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T
raditional economic theory could not 

explain, much less predict, the near 

collapse of the financial system and its 

long-lasting effects on the global econ-

omy. Since the 2008 crisis, there has 

been increasing interest in using ideas 

from complexity theory to make sense of eco-

nomic and financial markets. Concepts, such 

as tipping points, networks, contagion, feed-

back, and resilience have entered the finan-

cial and regulatory lexicon, but 

actual use of complexity models 

and results remains at an early 

stage. Recent insights and techniques offer 

potential for better monitoring and manage-

ment of highly interconnected economic and 

financial systems and, thus, may help antici-

pate and manage future crises.

TIPPING POINTS, WARNING SIGNALS. Fi-

nancial markets have historically exhibited 

sudden and largely unforeseen collapses, at 

a systemic scale. Such “phase transitions” 

may in some cases have been triggered by 

unpredictable stochastic events. More of-

ten, however, there have been endogenous 

underlying processes at work. Analyses of 

complex systems ranging from the climate 

to ecosystems reveal that, before a major 

transition, there is often a gradual and un-

noticed loss of resilience. This makes the sys-

tem brittle: A small disruption can trigger a 

domino effect that propagates through the 

system and propels it into a crisis state.

Recent research has revealed generic em-

pirical quantitative indicators of resilience 

that may be used across complex systems to 

detect tipping points. Markers include rising 

correlation between nodes in a network and 

rising temporal correlation, variance, and 

skewedness of fluctuation patterns. These 

indicators were first predicted mathemati-

cally and subsequently demonstrated experi-

mentally in real complex systems, including 

living systems (1). A recent study of the 

Dutch interbank network (2) showed that 

standard analysis using a homogeneous net-

work model could only lead to late detection 

of the 2008 crisis, although a more realistic 

and heterogeneous network model could 

identify an early warning signal 3 years be-

fore the crisis (see the chart).

Ecologists have developed tools to quan-

tify the stability, robustness, and resilience 

of food webs and have shown how these 

depend on the topology of the network and 

the strengths of interactions (3). Epidemi-

ologists have tools to gauge the potential for 

events to propagate in systems of interacting 

entities, to identify superspreaders and core 

groups relevant to infection persistence, and 

to design strategies to prevent or limit the 

spread of contagion (4).

Extrapolating results from the natural 

sciences to economics and finance presents 

challenges. For instance, publication of an 

early warning signal will change behavior 

and affect future dynamics [the Lucas cri-

tique (5)]. But this does not affect the case 

where indicators are known only to regula-

tors or when the goal is to build better net-

work barriers to slow contagion.

TOO CENTRAL TO FAIL. Network effects 

matter to financial-economic stability be-

cause shock amplification may occur via 

strong cascading effects. For example, the 

Bank of International Settlements recently 

developed a framework drawing on data on 

the interconnectedness between banks to 

gauge the systemic risk posed to the finan-

cial network by Global Systemically Impor-

tant Banks. Recent research on contagion in 

financial networks has shown that network 

topology and positions of banks matter; the 

global financial network may collapse even 

when individual banks appear safe (6). Cap-

turing these effects is essential for quanti-

fying stress on individual banks and for 

looking at systemic risk for the network as 

a whole. Despite on-going efforts, these ef-

fects are unlikely to be routinely considered 

anytime soon.

Information asymmetry within a net-

work—e.g. where a bank does not know 

about troubled assets of other banks—can 

be problematic. The banking network typi-

cally displays a core-periphery structure, 

with a core consisting of a relatively small 

number of large, densely interconnected 

banks that are not very diverse in terms of 

business and risk models. This implies that 

core banks’ defaults tend to be highly cor-

related. That, in turn, can generate a col-

lective moral hazard problem (i.e., players 

take on more risk, because others will bear 

the costs in case of default), as banks recog-

nize that they are likely to be supported by 

the authorities in situations of distress, the 

likelihood amplifies their incentives to herd 

in the first place.

Estimating systemic risk relies on granu-

lar data on the financial network. Unfortu-

nately, business interactions between banks 

are often hidden because of confidentiality 

issues. Tools being developed to reconstruct 

networks from partial information and to 

estimate systemic risk (7) suggest that pub-

licly available bank information does not al-

low reliable estimation of systemic risk. The 

estimate would improve greatly if banks 

publicly reported the number of connec-

tions with other banks, even without dis-

closing their identity.

