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Pareto versus lognormal: A maximum entropy test
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It is commonly found that distributions that seem to be lognormal over a broad range change to a power-law
(Pareto) distribution for the last few percentiles. The distributions of many physical, natural, and social events
(earthquake size, species abundance, income and wealth, as well as file, city, and firm sizes) display this structure.
We present a test for the occurrence of power-law tails in statistical distributions based on maximum entropy.
This methodology allows one to identify the true data-generating processes even in the case when it is neither
lognormal nor Pareto. The maximum entropy approach is then compared with other widely used methods and
applied to different levels of aggregation of complex systems. Our results provide support for the theory that
distributions with lognormal body and Pareto tail can be generated as mixtures of lognormally distributed units.

DOI: 10.1103/PhysRevE.84.026104 PACS number(s): 89.65.Gh, 02.50.Ng, 05.40.−a

I. INTRODUCTION

Several phenomena in physics, biology, computer science,
demography, economics, finance, and the social sciences are
distributed according to a power law, or at least display
power-law behavior in the tails [1–11]. The power-law upper
tail of the distribution can be generated by an amplification
method [2], such as mixtures of lognormals [5,12,13]. In
the last decade the debate has intensified on the appropriate
procedures to detect power-law distributions in empirical data
[14–17], and a number of approaches have been proposed
to establish the length of the power-law tail [18,19], quickly
gaining widespread acceptance and use. In the literature the
power-law (Pareto) distribution is generally compared to an al-
ternative represented by the lognormal, though other candidate
distributions have been proposed [6,17,20–22]. While in many
cases the exact shape of the empirical distribution is not crucial,
as long as heavy tails are accounted for, the debate appears to
be especially animated in physics [7,9,11,23–28], economics
[29–35], and biology [12,36]. Further complications come
from the fact that there is no unique definition of heavy-tailed
distributions [37], and many social and natural phenomena
may display different tail behaviors when analyzed at different
levels of aggregation, due to composition and sample size
effects [12,38–40].

In this paper we provide a methodology based on maxi-
mum entropy (ME) estimation [41,42] to identify the data-
generating process and to determine the existence of a power-
law tail in the data.1 Two of the main benefits of this approach
are its flexibility and the fact that it delivers a well-defined
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alternative to the power-law or lognormal distribution. As the
ME density encompasses most commonly used distributions,
the estimated ME density can be easily compared with a
number of alternatives. Here we apply the ME methodology to
evaluate the fit of lognormal versus power-law distributions,
to compare different systems, and to analyze the behavior of
the same complex systems at different levels of aggregation.

In what follows we briefly describe the theoretical frame-
work associated with heavy-tailed distributions, review the
most commonly used methodologies to estimate the upper-tail
behavior of empirical data, and introduce the ME approach.
Then we analyze the distributions of city size, world trade
flows, and business firm size. In the last case we find support
for a theoretical prior suggesting the emergence of a power-law
upper tail in the distribution upon aggregation [13,38,43].
Finally, we compare the results of different tests by means
of simulations.

II. ESTIMATING HEAVY-TAILED DISTRIBUTIONS

There are several definitions of heavy-tailed distributions
[37]. In applications, the two most commonly used heavy-
tailed distributions are the lognormal and the power-law. Both
of them are heavy-tailed according to the following definition
[37, p. 50], [44, p. 5]:

Definition 1. A random variable X with cumulative dis-
tribution function (CDF) F on (0,+∞) is heavy-tailed if
E(etX) = ∫ ∞

0 etx dF (x) = ∞,∀t ∈ R.
Conversely, the lognormal does not belong to the class

identified by the most restrictive definition [37, p. 564], which
identifies a power-law tail:

Definition 2. A random variable X with CDF F on (0,+∞)
is heavy-tailed if there exists a positive parameter α such that
limx→∞ F̄ (x)/xα = L(x), where F̄ (x) = 1 − F (x) and L(x)
is a slowly varying function.

