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Random graphs are useful models of social and technological
networks. To date, most of the research in this area has concerned
geometric properties of the graphs. Here we focus on processes
taking place on the network. In particular we are interested in
how their behavior on networks differs from that in homoge-
neously mixing populations or on regular lattices of the type com-
monly used in ecological models.
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Introduction
The subject of random graphs dates to the late 1950s when Erdös
and Renyi sat in Hungarian cafes and tried to imagine what a
random pick from the collection of graphs with n vertices and
m edges looks like. To answer this question it is easier to instead
flip a coin with probability p ¼ 2m∕nðn − 1Þ of heads for each
edge to determine if it is present. In this case there is interesting
behavior when p ¼ c∕n: When c < 1most connected components
are small, with the largest of size Oðlog nÞ (in words, “of order
log n”); when c > 1 there is a giant component of size asympto-
tically ρn. This phase transition inspired a lot of work in the sub-
ject, as did concepts from graph theory such as Hamiltonian
circuits, matchings, chromatic number, Ramsey theory, etc.
See Bollobás (1) or Janson et al. (2) for more on this.

The beginning of the twenty-first century saw a number of new
motivations for the study of random graphs. The Kevin Bacon
game taught us that the screen actors collaboration network
was a “small world,” and made the phrase “six degrees of separa-
tion” famous. Statistical studies of the Internet (3), academic
collaborations (4, 5, 6), and sex in Sweden (7) showed that the
degree d of a randomly chosen vertex often followed a power
law Pðd ¼ kÞ ∼ Ck−α rather than the Poisson distribution that
occurs in the Erdös–Renyi model with p ¼ c∕n. For popular
accounts see the books by Barabási (8) and Watts (9).

In the next section we will describe some of the random graphs
at the center of this development. Their geometric properties,
e.g., “Do they have a giant component?” and “What is the aver-
age distance between two points?,” are by now well-understood.
See the books by Chung and Lu (10) and Durrett (11). Our focus
will be on the behavior of processes (e.g., the spread of epidemics
and opinions) on these networks.

Three Random Graphs
Small world graphs were first introduced by Watts and Strogatz
(12). To construct their model, they take a one-dimensional ring
Zmod n and connect all pairs of vertices that are distance m or
less. They then rewire each edge with probability p by moving one
of the ends at random, where the new end is chosen uniformly.
This leads to a graph that has small diameter but, in contrast to
the Erdös–Renyi model, has a nontrivial density of triangles.
These are both properties that they observed in the collaboration
graph of film actors, the power grid, and the neural network of
the nematode C. elegans. The small world model has been exten-
sively studied, although most investigators have found it more
convenient to study the Newman and Watts (13) version in which

all pairs of vertices that are distance m or less are connected, but
in addition there is a density p of shortcuts that connect vertices to
long-range neighbors chosen at random from the graph.

Barábasi and Albert (14) introduced the preferential attach-
ment model. In this model, we successively add vertices. Each
new vertex connects to m existing vertices, choosing them with
probabilities proportional to their degrees. The fraction of
vertices with degree k converges to a limit

pk ¼
2mðmþ 1Þ

kðkþ 1Þðkþ 2Þ
for k ≥ m [1]

If vertices are chosen with weight proportional to aþ k with a >
−1 then the limiting degree sequence has pk ∼ Ck−ð3þaÞ [see Kra-
pivsky, Redner, and Leyvrasz (15)]. When a ≥ 0, this is equivalent
to the rule: When a new edge is drawn, with probability a∕ðaþ 1Þ
we pick the vertex at random and with probability 1∕ðaþ 1Þ we
use preferential attachment. Cooper and Freize (16) show power-
law degree distributions arise in a wide variety of related models.

The dynamic procedure used to grow the graphs provides an
explanation for power-law behavior in some networks. However,
if one only wants a graph with a power-law degree distribution, it
is simpler to use the NSW recipe, see Newman et al. (17, 18).
Given a degree distribution fpk: k ≥ 0g we construct a random
graph Gn with vertex set f1; 2;…; ng as follows: let d1;…; dn
be independent and have the distribution Pðdi ¼ kÞ ¼ pk. We
condition on the event En ¼ fd1 þ⋯þ dn is eveng to have a va-
lid degree sequence. If Pðdi is oddÞ ∈ ð0; 1Þ then PðEnÞ → 1∕2 as
n → ∞, so the conditioning will have a little effect on the distri-
bution of di ’s. Having chosen the degree sequence ðd1; d2;…; dnÞ,
we allocate di half-edges to the vertex i, and then pair those half-
edges at random. This may produce self-loops or parallel edges,
but when the degree distribution has finite variance, the probabil-
ity these problems do not occur is bounded away from zero, so the
reader who wants can condition on Gn being a proper graph.

Two Epidemics
Epidemic models come in two basic flavors: the susceptible-
infected-removed (SIR) in which suspectible individuals become
infected at a rate equal to λ times the number of infected neigh-
bors, remain infected for an exponentially distributed amount of
time with mean 1, and then enter the removed class when they are
no long susceptible to the disease. The SIR model on random
graphs has a detailed theory due to its connection to percolation:
Given neighbors x and y in the graph, we draw an edge from x to y
with probability λ∕ðλþ 1Þ, which is the probability that x (or y)
will succeed in infecting the other during the time it is infected.
The size of an epidemic starting with x infected is just the size of
the component containing x in the new random graph. See Moore
and Newman (19) for results on the small world, and Newman
(20) for results on a graph with a fixed degree distribution.
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We will be interested in the more difficult susceptible-infected-
susceptible (SIS) epidemic model. In this model, at any time t
each site x is either infected or healthy (but susceptible). An in-
fected site becomes healthy at rate 1 independent of other sites
and is again susceptible to the disease, while a susceptible site
becomes infected at a rate λ times the number of its infected
neighbors. Harris (21) introduced this model on the d-dimen-
sional integer lattice and named it the contact process. See Liggett
(22) for an account of most of the known results. In the SIS case,
which we will usually refer to as the contact process, one typically
cannot compute the critical value because the epidemic can back-
track and run into itself, whereas the SIR model is forced to move
forward into the set of susceptibles and is essentially equivalent to
a branching process.

