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Is the Boston subway a small-world network?
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Abstract

The mathematical study of the small-world concept has fostered quite some interest, show-
ing that small-world features can be identi!ed for some abstract classes of networks. However,
passing to real complex systems, as for instance transportation networks, shows a number of
new problems that make current analysis impossible. In this paper we show how a more re!ned
kind of analysis, relying on transportation e"ciency, can in fact be used to overcome such prob-
lems, and to give precious insights on the general characteristics of real transportation networks,
eventually providing a picture where the small-world comes back as underlying construction
principle.
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The characterization of the structural properties of the underlying network is a very
crucial issue to understand the function of a complex system [1]. For example, the
structure of a social network a#ects spreading of information, fashions, rumors but
also of epidemics over the network; the topological properties of a computer net-
work (Internet, the World Wide Web) a#ect the e"ciency of the communication. Only
recently the accessibility of databases of real networks and the availability of powerful
computers have made possible a series of empirical studies [2–6]. In Ref. [2] Watts
and Strogatz have shown that the connection topology of some (social, biological and
technological) networks is neither completely regular nor completely random [2]. Watts
and Strogatz have named these networks, that are somehow in between regular and
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random networks, small worlds, in analogy with the small-world phenomenon observed
in social systems [7]. The mathematical characterization of the small-world behavior is
based on the evaluation of two quantities, the characteristic path length L, measuring
the typical separation between two generic nodes in the network and the clustering
coe"cient C, measuring the average cliquishness of a node. Small-world networks
are in fact highly clustered, like regular lattices, yet having small characteristics path
lengths, like random graphs.
Although the initial small-world concept came from social networks, having a math-

ematical characterization makes it tempting to apply the same concept to any network
representative of a complex system. This grand plan clashes with the fact that the
mathematical formalism of Ref. [2] su#ers from severe limitations: (1) it applies only
to some cases, whereas in general the two quantities L and C are ill-de!ned; (2) it
works only in the topological abstraction, where the only information retained is about
the existence or the absence of a link, and nothing is known about the physical length
of the link.
In this paper, we take as paradigmatic example of real complex systems the realm

of transportation (and use the Boston public transportation system as real-world repre-
sentative instance), showing how the passage from abstract social networks to applied
complex systems present in nature poses new challenges, that can in fact be overcome
using a more general formalism developed in Ref. [8] for weighted networks.
The MBTA (Boston underground transportation system) consists of N=124 stations

and K = 124 tunnels (connecting couples of stations) extending throughout Boston
and the other cities of the Massachusetts Bay [9]. This network (see Fig. 1) can be
considered as a graph with N nodes and K edges and is represented by the adjacency
(or connection) matrix {aij}, i.e., the N · N matrix whose entry aij is 1 if there is an
edge joining node i to node j and 0 otherwise, and by {‘ij} the matrix of the spatial
(geographical) distances between stations. According to the formalism of Ref. [2], valid
for a subclass of unweighted (topological) networks, the information contained in {‘ij}
is not used (as if ‘ij = 1∀i "= j) and the shortest path length dij between two generic
vertices i and j is extracted by using only {aij}. The characteristic path length L is the
average distance between two generic vertices: L=1=N (N−1)

∑
i !=j dij. The clustering

coe"cient C is a local property de!ned as follows. If the node i has ki neighbors, then
at most ki(ki − 1)=2 edges can exist between them; Ci is the fraction of these edges
that actually exist, and C is the average value C=1=N

∑
i Ci. If we apply this method

to try to study the MBTA, we obtain L=15:55 (an average of 15 steps, or 15 stations
to connect two generic stations), while C is not well de!ned since there are few nodes
with only one neighbors, and then Ci=0=0 for these nodes. In any case to decide if the
MBTA is a small world we have to compare the L and C obtained to the respective
values for a random graph with the same N and K . When we consider a random graph
we incur into the same problem for C; moreover we get L=∞ because in most of the
realizations of the random graph there are some nodes not connected to the remaining
part of the network. Summing up, by mean of L and C we are unable to draw any
conclusion.
Now we propose our alternative formalism (based on Ref. [8]), valid for weighted,

and also disconnected networks. The matrix of the shortest path lengths {di;j} is now
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Fig. 1. The network of the MBTA consists of N = 124 stations and K = 124 tunnels. The matrix {‘ij} has
been calculated using databases from the MBTA [9] and the US National Mapping Division.