Distributions that satisfy Definition 2 are a subset of
distributions satisfying Definition 1.
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The tail behavior of the lognormal and Pareto distributions
can be explained by extreme value theory (EVT). Given a
random variable with CDF F and some predefined large value
xmin ∈ R+ in the support of F , define the excess distribution
over the threshold xmin as Y = X − xmin. The probability that
X > xmin by no more than an amount y � 0, given that the
threshold has been exceeded, is

P (X − xmin � y| X > xmin) = Fxmin (y)

= F (y + xmin) − F (xmin)

1 − F (xmin)
, 0 � y < x0 − xmin,

where x0 � ∞ is the right endpoint of F . The Balkema, de
Haan, and Pickands (BHP) theorem guarantees that under
some conditions there is a function β(xmin) such that the excess
distribution converges to the generalized Pareto distribution
(GPD) [37]:

∃ β(xmin) > 0 : lim
xmin→x0

sup
0�y<x0−xmin

|Fxmin (y) − Gξ,β(xmin)(y)|

= 0 ⇐⇒ F ∈ MDA(Hξ ), ξ ∈ R,

where

Gξ,β (y) =
⎧⎨
⎩1 − (

1 + ξ
y

β

)− 1
ξ if ξ 	= 0,

1 − exp
(− y

β

)
if ξ = 0,

S(Gξ,β ) =
{

y � 0 if ξ � 0,

0 � y � β

ξ
if ξ < 0,

are, respectively, the CDF of the GPD and its support,
and MDA(Hξ ) is the maximum domain of attraction of the
generalized extreme value distribution with shape parameter
ξ . This means that the distribution of Y = X − xmin is well
approximated by a GPD, for sufficiently large xmin, and that
the GPD parameter β is a function of xmin. The lognormal
distribution converges to Gξ,β with ξ = 0 (Gumbel-type),
whereas the Pareto [denoted Par(c,α), where c is the scale and
α the shape parameter] to Gξ,β with ξ = 1/α > 0 (Fréchet-
type). This implies that the asymptotic tail behaviors of the two
distributions are different. However, the convergence is very
slow, so that, as shown with different arguments in Refs. [39]
and [19], the difference may be very small, at the extent
that they are often practically indistinguishable for any finite
sample size.

The classical approach to the estimation of the parameters
of the Pareto distribution is based on a random sample from
the Par(c,α) distribution. The maximum likelihood estimators
(MLEs) of the parameters are [45]

ĉ = min
1�i�n

xi ; α̂ = n∑n
i=1 log(xi/ĉ)

. (1)

However, since we know that only observations larger than
some unknown threshold xmin follow the Pareto distribution,
the threshold cannot be estimated by means of Eq. (1). In this
case, a two-step procedure is often applied [37]: (1) plot the
mean excess function m = E(X − x|X > x); and (2) letting
�n(x) = {i : Xi > x}, set xmin = x∗, where x∗ is the smallest
number such that the empirical mean excess function m̂ =
[1/#�n(x)]

∑
i∈�n(x)(Xi − x) (where # denotes the cardinality

of a set) is approximately linear for x > x∗.

Alternatively, one may use the Hill estimator [37,46], which
is equivalent to the MLE of the shape parameter α if the
underlying distribution is Pareto. When the tail is Pareto
above a certain threshold xmin, the Hill estimator is the MLE
conditional on the threshold being equal to the kth-order
statistic x(k). By plotting the Hill estimator as a function of
x(k) (Hill plot) one can determine xmin so that the plot is
approximately linear for x(k) � xmin, since the Hill estimator
is the empirical mean excess function of log(x) computed
at xmin = log(x(k)) [37]. However, the Hill estimator in finite
samples can be severely biased [15,37].

Another approach is based on the fact that the logarithm
of a (truncated) lognormal is a (truncated) normal, and the
logarithm of a Pareto is an exponential. The likelihood ratio
test for the null hypothesis of exponentiality against the alter-
native of truncated normality is given by the clipped sample
coefficient of variation c̄ = min{1,σ̂ /μ̂} (where μ and σ are
the parameters of the truncated normal). It is also the uniformly
most powerful unbiased (UMPU) test [19,40,47]. This test is
computationally simple and theoretically appealing, but the
restriction of the UMP property to the class of unbiased tests
is often not completely satisfactory from a statistical point of
view [48]. Moreover, the UMPU test can be used for testing
only the Pareto versus the lognormal distribution.

Recently, Clauset, Shalizi, and Newman (CSN) proposed
another method based on the Kolmogorov-Smirnov (KS)
statistics [18]. The estimated xmin is the value that minimizes
the KS distance D = maxx�xmin |Fn(x) − F (x)| between the
empirical CDF and the CDF of the Pareto. Although CSN also
show how to test the hypothesis that the data larger than x̂min

are truly power-law distributed, their method provides only the
best threshold, but does not tell whether, and how plausibly,
different thresholds also determine a power-law tail.

