the complexity of the world. The price-driven model appears maybe
as the most natural and straightforward as it captures the intuition that sky-rocketing prices are
unsustainable and announce endogeneously a signi+cant correction or a crash. The risk-driven model
captures a most subtle self-organization of stock markets, related to the ubiquitous balance between
risk and returns. Both models embody the notion that the market anticipates the crash in a subtle
self-organized and cooperative fashion, hence releasing precursory “+ngerprints” observable in the
stock market prices. In other words, this implies that market prices contain information on impending
crashes. The next section explores the origin and nature of these precursory patterns and prepares
the road for a full-Kedge analysis of real stock market crashes and their precursors.

5.4. Imitation and contrarian behavior: hyperbolic bubbles, crashes and chaos

The model of bubbles and crashes that we now discuss complements the two previous models of
rational expectation (RE) bubbles in that it describes a deterministic dynamics of prices embodying
both the bubble phases and the crashes (Corcos et al., 2002). It is maybe the simplest analytically
tractable model of the interplay between imitative and contrarian behavior in a stock market where
agents can take at least two states, bullish or bearish. Each bullish (bearish) agent polls m “friends”
and changes her opinion to bearish (bullish) (1) if at least m1hb (m1bh) among the m agents inspected
are bearish (bullish) or (2) if at least m1hh ¿m1hb (m1bb ¿m1bh) among the m agents inspected are
bullish (bearish). The condition (1) (resp. (2)) corresponds to imitative (antagonistic) behavior. In
the limit where the number N of agents is in+nite, by using combinatorial techniques, it can be shown
that the dynamics of the fraction of bullish agents is deterministic and exhibits chaotic behavior in
a signi+cant domain of the parameter space {1hb; 1bh; 1hh; 1bb; m}. The deterministic equation of the
price trajectory is found to be of the form

pt+1 = Fm(pt) ; (27)

where the function Fm(x) is a sum of combinatorial factors. A typical chaotic trajectory can be shown
to be characterized by intermittent phases of chaos, quasi-periodic behavior and super-exponentially
growing bubbles followed by crashes. A typical bubble starts initially by growing at an expo-
nential rate and then crosses over to a nonlinear power law growth rate leading to a +nite-time
singularity. The reinjection mechanism provided by the contrarian behavior introduces a nonlinear
reinjection mechanism rounding oN these singularity and leads to chaos. This model is one of the
rare agent-based models that give rise to interesting nonperiodic complex dynamics in the limit of an
in+nite number N of agents. A +nite number of agents introduces an endogeneous source of noise
superimposed on the chaotic dynamics as shown in Fig. 13. One can observe burst of volatility,
exploding bubbles and quiescent regimes.
The traditional concept of stock market dynamics envisions a stream of stochastic “news” that

may move prices in random directions. This model, in contrast, demonstrates that certain types
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Fig. 13. Time evolution of the price pt over 10 000 time steps for m=60 polled agents with (a) N=∞, (b) N=m+1=61
agents and parameters 1hb = 1bh = 0:72 and 1hh = 1bb = 0:85. The panel (c) represents the noise due to the +nite size of
the system and is obtained by subtracting the time series in panel (a) from the time series in panel (b). Reproduced from
Corcos et al. (2002).

of deterministic behavior—mimicry and contradictory behavior alone—can already lead to chaotic
prices. While the traditional theory of rational anticipations exhibits and emphasizes self-re-inforcing
mechanisms, without either predicting their inception nor their collapse, the strength of this model
is to justify the occurrence of speculative bubbles. It allows for their collapse by taking into account
the combination of mimetic and antagonistic behavior in the formation of expectations about prices.
The speci+c feature of the model is to combine these two Keynesian aspects of speculation and
enterprise and to derive from them behavioral rules based on collective opinion: the agents can
adopt an imitative and gregarious behavior, or, on the contrary, anticipate a reversal of tendency,
thereby detaching themselves from the current trend. It is this duality, the continuous coexistence of
these two elements, which is at the origin of the properties of our model: chaotic behavior and the
generation of bubbles. It is the common wisdom that deterministic chaos leads to a fundamental limit
of predictability because the tiny inevitable Kuctuations in those chaotic systems quickly snowball
in unpredictable ways. This has been investigated in relation with for instance long-term weather
patterns. In our model, the chaotic dynamics of the returns is not the limiting factor for predictability,
as it contains too much residual correlations. Endogeneous Kuctuations due to +nite-size eNects and
external news (noise) seem to be needed to retrieve the observed randomness of stock market prices.
The model of imitative and contrarian behavior leads to accelerating bubble prices following

+nite-time singularity trajectories aborting into a crash. The accelerating phase is due to imitation.
The crash is due to the contrarian behavior reinforced later by the imitation behavior. Quantitatively,
the bubble-crash sequence can be described by studying the logarithm of p − 1=2 (which is the
deviation from equilibrium where the equilibrium is characterized by the equality between the fraction
of bullish agents and the fraction of bearish agents) as a function of linear time. One observes +rst a
linear trend which quali+es an exponential growth p−1=2˙ e t (with the factor  ¿ 0), followed by
a super-exponential growth accelerating so much as to give the impression of reaching a singularity
in +nite-time.
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The understanding of this phenomenon comes from the behavior of the “elasticity” of Fm(p)−p
with respect to p− 1=2, i.e., the derivative of the logarithm of Fm(p)− p, where Fm(p) is de+ned
by (27), with respect to the logarithm of p− 1=2. Two regimes can be observed.
1. For small p− 1=2, the elasticity is 1, i.e.,

Fm(p)− p � �(m)
(
p− 1

2

)
: (28)

This expression (28) explains the exponential growth observed at early time.
2. For larger p−1=2, the elasticity increases above 1 and stabilizes to a value !(m) before decreasing
again due to the reinjection produced by the contrarian mechanism. The interval in p − 1=2 in
which the slope is approximately stabilized at the value !(m) enables us to write

Fm(p)− p � 2(m)
(
p− 1

2

)!(m)

with !¿ 1 : (29)

These two regimes can be collected in the following phenomenological expression for Fm(p):

Fm(p) =
1
2
+ (1− 2gm(1=2)− g′m(1=2))

(
p− 1

2

)
+ 2(m)

(
p− 1

2

)!(m)

; (30)

=
1
2
+
(
p− 1

2

)
+ �(m)

(
p− 1

2

)
+ 2(m)

(
p− 1

2

)!(m)

with !¿ 1 ; (31)

and

�(m) =−2gm(1=2)− g′m(1=2) : (32)

Introducing the notation 4= p− 1=2, the dynamics can be rewritten
4′ − 4= �(m)4+ 2(m)4!(m) ; (33)

which, in the continuous time limit, yields

d4
dt
= �(m)4+ 2(m)4!(m) : (34)

Thus, for small 4, we obtain an exponential growth rate

4t ∼ e�(m)t ; (35)

while for large enough 4

4t ∼ (tc − t)−(1=!(m)−1) : (36)

For example, for m= 60 with 1hb = 1bh = 0:72 and 1hh = 1bb = 0:85, !(m) = 3, which yields for
large 4

pt − 1
2
∼ 1√

tc − t
: (37)
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The prediction (36) implies that the returns rt should increase in an accelerating super-exponential
fashion at the end of a bubble, leading to a price trajectory

't = 'c − C(tc − t)(!(m)−2=!(m)−1) ; (38)

where 'c is the culminating price of the bubble reached at t= tc when !(m)¿ 2, such the +nite-time
singularity in rt gives rise only to an in+nite slope of the price trajectory. This behavior (38) with
an exponent 0¡ (!(m) − 2=!(m) − 1)¡ 1 has been documented in many bubbles (Sornette et al.,
1996; Johansen et al., 1999, 2000; Johansen and Sornette, 1999a, b, 2000a; Sornette and Johansen,
2001; Sornette and Andersen, 2002; Sornette, 2002, 2003). The case m= 60 with 1hb = 1bh = 0:72
and 1hh = 1bb = 0:85 leads to (!(m) − 2=!(m) − 1) = 1=2, which is reasonable agreement with the
values reported previously.
Interpreted within the present model, the exponent (!(m) − 2=!(m) − 1) of the price singularity

gives an estimation of the “connectivity” number m through the dependence of ! on m. Such a
relationship has already been argued by Johansen et al. (2000) at a phenomenological level using
a mean-+eld equation in which the exponent is directly related to the number of connections to a
given agent.
This model developed recently has strong potential to provide a simple but powerful approach to

modelling +nancial time series. It can be extended in many ways, which include (1) introducing at
least a third state, called “neutral”, in addition to the “bullish” and “bearish” states, (2) introducing
a fundamental price, a population of value investors and assume that “noise traders” follow the
imitative-contrarian strategy previously described, (3) considering the possibility for several stocks
to be traded simultaneously, with in particular the introduction of a riskless asset.

6. Log-periodic oscillations decorating power laws

6.1. Status of log-periodicity

Log-periodicity is an observable signature of the symmetry of discrete scale invariance (DSI).
DSI is a weaker symmetry than (continuous) scale invariance (Dubrulle et al., 1997). The latter is
the symmetry of a system which manifests itself such that an observable O(x) as a function of the
“control” parameter x is scale invariant under the change x → &x for arbitrary &, i.e., a number !(&)
exists such that

O(x) = !(&)O(&x) : (39)

The solution of (39) is simply a power law O(x)=x�, with �=−(log !=log &), which can be veri+ed
directly by insertion. In DSI, the system or the observable obeys scale invariance (39) only for
speci>c choices of the magni+cation factor &, which form in general an in+nite but countable set of
values &1; &2; : : : that can be written as &n = &n. & is the fundamental scaling ratio determining the
period of the resulting log-periodicity. This property can be qualitatively seen to encode a lacunarity
of the fractal structure. The most general solution of (39) with & (and therefore !) is

O(x) = x�P
(
ln x
ln &

)
; (40)
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where P(y) is an arbitrary periodic function of period 1 in the argument, hence the name log-
periodicity. Expanding it in Fourier series

∑∞
n=−∞ cn exp(2n'i(ln x=ln &)), we see that O(x) becomes

a sum of power laws with the in+nitely discrete spectrum of complex exponents �n = �+ i2'n=ln &,
where n is an arbitrary integer. Thus, DSI leads to power laws with complex exponents, whose
observable signature is log-periodicity. Speci+cally, for +nancial bubbles prior to large crashes, we
shall see that a +rst order representation of Eq. (40)

I(t) = A+ B(tc − t)2 + C(tc − t)2 cos(! ln(tc − t)− %) (41)

captures well the behavior of the market price I(t) prior to a crash or large correction
at a time ≈ tc.
There are many mechanisms known to generate log-periodicity (Sornette, 1998). The most obvious

one is when the system possesses a pre-existing discrete hierarchical structure. There are however
various dynamical mechanisms generating log-periodicity, without relying on a pre-existing discrete
hierarchical structure. DSI may be produced dynamically and does not need to be pre-determined by
e.g., a geometrical network. This is because there are many ways to break a symmetry, the subtlety
here being to break it only partially.

6.2. Stock market price dynamics from the interplay between fundamental value investors
and technical analysists

The importance of the interplay of two classes of investors, fundamental value investors and
technical analysts (or trend followers), has been stressed by several recent works (see for instance
Lux and Marchesi, 1999 and references therein) to be essential in order to retrieve the important
stylized facts of stock market price statistics. We build on this insight and construct a simple model
of price dynamics, whose innovation is to put emphasis on the fundamental nonlinear behavior of
both classes of agents.