Small Worlds
We consider the following version of the small world. Start with a
circle Zmod n and connect x to all vertices x −m;…xþm where
the addition is done modulo n. The number of sites n is required
to be even so that one can partition the n vertices into n∕2 pairs.
Consider all such partitions and then pick one uniformly at ran-
dom. When m ¼ 1 this construction of a graph with diameter
∼ log2 n dates back to Bollobás and Chung (23), 10 years before
Watts and Strogatz (12). We will call this the BC small world.

The reason for insisting that all individuals have exactly one
long-range neighbor is that we can define an associated big world
graph Bm that is nonrandom. The graph can be succinctly de-
scribed as the free product Z % f0; 1g, where the second factor
is Zmod 2. Elements of the free product have the form
z01z11…1zk where zi ∈ Z − f0g for 0 < i < k. In words, this is
the point you reach by moving by z0 in the first copy of Z, going
down a long-range edge, moving sideways by z1, going down a
long-range edge, etc. The big world encapsulates the heuristic
that in the beginning stages of the epidemic, an infection trans-
mitted across a long-range edge brings it to a new uninfected part
of the space.

Following Durrett and Jung (24), who proved the three results
we will state in this section, we will consider the discrete-time con-
tact process. On either the small world or the big world, an in-
fected individual lives for one unit of time. During its infected
period it will infect some of its neighbors. All infection events
are independent, and each site that receives at least one infection
is infected at the next time step. A site infects itself or its short-
range neighbors, each with probability α∕ð2mþ 1Þd. It infects its
long-range neighbor with probability β. Let λ ¼ αþ β and
r ¼ α∕β We are interested in the phase diagram as a function
of (α,β), but in some cases we fix the ratio 0 < r < 1 and vary λ.

The number of sites within distance r of a given site in the big
world grows exponentially fast, so it is natural to guess that its
contact process will behave like the contact process on a tree.
Consider a tree in which each vertex has the same degree, let
0 be a distinguished vertex (the origin) of the tree, and let A0

t
be the set of infected sites at time t on the tree starting from
0 occupied. For the contact process on the tree or on the big
world, we can define two critical values:

λ1 ¼ inffλ: PðjA0
t j ¼ 0 eventuallyÞ < 1g

λ2 ¼ inffλ: liminf
t→∞

Pð0 ∈ A0
t Þ > 0g:

We call λ1 the weak survival critical value and λ2 the strong sur-
vival critical value. Pemantle (25) showed that for homogeneous
trees where every vertex has at least four neighbors, λ1 < λ2. Lig-
gett (26) then extended Pemantle’s result to trees with degree 3 by
finding numerical bounds on the two critical values and thus
showing that they are different. Later Stacey (27) found an ele-
gant proof that did not rely on numerical bounds.

Theorem 1. For each ratio r ¼ α∕β ∈ ð0; 1Þ there is anM such that
for all m ≥ M, λ1 < λ2 for the contact process on Bm.

Durrett and Jung (24) were forced to take the range m to be
large because the result is proved, as Pemantle did, by getting
upper bounds on λ1 and lower bounds on λ2.

Having established the existence of two phase transitions on
the big world, our next question is: How does this translate into
behavior of the contact process on the small world?We will use Bt
to denote the contact process on the big world and ξt for the con-
tact process on the small world. Let τB ¼ minft: B0

t ¼ ∅g and
σB ¼ minft: B0

t ¼ ∅ or 0 ∈ B0
t g.

λ < λ1 PðτB < ∞Þ ¼ 1 ¼ PðσB < ∞Þ
λ1 < λ < λ2 PðτB < ∞Þ < PðσB < ∞Þ < 1

λ2 < λ PðτB < ∞Þ < 1 ¼ PðσB < ∞Þ

In words, there is positive probability that the process survives for
all time when λ > λ1, but only for λ > λ2 are we certain that 0 will
become infected when the process does not die out.

Let τS ¼ minft: ξ0t ¼ ∅g and σS ¼ minft: ξ0t ¼ ∅ or
0 ∈ ξ0t g.

Theorem 2. Writing ⇒ for convergence in distribution as n → ∞
we have

1. τS is stochastically bounded above by τB and τS ⇒ τB.
2. σS is stochastically bounded above by σB and σS ⇒ σB.

Combined with our table, this result shows that when λ1 < λ < λ2
the contact process survives with positive probability, but if it does
it may take a time that grows with n until the origin is infected for
the first time. Thus from the standpoint of an observer on the
graph, the epidemic appears to die out, but then it comes back
much later. To our knowledge this phenomenon has not been no-
ticed by people simulating the process.

Because the small world is a finite graph, the infection will
eventually die out. However, by analogy with results for the d-di-
mensional contact process on a finite set, we expect that if λ > λ1
and the process does not become extinct quickly, it will survive for
a long time. Durrett and Liu (28) showed that the supercritical
contact process on the circle Zmod n survives for an amount of
time of order expðcnÞ starting from all ones, while Mountford
(29) showed that the supercritical contact process on the torus
ðZ mod nÞd survives for an amount of time of order expðcndÞ.