Here we explore another approach, based on the ME distri-
bution, which encompasses both the lognormal and the Pareto.
The ME distribution is the result of the maximization of the
Shannon’s information entropy W = ∫ −f (x) log[f (x)] dx

under constraints that impose the equality of the first k

theoretical and empirical moments. The constraints are usu-
ally the arithmetic or geometric (characterizing) moments,
respectively, given by

∫
xif (x) dx and

∫
log(x)if (x) dx, i =

0,1, . . . ,k.
Let μi = E[T (x)i] and μ̂i = 1

n

∑
j T (xj )i be, respectively,

the ith theoretical and empirical characterizing moment. The
ME approach entails maximizing W under the constraints
μi = μ̂i and can be solved introducing k + 1 Lagrange
multipliers λi (i = 0, . . . ,k), so that the solution (that is, the
ME density) takes the form f (x) = e− ∑k

i=0 λiT (x)i . The Pareto
distribution, Par(c,α), is an ME density with k = 1, whereas
the lognormal is ME with k = 2. For both distributions, the
characterizing moments are the logarithmic ones. On the other
hand, the exponential and the normal distributions are ME
with k = 1 and 2, respectively, and arithmetic characterizing
moments. The functions relating the parameters of the original
and the ME distributions are detailed in Table I.2

2The functional forms of the relations among λ0, λ1, and λ2 and the
truncated normal parameters can be found in Ref. [41].

026104-2



PARETO VERSUS LOGNORMAL: A MAXIMUM ENTROPY TEST PHYSICAL REVIEW E 84, 026104 (2011)

TABLE I. Parameters of the ME density for some commonly used distributions with logarithmic (log)
and arithmetic (arithm) characterizing moments.

Distribution Moments λ0 λ1 λ2

Pareto log − log(αcα) α + 1 –

Lognormal log 2 μ2

σ 2 − 1
2 log

(
1
2 σ 2

) + 1
2 log(π ) 1 − 2μ

σ 2
1

2σ 2

Exponential arithm − log(α) α –

Normal arithm log(
√

2πσ ) 0 1
2σ 2

The most important issue in ME estimation is the choice
of k. A larger number of constraints results in a more precise
approximation, but also in a model with more parameters.
Thus, the advantage of a better fit must be balanced against
the noise caused by the estimation of more parameters.
Accordingly, there are at least two ways of making a decision
concerning the optimal value of k (e.g., k∗).

Since the maximized log-likelihood is equal to
−N

∑k
i=0 λiμ̂

i (N being the number of observations), we can
compute a log-likelihood ratio (llr) test of the null hypothesis
k = k∗ against k = k∗ + 1 as

llr = −2N

(
k∗+1∑
i=0

λ̂i μ̂
i −

k∗∑
i=0

λ̂i μ̂
i

)
.

Standard limiting theory guarantees that, asymptotically, the llr
follows a χ2

1 distribution and is optimal [42,48]. In this context
optimality means that an llr with given size is uniformly at least
as powerful as any other test with the same size, provided the
size goes to zero sufficiently fast [49]. Thus the procedure is
based on the following steps: (1) estimate sequentially the ME
density with k = 1,2, . . .; (2) perform the test for each value
of k; and (3) stop at the first value of k (e.g., k0) such that
the hypothesis k = k0 cannot be rejected and conclude that
k∗ = k0.

However, this method does not fully account for the costs
of estimating a model with a larger number of parameters:
This may introduce some further noise without substantially
increasing the likelihood, and therefore the explanatory power,
of the model. A common strategy to solve this problem [50,51]
consists in computing an information criterion, such as the
Akaike (AIC) or Bayesian (BIC) information criterion, which
are still based on the maximized likelihood but introduce a
penalization depending on the number of parameters. To avoid
overfitting, one can then stop at the value k∗ such that at least
one of the following two conditions holds: (1) the llr test
cannot reject the hypothesis k = k∗ or (2) the numerical value
of AIC(k∗ + 1) [or BIC(k∗ + 1)] is larger than the numerical
value of AIC(k∗) [or BIC(k∗)]. In the empirical analysis that
follows we determine k∗ by means of the combined used of
the llr and the AIC when we apply ME estimation to the entire
distribution of the data, whereas we use only the llr when
focusing on the upper-tail behavior.