In addition to data, understanding the ef-

fects of interconnections also relies on in-

tegrative quantitative metrics and concepts 

that reveal important network aspects, such 

as systemic repercussions of the failure of 

individual nodes. For example, DebtRank, 

which measures the systemic importance 

of individual institutions in a financial net-

work (8), shows that the issue of too-central-

to-fail may be even more important than 

too-big-to-fail.

COMPLEX SYSTEMS
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AGENTS AND BEHAVIOR. Agent-based 

models (ABMs) are computer models in 

which the behavior of agents and their in-

teractions are explicitly represented as de-

cision rules mapping agents’ observations 

onto actions. Although ABMs are less well 

established in analyzing financial-economic 

systems than in, e.g., traffic control, epide-

miology, or battlefield conflict analyses, they 

have produced promising results. Axtell (9) 

developed a simple ABM that explains more 

than three dozen empirical properties of 

firm formation without recourse to external 

shocks. ABMs provide a good explanation 

for why the volatility of prices is clustered 

and time-varying (10) and have been used 

to test systemic risk implications of reforms 

developed by the Basel Committee on Bank-

ing Supervision, which show how dynami-

cally changing risk limits can lead to booms 

and busts in prices (11, 12). ABMs of market 

dynamics can be linked with ABM work on 

opinion dynamics in the social sciences (13) 

to understand how propagation of opinions 

through social networks affects emergent 

macro behavior, which is crucial to manag-

ing the stability and resilience of socioeco-

nomic systems.

Laboratory experiments with human 

subjects can provide empirical validation 

of individual decision rules of agents, their 

interactions, and emergent macro behav-

ior. Recent experiments studying behavior 

of a group of individuals in the laboratory 

show that economic systems may deviate 

significantly from rational efficient equi-

librium at both individual and aggregate 

levels (14). This generic feature of positive 

feedback systems leads to persistent devia-

tions of prices from equilibrium and emer-

gence of speculation-driven bubbles and 

crashes, strongly amplified by coordination 

on trend-following and herding behavior 

(15). There is strong empirical evidence of 

these behaviors in financial markets in prac-

tice, and these controlled laboratory experi-

ments provide more detailed understanding 

of mechanisms, causality, and conditions for 

emergence of macro phenomena.

A simple behavioral model, with agents 

gradually switching to better performing 

heuristics, explains individual, as well as 

emergent, macro behavior in these laboratory 

economies. The experiments also provide 

a general mechanism for managing social 

contagion in such systems. For example, 

monetary and fiscal policies and financial 

regulation designed to weaken positive feed-

back are successful in stabilizing experimen-

tal macroeconomic systems when properly 

calibrated (16). Complexity theory provides 

mathematical understanding of these effects.

POLICY DASHBOARD. It is an opportune 

time for academic economists, complex-

ity scientists, social scientists, ecologists, 

epidemiologists, and researchers at finan-

cial institutions to join forces to develop 

tools from complexity theory, as a comple-

ment to existing economic modeling ap-

proaches (17). One ambitious option would 

be an online, financial-economic dashboard 

that integrates data, methods, and indica-

tors. This might monitor and stress-test the 

global socioeconomic and financial system 

in something close to real time, in a way 

similar to what is done with other complex 

systems, such as weather systems or social 

networks. The funding required for essential 

policy-relevant and fundamental interdis-

ciplinary progress in these areas would be 

trivial compared with the costs of systemic 

financial failures or the collapse of the global 

financial-economic system.        ■
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Early-warning signals of the 2008 crisis in the Dutch interbank network. The figure portrays a temporal analysis 

of two loops, pairs of banks that are at the same time debtor and creditor to each other. Although the raw number of 

two loops is not very informative about possible ongoing structural changes, its comparison with a random network 

model benchmark is. A z-score represents the number of standard deviations by which the number of two loops in 

the real network deviates from its expected value in the model. Small magnitude z-scores (<3) indicate approximate 

consistency with the model, whereas larger magnitudes indicate statistically significant deviations. Two different 

random network models were used: a homogeneous network with the same total number of links as in the real network 

(top) and a heterogeneous network where every bank has the same number of connections as in the real network 

(bottom). The homogeneous model, often used in standard analyses, highlights only a late and abrupt structural 

change (2008). The more realistic heterogeneous model also identifies a gradual, early-warning “precrisis” phase 

(2005–2007). [Modified from (2)] 
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