On any graph with n nodes and ≤Cn edges, the infection can-
not persist for longer than OðecnÞ because there is probability
≥e−γn that in the next unit of time all sites become healthy
and no infections occur. Durrett and Jung (24) were only able
to prove the last conclusion for a modification of the small world
contact process where, in addition to the short- and long-range
infections, at each time step each infected site it will with prob-
ability γ infect a vertex chosen uniformly random vertex from the
entire grid.

From a modeling point of view, this mechanism is reasonable.
In addition to long-range connections with friends at school or
work, one has random encounters with people one sits next to
on airplanes or meets while shopping in stores. The strategy
for establishing prolonged survival is to show that if the number
of infected sites drops below ϵn, it will with probability ≥ 1−
C expð−γnÞ increase to ≥2ϵn before dying out. To do this we
use the random connections to spread the particles out so that
they can grow independently. Ideally one would use the long-
range connections (instead of the random connections) to achieve
this. However, one has to deal with unlikely but annoying scenar-
ios such as all infected individuals being long-range neighbors of
sites that are respectively short-range neighbors of each other.
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Theorem 3. Consider the modified contact process on the small
world described above. If λ > λ1, the lower critical for the contact
process on Bm and we start with all individuals infected, then
there is a constant c > 0 so that the probability the infection per-
sists to time expðcnÞ tends to 1 as n → ∞.

Power-Law Degree Distribution
Pastor-Satorras and Vespignani (30, 31, 32) have made an exten-
sive study of the contact process on graphs with power-law degree
distributions, Pðdi ¼ kÞ ∼ Ck−α, using mean-field methods. Their
nonrigorous computations suggest the following conjectures
about λc the threshold for “prolonged persistence” of the contact
process.

• If α ≤ 3, then λc ¼ 0.
• If 3 < α ≤ 4, then λc > 0 but the critical exponent β, which con-

trols the rate at which the equilibrium density of infected sites
goes to 0, satisfies β > 1.

• If α > 4, then λc > 0 and the equilibrium density ∼Cðλ − λcÞ as
λ ↓ λc, i.e. the critical exponent β ¼ 1.

Gómez-Gardeñes et al. (33) have recently extended their argu-
ments to the bipartite case, which they think of as a social network
of sexual contacts between men and women. They define the
polynomial decay rates for degrees in the two sexes to be γM
and γF and argue that the epidemic is supercritical when the
transmission rates for the two sexes satisfy

ffiffiffiffiffiffiffiffiffiffiffi
λMλF

p
> λc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hkiMhkiF
hk2iFhk2iM

s

[2]

where the angle brackets indicate expected value and k is short-
hand for the degree distribution. Hence λc is positive when γM ,
γF > 3. Chatterjee and Durrett (34) have shown that the conclu-
sions described above are not correct: λc ¼ 0 for 3 < α < ∞. The
argument extends easily to the bipartite case.

Theorem 4. Consider a Newman, Strogatz and Watts random
graphs Gn on the vertex set f1; 2;…; ng, where the degrees di sa-
tisfy Pðdi ¼ kÞ ∼ Ck−α as k → ∞ for some constant C and some
α > 3, and Pðdi ≤ 2Þ ¼ 0. Let fξ1t : t ≥ 0g denote the infected sites
in the contact process on the random graph Gn starting from all
sites infected. Then for any value of the infection rate λ > 0, there
is a positive constant pðλÞ so that for any δ > 0

inf
t≤expðn1−δÞ

P
"
jξ1t j
n

≥ pðλÞ
#

→ 1 as n → ∞: [3]

The assumption Pðdi ≤ 2Þ ¼ 0 is not really necessary but is
convenient, because it implies that PðGn is connectedÞ → 1 as
n → ∞. Presumably λc ¼ 0 for 1 < α ≤ 3, but the geometry of
the graph changes, so we restricted our attention to the range
in which the conclusion is the most surprising. Berger, Borgs,
Chayes, and Saberi (35, 36) proved a similar result for the pre-
ferential attachment model of Barábasi and Alberts with α ¼ 3
and for the generalization mentioned above that is a combination
of preferential and random attachment.

Physicists “mean-field” arguments are usually reliable when di-
mension is sufficiently large, and our locally tree-like random
graph is essentially infinite dimensional, so what went wrong?
Let ρk denote the fraction of sites of degree k occupied in equili-
brium, and let θðλÞ be the probability that a randomly chosen
edge points to an infected site. The conclusions of Pastor-
Satorras and Vespignani cited above are based on writing two
equations:

0 ¼ −ρk þ λk½1 − ρk'θðλÞ θ ¼
∑

k

qk
kλθ

1þ kλθ

where qk ¼ kpk∕μ with μ ¼ ∑kkpk.
The second equation is a self-consistency equation. The “size-

biased distribution” qk appears because when one picks an edge
at random, vertices with degree k are k times as likely to be cho-
sen. The first equation is the problem. It assumes that the state of
a neighbor of a site is independent of the fact that it is vacant.
This is rarely exactly true, but in high dimensions it is usually close
enough to the truth to end up the right qualitative predictions.
However, in this case it is not.