III. EMPIRICAL ANALYSIS

In recent years remarkable effort has been devoted to
study the shape of the size distribution of cities [19,32–34].
The debate rests partly on the difficulty of properly defining

what a city is and, empirically, what is the correct measure
to employ [52]. By using data for all the populated places
provided by the US Census in year 2000, it has been argued that
the size distribution of cities is lognormal [33], not power-law
as previously thought based on the largest metropolitan areas
[32,53]. Yet, although the body of the city size distribution
is well approximated by a lognormal, disagreement persists
on whether there are significant departures in the upper tail
[34,35]. The presence of a significant power-law tail has been
recently confirmed—and the debate apparently closed—by
means of the UMPU test [19]. We start our empirical analysis
with an application of the UMPU, CSN, and ME tests to the
same data on city size used in previous studies [19,33,34], so as
to have a meaningful comparison of their relative performance.

Results are reported in Fig. 1. Depending on the test and the
chosen significance level, we observe a power-law tail whose
length ranges between top 536 and 1515 cities out of 25 359
populated places. In particular, according to the UMPU test
the power law ranges between 1045 (10% level) and 1450
cities (1% level), the CSN test finds that the power-law tail
is confined to the largest 536 cities, whereas according to
the ME test, the power law spans 1205 (10%) to 1515 (1%)
observations. For what concerns the shape parameter α, the
classic Hill estimator is very sensitive to the choice of the
threshold that marks the beginning of the power-law tail: Using
the 10% significance level for the UMPU test (xmin = 1045),
we obtain α = 1.34, which is not consistent with Zipf’s law.
The estimate of the shape parameter obtained using the xmin

identified by CSN is 1.39, while the ME method yields a
slightly smaller value (1.28).

However, before jumping to the conclusion that one theory
or the other is supported by the data, one should take into
account at least three related issues: (1) discriminating among
the lognormal and the power-law tail behavior is difficult and
the existing tests provide different results, (2) sample size
matters, as well as truncations and other empirical phenomena
that influence the estimation, and (3) the level of aggregation
at which data are collected is not neutral to the detection of
a power-law behavior. Thus we turn now to other real-world
distributions at different levels of aggregation in order to better
assess the influence of these various elements on the debate
about the tail behavior in empirical data.

We analyze two widely investigated economic distribu-
tions: international trade flows [10,54–56] and business firm
sizes [13,29–31]. First, we estimate the maximum entropy
distribution against the (truncated) lognormal. Second, we
analyze the behavior of the upper tail of the size distributions
by means of the UMPU, CSN, and ME tests. Last, we
discuss a theoretical model that properly account for the
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FIG. 1. (Natural log of) p-value of the UMPU and ME tests for exponential vs truncated normal distribution of the logarithm of US city
sizes. The estimate of xmin obtained by CSN is also reported (vertical line).

emergence of a power-law tail in the firm size distribution
[13,43].

It has often been noted that the Pareto tail of a system seems
longer at a higher level of aggregation. For instance, simulating
N observations from the same lognormal distribution, the top
102 observations look definitely Pareto when N = 105, and
not Pareto when N = 103 [39]. Thus we analyze both trade
and firm size at two levels of aggregation.

Trade data are taken from the COMTRADE database
maintained by the United Nations. This collects data on
6 002 617 bilateral trade flows among 157 reporting countries
(sources) and 230 destinations, at the six-digit level of the
Harmonized System classification, which consists of roughly
5000 products. In the analysis we focus on the latest available
year (2007) and analyze both disaggregate data at the level of
single-product category and total trade obtained by summing
up all trade flows for each of 20 767 nonnull country pairs.

To analyze the distribution of firm size we exploit a unique
dataset on yearly sales of 916 036 pharmaceutical products
by 5721 firms in 21 countries in 2004 [43,57]. Information
is both available at the disaggregate level of product sales as
well as reaggregated by assigning each product to the firm that
sells it.

All data are expressed in thousands of US dollars. For
notational convenience, in the following the original data
and their logarithms will be called “levels” and “logarithms,”
respectively.