6.2.1. Nonlinear value and trend-following strategies
The price variation of an asset on the stock market is controlled by supply and demand, in other

words by the net order size 6 through a market impact function (Farmer, 1998). Assuming that the
ratio p̃=p of the price p̃ at which the orders are executed over the previous quoted price p is solely
a function of 6 and using the condition that it is impossible to make pro+ts by repeatedly trading
through a close circuit (i.e., buying and selling has to end up with a +nal net position equal to
zero), Farmer (1998) has shown that the logarithm of the price is given by the following equation
written in discrete form:

lnp(t + 1)− lnp(t) = 6(t)
L

: (42)

The “market depth” L is the typical number of outstanding stocks traded per unit time and thus
normalizes the impact of a given order size 6(t) on the log-price variations. The net order size
6 summed over all traders is changing as a function of time so as to reKect the information
Kow in the market and the evolution of the traders’ opinions and moods. A zero net order size
6 = 0 corresponds to exact balance between supply and demand. Various derivations have estab-
lished a connection between the price variation or the variation of the logarithm of the price to
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factors that control the net order size itself (Farmer, 1998; Bouchaud and Cont, 1998; Pandey and
StauNer, 2000).
Two basic ingredients of 6(t) are thought to be important in determining the price dynamics:

reversal to the fundamental value (6fund(t)) and trend following (6trend(t)). Other factors, such as
risk aversion, may also play an important role.
Ide and Sornette (2002) propose to describe the reversal to estimated fundamental value by the

contribution

6fund(t) =−c[lnp(t)− lnpf ] | lnp(t)− lnpf |n−1 ; (43)

to the order size, where pf is the estimated fundamental value and n¿ 0 is an exponent quantifying
the nonlinear nature of reversion to pf . The strength of the reversion is measured by the coeAcient
c¿ 0, which reKects that the net order is negative (resp. positive) if the price is above (resp. below)
pf . The nonlinear power law [lnp(t)− lnpf ] | lnp(t)− lnpf |n−1 of order n is chosen as the simplest
function capturing the following eNect. In principle, the fundamental value pf is determined by the
discounted expected future dividends and is thus dependent upon the forecast of their growth rate and
of the risk-less interest rate, both variables being very diAcult to predict. The fundamental value is
thus extremely diAcult to quantify with high precision and is often estimated within relatively large
bounds: all of the methods of determining intrinsic value rely on assumptions that can turn out to be
far oN the mark. For instance, several academic studies have disputed the premise that a portfolio of
sound, cheaply bought stocks will, over time, outperform a portfolio selected by any other method
(see for instance, Lamont, 1988). As a consequence, a trader trying to track fundamental value has
no incentive to react when she feels that the deviation is small since this deviation is more or less
within the noise. Only when the departure of price from fundamental value becomes relatively large
will the trader act. The relationship (43) with an exponent n¿ 1 precisely accounts for this eNect:
when n is signi+cantly larger than 1, |x|n remains small for |x|¡ 1 and shoots up rapidly only when
it becomes larger than 1, mimicking a smoothed threshold behavior. The nonlinear dependence of
6fund(t) on ln[p(t)=pf ] = lnp(t) − lnpf shown in (43) is the +rst novel element of our model.
Usually, modellers reduce this term to the linear case n = 1 while, as we shall show, generalizing
to larger values n¿ 1 will be a crucial feature of the price dynamics. In economic language, the
exponent n = d ln6fund=d ln(ln[p(t)=pf ]) is called the “elasticity” or “sensitivity” of the order size
6fund with respect to the (normalized) log-price ln[p(t)=pf ].
A related “sensitivity”, that of the money demand to interest rate, has been recently documented to

be larger than 1, similarly to the Ide–Sornette (2002) proposal of taking n¿ 1 in (43). Using a survey
of roughly 2700 households, Mulligan and Sala-i-Martin (2000) estimated the interest elasticity of
money demand (the sensitivity or log-derivative of money demand to interest rate) to be very small
at low interest rates. This is due to the fact that few people decide to invest in interest-producing
assets when rates are low, due to “shopping” costs. In contrast, for large interest rates or for those
who own a signi+cant bank account, the interest elasticity of money demand is signi+cant. This is a
clear-cut example of a threshold-like behavior characterized by a strong nonlinear response. This can
be captured by e ≡ d lnM=d ln r = (r=rinK)n with n¿ 1 such that the elasticity e of money demand
M is negligible when the interest r is not signi+cantly larger than the inKation rate rinK and becomes
large otherwise.
Trend following (in various elaborated forms) was (and probably is still) one of the major

strategy used by technical analysts (see Andersen et al. (2000) for a review and references therein).
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More generally, it results naturally when investment strategies are positively related to past price
moves. Trend following can be captured by the following expression of the order size:

6trend(t) = a1[lnp(t)− lnp(t − 1)] + a2[lnp(t)− lnp(t − 1)]
×|lnp(t)− lnp(t − 1)|m−1 : (44)

This expression corresponds to driving the price up if the preceding move was up (a1¿ 0 and
a2¿ 0). The linear case (a1¿ 0; a2 = 0) is usually chosen by modellers. Here, we generalize this
model by adding the contribution proportional to a2¿ 0 from considerations similar to those leading
to the nonlinear expression (43) for the reversal term with an exponent n¿ 1. We argue that the
dependence of the order size at time t resulting from trend-following strategies is a nonlinear function
with exponent m¿ 1 of the price change at previous time steps. Indeed, a small price change from
time t − 1 to time t may not be perceived as a signi+cant and strong market signal. Since many
of the investment strategies are nonlinear, it is natural to consider an average trend-following order
size which increases in an accelerated manner as the price change increases in amplitude. Usually,
trend-followers increase the size of their order faster than just proportionally to the last trend. This
is reminiscent of the argument (Andersen et al., 2000) that traders’s psychology is sensitive to a
change of trend (acceleration or deceleration) and not simply to the trend (velocity). The fact that
trend-following strategies have an impact on price proportional to the price change over the previous
period raised to the power m¿ 1 means that trend-following strategies are not linear when averaged
over all of them: they tend to under-react for small price changes and over-react for large ones. The
second term of the right-hand-side of (44) with coeAcient a2 captures this phenomenology.

6.2.2. Nonlinear dynamical equation for stock market prices
Introducing the notation

x(t) = ln[p(t)=pf ] ; (45)

and the time scale �t corresponding to one time step, and putting all the contributions (43) and (44)
into (42), with 6(t) = 6fund(t) + 6trend(t), we get

x(t + �t)− x(t) =
1
L
(a1[x(t)− x(t − �t)] + a2[x(t)− x(t − �t)]

×|x(t)− x(t − �t)|m−1 − cx(t)|x(t)|n−1) : (46)

Expanding (46) as a Taylor series in powers of �t, we get

(�t)2
d2x
dt2

=−
[
1− a1

L

]
�t
dx
dt
+

a2(�t)m

L
dx
dt

∣∣∣∣dxdt
∣∣∣∣
m−1

− c
L
x(t)|x(t)|n−1 + O[(�t)3] ; (47)

where O[(�t)3] represents a term of the order of (�t)3. Note the existence of the second order
derivative, which results from the fact that the price variation from present to tomorrow is based on
analysis of price change between yesterday and present. Hence the existence of the three time lags
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leading to inertia. A special case of expression (46) with a linear trend-following term (a2 = 0) and
a linear reversal term (n = 1) has been studied in Bouchaud and Cont (1998) and Farmer (1998),
with the addition of a risk-aversion term and a noise term to account for all the other eNects not
accounted for by the two terms (43) and (44). We shall neglect risk-aversion as well as any other
term and focus only on the reversal and trend-following terms previously discussed to explore the
resulting price behaviors. Grassia (2000) has also studied a similar linear second-order diNerential
equation derived from market delay, positive feedback and including a mechanism for quenching
runaway markets.
Expression (46) is inspired by the continuous mean-+eld limit of the model of Pandey and

StauNer (2000), de+ned by starting from the percolation model of market price dynamics (Cont
and Bouchaud, 2000; Chowdhury and StauNer, 1999; StauNer and Sornette, 1999) and developed
to account for the dynamics of the Nikkei and Russian market recessions (Johansen and Sornette,
1999c, 2001b). The generalization assumes that trend-following and reversal to fundamental values
are two forces that inKuence the probability that a trader buys or sells the market. In addition,
Pandey and StauNer (2000) consider as we do here that the dependence of the probability to enter
the market is a nonlinear function with exponent n¿ 1 of the deviation between market price and
fundamental price. However, they do not consider the possibility that m¿ 1 and stick to the linear
trend-following case. We shall see that the analytical control oNered by our continuous formulation
allows us to get a clear understanding of the diNerent dynamical phases.
Among the four terms of Eq. (47), the +rst term of its right-hand side is the least interesting. For

a1¡L, it corresponds to a damping term which becomes negligible compared to the second term
in the terminal phase of the growth close to the singularity when |dx=dt| becomes very large. For
a1¿L, it corresponds to a negative viscosity but the instability it provides is again subdominant
for m¿ 1. The main ingredients here are the interplay between the inertia provided by the second
derivative in the left-hand side, the destabilizing nonlinear trend-following term with coeAcient
a2¿ 0 and the nonlinear reversal term. In order to simplify the notation and to simplify the analysis
of the diNerent regimes, we shall neglect the +rst term of the right-hand side of (47), which amounts
to take the special value a1 = L. In a +eld theoretical sense, our theory is tuned right at the “critical
point” with a vanishing “mass” term.
Eq. (47) can be viewed in two ways. It can be seen as a convenient short-hand notation for the

intrinsically discrete equation (46), keeping the time step �t small but +nite. In this interpretation,
we pose

�= a2(�t)m−2=L ; (48)

�= c=L(�t)2 ; (49)

which depend explicitly on �t, to get

d2x
dt2

= �
dx
dt

∣∣∣∣dxdt
∣∣∣∣
m−1

− �x(t)|x(t)|n−1 : (50)

A second interpretation is to genuinely take the continuous limit �t → 0 with the constraints a2=L ∼
(�t)2−m and c=L ∼ (�t)2. This allow us to de+ne the now �t-independent coeAcients � and �
according to (48) and (50) and obtain the truly continuous equation (50). This equation can also be
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written as

dy1
dt

= y2 ; (51)

dy2
dt

= �y2|y2|m−1 − �y1|y1|n−1 : (52)

This system leads to a +nite-time singularity with accelerating oscillations for m¿ 1 and n¿ 1. The
richness of behaviors results from the competition between these two terms.

6.2.3. Dynamical properties
The origin (y1=0; y2=0) plays a special role as the unstable (for m¿ 1) +xed point around which

spiral structures of trajectories are organized in phase space (y1; y2). It is particularly interesting that
this point plays a special role since y1 =0 means that the observed price is equal to the fundamental
price. If, in addition, y2 = 0, there is no trend, i.e., the market “does not know” which direction
to take. The fact that this is the point of instability around which the price trajectories organize
themselves provides a fundamental understanding of the cause of the complexity of market price
time series based on the instability of the fundamental price “equilibrium”.
Fig. 14 shows the reduced price for the trend-following exponent m=2:5. In this case, the reduced

price goes to a constant at tc with an in+nite slope (the singularity is thus on its derivative, or
“velocity”). We can also observe accelerating oscillations, reminiscent of log-periodicity. The novel
feature is that the oscillations are only transient, leaving place to a pure +nal accelerating trend in
the +nal approach to the critical time tc.
Fig. 15 shows that the oscillations with varying frequency and amplitude seen in Fig. 14 are

nothing but the projection on one axis of a spiraling structure in the plane. Actually, Fig. 15 shows
more than that: in the plane of the reduced price y1 and its “velocity” y2, it shows two special
trajectories that connect exactly the origin y1 = 0; y2 = 0 to in+nity. From general mathematical
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theorems of dynamical systems, one can then show that any trajectory starting close to the origin
will never be able to cross any of these two orbits. As a consequence, any real trajectory will
be guided within the spiraling channel, winding around the central point 0 many times before
exiting towards the +nite-time singularities. The approximately log-periodic oscillations result from
the oscillatory structure of the fundamental reversal term associated with the acceleration driven
by the trend-following term. The conjunction of the two leads to the beautiful spiral, governing a
hierarchical organization of the spiralling trajectories around the origin in the price-velocity space.
See Ide and Sornette (2002) for a detailed mathematical study of this system.
In sum, the simple two-dimensional dynamical system (51,52) embodies two nonlinear terms,

exerting respectively positive feedback and reversal, which compete to create a singularity in +nite
time decorated by accelerating oscillations. The power law singularity results from the increasing
growth rate. The oscillations result from the restoring mechanism. As a function of the order of the
nonlinearity of the growth rate and of the restoring term, a rich variety of behavior is observed. The
dynamical behavior is traced back fundamentally to the self-similar spiral structure of trajectories
in phase space unfolding around an unstable spiral point at the origin. The interplay between the
restoring mechanism and the nonlinear growth rate leads to approximately log-periodic oscillations
with remarkable scaling properties.

7. Autopsy of major crashes: universal exponents and log-periodicity

7.1. The crash of October 1987

As discussed in Section 2, the crash of October 1987 and its black Monday on October 19 remains
one of the most striking drops ever seen on stock markets, both by its overwhelming amplitude and
its encompassing sweep over most markets worldwide. It was preceded by a remarkably strong
“bull” regime epitomized by the following quote from Wall Street Journal, on August 26, 1987, the
day after the 1987 market peak: “In a market like this, every story is a positive one. Any news is
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this upper bound which can be varied signi+cantly. Reproduced from Sornette et al. (1996).

good news. It’s pretty much taken for granted now that the market is going to go up”. Investors
were thus largely unaware of the forthcoming risk happenings (Grant, 1990).

7.1.1. Precursory pattern
Time is often converted into decimal year units: for nonleap years, 365 days=1:00 year which
leads to 1 day=0:00274 years. Thus 0.01 year=3:65 days and 0.1 year=36:5 days or 5 weeks.
For example, October 19, 1987 corresponds to 87.800.