calculated by using the information contained both in {aij} and in {lij}.
Instead of L and C, the network is characterized in terms of how e"ciently it propagates
information on a global and on a local scale, respectively. We assume that the
e"ciency !ij in the communication between node i and j is inversely proportional
to the shortest distance: !ij = 1=dij ∀i; j. We see immediately that this way we avoid
the problem of the divergence we had for L, in fact when there is no path in the graph
between i and j, di;j =+∞ and consistently !ij = 0. Moreover, the link characteristics
(length=capacity in the case of transportation systems) are properly taken into account,
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Table 1
Global and local e"ciency and cost of the MBTA. In the !rst row the MBTA is considered. In the second
raw the composite system MBTA+bus is considered

Eglob Eloc Cost

MBTA 0.63 0.03 0.002
MBTA+bus 0.72 0.46 0.004

and not $attened into the topological abstraction. We de!ne the network e"ciency as
E = 1=N (N − 1)

∑
i !=j !ij = 1=N (N − 1)

∑
i !=j 1=dij. The quantity E is normalized to

the e"ciency of the ideal case in which the network has all the N (N − 1)=2 possible
edges: in this way 06E6 1 [8]. We call Eglob the e"ciency of the whole network
and Eloc the average e"ciency of the subgraph of the neighbors of a generic node i.
In Ref. [8] we have shown that Eglob and Eloc play, respectively, the role of L and C,
and that small-world networks have both high Eglob and high Eloc.
Now, let us apply these new measures to the MBTA: the results are reported in

Table 1. As we can see, the MBTA turns out to be a very e"cient transportation
system on a global scale but not at the local level. Let us analyze better what insights
the calculation shows. In fact, Eglob = 0:63 means that MBTA is only 37% less e"-
cient than the ideal subway with a direct tunnel from each station to the others, quite
a remarkable result. On the other hand, Eloc = 0:03 indicates a poor local e"ciency:
this shows that, di#erently from social systems, the MBTA is not fault tolerant and a
damage in a station will dramatically a#ect the e"ciency in the connection between the
previous and the next station. In order to better understand the di#erence with respect
to other systems that are globally but also locally e"cient we need to consider the
cost of a network. In general we expect the e"ciency of a network to be higher when
the number of edges increase. As a counterpart, in any real network there is a price
to pay for number and length (weight) of edges. To quantify this e#ect we de!ne the
cost of a network as: Cost =

∑
i !=j aij‘ij=

∑
i !=j ‘ij. We have 06Cost6 1, and

the maximum value 1 is obtained for the ideal case when all the edges are present in
the network. Cost reduces to the normalized number of edges 2K=N (N −1) in the case
of an unweighted graph. For the MBTA we get an extremely small value Cost=0:002.
This means that MBTA achieves the 63% of the e"ciency of the ideal subway with
a cost of only the 0.2%. Qualitatively similar results have been obtained for other
underground systems. The price to pay for such low-cost high global e"ciency is the
lack of fault tolerance. This means that when we build a subway system, the priority is
given to the achievement of global e"ciency at a relatively low cost, and not to fault
tolerance. But where is the rationale for such a construction principle? In fact, fault
tolerance in such a transportation system is less of a critical issue as it would seem: a
temporary problem in a station can be solved in an economic way by other means, for
example by taking a bus from the previous to the next station. That is to say, lack of
fault tolerance for users is only apparent: the MBTA is not a closed system, as it can
be considered, after all, a subgraph of a wider transportation network, and this explains
why, fault tolerance is not a critical issue. Changing the MBTA network to take into
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account for example the bus systems, indeed, shows that this extended transportation
system is a small-world network (Eglob = 0:72, Eloc = 0:46)! Therefore, e"ciency and
fault-tolerance come back as leading underlying construction principles, and the whole
transportation system MBTA+bus turns out to be a small-world with a slight increase
in the cost (Cost = 0:004).
Summing up, the analysis of real-life complex systems like transportation networks

poses a number of new challenges, that make the initial mathematical formalization of
small worlds in Ref. [2] fail. The introduction of the e"ciency measure allows to give
a more general mathematical de!nition of small worlds, able to deal successfully with
transportation systems (and in general, with weighted networks). Such measure, like in
the MBTA case, provides quantitative information on the e"ciency characteristics of a
system, helping to explain the underlying construction principles. Moreover, apparent
lack of a generalized small-world behaviour can, as in the MBTA case, be explained
by the fact we have just a partial view of the complete system. In fact, the analysis
presented in this paper shows that a generic closed transportation system can exhibit
the small-world behavior, substantiating the idea that, in the grand picture, the di#usion
of small-world networks can be interpreted as the need to create networks that are both
globally and locally e"cient.
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