The distributions of both aggregate and disaggregate trade
logarithms are not normal, but rather truncated normal, be-
cause of many small observations. Moreover, the observations
smaller than zero (in logarithms) seem to be little informative,
as there are clusters and peaks. Since (1) the distribution

is truncated anyway, (2) the smallest observations do not
appear very reliable, (3) there is a switch in the distribution
approximately at xt = 1 and (4) we are not particularly
interested in the left tail of the distribution, we decided to
discard the observations smaller than xt = 1 and estimate just
the left-truncated lognormal defined on (xt ,+∞). Notice that
the distribution of all the observations available is likely to be
a mixture of some distribution on (0,xt ) and a left-truncated
lognormal on (xt ,+∞).

As for the pharmaceutical data, all observations are larger
than $1000. However, it is clear that the distribution is
truncated, in particular at the disaggregate level, so that we fit
a truncated normal in this case as well, setting the truncation
threshold equal to $1000.

Figure 2(a) shows the distribution of the logarithms of
the aggregate trade data with superimposed the optimal ME
density with k∗ = 5. For comparison purposes, the truncated
normal density with parameters estimated from the data is
shown as well. The ME density fits the data much better than
the truncated normal. The fact that k∗ = 5 also implies that
the lognormal hypothesis for the levels should be rejected. For
disaggregate trade data [Fig. 2(b)], the lognormal hypothesis is
again rejected (k∗ = 6), but the distance between the optimal
ME and the normal seems smaller.

Turning now to the pharmaceutical data [Figs. 2(c) and
2(d)], the normal distribution is clearly not appropriate for the
whole distribution at both aggregation levels. The distributions
are more skewed than in the trade case, and the distance
between the normal and the optimal ME looks large at both
levels.

To compare more precisely the discrepancy between
the density of a certain theoretical distribution and the
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FIG. 2. Distributions of the logarithms of the data with superimposed the optimal ME density and the truncated normal density with
parameters estimated from the data. From top to bottom and from left to right, the panels refer to aggregate trade data (a), disaggregate trade
data (b), aggregate pharmaceutical data (c), and disaggregate pharmaceutical data (d).

ME, one can use the Kullback-Leibler distance K(f ||g) =∫
f (x) log(f (x)/g(x))dx or, more conveniently, the Informa-

tion Distinguishability index ID(f ||g) = 1 − e−K(f ||g), which
is normalized to be included in the unit interval [58]. Table II
reports the values of the two measures, where the MLEs
of the truncated normal are obtained by means of the EM
algorithm [59]. We find that the data offer greater support to
the lognormal hypothesis for lower levels of aggregation, and
this is particularly true in the case of trade.

We now focus on the tail behavior of the distributions. In
order to estimate the threshold xmin (the Pareto scale parameter)
we estimate the tail distribution for data {x : x > xm} for
various xm. For aggregate trade data, the threshold sequence
goes from rank 50 to rank 800. We do not show results for
ranks smaller than 50 (because estimates obtained with less
than 50 observations are likely to be too unstable) and larger
than 800 (because the Pareto hypothesis is definitely rejected
by all tests for ranks larger than 800). According to the details

TABLE II. Information Distinguishability index and Kullback-
Leibler distance of the ME distribution from lognormal, for different
levels of aggregation.

Trade data Pharmaceutical data

Aggregate Disaggregate Aggregate Disaggregate

ID index 0.0073 4.9702 × 10−4 0.0711 0.0688
K distance 0.0073 4.9714 × 10−4 0.0737 0.0713

in Sec. II, if the null hypothesis k = 1 cannot be rejected, the
true distribution is Pareto.

Figure 3 shows the p-value of the llr test for H0 : k = 1
against H1 : k = 2 in the ME setup, the estimate of xmin

obtained by CSN and the p-value of the UMPU test for
exponential versus truncated normal [47]. The p-value of
the power-law distribution found by CSN is reported in the
caption.

In the case of aggregate trade [Fig. 3(a)] the evidence
is mixed. At the 5% level, the Pareto hypothesis is valid
approximately for ranks smaller than 650 (quantile 96.87%)
according to the ME test, and for ranks smaller than 150
(quantile 99.28%) for the UMPU test. However, the results
are far from clear-cut, as the p-value of the UMPU test is
sometimes near 0.05 for ranks larger than 150. The CSN
approach yields a rank equal to 408 (quantile 98.04%), but the
p-value is equal to 0.024, so that the presence of a power-law
tail seems to be questionable. The only conclusion that can be
drawn with reasonable certainty is that the distribution is Pareto
for ranks smaller than 150 and is not Pareto for ranks larger than
700 (quantile 96.63%). Note that, when we focus on the tail
behavior, for ranks larger than 700 the ME procedure typically
finds k∗ = 2 (while rejecting k = 1), so that the distribution is
a left-truncated lognormal in the upper tail.