The proof of Theorem 4 is not difficult. One first shows that if
λk2 ≥ 50 and we consider a vertex with degree k and all of its
neighbors to make a star graph then the infection persists for time
expðkλ2∕100Þ with high probability. Let ϵ > 0 and consider the
vertices with degree ≥nϵ, which we call stars. Infection at a star
persists for time expðnϵλ2∕100Þ. The graph has diameter of order
log n, so the probability a star can infect another by a chain of
Oðlog nÞ events is ≥n−b for some b < ∞. These observations
and comparison with simple random walk with positive drift imply
that for time ≥ expðcn−ð1−δÞÞ most of the stars are infected.

To complete the proof we have to get a positive lower bound on
the set of infected sites. To do this we will use the “self-duality” of
the contact process. To state this relationship let ξAt denote the
process with ξA0 ¼ A. In this notation, “self-duality” is

PðξAt ∩ B ≠ ∅Þ ¼ PðξBt ∩ A ≠ ∅Þ [4]

This is most conveniently proved by representing the process
using a “graphical representation,” which is a sort of space-time
percolation process, and noting that each side of the equation is
the probability of a path from A × f0g to B × ftg. See Griffeath
(37). We are mainly interested in the special case A ¼ f1;…; ng,
B ¼ fxg. In this case, we have

Pðx ∈ ξ1t Þ ¼ Pðξfxgt ≠ ∅Þ [5]

To get a lower bound on the number of the density of occupied
sites we show that if starting from x the process can infect a vertex
with degree ≥λ−ð2þδÞ then with high probability ξfxgt ≠ ∅ for a
long time.

Having shown that the contact process survives for a long time,
we can define a quasi-stationary distribution by the state of ξ1t at
t ¼ expðn1∕2Þ. Let ρnðλÞ be the expected value of the fraction of
sites occupied in this measure. Berger et al. (35) show that for the
contact process on their preferential attachment graphs, there are
positive, finite constants so that

bλC ≤ ρnðλÞ ≤ Bλc:

In the language of statistical physics, they are bounding the cri-
tical exponent β that describes the power at which ρnðλÞ goes to 0.

The powers c and C are not given explicitly in (35). In contrast,
Chatterjee and Durrett (34) get reasonably good numerical
bounds.

Theorem 5. Suppose α > 3. There is a λ0 > 0 so that if 0 < λ < λ0
and 0 < δ < 1, then there exists two constants cðα; δÞ and Cðα; δÞ
so that as n → ∞

Pðcλ1þðα−2Þð2þδÞ ≤ ρnðλÞ ≤ Cλ1þðα−2Þð1−δÞÞ → 1. [6]

When α > 3 and δ is small, the power in the upper bound is >2
so the critical value β never takes its mean-field value of 1.
Based on the intuition that the infection will survive if, and only
if, it reaches a vertex with degree λ−2, the correct power in
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Theorem 5 should be 1þ 2ðα − 2Þ, i.e., the upper bound needs
some improvement.

Chaos in an Epidemic Model
The inspiration for this model arose more than 20 years ago. I had
just moved to Ithaca, New York, and the Northeast was in the
midst of a gypsy moth infestation that was killing many oak trees.
For all of one summer, my wife and I destroyed egg masses,
picked larvae off of trees, and put bands of sticky tape to catch
them when they came down at night. When the next summer
came, the outlook for the trees seemed bleak, but suddenly all
of the larvae were dead, victims of an epidemic of the nuclear
polyhedrosis virus.

To create a model, suppose that Gn is a graph with n vertices.
Thinking of upstate New York it would be most natural to con-
sider Gn to be a 2D lattice, and to resist the urge to identify the
borders of the state to make a torus. Durrett and Remenik (38)
have proved results for the d-dimensional case, but to keep with
the theme of this paper and to allow us to do explicit calculations,
we will suppose Gn is a random 3-regular graph. We use discrete
time, where t ¼ years, because moths lay eggs that hatch the next
year. Because the epidemic spreads quickly within a year, we for-
mulate the process as an alternation of two mechanisms.

• An occupied site gives rise to a Poisson mean β number of off-
spring sent to locations chosen at random from the en-
tire graph.

• Each site is infected with a small probability αn. If the site is
occupied then the infection spreads and wipes out the con-
nected component of occupied sites containing that vertex.

A similar system was considered earlier by Richards and cow-
orkers (39, 40). They were primarily interested in the evolution-
ary response of individuals to this situation.

A random 3-regular graph looks locally like a tree. On this tree
the critical probability for percolation is 1∕2. If the fraction of
occupied sites is <1∕2 then all components are small, while if p >
1∕2 there is a “giant component” that contains a positive fraction
of the graph, and the size of this component can be computed
explicitly. This reasoning suggests that in the limit as n → ∞
the fraction of occupied sites in generation n, pn, will satisfy
pnþ1 ¼ hðpnÞ, where hðpÞ ¼ gðf ðpÞÞ with f and g defined as
follows:

Growth. If density of occupied sites is p before growth then
density after is

f ðpÞ ¼ 1 − e−βp [7]

Epidemic. Because the infection probability per site, αn, is small,
if n is large then it is likely that only members of the giant com-
ponent will be killed. A branching process calculation shows that
if the density before infection is q the density after is

gðqÞ ¼
$
q if q ∈ ½0; 1∕2'
ð1 − qÞ3∕q2 if q ∈ ½1∕2; 1' [8]

Theorem 6. Suppose αn → 0 and αn log n → ∞. If we start in
product measure with density p, densities in process at times
n ≥ 0 on graph converge in probability to hnðpÞ. As β increases,
the behavior of the process changes:

• If β ≤ 1 then the concave function f ðpÞ < p for all p > 0,
so hnðpÞ → 0.