Fig. 16 shows the evolution of the New York stock exchange index S&P500 from July 1985 to
the end of October 1987 after the crash. The plusses (+) represent the best +t to an exponential
growth obtained by assuming that the market is given an average return of about 30% per year. This
+rst representation does not describe the apparent overall acceleration before the crash, occurring
already more than a year in advance. This acceleration (cusp-like shape) is better represented by
using power law functions that Sections 5 and 6 showed to be signatures of a critical behavior of
the market. The monotonic line corresponds to the following power law parameterization:

Fpow(t) = A1 + B1(tc − t)m1 ; (53)

where tc denotes the time at which the powerlaw +t of the S&P500 presents a (theoretically) diverg-
ing slope, announcing an imminent crash. In order to qualify and compare the +ts, the variances,
denoted var equal to the mean of the squares of the errors between theory and data, or its square-root
called the root-mean-square (r.m.s.) are calculated. The ratio of two variances corresponding to two
diNerent hypotheses is taken as a qualifying statistic. The ratio of the variance of the constant rate
hypothesis to that of the power law is equal to varexp=varpow ≈ 1:1 indicating only a slightly better
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performance of the power law in capturing the acceleration, the number of free variables being the
same and equal to 2.
However, already to the naked eye, the most striking feature in this acceleration is the presence

of systematic oscillatory-like deviations. Inspired by the insight given in Section 5 and especially
Section 6, the oscillatory continuous line is obtained by +tting the data by the following mathematical
expression:

Flp(t) = A2 + B2(tc − t)m2 [1 + C cos(! log((tc − t)=T ))] : (54)

This equation is the simplest example of a log-periodic correction to a pure power law for an
observable exhibiting a singularity at the time tc at which the crash has the highest probability
to occur. The log-periodicity here stems from the cosine function of the logarithm of the distance
tc − t to the critical time tc. Due to log-periodicity, the evolution of the +nancial index becomes
(discretely) scale-invariant close to the critical point.
The log-periodic correction to scaling implies the existence of a hierarchy of characteristic time

intervals tc − tn, given by the expression

Tn = Tc − (Tc − T0)&−n ; (55)

with a preferred scaling ratio denoted &. For the October 1987 crash, we +nd & � 1:5 − 1:7 (this
value is remarkably universal and is found approximately the same for other crashes as we shall
see). We expect a cut-oN at short time scales (i.e. above n ∼ a few units) and also at large time
scales due to the existence of +nite size eNects. These time scales tc− tn are not universal but depend
upon the speci+c market. What is expected to be universal are the ratios (tc− tn+1)=(tc− tn)= &. For
details on the +tting procedure, we refer to Sornette et al. (1996).
It is possible to generalize the simple log-periodic power law formula used in Fig. 16 by using

a mathematical tool, called bifurcation theory, to obtain its generic nonlinear correction, that allows
one to account quantitatively for the behavior of the Dow Jones and S&P500 indices up to 8 years
prior to the October 1987. The result of this theory presented in Sornette and Johansen (1997) is
used to generate the +t shown in Fig. 17. One sees clearly that the new formula accounts remarkably
well for almost eight years of market price behavior compared to only a little more than two years
for the simple log-periodic formula shown in Fig. 16. The nonlinear theory developed in Sornette
and Johansen (1997) leads to “log-frequency modulation”, an eNect +rst noticed empirically in
Feigenbaum and Freund (1996). The remarkable quality of the +ts shown in Figs. 16 and 17 have
been assessed in Johansen and Sornette (1999b).
In a recent reanalysis, Feigenbaum (2001) examined the data in a new way by taking the +rst

diNerences for the logarithm of the S&P500 from 1980 to 1987. The rational for taking the price
variation rather than the price itself is that the Kuctuations, noises or deviations are expected to
be more random and thus more innocuous than for the price which is a cumulative quantity. By
rigorous hypothesis testing, Feigenbaum found that the log-periodic component cannot be rejected
at the 95%-con+dence level: in plain words, this means that the probability that the log-periodic
component results from chance is about or less than 0.05.

7.1.2. Aftershock patterns
If the concept of a crash as a kind of critical point has any value, we should be able to identify

post-crash signatures of the underlying cooperativity. In fact, we should expect an at least qualitative
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symmetry between patterns before and after the crash. In other words, we should be able to document
the existence of a critical exponent as well as log-periodic oscillations on relevant quantities after
the crash. Such a signature in the volatility of the S&P500 index (a measure of the market risk
perceived by investors), implied from the price of S&P500 options, can indeed be seen in Fig. 18.
Fig. 18 presents the time evolution of the implied volatility of the S&P500, taken from Chen

et al. (1995). The perceived market risk is small prior to the crash, jumps up abruptly at the time of
the crash and then decays slowly over several months. This decay to “normal times” of perceived
risks is compatible with a slow power law decay decorated by log-periodic oscillations, which can
be +tted by expression (54) with tc − t (before the crash) replaced by t − tc (after the crash). Our
analysis with (54) with tc−t replaced by t−tc gives again an estimation of the position of the critical
time tc, which is found correctly within a few days. Note the long time scale covering a period of
the order of a year involved in the relaxation of the volatility after the crash to a level comparable
to the one before the crash. This implies the existence of a “memory eNect”: market participants
remain nervous for quite a long time after the crash, after being burned out by the dramatic event.
It is also noteworthy that the S&P500 index as well as other markets worldwide have remained

close to the after-crash level for a long time. For instance, by February 29, 1988, the world index
stood at 72.7 (reference 100 on September 30, 1987). Thus, the price level established in the October
crash seems to have been a virtually unbiased estimate of the average price level over the subsequent
months (see also Fig. 19). This is in support of the idea of a critical point, according to which the
event is an intrinsic signature of a self-organization of the markets worldwide.
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Fig. 19. Time evolution of the S&P500 index over a time window of a few weeks after the October 19, 1987 crash. The
+t with an exponentially decaying sinusoidal function shown in dashed line suggests that a good model for the short-time
response of the U.S. market is a single dissipative harmonic oscillator or damped pendulum. Reproduced from Sornette
et al. (1996).

There is another striking signature of the cooperative behavior of the U.S. market, found by
analyzing the time evolution of the S&P500 index over a time window of a few weeks after the
October 19, 1987 crash. A +t shown in Fig. 19 with an exponentially decaying sinusoidal function
suggests that the U.S. market behaved, for a few weeks after the crash, as a single dissipative
harmonic oscillator, with a characteristic decay time of about one week equal to the period of the
oscillations. In other words, the price followed the trajectory of a pendulum moving back and forth
with damped oscillations around an equilibrium position.
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This signature strengthens the view of a market as a cooperative self-organizing system. The basic
story suggested by these +gures is the following. Before the crash, imitation and speculation were
rampant and led to a progressive “aggregation” of the multitude of agents into a large eNective
“super-agent”, as illustrated in Figs. 16 and 17; right after the crash, the market behaved as a single
“super-agent” +nding rapidly the equilibrium price through a return to “equilibrium”, as shown in
Fig. 19. On longer time scales, the “super-agent” progressively was fragmented and the diversity of
behaviors was rejuvenated as seen from Fig. 18.

7.2. The crash of October 1929

The crash of October 1929 is the other major historical market event of the twentieth century.
Notwithstanding the diNerences in technologies and the absence of computers and other modern
means of information transfer, the October 1929 crash exhibits many similarities with the October
1987 crash, so much so as shown in Figs. 20 and 21, that one can wonder about the similitudes: what
has not changed over the history of mankind is the interplay between human’s crave for exchanges
and pro+ts, and their fear of uncertainty and losses. The similarity between the two situations in
1929 and 1987 was in fact noticed at a qualitative level in an article in the Wall Street Journal
on October 19, 1987, the very morning of the day of the stock market crash (with a plot of stock
prices in the 1920s and the 1980s). See the discussion in Shiller (1989).
The similarity between the two crashes can be made quantitative by comparing the +t of the

Dow Jones index with formula (54) from June 1927 till the maximum before the crash in October
1929, as shown in Fig. 20, to the corresponding +t for the October 1987 crash shown in Fig. 16.
Notice the similar widths of the two time windows, the similar acceleration and oscillatory structures,
quanti+ed by similar exponents m2 and log-periodic angular frequency !: m19872 = 0:33 compared to
m19292 = 0:45; !1987 = 7:4 compared to !1987 = 7:9. These numerical values are remarkably close and
can be considered equal to within their uncertainties.
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Fig. 21. Time dependence of the logarithm of the Dow Jones stock exchange index from June 1921 to September 1929
and best +t by the improved nonlinear log-periodic formula developed in Sornette and Johansen (1997). The crash of
October 23, 1929 corresponds to 1929.81 decimal years. The parameters of the +t are: r:m:s:= 0:041, tc = 1929:84 year,
m2 = 0:63, ! = 5:0, ]! = −70, ]t = 14 years, A2 = 61, B2 = −0:56, C = 0:08. ]! and ]t are two new parameters
introduced in Sornette and Johansen (1997). Reproduced from Sornette and Johansen (1997).

Fig. 21 for the October 1929 crash is the analog of Fig. 17 for the October 1987 crash. It uses the
improved nonlinear log-periodic formula developed in Sornette and Johansen (1997) over a much
larger time window starting in June 1921. Also according to this improved theoretical formulation,
the values of the exponent m2 and of the log-periodic angular frequency ! for the two great crashes
are quite close to each other: m19292 =0:63 and m19872 =0:68. This is in agreement with the universality
of the exponent m2 predicted from the renormalization group theory for log-periodicity (Saleur and
Sornette, 1996; Sornette, 1998). A similar universality is also expected for the log-frequency, albeit
with a weaker strength as it has been shown (Saleur and Sornette, 1996) that Kuctuations and
noise will modify ! diNerently depending on their nature. The +ts indicate that !1929 = 5:0 and
!1987 = 8:9. These values are not unexpected and fall within the range found for other crashes (see
below). They correspond to a preferred scaling ratio equal respectively to &1929 = 3:5 compared to
&1987 = 2:0.
The October 1929 and October 1987 thus exhibit two similar precursory patterns on the Dow

Jones index, starting respectively 2.5 and 8 years before them. It is thus a striking observation
that essentially similar crashes have punctuated this century, notwithstanding tremendous changes
in all imaginable ways of life and work. The only thing that has probably changed little are the
way humans think and behave. The concept that emerges here is that the organization of traders
in +nancial markets leads intrinsically to “systemic instabilities”, that probably result in a very
robust way from the fundamental nature of human beings, including our gregarious behavior, our
greediness, our instinctive psychology during panics and crowd behavior and our risk aversion.
The global behavior of the market, with its log-periodic structures that emerge as a result of the
cooperative behavior of traders, is reminiscent of the process of the emergence of intelligent behavior
at a macroscopic scale that individuals at the microscopic scale cannot perceive. This process has
been discussed in biology for instance in animal populations such as ant colonies or in connection
with the emergence of consciousness (Anderson et al., 1988).
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There are however some diNerences between the two crashes. An important quantitative diNerence
between the great crash of 1929 and the collapse of stock prices in October 1987 was that stock
price variability in the year following the crash was much higher in 1929 than in 1987 (Romer,
1990). This has led economists to argue that the collapse of stock prices in October 1929 generated
signi+cant temporary increased uncertainty about future income that led consumers to forgo purchases
of durable goods. Forecasters were then much more uncertain about the course of future income
following the stock market crash than was typical even for unsettled times. Contemporary observers
believed that consumer uncertainty was an important force depressing consumption, that may have
been an important factor in the strengthening of the great depression. The increase of uncertainty
after the October 1987 crash has led to a smaller eNect, as no depression ensued. However, Fig. 18
clearly quanti+es an increased uncertainty and risk, lasting months after the crash.

7.3. The three Hong Kong crashes of 1987, 1994 and 1997

Hong Kong has a strong free-market attitude, characterized by very few restrictions on both
residents and nonresidents, private persons or companies, to operate, borrow, repatriate pro+t and
capital. This goes on even after Hong Kong reverted to Chinese sovereignty on July 1st, 1997 as a
Special Administrative Region (SAR) of the People’s Republic of China, as it was promised a “high
degree of autonomy” for at least 50 years from that date according to the terms of the Sino-British
Joint Declaration. The SAR is ruled according to a mini-constitution, the Basic Law of the Hong
Kong SAR. Hong Kong has no exchange controls and crossborder remittances are readily permitted.
These rules have not changed since July 1st, 1997 when China took over sovereignty from the UK.
Capital can thus Kow in and out of the Hong Kong stock market in a very Kuid manner. There
are no restrictions on the conversion and remittance of dividends and interest. Investors bring their
capital into Hong Kong through the open exchange market and remit it the same way.
Accordingly, we may expect speculative behavior and crowd eNects to be free to express them-

selves in their full force. Indeed, the Hong Kong stock market provides maybe the best textbook-like
examples of speculative bubbles decorated by log-periodic power law accelerations followed by
crashes. Over the last 15 years only, one can identify three major bubbles and crashes. They are
indicated as I, II and III in Fig. 22.

1. The +rst bubble and crash are shown in Fig. 23 and are synchronous to the worldwide October
1987 crash already discussed. On October 19, 1987, the Hang Seng index closed at 3362.4. On
October 26, it closed at 2241.7, corresponding to a cumulative loss of 33.3%.