Turning now to disaggregate trade [Fig. 3(b)] the Pareto
hypothesis is valid approximately for ranks smaller than 1600
for ME (quantile 99.97%), 1480 for CSN (quantile 99.98%),
and 300 for UMPU (quantile >99.99%). However, similarly to
the case of aggregate data, for ranks between 500 (>99.99%)
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FIG. 3. The graphs show the (natural log of) p-value of the llr test for H0 : k = 1 against H1 : k = 2 in the ME setup, the estimate of xmin

obtained by CSN and the p-value of the UMPU test for exponential versus truncated normal. From top to bottom and from left to right, the
panels refer to aggregate trade data (a), disaggregate trade data (b), aggregate pharmaceutical data (c), and disaggregate pharmaceutical data
(d). The p-value of the CSN threshold is equal to 0.024 for aggregate trade, 0.274 for disaggregate trade, 0.026 for aggregate pharmaceutical,
and 0.868 for disaggregate pharmaceutical data.

and 1500 (quantile 99.98%), the p-value of the UMPU test
is sometimes near 0.05. The p-value of the CSN approach
(0.274) seems to confirm that the distribution is power-law,
and all tests suggest that the distribution is not Pareto for ranks
larger than 1600. Although the ranks such that the power-law
hypothesis is accepted are larger for disaggregate data, the
population size is much larger, so that only a very small fraction
of the observations is generated by a Pareto tail.

As for pharmaceutical data, Fig. 3(c) shows that at the 5%
level the distribution is Pareto for ranks approximately smaller
than 1500 for ME (quantile 73.78%). The length of the Pareto
tail found by UMPU is approximately 1000 (quantile 82.52%),
while CSN stops at rank 900 (quantile 84.27%). The p-value
of CSN is small (0.026), so that the tail may actually not
be Pareto. Notice that for aggregate data the p-value of the
UMPU test is not always below the one corresponding to
ME, and the latter first goes under the 5% level at rank 400.
Finally, for what concerns disaggregated figures [Fig. 3(d)],
the UMPU test starts rejecting the null hypothesis of Pareto
very early, for ranks approximately equal to 300 (quantile
99.97%). On the contrary, the CSN approach identifies a much
longer power-law tail, roughly corresponding to the largest
8000 observations (quantile 99.13%). The corresponding p-
value is large (0.868), suggesting that the upper tail of the
distribution is likely to actually be Pareto. The ME test gives
a similar picture, as it starts staying definitively below the 5%
level at rank near 8000. However, starting at rank 2500 the
p-value fluctuates between 0.10 and 0.01, making it difficult

to draw a clear-cut conclusion. Disaggregate pharmaceutical
data thus represent a clear example that the three procedures
may yield different results. Moreover, in this case it is not
clear whether the early rejection of the Pareto hypothesis by
the UMPU test implies a good performance or not.

One of the benefits of the ME approach is that it delivers
the estimated parameters of the distribution. Table III shows
the estimates of the Pareto shape parameter α by means of the
different approaches. UMPU and CSN both rely on the Hill
estimator: The difference in the estimated coefficient stems
from the fact that they identify two different thresholds for
the beginning of the Pareto tail, and the Hill estimator is quite
sensitive to this. We always have α̂(UMPU) > α̂(CSN) > α̂(ME),
and the values estimated by the three methodologies are not
always very close to each other. This is especially true for
α̂(UMPU) and α̂(ME): The difference is particularly large in the
case of disaggregate pharmaceutical data.

TABLE III. Estimates of the Pareto shape parameter. α̂(CSN) is the
estimated parameter generated by the CSN method minus 1.

Trade data Pharmaceutical data

Aggregate Disaggregate Aggregate Disaggregate

α̂(ME) 0.948 1.380 0.532 1.021
α̂(CSN) 1.080 1.402 0.601 1.038
α̂(UMPU) 1.190 1.551 0.623 1.513
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FIG. 4. (Color online) Results for the sampled aggregate trade data. ME(1) and ME(2) are the exponential and the truncated normal
distribution, respectively.