• If 1 < β ≤ 2 log 2 then starting from a small positive p, f nðpÞ
increases to a fixed point p% ≤ 1∕2.

• If β > 2 log 2 then the fixed point p% > 1∕2 and the system be-
comes chaotic, in a sense that we will make precise.

Note that the system goes from having an attracting fixed point
to chaos, and it does not follow the period doubling route to
chaos found in the family of logisitic maps: x → βxð1 − xÞ. This
behavior is called a border collision bifurcation [see, e.g., Nusse
et al. (41)].

To prove that the system is chaotic we use a result of Li and
Yorke (42), which says “period 3 implies chaos.”

Theorem 7. If there is a point with h3ðcÞ ≤ c < hðcÞ < h2ðcÞ then

1. For every k there is a point with period k.
2. There is an uncountable S so that if p; q ∈ S and r is periodic

limsup
N→∞

jhNðpÞ − hNðqÞj > 0 liminf
N→∞

jhNðpÞ − hNðqÞj ¼ 0

limsup
N→∞

jhNðpÞ − hNðrÞj > 0

Using this result, we can easily show that

Theorem 8. If β > 2 log 2 then the map is chaotic. The proof is
simple. Let a0 ¼ f−1ð1∕2Þ and c ¼ f−1ða0Þ. Clearly c < f ðcÞ ¼
a0 < f 2ðcÞ ¼ 1∕2. We need only check f ð1∕2Þ < a0.

A more satisfying notion of chaos is that the system has an
absolutely continuous stationary distribution. Lasota and Yorke
(43) have shown

Theorem 9.There is an absolutely continuous invariant measure if

inf
p∈½a1;1∕2'

jðhnÞ0ðpÞj > 1

Using this result with some computer calculations we can show
that the condition holds for n ¼ 3 if β ∈ ð2 log 2; 2.48'. We be-
lieve that there is a stationary distribution for all β > 2 log 2,
but we do not think that this result is sufficient to prove the
desired conclusion.

Random Boolean Networks
Random Boolean networks were originally developed by Kauff-
man (44) as an abstraction of genetic regulatory networks. In our
version of his model, the state of each node x ∈ Vn ≡ f1; 2;…; ng
at time t ¼ 0; 1; 2;… is ηtðxÞ ∈ f0; 1g, and each node x receives
input from r distinct nodes y1ðxÞ;…; yrðxÞ, which are chosen ran-
domly from Vn \ fxg.

We construct our random directed graph Gn on the vertex set
Vn ¼ f1; 2;…; ng by putting oriented edges to each node from its
input nodes. To be precise, we define the graph by creating a ran-
dom mapping ϕ: Vn × f1; 2;…; rg → Vn, where ϕðx; iÞ ¼ yiðxÞ,
such that yiðxÞ ≠ x for 1 ≤ i ≤ r and yiðxÞ ≠ yjðxÞ when i ≠ j,
and taking the edge set En ≡ fðyiðxÞ; xÞ: 1 ≤ i ≤ r; x ∈ Vng. Thus
our random graphGn has uniform distribution over the collection
of all directed graphs on the vertex set Vn in which each vertex
has in-degree r. Once chosen the graph remains fixed through
time. The rule for updating node x is

ηtþ1ðxÞ ¼ f xðηtðy1ðxÞÞ;…; ηtðyrðxÞÞÞ; [9]

where the values f xðvÞ, x ∈ Vn, v ∈ f0; 1gr , chosen at the begin-
ning and then fixed for all time, are independent and ¼1 with
probability p.

A number of simulation studies have investigated the behavior
of this model. See Kadanoff et al. (45) for survey. Flyvberg and
Kjaer (46) have studied the degenerate case of r ¼ 1 in detail.
Derrida and Pommeau (47) have argued that for r ≥ 3 there is
a phase transition in the behavior of these networks between ra-
pid convergence to a fixed point and exponentially long persis-
tence of changes, and they identified the phase transition
curve to be given by the equation r · 2pð1 − pÞ ¼ 1. The networks
with parameters below the curve have behavior that is “ordered,”
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and those with parameters above the curve have “chaotic” beha-
vior. Since chaos is not healthy for a biological network, it should
not be surprising that real biological networks avoid this phase.
See Kauffman (48), Shmulevich et al. (49), and Nykter et al. (50).

To explain the intuition behind the conclusion of Derrida and
Pomeau (47), we define another process fζtðxÞ: t ≥ 1g for x ∈ Vn,
which they called the annealed approximation. The idea is that
ζtðxÞ ¼ 1 if ηtðxÞ ≠ ηt−1ðxÞ, and ζtðxÞ ¼ 0 otherwise. If the state
of at least one of the inputs y1ðxÞ;…; yrðxÞ into node x has changed
at time t, then the state of node x at time tþ 1 will be computed by
looking at a different value of f x. If we ignore the fact that we may
have used this entry before, we get the dynamics of the threshold
contact process

Pðζtþ1ðxÞ ¼ 1jζtðy1ðxÞÞ þ⋯þ ζtðyrðxÞÞ > 0Þ ¼ 2pð1 − pÞ; [10]

and ζtþ1ðxÞ ¼ 0 otherwise. Conditional on the state at time t, the
decisions on the values of ζtþ1ðxÞ, x ∈ Vn, are made indepen-
dently.

We content ourselves to work with the threshold contact pro-
cess, because it gives an approximate sense of the original model,
and we can prove rigorous results about its behavior. To simplify
notation and explore the full range of threshold contact processes
we let q≡ 2pð1 − pÞ and suppose 0 ≤ q ≤ 1.