2. The second bubble ends in early 1994 and is shown in Fig. 24. The bubble ends by what we
could call a “slow crash”: on February 4, 1994, the Hang Seng index topped at 12157.6 and, a
month later on March 3, 1994, it closed at 9802, corresponding to a cumulative loss of 19.4%.
It went even further down over the next two months, with a close at 8421.7 on May, 9, 1994,
corresponding to a cumulative loss since the high on February 4 of 30.7%.

3. The third bubble, shown in Fig. 25 ended in mid-august 1997 by a slow and regular decay until
October 17, 1997, followed by an abrupt crash: the drop from 13601 on October 17 to 9059.9 on
October 28 corresponds to a 33.4% loss. The worst daily plunge of 10% was the third biggest
percentage fall following the 33.3% crash in October 1987 and 21.75% fall after the Tiananmen
Square crackdown in June 1989.
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Table 2 gives the parameters of the +ts with Eq. (54) of the bubble phases of the three events
I, II and III shown in Figs. 23–25. It is quite remarkable that the three bubbles on the Hong Kong
stock market have essentially the same log-periodic angular frequency ! within ±15%. These val-
ues are also quite similar to what has been found for bubbles on the USA market and for the
FOREX (see below). In particular, for the October 1997 crash on the Hong Kong market, we
have m19872 = 0:33¡mHK19972 = 0:34¡m19292 = 0:45 and !1987 = 7:4¡!HK1997 = 7:5¡!1929 = 7:9;
the exponent m2 and the log-periodic angular frequency ! for the October 1997 crash on the
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reaching a close of 9059.9 on October 28, 1997, with an intra-day low of 8775.9. The amplitude of the total cumulative
loss since the high on August 11 is 45%. The amplitude of the crash from October 17 to October 28 is 33.4%. The +t is
Eq. (54) with A2 ≈ 20077, B2 ≈ −8241, C ≈ −397, m2 ≈ 0:34, tc ≈ 1997:74, ! ≈ 7:5 and % ≈ 0:78. Reproduced from
Johansen and Sornette (1999a, 2001b).

Hong Kong Stock Exchange are perfectly bracketed by the two main crashes on Wall Street!
Fig. 26 demonstrates the “universality” of the log-periodic component of the signals in the three
bubbles preceding the three crashes on the Hong Kong market.
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Table 2
Fit parameters of the three speculative bubbles on the Hong Kong stock market shown in Figs. 23–25 leading to a large
crash. Multiple entries correspond to the two best +ts. Reproduced from Johansen and Sornette (2001b)

Stock market A2 B2 B2C m2 tc ! %

Hong Kong I 5523; 4533 −3247; −2304 171; −174 0.29; 0.39 87.84; 87.78 5.6; 5.2 −1.6; 1.1
Hong Kong II 21121 −15113 −429 0.12 94.02 6.3 −0.6
Hong Kong III 20077 −8241 −397 0.34 97.74 7.5 0.8
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Fig. 26. Lomb spectral analysis of the three bubbles preceding the three crashes on the Hong Kong market is shown in
Figs. 23–25. See Press et al. (1992) for explanations on the Lomb spectral analysis. All three bubbles are characterized by
almost the same “universal” log-frequency f ≈ 1 corresponding to a preferred scaling ratio of the discrete scale invariance
equal to & = exp(1=f) ≈ 2:7. Courtesy A. Johansen.

7.4. The crash of October 1997 and its resonance on the U.S. market

The Hong Kong market crash of October 1997 has been presented as a textbook example where
contagion and speculation took a course of their own. When Malaysian Prime Minister Dr Mahathir
Mohamad made his now famous address to the World Bank-International Monetary Fund seminar in
Hong Kong in September 1997, many critics pooh-poohed his proposal to ban currency speculation
as an attempt to hide the fact that Malaysia’s economic fundamentals were weak. They pointed to
the fact that the currency turmoil had not aNected Hong Kong, whose economy was basically sound.
Thus, if Malaysia and other countries were aNected, that’s because their economies were weak. At
that time, it was easy to point out the de+cits in the then current account of Thailand, Malaysia
and Indonesia. In contrast, Hong Kong had a good current account situation and moreover had solid
foreign reserves worth U.S.$88 billion. This theory of the strong-won’t-be-aNected already suNered
a setback when the Taiwan currency’s peg to the U.S. dollar had to be removed after the Taiwan
authorities spent U.S.$5 billion to defend their currency from speculative attacks, and then gave
up. The “coup de grace” came with the meltdown in Hong Kong in October 1997 which shocked
the analysts and the media as this high-Kying market was considered the safest haven in Asia.
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In contrast to the meltdown in Asia’s lesser markets as country after country, led by Thailand in
July 1997, succumbed to economic and currency problems, Hong Kong was supposed to be diNerent.
With its Western-style markets, the second largest in Asia after Japan, it was thought to be immune
to the +nancial Ku that had swept through the rest of the continent. It is clear from our analysis
of Section 5 and from the lessons of the two previous bubbles ending in October 1987 and in
early 1994 that those assumptions naively overlooked the contagion leading to over-investments
in the build-up period preceding the crash and the resulting instability, which left the Hong Kong
market vulnerable to speculative attacks. Actually, hedge funds in particular are known to have taken
positions consistent with a possible crisis on the currency and on the stock market, by “shorting”
(selling) the currency to drive it down, forcing the Hong Kong government to raise interest rates to
defend it by increasing the currency liquidity but as a consequence having equities suNer, making
the stock market more unstable.
As we have already stressed, one should not mix the “local” cause from the fundamental cause of

the instability. As the late George Stigler once put it, to blame ‘the markets’ for an outcome we don’t
like is like blaming the waiters in restaurants for obesity. Within the framework defended here (see
also Sornette, 2003), crashes occur as possible (but not necessary) outcomes of a long preparation,
that we refer for short as “herding”, which makes the market enter into a more and more unstable
regime. When in this state, there are many possible “local” causes that may cause it to stumble.
Pushing the argument to the extreme to make it crystal clear, it is as if the responsibility for the
collapse of the infamous Tacoma Narrows Bridge that once connected mainland Washington with the
Olympic peninsula was attributed to strong wind. It is true that, on November 7, 1940, at approxi-
mately 11:00 AM, it suddenly collapsed after developing a remarkably “ordered” sway in response to
a strong wind after it had been open to traAc for only a few months (see Tacoma Narrows Bridge
historical +lm footage showing in 250 frames (10 s) the maximum torsional motion shortly be-
fore failure of this immense structure: http://cee.carleton.ca/Exhibits/Tacoma Narrows/).
However, the strong wind of that day is only the “local” cause while there is a more fundamental
cause: the bridge, like most objects, has a small number of characteristic vibration frequencies, and
one day the wind was exactly of the strength needed to excite one of them. The bridge responded
by vibrating at this characteristic frequency so strongly, i.e., by “resonating”, that it fractured the
supports holding it together. The fundamental cause of the collapse of the Tacoma Narrows Bridge
thus lies in an error of conception that enhanced the role of one speci+c mode of resonance. We
propose that, analogously to the collapse of the Tacoma Narrows Bridge, many stock markets crash
as the results of built-in or acquired instabilities. These instabilities may in turn be revealed by
“small” perturbations that lead to the collapse.
The speculative attacks in periods of market instabilities are sometimes pointed at as possible

causes of serious potential hazards for developing countries when allowing the global +nancial mar-
kets to have free play, especially when these countries come under pressure to open up their +nancial
sectors to large foreign banks, insurance companies, stock broking +rms and other institutions, under
the World Trade Organization’s +nancial services negotiations. We argue that the problem comes
in fact fundamentally from the over-enthusiastic initial in-Kux of capital as a result of herding, that
initially pro+ts the country, but at the risk of future instabilities: developing countries as well as
investors “cannot have the cake and eat it too!” From an eAcient market view point, the speculative
attacks are nothing but the revelation of the instability and the means by which the markets are
forced back to a more stable dynamical state.

http://cee.carleton.ca/Exhibits/Tacoma_Narrows/
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Fig. 27. The best +t shown as the smooth continuous line of the logarithm of the S&P500 index from January 1991
till September 4, 1997 (1997.678) by the improved nonlinear log-periodic formula developed in Sornette and Johansen
(1997), already used in Figs. 17 and 21. The exponent m2 and log-periodic angular frequency ! are respectively m2=0:73
(compared to 0.63 for October 1929 and 0.33 for October 1987) and !=8:93 (compared to 5.0 for October 1929 and 7.4
for October 1987). The critical time predicted by this +t is tc =1997:948, i.e., mid-December 1997. Courtesy A. Johansen.

Interestingly, the October 1997 crash on the Hong Kong market had important echos in other
markets worldwide and in particular in the U.S. markets. The story is often told as if a “wave of
selling”, starting in Hong Kong, has spread +rst to other southeast Asian markets based on negative
sentiment—which served to reaArm the deep +nancial problems of the Asian tiger nations—then to
the European markets, and +nally to the U.S. market. The shares that were hardest hit in Western
markets were the multinational companies, which receive part of their earnings from the southeast
Asian region. The reason for their devaluation is that the region’s economic slowdown would lower
corporate pro+ts. It is estimated that the 25 companies which make up one third of Wall Street’s
S&P500 index market capitalisation earn roughly half of their income from non-U.S. sources. Lower
growth in southeast Asia heightened one of the biggest concerns of Wall Street investors. To carry
on the then present “bull” run, the market needed sustained corporate earnings—if they were not
forthcoming, the cycle of rising share prices would whither into one of falling share prices. Concern
over earnings might have proved to be the straw that broke Wall Street’s six-year bull run.
Fingerprints of herding and of an incoming instability were detected by several groups indepen-

dently and announced publicly. According to our theory, the turmoil on the +nancial U.S. market in
October 1997 should not be seen only as a passive reaction to the Hong Kong crash. The log-periodic
power law signature observed on the U.S. market over several years before October 1997 (see
Fig. 27) indicates that a similar “herding” instability was also developing simultaneously. In fact,
the detection of log-periodic structures and a prediction of a stock market correction or a crash at
the end of October 1997 was formally issued jointly ex-ante on September 17, 1997 by A. Johansen
and the author, to the French oAce for the protection of proprietary softwares and inventions with
registration number 94781. In addition, a trading strategy has been devised using put options in
order to provide an experimental test of the theory. A 400% pro+t has been obtained in a two week
period covering the mini-crash of October 28, 1997. The proof of this pro+t is available from a
Merrill Lynch client cash management account released in November 1997. Using a variation of
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our theory which turns out to be slightly less reliable (see the comparative tests in Johansen and
Sornette, 1999b), a group of physicists and economists (Vandewalle et al., 1998a) also made a
public announcement published on September 18, 1997 in a Belgium journal (Dupuis, 1997) and
communicated afterwards their methodology in a scienti+c publication (Vandewalle et al., 1998b).
Two other groups have also analyzed, after the fact, the possibility to predict this event. Feigenbaum
and Freund (1998) analyzed the log-periodic oscillations in the S&P500 and the NYSE in relation
to the October 27’th “correction” seen on Wall Street. Gluzman and Yukalov (1998) proposed a
new approach based on the algebraic self-similar renormalization group to analyze the time series
corresponding to the October 1929 and 1987 crashes and the October 1997 correction of the New
York Stock Exchange (NYSE) (Gluzman and Yukalov, 1998).
The best +t of the logarithm of the S&P500 index from January 1991 till September 4, 1997 by the

improved nonlinear log-periodic formula developed in Sornette and Johansen (1997), already used
in Figs. 17 and 21 is shown in Fig. 27. This result and many other analyses led to the prediction
alluded to above. It turned out that the crash did not really occur: what happened was that the
Dow plunged 554.26 points, +nishing the day down 7.2%, and NASDAQ posted its biggest-ever
(up to that time) one-day point loss. In accordance with a new rule passed after October 1987
“Black Monday”, trading was halted on all major U.S. exchanges. Private communications from
professional traders to the author indicate that many believed that a crash was coming but this turns
out to be incorrect. This sentiment has also to be put in the perspective of the earlier sell-oN at the
beginning of the month triggered by Greenspan’s statement that the boom in the U.S. economy was
unsustainable and that the current rate of gains in the stock market was unrealistic.
It is actually interesting that the critical time tc identi+ed around this data indicated a change of

regime rather than a real crash: after this turbulence, the U.S. market remained more or less Kat, thus
breaking the previous “bullish” regime, with large volatility until the end of January 1998, and then
started again a new “bull” phase stopped in its course in August 1998, that we shall analyze below.
The observation of a change of regime after tc is in full agreement with the rational expectation
model of a bubble and crash described in Section 5: the bubble expands, the market believes that
a crash may be more and more probable, the prices develop characteristic structures of speculation
and herding but the critical time passes without the crash happening. This can be interpreted as the
nonzero probability scenario also predicted by the rational expectation model of a bubble and crash
described in Section 5, that it is possible that no crash occurs over the whole lifetime of the bubble
including tc.
The simultaneity of the critical times tc of the Hong Kong crash and of the end of the U.S. and

European speculative bubble phases at the end of October 1997 may be neither a lucky occurrence
nor a signature of a causal impact of one market (Hong Kong) onto others, as has been often
discussed too naively. This simultaneity can actually be predicted in a model of rational expectation
bubbles allowing the coupling and interactions between stock markets. For general interactions, if
a critical time appears in one market, it should also be present in other markets as a result of the
nonlinear interactions existing between the markets (Johansen and Sornette, 2001a).