In some cases the evidence from the three tests is not
the same. It may therefore be of interest to check how
different the ME densities are when k = 1 (Pareto) and
k = 2 (truncated lognormal). To this aim, Fig. 4 gives some
insights for the aggregate trade data. The graph displays the
histogram of the logarithms above four different thresholds
and the estimated ME(1) and ME(2) densities (respectively
exponential and truncated normal when using the logarithms).
The four thresholds correspond to ranks in different positions
of the tails: in particular, panel (a) uses rank 100, such that all
tests accept the Pareto hypothesis, panels (b) and (c) use rank
300 and 550, such that the UMPU test rejects but the ME test
accepts the Pareto hypothesis, and finally panel (d) uses rank
750, for which all tests reject the Pareto hypothesis.

It can be seen that the two densities are almost indistin-
guishable for the three smallest ranks, for which the tests give
somewhat different results. On the other hand, when the rank
is equal to 750 and all the tests suggest rejection of the Pareto
hypothesis, the difference is more evident. These results are
quite reassuring, as they show that, when the outcomes of
the tests are not unambiguous, the possible data-generating
processes are almost identical.

An issue that requires further investigation is the following.
As pointed out in Sec. II, under the lognormal hypothesis,
when the threshold is large, so that the number of observations
is small, it is often observed that the tail seems to follow a
Pareto distribution. In order to quantify how the sample size
influences the statistical features of the tail (and, in particular,
the estimated xmin), we apply again the tests to a sample of the
disaggregate data of the same size as the aggregate populations

(n = 20 767 for trade and n = 5721 for pharmaceutical data).
Thus, the size of the two datasets to be compared is now the
same. The results are reported in Fig. 5.

In qualitative terms, for the trade data, the outcome is
similar to the one shown in Fig. 3(d); the thresholds obtained
with the three tests are also in good agreement with each other.
The length of the Pareto tail in the sampled data ranges between
quantiles 98.56% (rank 300, CSN) and 97.11% (rank 600,
ME), compared with quantile 99.98% in the original data. For
the pharmaceutical data, the Pareto tail reaches approximately
quantiles 95.63% (rank 250, CSN) or 94.06% (rank 340 ME)
in the sampled data, whereas it is confined above quantile 99%
in the original data.

Consistent with the observation that the sample size affects
the length of the Pareto tail observed in the data [39], the
Pareto tail is more pronounced in the samples than in the ori-
ginal population. In particular, the difference between the
length of the Pareto tail in the population and in the sample is
larger for the trade than for the pharmaceutical sales data, as
was to be expected in view of the larger difference between
the population and the sample size in the case of trade data.

Disaggregate data show, in the best case, a power-law tail
confined to the last percentile of the distributions. However,
trade and pharmaceutical data show a different behavior upon
aggregation. Since the aggregate trade distribution is certainly
not Pareto below the 96.63% percentile and a sample of the
same size of the disaggregate trade distribution has a Pareto tail
starting at the quantile 97.5%, we can conclude that the trade
distribution has a very short Pareto tail (if any). Conversely, the
business firm distribution has a power-law tail from the 75.53%
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FIG. 5. Results for the length of the Pareto tail for the sampled trade (a) and pharmaceutical (b) data. The p-value of the Pareto tail found
by means of the CSN approach is 0.096 for trade and 0.084 for pharmaceutical data.

quantile onward, while the Pareto tail of a sample of the same
size from the disaggregate (pharmaceutical) data is limited
to the quantile 94.1% (at most). Therefore the Pareto tail of
business firm size distribution emerges upon aggregation, not
just as a matter of sample size.

To make sense of this, it has been argued elsewhere [13]
that the power-law tail of the firm size distribution can be
generated as a sum of lognormals. In fact, the aggregate size
of each firm (S) is given by the sum of the size of products
(s) over the total number of products sold (K). In this context
the firm size distribution can be usefully approximated by a
lognormal distribution multiplied by a stretching factor which
increases with S.

Figure 6 shows that the complementary CDF of the
number of products sold by each pharmaceutical firms P (Kf )
is approximately Pareto, whereas the same distribution for
international trade P (Kc) (number of products traded by each
country pair) is far less skewed. Thus the emergence of a
power-law tail in the pharmaceutical data can be explained
by the presence of a Pareto component in the stretching
factor [13].