As mentioned above, it is widely accepted that the condition
for prolonged persistence of the threshold contact process is
qr > 1. To explain this, we need to introduce the dual process,
and for this it is convenient to rewrite our process as set-valued
ξt ¼ fx: ζtðxÞ ¼ 1g. The dual coalescing branching process oper-
ates as follows: If x is occupied at time t, then with probability q it
gives birth onto all of the sites y1ðxÞ;…; yrðxÞ, and with probability
1 − q no birth from x occurs. All sites that receive at least one
birth will be occupied at time tþ 1. The two processes satisfy
the following duality relationship:

PðξAt ∩ B ≠ ∅Þ ¼ Pðξ̂Bt ∩ A ≠ ∅Þ [11]

Again taking A ¼ f1; 2;…; ng and B ¼ fxg, we see that the
probability x is occupied at time t is equal to the probability that
the dual process has not died out. At small times, the dual will
behave like a branching process in which an individual has r
children with probability q and no children with probability
1 − q. The mean number of children is qr. If qr > 1 the branching
process is supercritical and the probability of no extinction is ρ ¼
1 − θ where the extinction probability θ is the root in [0,1) of

θ ¼ qθk þ 1 − q [12]

Theorem 10. Let ξ1t be the threshold contact process with
ξ10 ¼ f1;…ng. Suppose qðr − 1Þ > 1 and let δ > 0. Then there
is a positive constant CðδÞ so that as n → ∞

inf
t≤expðCðδÞnÞ

P
"
jξ1t j
n

≥ ρ − 2δ

#
→ 1.

This result and Theorem 11 are from Chatterjee and Durrett
(51). The key to studying the survival of the dual is an “isoperi-
metric inequality”. Let Ĝn ¼ ðVn; ÊnÞ be the graph obtained from
our original graph Gn ¼ ðVn; EnÞ by reversing the orientation of
the edges. Given a set U ⊂ Vn, let

U% ¼ fy ∈ Vn: x → y for some x ∈ Ug;

where x → y means ðx; yÞ ∈ Ên. Note that U% can contain vertices
of U. The idea behind this definition is that if U is occupied at
time t in the coalescing branching process, then the vertices in U%

may be occupied at time tþ 1.

Lemma. Let Eðm; kÞ be the event that there is a subset U ⊂ Vn
with size jUj ¼ m so that jU%j ≤ k. Given η > 0, there is an
ϵ0ðηÞ > 0 so that for m ≤ ϵ0n

P½Eðm; ðr − 1 − ηÞmÞ' ≤ expð−ηm logðn∕mÞ∕2Þ:

In words, the isoperimetric constant for small sets is r − 1. It is this
result that forces us to assume qðr − 1Þ > 1 in Theorem 10. By
using another strategy for guaranteeing persistence based on
the locally tree-like nature of the graph, we are able to show:

Theorem 11. Suppose qr > 1. If δ0 is small enough, then for any
0 < δ < δ0, there are constants CðδÞ > 0 and BðδÞ ¼
ð1∕8 − 2δÞ logðqr − δÞ∕ log r so that as n → ∞

inf
t≤expðCðδÞ·nBðδÞÞ

P
"
jξ1t j
n

≥ ρ − 2δ

#
→ 1.

We believe the correct result is that the process persists for time
OðecnÞ when qr > 1, but this seems to be a difficult problem.

Voter Models
Diseases are not the only things that spread through networks.
Opinions, gossip, and information do as well. A simple model
for the dynamic evolution of two opinions 0 and 1 (think of De-
mocrats and Republicans) was introduced 35 years ago by Clif-
ford and Sudbury (52) and Holley and Liggett (53) on the d-
dimensional integer lattice Zd. Each site at times of a rate one
Poisson process decides to change its mind, and when it does,
it adopts the opinion of a randomly chosen neighbor. One can
also formulate a slightly different process in terms of the edges
of the graph. Each edge becomes active at rate one. When it is
active, one endpoint is chosen at random, and the voter there
adopts the opinion at the other end. On a graph in which all ver-
tices have the same degree, the two recipes give the same result
(run on slightly different time scales), but in general they are dif-
ferent, and, as we will see, the edge voter model is considerably
simpler than the vertex voter model.

The key to the study of the voter model is again duality. Let
ζtðxÞ be the opinion of x at time t. Either of the two voter models
can be constructed by having a Poisson process for each oriented
edge ðx; yÞ, so that when a Poisson arrival occurs we draw an arrow
from x to y and the voter at x imitates the one at y. In the vertex
voter model, the rate for the ðx; yÞ Poisson process is
λðx; yÞ ¼ 1∕dðxÞ, where dðxÞ is the degree of x. In the edge voter
model, it is λðx; yÞ ¼ 1∕2. Given a starting point x and time t, we
can define a dual process ζ̂x;ts that starts at x and time t and works
backwards in time, jumping when it encounters the tail of an ar-
row. It follows from the definition that

ζtðxÞ ¼ ζt−sðζ̂x;ts Þ

To convert this into the duality equation we have seen twice
before, let ξAt be the set of sites with opinion 1 at time t when
initially ξA0 ¼ A. Let ξ̂Bt be the coalescing random walk system
in which (i) a particle at x jumps to y at rate qðx; yÞ, (ii) two par-
ticles on the same site coalesce to 1, and (iii) ξ̂B0 ¼ B. With these
definitions we again have:

PðξAt ∩ B ≠ ∅Þ ¼ Pðξ̂Bt ∩ A ≠ ∅Þ [13]

Thus to study the voter model it suffices to investigate the coales-
cing random walk.