7.5. Currency crashes

Currencies can also develop bubbles and crashes. The bubble on the dollar starting in the early
1980s and ending in 1985 is a remarkable example shown in Fig. 28.
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Fig. 28. The U.S.$ expressed in German Mark DEM (top curve) and in Swiss franc CHF (bottom curve) prior to its
collapse on mid-1985. The +t to the DEM currency against the U.S. dollar with Eq. (54) is shown as the continuous and
smooth line and give A2 ≈ 3:88, B2 ≈ −1:2, B2C ≈ 0:08, m2 ≈ 0:28, tc ≈ 1985:20, ! ≈ 6:0 and % ≈ −1:2. The +t to
the Swiss franc against the U.S. dollar with Eq. (54) gives A2 ≈ 3:1, B2 ≈ −0:86, B2C ≈ 0:05, m2 ≈ 0:36, tc ≈ 1985:19,
! ≈ 5:2 and % ≈ −0:59. Note the small Kuctuations in the value of the scaling ratio 2:26 &6 2:7, which constitutes
one of the key test of our “critical herding” theory. Reproduced from Johansen and Sornette (1999a).

The U.S. dollar experienced an unprecedented cumulative appreciation against the currencies of the
major industrial countries starting around 1980, with several consequences: loss of competitiveness
with important implications for domestic industries, increase of the U.S. merchandise trade de+cit
by as much as $45 billion by the end of 1983, with export sales about $35 billion lower and the
import bill $10 billion higher. For instance, in 1982, it was already expected that, through its eNects
on export and import volume, the appreciation would reduce real gross national product by the end
of 1983 to a level 1–1.5% lower than the 3rd quarter 1980 pre-appreciation level (Feldman, 1982).
The appreciation of the U.S. dollar from 1980 to 1984 was accompanied by substantial decline in
prices for the majority of manufactured imports from Canada, Germany, and Japan. However, for a
substantial minority of prices, the imported items’ dollar prices rose absolutely and in relation to the
general U.S. price level. The median change was a price decline of 8% for imports from Canada
and Japan, and a decrease of 28% for goods from Germany (Fieleke, 1985). As a positive eNect, the
impact on the U.S. inKation outlook was to improve it very signi+cantly. There is also evidence that
the strong dollar in the +rst half of the 1980s forced increased competition in U.S. product markets,
especially vis-a-vis continental Europe (Knetter, 1994).
As we explained in Section 5, according to the rational expectation theory of speculative bubbles,

prices can be driven up by an underlying looming risk of a strong correction or crash. Such a
possibility has been advocated as an explanation for the strong appreciation of the U.S. dollar from
1980 to early 1985 (Kaminsky and Peruga, 1991). If the market believes that a discrete event may
occur when the event does not materialize for some time, this may have two consequences: drive
price up and lead to an apparent ineAcient predictive performance of forward exchange rates (forward
and future contracts are +nancial instruments that track closely “spot” prices as they embody the best
information on the expectation of market participants on near-term spot price in the future). Indeed,
from October 1979 to February 1985, forward rates systematically underpredicted the strength of the
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Fig. 29. The U.S. dollar expressed in CAN$ and YEN currencies prior to its drop starting in August 1998. The +t with
Eq. (54) to the two exchange rates gives A2 ≈ 1:62, B2 ≈ −0:22, B2C ≈ −0:011, m2 ≈ 0:26, tc ≈ 98:66, % ≈ −0:79,
! ≈ 8:2 and A2 ≈ 207, B2 ≈ −85, B2C ≈ 2:8, m2 ≈ 0:19, tc ≈ 98:78, % ≈ −1:4, ! ≈ 7:2, respectively. Reproduced from
Johansen et al. (1999).

U.S. dollar. Two discrete events could be identi+ed as governing market expectations (Kaminsky
and Peruga, 1991): (1) change in monetary regime in October 1979 and the resulting private sector
doubts about the Federal Reserve’s commitment to lower money growth and inKation; (2) private
sector anticipation of the dollar’s depreciation beginning in March 1985, i.e., anticipation of a strong
correction, exactly as in the bubble-crash model of Section 5. The corresponding characteristic power
law acceleration of bubbles decorated by log-periodic oscillations is shown in Fig. 28.
Expectations of future exchange rate have been shown to be excessive in the posterior period from

1985.2 to 1986.4, indicating bandwagon eNects at work and the possibility of a rational speculative
bubble (MacDonald and Torrance, 1988). As usual before a strong correction or a crash, analysts
were showing over-con+dence and there were many reassuring talks of the absence of a signi+cant
danger of collapse of the dollar, which has risen to unprecedented heights against foreign currencies
(Holmes, 1985). On the long term however, it was clear that such a strong dollar was unsustainable
and there were indications that the dollar was overvalued, in particular because foreign exchange
markets generally hold that a nation’s currency can remain strong over the longer term, only if the
nation’s current account is healthy: in contrast, for the +rst half of 1984, the U.S. current account
suNered a seasonally adjusted de+cit of around $44.1 billion.
A similar but somewhat attenuated bubble of the U.S. dollar expressed respectively in Canadian

dollar and Japanese Yen, extending over slightly less than a year and bursting in the summer of 1998,
is shown in Fig. 29. Paul Krugman has suggested that this run-up on the Yen and Canadian dollar,
as well as the near collapse of U.S. +nancial markets at the end of the summer of 1998, which
is discussed in the next section, are the un-wanted “byproduct of a vast get-richer-quick scheme
by a handful of shadowy +nancial operators” which back+red (Krugman, 1998). The remarkable
quality of the +ts of the data with our theory does indeed give credence to the role of speculation,
imitation and herding, be them spontaneous, self-organized or manipulated in part. Actually, Frankel
and Froot (1988, 1990) have found that, over the period 1981–1985, the market shifted away from
the fundamentalists and toward the chartists or trend-followers.
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Fig. 30. The Hang Seng index prior to the October 1997 crash on the Hong-Kong Stock Exchange already shown in
Fig. 25 and the S&P500 stock market index prior to the crash on Wall Street in August 1998. The +t to the S&P500
index is Eq. (54) with A2 ≈ 1321, B2 ≈ −402, B2C ≈ 19:7, m2 ≈ 0:60, tc ≈ 98:72, % ≈ 0:75 and ! ≈ 6:4. Reproduced
from Johansen et al. (1999).

7.6. The crash of August 1998

From its top on mid-June 1998 (1998.55) to its bottom on the +rst days of September 1998
(1998.67), the U.S. S&P500 stock market lost 19%. This “slow” crash and in particular the turbulent
behavior of the stock markets worldwide starting mid-august are widely associated with and even
attributed to the plunge of the Russian +nancial markets, the devaluation of its currency and the
default of the government on its debts obligations.
The analysis presented in Fig. 30 suggests a diNerent story: the Russian event may have been

the triggering factor but not the fundamental cause! One can observe clear +ngerprints of a kind
of speculative herding, starting more than three years before, with its characteristic power law ac-
celeration decorated by log-periodic oscillations. Table 3 gives a summary of the parameters of the
log-periodic power law +t to the main bubbles and crashed discussed until now. The crash of August
1998 is seen to +t nicely in the family of crashes with “herding” signatures.
This indicates that the stock market was again developing an unstable bubble which would have

culminated at some critical time tc ≈ 1998:72, close to the end of September 1998. According to the
rational expectation bubble models of Section 5, the probability for a strong correction or a crash
was increasing as tc was approached, with a raising susceptibility to “external” perturbations, such
as news or +nancial diAculties occurring somewhere in the “global village”. The Russian meltdown
was just such a perturbation. What is remarkable is that the U.S. market contained somehow the
information of an upcoming instability through its unsustainable accelerated growth and structures!
The +nancial world being an extremely complex system of interacting components, it is not farfetched
to imagine that Russia was led to take actions against its unsustainable debt policy at the time of a
strongly increasing concern by many about risks on investments made in developing countries.
The strong correction starting mid-august was not speci+c to the U.S. markets. Actually, it was

much stronger in some other markets, such as the German market. Indeed, within the period of only
9 months preceding July 1998, the German DAX index went up from about 3700 to almost 6200 and
then quickly declined over less than one month to below 4000. Precursory log-periodic structures
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Table 3
Summary of the parameters of the log-periodic power law +t to the main bubbles and crashes discussed in this section
(see Figs. 31, 32 and 33 below for the April 2000 crash on the Nasdaq and the two crashes on IBM and on Procter &
Gamble)

Crash tc tmax tmin drop m2 ! & A2 B2 B2C Var

1929 (WS) 30.22 29.65 29.87 47% 0.45 7.9 2.2 571 −267 14.3 56
1985 (DEM) 85.20 85.15 85.30 14% 0.28 6.0 2.8 3.88 1.16 −0.77 0.0028
1985 (CHF) 85.19 85.18 85.30 15% 0.36 5.2 3.4 3.10 −0.86 −0.055 0.0012
1987 (WS) 87.74 87.65 87.80 30% 0.33 7.4 2.3 411 −165 12.2 36
1997 (H-K) 97.74 97.60 97.82 46% 0.34 7.5 2.3 20077 −8241 −397 190360
1998 (WS) 98.72 98.55 98.67 19% 0.60 6.4 2.7 1321 −402 19.7 375
1998 (YEN) 98.78 98.61 98.77 21% 0.19 7.2 2.4 207 −84.5 2.78 17
1998 (CAN$) 98.66 98.66 98.71 5.1% 0.26 8.2 2.2 1.62 −0.23 −0.011 0.00024
1999 (IBM) 99.56 99.53 99.81 34% 0.24 5.2 3.4
2000 (P& G) 00.04 00.04 00.19 54% 0.35 6.6 2.6
2000 (Nasdaq) 00.34 00.22 00.29 37% 0.27 7.0 2.4

tc is the critical time predicted from the +t of each +nancial time series to the Eq. (54). The other parameters of the +t
are also shown. &= exp[2'=!] is the preferred scaling ratio of the log-periodic oscillations. The error Var is the variance
between the data and the +t and has units of price× price. Each +t is performed up to the time tmax at which the market
index achieved its highest maximum before the crash. tmin is the time of the lowest point of the market disregarding
smaller “plateaus”. The percentage drop is calculated as the total loss from tmax to tmin. Reproduced from Johansen et al.
(1999).

have been documented for this event over the nine months preceding July 1998 (Drozdz et al.,
1999), with the addition that analogous log-periodic oscillations occurred also on smaller time scales
as precursors of smaller intermediate decreases, with similar preferred scaling ratio & at the various
levels of resolution. However, the reliability of these observations at smaller time scales established
by visual inspection in Drozdz et al. (1999) remain to be established with rigorous statistical tests.

7.7. The Nasdaq crash of April 2000

In the last few years of the second Millenium, there was a growing divergence in the stock market
between “New Economy” and “Old Economy” stocks, between technology and almost everything
else. Over 1998 and 1999, stocks in the Standard & Poor’s technology sector have risen nearly four-
fold, while the S&P500 index has gained just 50%. And without technology, the benchmark would
be Kat. In January 2000 alone, 30% of net inKows into mutual funds went to science and technology
funds, versus just 8.7% into S&P500 index funds. As a consequence, the average price-over-earning
ratio P/E for Nasdaq companies was above 200 (corresponding to a ridiculous earning yield of
0.5%), a stellar value above anything that serious economic valuation theory would consider rea-
sonable. It is worth recalling that the very same concept and wording of a “New Economy” was
hot in the minds and mouths of investors in the 1920s and in the early 1960s as already mentioned.
In the 1920s, the new technologies of the time were General Electric, ATT and other electric and
communication companies, and they also exhibited impressive price appreciations of the order of
hundreds of percent in an 18 month time intervals before the 1929 crash. In the early 1960s, the
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growth stocks were in the new electronic industry like Texas Instruments and Varian Associates,
which expected to exhibit a very fast rate of earning growth, were highly prized and far outdistanced
the standard blue-chip stocks. Many companies associated with the esoteric high-tech of space travel
and electronics sold in 1961 for over 200 times their previous year’s earning. The “tronics boom”,
as it was called, has actually remarkably similar features to the “new economy” boom preceding the
October 1929 crash or the “new economy” boom of the late 1990s, ending in the April 2000 crash
on the Nasdaq index.
The Nasdaq Composite index dropped precipiteously with a low of 3227 on April 17, 2000,