To substantiate the claim that the Pareto tail in pharma-
ceutical data can be generated by the aggregation of products
into firms according to a very skewed distribution P (Kf ), we
run the tests on a synthetic dataset obtained by aggregating
product-level data according to P (Kc) instead of P (Kf ). We
find that the Pareto tail is limited to ranks ranging from
136 (CSN) to 162 (ME test), which correspond to quantiles
between 97.55% and 97.17%. Hence, the power-law tail is
much smaller than in the true aggregate dataset, a result in
line with the conjecture that the skewness of the aggregation

rule P (Kf ) contributes to the emergence of a Pareto tail in the
data.

IV. COMPARING DIFFERENT TESTS
VIA SIMULATIONS

The empirical analysis conducted in Sec. III shows that the
results of the UMPU, ME, and CSN procedures are different.
Yet without knowing ex ante where the true threshold xmin

lies, we cannot assess whether an earlier rejection of the
null hypothesis of a Pareto tail actually represents a desirable
feature of the test or, on the other hand, a more powerful test
should identify a longer power-law tail as claimed in the case
of city size [19]. To better assess the relative merits of the three
test employed in the paper we turn now to simulation analysis.

In particular, we simulate 25 000 observations from a mix-
ture of a right-truncated lognormal and a Pareto distribution,
with density given by

f (x) =
⎧⎨
⎩

r 1




(
log(μ) − xmin

σ

)f1(x), x � xmin,

(1 − r)f2(x), x > xmin,

(2)

where 
 is the CDF of the normal distribution, f1 and f2 are
the Logn(μ,σ 2) and the Par(xmin,α) densities. For the density
to be continuous and differentiable at xmin we need to impose
some restrictions on the lognormal expected value μ and the
mixing weight r , which are not free parameters, and are given
by [60]

μ = log(xmin) − ασ 2; r =
√

2πασ
(ασ )e
1
2 (ασ )2

√
2πασ
(ασ )e

1
2 (ασ )2 + 1

.
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In the simulation we set σ = 1, xmin = 20, α = 1.3, giving
μ = 1.696 and r = 0.8726. With N = 25 000, this implies that
there are 3185 observations larger than xmin (i.e., simulated
from the Pareto distribution). Note also that the probability
that a Logn(1.696,1) distribution is smaller than 20 is equal to
0.903: thus, in the mixture, the smallest 90.3% observations
come from the lognormal, and therefore are certainly not yet
Gumbel, in the sense that they are not yet far enough in the tail
for the BHP theorem to work.

We implement the UMPU, CSN, and ME tests on the
simulated sample: Fig. 7(a) shows the average p-value across
100 replications (UMPU and ME) together with the average
xmin delivered by CSN. The graph shows that in this case CSN
performs better than both UMPU and ME, in that it identifies
(on average) a shorter power-law tail in the data, closer to
the true threshold. Panel (b) of Fig. 7 displays the empirical
power function of the simulated data for UMPU and ME, i.e.,
the number of times each test rejects the null hypothesis at
the 5% level divided by the number of replications. The graph
confirms that UMPU is more powerful than ME, although both
tests find a much longer Pareto tail than the true one and should
therefore be used with this caveat in mind.

Our simulations show that the three tests find power-law
tails whose lengths rank as in the empirical data on city size,
i.e., CSN, UMPU, and ME. Furthermore all tests find Pareto
tails that are longer that the true value. A possible interpretation
of our results is that in the case of the city size distribution, the
length of the power-law tail could actually be shorter than what
is currently thought, with the value found by CSN acting as an
upper bound, and a shape parameter α even further away from

what Zipf’s law would imply. In any case, for what concerns
cities, the power-law tail is much shorter than that observed
for pharmaceutical firms, though slightly longer than the one
we find for trade data. Hence, if an amplification mechanisms
is actually at play, it is limited to the largest cities.3

Although further analysis on the relative performance of
the various tests is probably necessary, our simulation exercise
questions the existence of a clear-cut ranking in the three tests
analyzed in the paper and reinforces the impression that in
applied research one should avoid relying on a single method
to identify the existence and the length of a Pareto upper tail
in the data.
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3We have no means to directly test the effect of aggregation on the
distribution of city size. However, a recent work that uses a clustering
algorithm to define cities finds that the 1947 clusters whose population
is larger than 12 000 are well approximated by a power law [52]. By
applying the same testing procedure to the data on populated places,
we find a Pareto tail spanning just 17 cities. As long as clusters are
combinations of populated places, this evidence is consistent with the
idea that the level of aggregation at which data are analyzed matters.
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