To set the stage for the discussion of the voter model on ran-
dom graphs, we will begin by considering the voter model on d-
dimensional integer lattice with edges connecting each point to it
2d nearest neighbors. Holley and Liggett (53) have shown
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Theorem 12. In d ≤ 2 PðζtðxÞ ≠ ζtðyÞÞ → 0 while in d ≥ 3 there is a
one-parameter family of stationary distributions νp, which can be
obtained by taking the limit as t → ∞ starting from product mea-
sure, i.e., fζ0ðxÞ ¼ 1g are independent and have probability p.

This result follows from the behavior of simple random walk
on Zd. In d ≤ 2 two random walks will eventually hit, while in d ≥
3 there is positive probability that they never do. Letting jSj de-
note the number of points in a set S, and jξ̂B∞j ¼ limt→∞jξ̂Bt j, which
exists by monotonicity, duality tells us that

νpfζ: ζðxÞ ¼ 1 for all x ∈ Bg ¼ Epjξ̂
B
∞ j

The voter model on the torusΛ > ¼ ðZmodLÞd will eventually
reach consensus. Let N ¼ Ld and TN ¼ infft: ζtðxÞ≡ 1 or
ζtðxÞ≡ 0g. Cox (54) has proved the following

Theorem 13. If we let

sN ¼

8
<

:

N2 d ¼ 1
N logN d ¼ 2
N d ≥ 3

then TN∕sN converges in distribution to a limit.
If we pick two sites x; y ∈ Λ > at random then in d ≥ 2 their

coalescence time HN ¼ infft: jξ̂fx;ygt j ¼ 1g has

PðHN∕sN > tÞ → expð−t∕κÞ

where κ ¼ 2∕π in d ¼ 2 and κ ¼ ∑∞
n¼0 p

nð0; 0Þ in d ≥ 3 where
pnðx; yÞ is the transition probability of simple random walk.

In d ≥ 3 if we start from product measure and observe the pro-
cess at time tN with 1 ≪ tN ≪ N then the system looks like the
stationary distribution νp. In the language of Markov chains νp
is a quasi-stationary distribution for the voter model on the torus.

Turning to random graphs, we begin with BC small world,GBC
n .

All vertices have degree 3, so the two voter models have the same
properties, and we study the site version. The first step in doing
that is to consider what happens in the coalescing random walk
when B ¼ fx; yg. Let Xt and Y t be independent random walks
starting from x and y that jump at rate 1 and go to each of the
three neighbors with probability 1∕3. Let Pπ×π denote the law
of the process ðXt; Y tÞ when X0 and Y 0 are chosen independently
at random from the graph according to the stationary distribution
πðxÞ ¼ 1∕n. Let A ¼ fðx; yÞ ∈ GBC

n ×GBC
n : x ¼ yg, and let

PA ¼ Pπ×πð· jX0 ¼ Y 0Þ. Let TA ¼ minft: Xt ¼ Y tg be the hitting
time ofA, and let Tþ

A be the return time, i.e., the first timeXt ¼ Y t
after the first jump occurs. Applying a theorem of Kac [see (3.3)
in Chapter 6 of Durrett (55)] to the embedded discrete time chain
and recalling that jumps in ðXt; Y tÞ occur at rate 2,

EATþ
A ¼ 1∕2

Pπ×πðX0 ¼ Y 0Þ
¼ 1∕2

π × πðAÞ [14]

From this we see that the for the BC small world, or any random
graph with n vertices all of which have the same de-
gree, EAT

þ
A ¼ 1∕2n.

To get from this to the quantity that we really want, let Tmix be
the mixing time for the random walk:

Tmix ¼ max
x

minft: ‖ptðx; ·Þ − πð·Þ‖TV < 1∕eg

where ptðx; yÞ is the transition probability of the random walk and
the total variation distance is ‖μ − ν‖TV ¼ supAjμðAÞ − νðAÞj. I
claim that

Eπ×πðTAÞ ≈
1∕2

π × πðAÞ ·
1

PAðTA ≫ tnÞ
[15]

This is the Poisson clumping heuristic of Aldous (56): The naive
waiting time between returns is 1∕ð2π × πðAÞÞ, but this must be
corrected for by multiplying by the clump size, i.e., the expected
number returns that happen soon after the first one.

Locally the BC small world looks like a tree in which all ver-
tices have degree 3, so

PAðTA ≫ tnÞ ¼ 1∕2 and hence Eπ×πðTAÞ ∼ n

The mixing time for the random walk on the BC small world is
Oðlog nÞ [see Theorem 6.3.4 in Durrett (11)]. Since Tmix ¼ oðnÞ,
Proposition 23 of Aldous and Fill (57) implies that

Pπ×πðTA∕n > tÞ → e−t

Intuitively, if the random walks have not hit by time ns and
Kn → ∞ slowly then at time nsþ KnTmix the two walkers are dis-
tributed according to π, and so

Pπ×πðTA > nðtþ sÞjTA > nsÞ ≈ Pπ×πðTA > ntÞ

which is the lack of memory property that characterizes the ex-
ponential. For more on this see the proof of Theorem 6.8.1 in
Durrett (11).

By working harder with this argument one can show:

Theorem 14. Pick m sites at random and start coalescing random
walks at these locations. The number of particles at time nt con-
verges to Kingman’s coalescent, which makes transitions from k
to k − 1 at rate kðk − 1Þ∕2.