corresponding to a cumulative loss of 37% counted from its all-time high of 5133 reached on March
10, 2000. The Nasdaq Composite consists mainly of stock related to the so-called “New Economy”,
i.e., the Internet, software, computer hardware, telecommunication and so on. A main characteristic of
these companies is that their price-earning-ratios (P/E’s), and even more so their price-dividend-ratios,
often came in three digits prior to the crash. Some companies, such as VA LINUX, actually had
a negative Earning/Share of −1:68. Yet they were traded around $40 per share which is close to
the price of Ford in early March 2000. Opposed to this, “Old Economy” companies, such as Ford,
General Motors and DaimlerChrysler, had P/E ≈ 10. The diNerence between “Old Economy” and
“New Economy” stocks is thus the expectation of future earnings (Sornette, 2000b): investors, who
expect an enormous increase in for example the sale of Internet and computer related products rather
than in car sales, are hence more willing to invest in Cisco rather than in Ford notwithstanding the
fact that the earning-per-share of the former is much smaller than for the later. For a similar price
per share (approximately $60 for Cisco and $55 for Ford), the earning per share was $0.37 for
Cisco compared to $6.0 for Ford (Cisco has a total market capitalisation of $395 billions (close of
April 14, 2000) compared to $63 billions for Ford). In the standard fundamental valuation formula,
in which the expected return of a company is the sum of the dividend return and of the growth
rate, “New Economy” companies are supposed to compensate for their lack of present earnings by
a fantastic potential growth. In essence, this means that the bull market observed in the Nasdaq
in 1997–2000 has been fueled by expectations of increasing future earnings rather than economic
fundamentals (and by the expectation that others will expect the same thing and will help increase
the capital gains): the price-to-dividend ratio for a company such as Lucent Technologies (LU)
with a capitalization of over $300 billions prior to its crash on the 5 January 2000 is over 900
which means that you get a higher return on your checking account(!) unless the price of the stock
increases. Opposed to this, an “Old Economy” company such as DaimlerChrysler gives a return
which is more than 30 times higher. Nevertheless, the shares of Lucent Technologies rose by more
than 40% during 1999 whereas the share of DaimlerChrysler declined by more than 40% in the
same period. The recent crashes of IBM, LU and Procter & Gamble (P&G) correspond to a loss
equivalent to many countries state budget. And this is usually attributed to a “business-as-usual”
corporate statement of a slightly revised smaller-than-expected earnings!
These considerations make it credible that it is the expectation of future earnings and future

capital gains rather than present economic reality that motivates the average investor, thus creating
a speculative bubble. It has also been proposed (Mauboussin and Hiler, 1999) that better business
models, the network eNect, +rst-to-scale advantages and real options eNect could account for the
apparent over-valuation, providing a sound justi+cation for the high prices of dot.com and other
new-economy companies. These interesting views expounded in early 1999 were in synchrony with
the bull market in 1999 and preceding years. They participated in the general optimistic view and
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Fig. 31. Best (r.m.s. ≈ 0:061) and third best (r.m.s. ≈ 0:063) +ts with Eq. (54) to the natural logarithm of the Nasdaq
Composite. The parameter values of the +ts are A2 ≈ 9:5, B2 ≈ −1:7, B2C ≈ 0:06, m2 ≈ 0:27, tc ≈ 2000:33, ! ≈ 7:0,
% ≈ −0:1 and A2 ≈ 8:8, B2 ≈ −1:1, B2C ≈ 0:06, m2 ≈ 0:39, tc ≈ 2000:25, ! ≈ 6:5, % ≈ −0:8, respectively. Reproduced
from Johansen and Sornette (2000a).

added to the herding strength. They seem less attractive in the context of the bearish phase of the
Nasdaq market that has followed its crash in April 2000 and which is still running more than two
years later: Koller and Zane (2001) argue that the traditional triumvirate, earnings growth, inKation,
and interest rates, explains most of the growth and decay of U.S. indices (while not excluding the
existence of a bubble of hugely capitalized new-technology companies).
Indeed, as already stressed, history provides many examples of bubbles, driven by unrealistic

expectations of future earnings, followed by crashes (White, 1996; Kindleberger, 2000). The same
basic ingredients are found repeatedly: fueled by initially well-founded economic fundamentals, in-
vestors develop a self-ful+lling enthusiasm by an imitative process or crowd behavior that leads to
an unsustainable accelerating overvaluation. We propose that the fundamental origin of the crashes
on the U.S. markets in 1929, 1962, 1987, 1998 and 2000 belongs to the same category, the dif-
ference being mainly in which sector the bubble was created: in 1929, it was utilities; in 1962, it
was the electronic sector; in 1987, the bubble was supported by a general deregulation with new
private investors with high expectations; in 1998, it was strong expectation on investment opportu-
nities in Russia that collapsed; in 2000, it was the expectations on the Internet, telecommunication
and so on that have fueled the bubble. However, sooner or later, investment values always revert to
a fundamental level based on real cash Kows.
Fig. 31 shows the logarithm of the Nasdaq Composite +tted with the log-periodic power law

equation (54). The data interval to +t was identi+ed using the same procedure as for the other
crashes: the +rst point is the lowest value of the index prior to the onset of the bubble and the last
point is that of the all-time high of the index. There exists some subtlety with respect to identifying
the onset of the bubble, the end of the bubble being objectively de+ned as the date where the
market reached its maximum. A bubble signi+es an acceleration of the price. In the case of Nasdaq,
it tripled from 1990 to 1997. However, the increase was a factor 4 in the 3 years preceding the
current crash thus de+ning an “inKection point” in the index. In general, the identi+cation of such
an “inKection point” is quite straightforward on the most liquid markets, whereas this is not always
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Fig. 32. Best (r.m.s. ≈ 3:7) +t with equation (54) to the price of IBM shares. The parameter values of the +ts are
A2 ≈ 196, B2 ≈ −132, B2C ≈ −6:1, m2 ≈ 0:24, tc ≈ 99:56, ! ≈ 5:2 and % ≈ 0:1. Reproduced from Johansen and
Sornette (2000a).

the case for the emergent markets (Johansen and Sornette, 2001b). With respect to details of the
methodology of the +tting procedure, we refer the reader to Johansen et al. (1999).
Undoubtedly, observers and analysts have forged post-mortem stories linking the April 2000 crash

in part with the eNect of the crash of Microsoft Inc. resulting from the breaking of negotiations
during the weekend of April 1st with the U.S. federal government on the antitrust issue, as well as
from many other factors. Here, we interpret the Nasdaq crash as the natural death of a speculative
bubble, anti-trust or not, the results presented here strongly suggesting that the bubble would have
collapsed anyway. However, according to our analysis based on the probabilistic model of bubbles
described in Sections 5 and 6, the exact timing of the death of the bubble is not fully deterministic
and allows for stochastic inKuences, but within the remarkably tight bound of about one month
(except for the slow 1962 crash).
Log-periodic critical signatures can also be detected on individual stocks as shown in Figs. 32

for IBM and 33 for Procter & Gamble. These two +gures oNer a quanti+cation of the precursory
signals. The signals are more noisy than for large indices but nevertheless clearly present. There is
a weaker degree of generality for individual stocks as the valuation of a company is also a function
of many other idiosyncratic factors associated with the speci+c course of the company. Dealing with
broad market indices averages out all these speci+cities to mainly keep track of the overall market
“sentiment” and direction. This is the main reason why the log-periodic power law precursors are
stronger and more signi+cant for aggregated +nancial series in comparison with individual assets. If
speculation, imitation and herding become at some time the strongest force driving the price of an
asset, we should then expect the log-periodic power law signatures to emerge again strongly above
all the other idiosyncratic eNects.
Generalization of this analysis to emergent markets, including six Latin-American stock market

indices (Argentina, Brazil, Chile, Mexico, Peru and Venezuela) and six Asian stock market indices
(Hong-Kong, Indonesia, Korea, Malaysia, Philippines and Thailand) has been performed in Johansen
and Sornette (2001b). This work also discusses the existence of intermittent and strong correlation
between markets following major international events.
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Fig. 33. Best (r.m.s. ≈ 4:3) +t with equation (54) to the price of Procter & Gamble shares. The parameter values of the
+t are A2 ≈ 124, B2 ≈ −38, B2C ≈ 4:8, m2 ≈ 0:35, tc ≈ 2000:04, ! ≈ 6:6 and % ≈ −0:9. Reproduced from Johansen and
Sornette (2000a).

7.8. “Anti-bubbles”

We now summarize the evidence that imitation between traders and their herding behavior not only
lead to speculative bubbles with accelerating over-valuations of +nancial markets possibly followed
by crashes, but also to “anti-bubbles” with decelerating market devaluations following all-time highs
(Johansen and Sornette, 1999c). There is thus a certain degree of symmetry of the speculative
behavior between the “bull” and “bear” market regimes. This behavior is documented on the Japanese
Nikkei stock index from 1 January 1990 until 31 December 1998, on the Gold future prices after
1980, and on the recent behavior of the U.S. S&P500 index from mid-2000 to August 2002, all of
them after their all-time highs.
The question we ask is whether the cooperative herding behavior of traders might also produce

market evolutions that are symmetric to the accelerating speculative bubbles often ending in crashes.
This symmetry is performed with respect to a time inversion around a critical time tc such that
tc − t for t ¡ tc is changed into t − tc for t ¿ tc. This symmetry suggests looking at decelerating
devaluations instead of accelerating valuations. A related observation has been reported in Fig. 18 in
relation to the October 1987 crash showing that the implied volatility of traded options has relaxed
after the October 1987 crash to its long-term value, from a maximum at the time of the crash,
according to a decaying power law with decelerating log-periodic oscillations. It is this type of
behavior that we document now but for real prices.
The critical time tc then corresponds to the culmination of the market, with either a power law

increase with accelerating log-periodic oscillations preceding it or a power law decrease with decel-
erating log-periodic oscillations after it. In the Russian market, both structures appear simultaneously
for the same tc (Johansen and Sornette, 1999c). This is however a rather rare occurrence, probably
because accelerating markets with log-periodicity almost inevitably end-up in a crash, a market rup-
ture that thus breaks down the symmetry (tc − t for t ¡ tc into t − tc for t ¿ tc). Herding behavior
can occur and progressively weaken from a maximum in “bearish” (decreasing) market phases, even
if the preceding “bullish” phase ending at tc was not characterised by a strengthening imitation.
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Fig. 34. Natural logarithm of the Nikkei stock market index after the start of the decline from January 1, 1990 until
December 31, 1998. The dotted line is the simple log-periodic formula (54) used to +t adequately the interval of ≈ 2:6
years starting from January 1, 1990. The continuous line is the improved nonlinear log-periodic formula developed in
Sornette and Johansen (1997) and already used for the 1929 and 1987 crashes over 8 years of data. It is used to +t
adequately the interval of ≈ 5:5 years starting from January 1, 1990. The dashed line is an extension of the previous
nonlinear log-periodic formula to the next-order of description which was developed in Johansen and Sornette (1999c)
and is used to +t adequately the interval of ≈ 9 years starting from January 1, 1990 to December 1998. Reproduced from
Johansen and Sornette (1999c).

The symmetry is thus statistical or global in general and holds in the ensemble rather than for each
single case individually.

7.8.1. The “bearish” regime on the Nikkei starting from 1st January 1990
The most recent example of a genuine long-term depression comes from Japan, where the Nikkei

has decreased by more than 60% in the 12 years following the all-time high of 31 December 1989.
In Fig. 34, we see (the logarithm of) the Nikkei from 1 January 1990 until 31 December 1998. The
three +ts, shown as the undulating lines, use three mathematical expressions of increasing sophisti-
cation: the dotted line is the simple log-periodic formula (54); the continuous line is the improved
nonlinear log-periodic formula developed in (Sornette and Johansen, 1997) and already used for
the 1929 and 1987 crashes over 8 years of data; the dashed line is an extension of the previous
nonlinear log-periodic formula to the next-order of description which was developed in Johansen and
Sornette (1999c). This last most sophisticated mathematical formula predicts the transition from the
log-frequency !1 close to tc to !1 +!2 for T1¡<¡T2 and to the log-frequency !1 +!2 +!3 for
T2¡<. Using indices 1, 2 and 3, respectively, for the simplest to the most sophisticated formulas,
the parameter values of the +rst +t of the Nikkei are A1 ≈ 10:7, B1 ≈ −0:54, B1C1 ≈ −0:11,
m1 ≈ 0:47, tc ≈ 89:99, %1 ≈ −0:86, !1 ≈ 4:9 for equation (54). The parameter values of the
second +t of the Nikkei are A2 ≈ 10:8; B2 ≈ −0:70; B2C2 ≈ −0:11; m2 ≈ 0:41; tc ≈ 89:97; %2 ≈
0:14; !1 ≈ 4:8; T1 ≈ 9:5 years, !2 ≈ 4:9. The third +t uses the entire time interval and is performed
by adjusting only T1, T2, !2 and !3, while m3 =m2, tc and !1 are +xed at the values obtained from
the previous +t. The values obtained for these four parameters are T1 ≈ 4:3 years, T2 ≈ 7:8 years,
!2 ≈ −3:1 and T2 ≈ 23 years. Note that the values obtained for the two time scales T1 and T2
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Fig. 35. Natural logarithm of the Nikkei stock market index after the start of the decline from January 1, 1990 until
February 2001. The continuous smooth line is the extended nonlinear log-periodic formula which was developed in
Johansen and Sornette (1999c) and is used to +t adequately the interval of ≈ 9 years starting from January 1, 1990. The
Nikkei data is separated in two parts. The dotted line shows the data used to perform the +t with formula developed in
Johansen and Sornette (1999c) and to issue the prediction in January 1999 (see Fig. 34). Its continuation as a continuous
line gives the behavior of the Nikkei index after the prediction has been made. Reproduced from Johansen and Sornette
(2000b).

con+rms their ranking. This last +t predicts a change of regime and that the Nikkei should increase
in 1999.
Not only do the +rst two equations agree remarkably well with respect to the parameter values

produced by the +ts, but they are also in good agreement with previous results obtained from stock
market and Forex bubbles with respect to the values of exponent m2. What lends credibility to the
+t with the most sophisticated formula is that, despite its complex form, we get values for the two
cross-over time scales T1, T2 which correspond to what is expected from the ranking and from the
9 year interval of the data. We refer to Johansen and Sornette (1999c) for a detailed and rather
technical discussion.
The prediction summarized by Fig. 34 was made public on January 25, 1999 by posting a preprint

on the Los Alamos www internet server, see http://xxx.lanl.gov/abs/cond-mat/9901268. The preprint
was later published as Johansen and Sornette (1999c). The prediction stated that the Nikkei index
should recover from its 14 year low (13232.74 on January 5, 1999) and reach ≈ 20500 a year
later corresponding to an increase in the index of ≈ 50%. This prediction was mentioned in a
wide-circulation journal in physical sciences which appeared in May 1999 (StauNer, 1999).
In Fig. 35, the actual and predicted evolution of the Nikkei over 1999 and later are compared

(Johansen and Sornette, 2000b). Not only did the Nikkei experience a trend reversal as predicted,
but it has also followed the quantitative prediction with rather impressive precision. In particular, the
prediction of the 50% increase at the end of 1999 is validated accurately. The prediction of another
trend reversal is also accurately predicted, with the correct time for the reversal occurring beginning
of 2000: the predicted maximum and observed one match closely. It is important to note that the
error between the curve and the data has not grown after the last point used in the +t over 1999.
This tells us that the prediction has performed well for more than one year. Furthermore, since the

http://xxx.lanl.gov/abs/cond-mat/9901268
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relative error between the +t and the data is within ±2% over a time period of 10 years, not only
has the prediction performed well, but also the underlying model.
The ful+lling of this prediction is even more remarkable than the comparison between the curve

and the data indicates, because it included a change of trend: at the time when the prediction was
issued, the market was declining and showed no tendency to increase. Many economists were at
that time very pessimistic and could not envision when Japan and its market would rebounce. For
instance, P. Krugman wrote on July 14, 1998 in the Shizuoka Shimbun at the time of the banking
scandal “the central problem with Japan right now is that there just is not enough demand to go
around—that consumers and corporations are saving too much and borrowing too little... . So seizing
these banks and putting them under more responsible management is, if anything, going to further
reduce spending; it certainly will not in and of itself stimulate the economy... . But at best this
will get the economy back to where it was a year or two ago—that is, depressed, but not actually
plunging”. Then, in the Financial Times, January 20, 1999, P. Krugman wrote in an article entitled
“Japan heads for the edge” the following: “...the story is starting to look like a tragedy. A great
economy, which does not deserve or need to be in a slump at all, is heading for the edge of the
cliN—and its drivers refuse to turn the wheel”. In a poll of 30 economists performed by Reuters
(one of the major news and +nance data provider in the world) in October 1998 reported in Indian
Express on the 15 October (see http://www.indian-express.com/fe/daily/19981016/28955054.html),
only two economists predicted growth for the +scal year of 1998–1999. For the year 1999–2000
the prediction was a meager 0.1% growth. This majority of economists said that “a vicious cycle in
the economy was unlikely to disappear any time soon as they expected little help from the govern-
ment’s economic stimulus measures... . Economists blamed moribund domestic demand, falling prices,
weak capital spending and problems in the bad-loan laden banking sector for dragging down the
economy”.
It is in this context that we predicted an approximately 50% increase of the market in the 12

months following January 1999, assuming that the Nikkei would stay within the error-bars of the +t.
Predictions of trend reversals is noteworthy diAcult and unreliable, especially in the linear framework
of auto-regressive models used in standard economic analyses. The present nonlinear framework is
well-adapted to the forecasting of change of trends, which constitutes by far the most diAcult
challenge posed to forecasters. Here, we refer to our prediction of a trend reversal within the strict
con+ne of our extended formula: trends are limited periods of times when the oscillatory behavior
shown in Fig. 35 is monotonous. A change of trend thus corresponds to crossing a local maximum
or minimum of the oscillations. Our formula seems to have predicted two changes of trends, bearish
to bullish at the beginning of 1999 and bullish to bearish at the beginning of 2000.

7.8.2. The gold deGation price starting mid-1980
Another example of log-periodic decay is that of the Gold price after the burst of the bubble

in 1980 as shown in Fig. 36. The bubble has an average power law acceleration as shown in the
+gure but without any visible log-periodic structure. A pure power law +t will however not “lock
in” on the true date of the crash, but insists on an earlier date than the last data point. This suggests
that the behavior of the price might be diNerent in some sense in the last few weeks prior to the
burst of the bubble. The continuous line before the peak is expression (54) +tted over an interval
of ≈ 3 years. The parameter values of this +t are A2 ≈ 8:5, B2 ≈ −111, B2C ≈ −110, m2 ≈ 0:41,

http://www.indian-express.com/fe/daily/19981016/28955054.html


D. Sornette / Physics Reports 378 (2003) 1–98 85

4.8

5

5.2

5.4

5.6

5.8

6

6.2

6.4

6.6

6.8

77 78 79 80 81 82

Lo
g 

(G
ol

d 
P

ric
e)

Date

Fig. 36. Natural logarithm of the gold 100 Oz Future price in U.S.$ showing a power law acceleration followed by a
decline of the price in the early eighties. The line after the peak is expression (54) +tted over an interval of ≈ 2 years.
Reproduced from Johansen and Sornette (1999c).

tc ≈ 80:08, % ≈ −3:0, ! ≈ 0:05. The price of gold after its peak is +tted by expression (54) and
the result is shown as the undulating continuous line. Again, we obtain a reasonable agreement with
previous results for the exponent m2 with a good preferred scaling ratio & ≈ 1:9. The strength of
the log-periodic oscillations compared to the leading behavior is ≈ 10%. The parameter values of
the +t in this anti-bubble regime are A2 ≈ 6:7, B2 ≈ −0:69, B2C ≈ 0:06, m2 ≈ 0:45, tc ≈ 80:69,
% ≈ 1:4, ! ≈ 9:8.

7.8.3. The U.S. 2000–2002 Market Descent: How Much Longer and Deeper?
Sornette and Zhou (2002) have recently analyzed the remarkable similarity in the behavior of

the U.S. S&P500 index from 1996 to August 2002 and of the Japanese Nikkei index from 1985 to
1992, corresponding to an 11 years shift. In particular, the structure of the price trajectories in the
bearish or anti-bubble phases are strikingly similar, as seen in Fig. 37.
Sornette and Zhou (2002) have performed a battery of tests, starting with parametric +ts of the

index with two log-periodic power law formulas, followed by the so-called Shank’s transformation
applied to characteristic times. They also carried out two spectral analysis, the Lomb periodogram
applied to the parametrically detrended index and the nonparametric (H; q)-analysis of fractal signals
(Zhou and Sornette, 2002b, c). These diNerent approaches complement each other and con+rm
the presence of a very strong log-periodic structures. A rather novel feature is the detection of
a signi+cant second-order harmonic which provides a statistically signi+cant improvement of the
description of the data by the theory, as tested using the statistical theory of nested hypotheses. The
description of the S&P500 index since mid-2000 to end of August 2002 based on the combination
of the +rst and second log-periodic harmonics is shown in Fig. 38.
In the next two years, Sornette and Zhou (2002) predict an overall continuation of the bearish

phase, punctuated by local rallies; speci+cally, they predict an overall increasing market until the
end of the year 2002 or until the +rst quarter of 2003; they predict a severe following descent
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Fig. 37. Comparison between the evolutions of the U.S. S&P500 index from 1996 till August 24, 2002 (bottom and right
axes) and the Japanese Nikkei index from 1985 to 1993 (top and left axes). The years are written on the horizontal
axis (and marked by a tick on the axis) where January 1 of that year occurs. The dashed line is the simple log-periodic
formula (54) +tted to the Nikkei index (with tc − t replaced by t − tc). The data used in this +t goes from 01-Jan-1990
to 01-Jul-1992 (Johansen and Sornette, 1999c). The parameter values are tc= 28-Dec-1989, � = 0:38, != 5:0, %= 2:59,
A=10:76, B=−0:067 and C=−0:011. The root-mean-square residue is �=0:0535. The dash-dotted line is the improved
nonlinear log-periodic formula developed in Sornette and Johansen (1997) +tted to the Nikkei index. The Nikkei index
data used in this +t goes from 01-Jan-1990 to 01-Jul-1995 (Johansen and Sornette, 1999c). The parameter values are tc=
27-Dec-1989, �= 0:38, != 4:8, %= 6:27, >t = 6954, >! = 6:5, A= 10:77, B=−0:070, C = 0:012. The root-mean-square
residue is �=0:0603. The continuous line is the +t of the Nikkei index with the third-order formula developed in Johansen
and Sornette (1999c). The Nikkei index data used in the +t goes from 01-Jan-1990 to 31-Dec-2000. The +t is performed
by +xing tc, � and ! at the values obtained from the second-order +t and adjusting only >t , >′

t , >!, >′
! and %. The

parameter values are >t = 1696, >′
t = 5146, >! = −1:7, >′

! = 40, % = 6:27, A = 10:86, B = −0:090, C = −0:0095.
The root-mean-square residue of the +t is �=0:0867. In the three +ts, A, B and C are slaved to the other variables by the
multiplier approach in each iteration of the optimization search. The inset shows the 13-year Nikkei anti-bubble with the
+t with the third-order formula over these 13 years shown as the continuous line. The parameter values slightly diNerent:
>t = 52414, >′

t = 17425, >! = 23:7, >′
! = 127:5, % = 5:57, A = 10:57, B = −0:045, C = 0:0087. The root-mean-square

residue of the +t is � = 0:1101. In all the +ts, times are expressed in units of days, in contrast with the yearly unit used
in Johansen and Sornette (1999c). Thus, the parameters B and C are diNerent since they are unit-dependent, while all the
other parameters are independent of the units. Reproduced from (Sornette and Zhou, 2002).

(with maybe one or two severe ups and downs in the middle) which stops during the +rst semester
of 2004. Beyond this, they cannot be very certain due to the possible eNect of additional nonlinear
collective eNects and of a real departure from the anti-bubble regime. The similarities between the
two stock market indices may reKect deeper similarities between the fundamentals of two economies
which both went through over-valuation with strong speculative phases preceding the transition to
bearish phases characterized by a surprising number of bad surprises (bad loans for Japan and
accounting frauds for the U.S.) sapping investors’ con+dence.
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Fig. 38. Fitted trajectories using Eq. (54) (with tc− t replaced by |t− tc|), each curve corresponding to a diNerent starting
time from Mar-01-2000 to Dec-01-2000 with one month interval. The diNerent +ts are obtained as a sensitivity test with
respect to the starting time of the anti-bubble which is consistently found to start at tc ≈ July 15–August 15, 2000. The
dotted lines show the predicted future trajectories. One sees that the +ts are quite robust with respect to diNerent starting
date tstart from Mar-01-2000 to Dec-01-2000. Reproduced from Sornette and Zhou (2002).