Let qi;jðtÞ be the transition probability of Kingman’s coalescent.
Since∑∞

k¼2 2∕kðk − 1Þ < ∞ we can start Kingman’s process at in-
finity. In Cox’s work, TN∕sN ⇒ τ where

Pðτ ≤ tÞ ¼
∑

∞

j¼1

ðpj þ ð1 − pÞjÞq∞;jð2t∕κÞ

In words, if the dual coalescing random walk starting from all sites
on the torus occupied has been reduced to k particles, then for
consensus to hold all k walkers must sit on sites with the same
value. This result is presumably true on the BC small world,
but to finish the proof one must investigate the big bang that
occurs in the coalescent starting with all sites occupied at time
0 [see Section 4 in Cox (54)].

Formula 14 in Sood and Redner (58) asserts that for the vertex
random walk on a Newman Strogatz Watts (NSW) random graph
with a power-law degree distribution pk ∼ Ck−α

Eπ×πTA is of order sn ¼

8
>>><

>>>:

n α > 3
n∕ log n α ¼ 3
nð2α−4Þ∕ðα−1Þ 2 < α < 3
ðlog nÞ2 α ¼ 2
1 α < 2

These graphs are rather ugly when α < 2. There are vertices of
degree n1∕ðα−1Þ ≫ n, so there are numerous self-loops and parallel
edges. van der Hofstad et al. (59) have shown that the distance
between two randomly chosen vertices is 2 with probability p and
3 with probability 1 − p. For this reason we will not consider the
ultrasmall worlds with α < 2 or the borderline case α ¼ 2.

To begin to prove Sood and Redner’s claims for α > 2, we note
that the reasoning in refs. 14 and 15 applies in general.
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π × πðAÞ ¼
∑

x

dðxÞ2∕
"

∑

x

dðxÞ
#

2

To determine the asymptotics of π × πðAÞ we note

• If α > 2 then ∑xdðxÞ ∼ nEdðxÞ
• If α > 3 then EdðxÞ2 < ∞ so ∑xdðxÞ2 ∼ nEdðxÞ2.
• If α ¼ 3 then using (5.5) in Chapter 1 of Durrett (53) with

bn ¼ n log n shows that ∑xdðxÞ2 ∼ cn log n
• When 2 < α < 3, EdðxÞ < ∞ but PðdðxÞ2 > kÞ ∼ ck−ðα−1Þ∕2, so

dðxÞ is in the domain of attraction of a stable law of index
ðα − 1Þ∕2, and

π × πðAÞ ∼ Yn2∕ðα−1Þ−2 ¼ Ynð2α−4Þ∕ðα−1Þ

where Y is a positive stable law with index ðα − 1Þ∕2.
We will always suppose that the degree distribution has p0 ¼ 0.

If p1 ¼ p2 ¼ 0 then the mixing time tn ¼ Oðlog nÞ. [Combine The-
orems 6.3.2, 6.2.1, and 6.1.2 in Durrett (11).] If p2 > 0 then there
are chains of vertices of degree 2 of length Oðlog nÞ, and the mix-
ing time tn ¼ Oðlog2 nÞ. See Section 6.7 in Durrett (11). If, in ad-
dition, p1 > 0 nothing bad happens, but we have to assume that
∑kðk − 1Þkpk∕∑kkpk > 1 so that a giant component exists and
then restrict our attention to the voter model on it.

Suchecki et al. (60) claim, based on simulations, that on the
Barabási–Albert preferential attachment graph, the vertex voter
model reaches consensus in time n0.88, while the edge voter model
takes time asymptotically cn. However, as Sood and Redner (58)
observe, the first quantity may just be the n∕ log n given above.
The result for the edge voter model is easy. π × πðAÞ ¼ 1∕n so
as long as the mixing time is oðnÞ, TA∕n will converge to an ex-
ponential.

Lieberman et al. (61) and Sood and coworkers (62,63) have
considered biased version of the edge voter model in which 0s

always switch to 1s but 1s only switch to 0s with probability
1 − s. In genetic terms, 1s have a selective advantage over the
0s. Remarkably the fixation probability for a single 1 in a sea
of 0s is independent of the structure of the graph, a result discov-
ered much earlier by Maruyama (64). [See also Slatkin (65).] The
proof is trivial. The embedded discrete-time chain is a biased ran-
dom walk.

Discussion
Here we have presented a small sample of work concerning pro-
cesses on random graphs, which is biased because it concentrates
on topics to which I have contributed. A more extensive survey
can be found in Barrat et al. (66). Most of the work cited there has
been done by physicists and is not rigorous, but there is more for
mathematicians to contribute than just dotting the i’s and crossing
the t’s. In addition to occasionally correcting an error, rigorous
analysis adds to our understanding of underlying mechanisms
and in some cases identifies phenomena not found by simulation.

My philosophy about these models is that, like the Ising model
of statistical physics, they are too simplified to make quantitative
predictions reliable but are designed to give insights into how
features of complex networks affect the qualitative behavior of
processes that take place on them. Rigorous results, like simula-
tions, must be interpreted carefully. Chatterjee and Durrett (34)
proved that λc ¼ 0 for graphs with power-law degree distribu-
tions. If λ ¼ 0.01 then one needs a vertex of degree 1∕λ2 ¼ 104

to ensure prolonged persistence, but if pk ∼ 3p−4 then this re-
quires n ¼ 1012 vertices.

In all of the problems considered here, the network remains
constant while the states of the vertices change. However, in rea-
lity, the connections between individuals change over time, and I
think this is an important direction for research. Networks is one
of two programs at the Statistical and Applied Mathematical
Sciences Institute in 2010–2011. Evolving networks will be one
of the several themes considered there.
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