8. Synthesis

8.1. “Emergent” behavior of the stock market

In this paper, we have synthesized a large body of evidence in favor of the hypothesis that large
stock market crashes are analogous to critical points studied in the statistical physics community
in relation to magnetism, melting, and so on. Our main assumption is the existence of a cooper-
ative behavior of traders imitating each other described in Sections 5 and 6. A general result of
the theory is the existence of log-periodic structures decorating the time evolution of the system.
The main point is that the market anticipates the crash in a subtle self-organized and cooperative
fashion, hence releasing precursory “+ngerprints” observable in the stock market prices. In other
words, this implies that market prices contain information on impending crashes. If the traders were
to learn how to decipher and use this information, they would act on it and on the knowledge that
others act on it, nevertheless the crashes would still probably happen. Our results suggest a weaker
form of the “weak eAcient market hypothesis” (Fama, 1991), according to which the market prices
contain, in addition to the information generally available to all, subtle information formed by the
global market that most or all individual traders have not yet learned to decipher and use. Instead
of the usual interpretation of the eAcient market hypothesis in which traders extract and incorporate
consciously (by their action) all information contained in the market prices, we propose that the
market as a whole can exhibit an “emergent” behavior not shared by any of its constituents. In
other words, we have in mind the process of the emergence of intelligent behaviors at a macro-
scopic scale that individuals at the microscopic scale cannot perceive. This process has been dis-
cussed in biology for instance in animal populations such as ant colonies (Wilson, 1971; Holldobler



88 D. Sornette / Physics Reports 378 (2003) 1–98

and Wilson, 1994) or in connection with the emergence of consciousness (Anderson et al., 1988;
Holland, 1992).
Let us mention another realization of this concept, which is found in the information contained in

option prices on the Kuctuations of their underlying asset. Despite the fact that the prices do not fol-
low geometrical brownian motion, whose existence is a prerequisite for most option pricing models,
traders have apparently adapted to empirically incorporate subtle information in the correlation of
price distributions with fat tails (Potters et al., 1998). In this case and in contrast to the crashes, the
traders have had time to adapt. The reason is probably that traders have been exposed for decades
to option trading in which the characteristic time scale for option lifetime is in the range of month
to years at most. This is suAcient for an extensive learning process to occur. In contrast, only a
few great crashes occur typically during a lifetime and this is certainly not enough to teach traders
how to adapt to them. The situation may be compared to the ecology of biological species which
constantly strive to adapt. By the forces of evolution, they generally succeed to survive by adaptation
under slowly varying constraints. In contrast, life may exhibit successions of massive extinctions and
booms probably associated with dramatically fast-occurring events, such as meteorite impacts and
massive volcanic eruptions. The response of a complex system to such extreme events is a problem
of outstanding importance that is just beginning to be studied (Commission on Physical Sciences,
Mathematics, and Applications, 1990).
Most previous models proposed for crashes have pondered the possible mechanisms to explain

the collapse of the price at very short time scales. Here in contrast, we propose that the underlying
cause of the crash must be searched years before it in the progressive accelerating ascent of the
market price, reKecting an increasing build-up of the market cooperativity. From that point of view,
the speci+c manner by which prices collapsed is not of real importance since, according to the
concept of the critical point, any small disturbance or process may have triggered the instability,
once ripe. The intrinsic divergence of the sensitivity and the growing instability of the market close
to a critical point might explain why attempts to unravel the local origin of the crash have been
so diverse. Essentially all would work once the system is ripe. Our view is that the crash has an
endogeneous origin and that exogeneous shocks only serve as triggering factors. We propose that
the origin of the crash is much more subtle and is constructed progressively by the market as a
whole. In this sense, this could be termed a systemic instability.

8.2. Implications for mitigations of crises

Economists, J.E. Stiglitz and recently P. Krugman in particular as well as +nancier Soros, have
argued that markets should not be left completely alone. The mantra of the free-market purists
requiring that markets should be totally free may not always be the best solution, because it overlooks
two key problems: (1) the tendency of investors to develop strategies that may destabilize markets in
a fundamental way and (2) the noninstantaneous adjustment of possible imbalance between countries.
Financier George Soros has argued that real world international +nancial markets are inherently
volatile and unstable since “market participants are trying to discount a future that is itself shaped
by market expectations”. This question is of course at the center of the debate on whether local
and global markets are able to stabilize on their own after a crisis such as the Asian crisis which
started in 1997. In this example, to justify the intervention of the IMF (international monetary fund),
Treasury Secretary Rubin warned in January 1998 that global markets would not be able to stabilize
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in Asia on their own, and that a strong role on the part of the IMF and other international institutions,
and governments, was necessary, least the crisis spread to other emerging markets in Latin America
and Eastern Europe.
The following analogy with forest +res is useful to illustrate the nature of the problem. In many

areas around the world, the dry season sees numerous large wild+res, sometimes with deaths of
+re+ghters and other people, the destruction of many structures and of large forests. It is widely
accepted that livestock grazing, timber harvesting, and +re suppression over the past century have
led to unnatural conditions—excessive biomass (too many trees without suAcient biodiversity and
dead woody material) and altered species mix—in the pine forests of the West of the U.S.A., in
the Mediterranean countries and elsewhere. These conditions make the forests more susceptible to
drought, insect and disease epidemics, and other forest-wide catastrophes and in particular large
wild+res (Gorte, 1995). Interest in fuel management, to reduce +re control costs and damages, has
thus been renewed with the numerous, destructive wild+res spread across the West of the U.S.A.
The most-often used technique of fuel management is +re suppression. Recent reviews comparing
Southern California on the one hand, where management is active since 1900, and Baja California
(north of Mexico) on the other hand where management is essentially absent (a “let-burn” strategy)
highlight a remarkable fact (Minnich and Chou, 1997; Moreno, 1998): only small and relatively
moderate patches of +res occur in Baja California, compared to a wide distribution of +re sizes in
Southern California including huge destructive +res. The selective elimination of small +res (those
that can be controlled) in normal weather in Southern California restricts large +res to extreme
weather episodes, a process that encourages broad-scale high spread rates and intensities. It is found
that the danger of +re suppression is the inevitable development of coarse-scale bush fuel patchiness
and large instance +res in contradistinction with the natural self-organization of small patchiness in
left-burn areas. Taken at face value, the “let-burn” theory seems paradoxically the correct strategy
which maximizes the protection of property and of resources, at minimal cost.
This conclusion seems to be correct when the fuel is left on its own to self-organize in a way

consistent with the dynamics of +res. In other words, the fuel–+re constitutes a complex nonlinear
system with negative and positive feedbacks that may be close to optimal: more fuel favors +re; +res
decreases the instantaneous level of fuel but may accelerate its future production; many small +res
create natural barriers for the development and extension of large +res; +res produce rich nutrients in
the soil; +res have other bene+ts, for instance, a few species, notably lodgepole pine and jack pine,
are serotinous—their cones will only open and spread their seeds when they have been exposed
to the heat of a wild+re. The possibility for complex nonlinear systems to +nd the “optimal” or
to be close to the optimal solution have been stressed before in several contexts (Crutch+eld and
Mitchell, 1995; Miltenberger et al., 1993; Sornette et al., 1994). Let us mention for instance a
model of fault networks interacting through the elastic deformation of the crust and rupturing during
earthquakes which +nds that faults are the optimal geometrical structures accommodating the tectonic
deformation: they result from a global mathematical optimization problem that the dynamics of the
system solves in an analog computation, i.e., by following its self-organizing dynamics (as opposed
to digital computation performed by digital computers). One of the notable levels of organization is
called self-organized criticality (Bak, 1996; Sornette, 2000a) and has been applied in particular to
explain forest +re distributions (Malamud et al., 1998).
Baja California could be a representative of this self-organized regime of the fuel–+re complex

left to itself, leading to many small +res and few big ones. Southern California could illustrate the
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situation where interference both in the production of fuel and also in its combustion by +res (by
trying to stop +res) leads to a very broad distribution with many small and moderate controlled +res
and too many uncontrollable very large ones.
Where do stock markets stand in this picture? The proponents of the “left-alone” approach could

get ammunition from the Baja-Southern California comparison, but they would forget an essential
element: stock markets and economies are more like Southern California than Baja California. They
are not isolated. Even if no government or regulation interfere, they are “forced” by many external
economic, political, climatic inKuences that impact them and on which they may also have some
impact. If the example of the wildland +res has something to teach us, it is that we must incorporate
in our understanding both the self-organizing dynamics of the fuel-+re complex as well as the
diNerent exogeneous sources of randomness (weather and wind regimes, natural lightning strike
distribution, and so on).
The question of whether some regulation could be useful is translated into whether Southern

California +res would be better left alone. Since the management approach fails to function fully
satisfactorily, one may wonder whether the let-burn scenario would not be better. This has in fact
been implemented in Yellowstone park as the “let-burn” policy but was abandoned following the
huge Yellowstone +res of 1988. Even the “leave-burn” strategy may turn out to be unrealistic from a
societal point-of-view because allowing a speci+c +re to burn down may lead to socially unbearable
risks or emotional sensitivity, often discounted over a very short time horizon (as opposed to the
long-term view of land management implicit in the left-burn strategy).
We suggest that the most momentous events in stock markets, the large +nancial crashes, can

indeed be seen as the response of a self-organized system forced by a multitude of external fac-
tors in the presence of regulations. The external forcing is an essential element to consider and it
modi+es the perspective on the “left-alone” scenario. For instance, during the recent Asian crises,
the International Monetary Fund and the U.S. government considered that controls on the interna-
tional Kow of capital were counterproductive or impractical. J.E. Stiglitz, the chief economist of
the IMF until 2000, has argued that in some cases it was justi+ed to restrict short-term Kows of
money in and out of a developing economy and that industrialized countries sometimes pushed de-
veloping nations too fast to deregulate their +nancial systems. The challenge remains, as always, to
encourage and work with countries that are ready and able to implement strong corrective actions
and to cooperate toward +nding the +nancial solutions best suited to the needs of the individual
case and the broader functioning of the global +nancial system when diAculties arise (Checki and
Stern, 2000).
Another important issue concerns the endogeneous versus exogeneous nature of shocks. Sornette

et al. (2002) have shown that it is possible in some cases to distinguish the eNects on the +nancial
volatility of the September 11, 2001 attack or of the coup against Gorbachev on August, 19, 1991
(exogeneous shocks) from +nancial crashes such as October 1987 as well as smaller volatility bursts
(endogeneous shocks). Using a parsimonious autoregressive process (the “multifractal random walk”)
with long-range memory de+ned on the logarithm of the volatility, they predict strikingly diNerent
response functions of the price volatility to great external shocks compared to endogeneous shocks,
i.e., which result from the cooperative accumulation of many small shocks. This approach views the
origin of endogeneous shocks as the coherent accumulations of tiny bad news, and thus provides a
natural uni+cation of previous explanations of large crashes including October 1987. Sornette and
Helmstetter (2003) have suggested that these results are generally valid for systems with long-range
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persistence and memory, which can exhibit diNerent precursory as well as recovery patterns in
response to shocks of exogeneous versus endogeneous origins. By endogeneous, one can consider
either Kuctuations resulting from an underlying chaotic dynamics or from a stochastic forcing origin
which may be external or be an eNective coarse-grained description of the microscopic Kuctuations.
In this scenario, endogeneous shocks result from a kind of constructive interference of accumulated
Kuctuations whose impacts survive longer than the large shocks themselves. As a consequence, the
recovery after an endogeneous shock is in general slower at early times and can be at long times
either slower or faster than after an exogeneous perturbation. This oNers the tantalizing possibility of
distinguishing between an endogeneous versus exogeneous cause of a given shock, even when there
is no “smoking gun”. This could help in investigating the exogeneous versus self-organized origins
in problems such as the causes of major biological extinctions, of change of weather regimes and
of the climate, in tracing the source of social upheaval and wars, and so on.

8.3. Predictions

Ultimately, only forward predictions can demonstrate the usefulness of a theory, thus only time
will tell. However, as we have suggested by the many examples reported in Section 7, the analysis
points to an interesting predictive potential. However, a fundamental question concerns the use of
a reliable crash prediction scheme, if any. Assume that a crash prediction is issued stating that a
crash of an amplitude between 20% and 30% will occur between one and two months from now.
At least three diNerent scenarios are possible (Johansen and Sornette, 2000a):

• Nobody believes the prediction which was then futile and, assuming that the prediction was
correct, the market crashes. One may consider this as a victory for the “predictors” but as we
have experienced in relation to our quantitative prediction of the change in regime of the Nikkei
index (Johansen and Sornette, 1999c, 2000b), this would only be considered by some critics just
another “lucky one” without any statistical signi+cance.

• Everybody believes the warning, which causes panic and the market crashes as consequence. The
prediction hence seems self-ful+lling and the success is attributed more to the panic eNect than to
a real predictive power.

• SuAciently many investors believe that the prediction may be correct, investors make reasonable
adjustments and the steam goes oN the bubble. The prediction hence disproves itself.

None of these scenarios are attractive. In the +rst two, the crash is not avoided and in the last
scenario the prediction disproves itself and as a consequence the theory looks unreliable. This seems
to be the inescapable lot of scienti+c investigations of systems with learning and reKective abilities, in
contrast with the usual inanimate and unchanging physical laws of nature. Furthermore, this touches
the key-problem of scienti+c responsibility. Naturally, scientists have a responsibility to publish their
+ndings. However, when it comes to the practical implementation of those +ndings in society, the
question becomes considerably more complex, as history has taught us. We believe however that
increased awareness of the potential for market instabilities, oNered in particular by our approach,
will help in constructing a more stable and eAcient stock market.
Speci+c guidelines for prediction and careful tests are presented in Sornette and Johansen (2001)

and especially in Sornette (2003). In particular, Sornette (2003) explains how and to what degree
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crashes as well as other large market events, may be predicted. This work examines in details what
are the forecasting skills of the proposed methodology and their limitations, in particular in terms of
the horizon of visibility and expected precision. Several cases studies are presented in details, with
a careful count of successes and failures. See also Johansen and Sornette (2001b) for applications
to emergent markets, Johansen and Sornette for a systematic test of the correspondence between
outliers and preceding log-periodic power law signatures and Sornette and Zhou (2002) for a live
prediction on the future evolution of the U.S. stock market in the next two years, from August 2002
to the +rst semester of 2004.
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