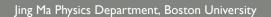
Zipf's Law in the Dynamical Importance of Network Nodes and Links

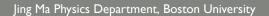
Jing Ma Physics Department, Boston University


December 1, 2016

Jing Ma Physics Department, Boston University

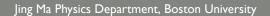
Outline

- Question about the Importance of Network Nodes and Links
- Dynamical Importance
- Simulations of Different Networks
- Zipf's Law in the Dynamical Importance
- Take Home Message



• How to quantify the importance of a node or a link in a network?

Jing Ma Physics Department, Boston University

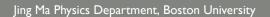


 How to quantify the importance of a node or a link in a network? Degree? or Clustering Coefficient? Degrees of the linked nodes?

- How to quantify the importance of a node or a link in a network? Degree? or Clustering Coefficient? Degrees of the linked nodes?
- A higher degree doesn't always mean a higher importance. They are all local!

- How to quantify the importance of a node or a link in a network? Degree? or Clustering Coefficient? Degrees of the linked nodes?
- A higher degree doesn't always mean a higher importance. They are all local!
- We need a universal quantity to measure the importance of network nodes and links.

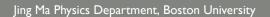
It should reflect the structure of the whole network!


Jing Ma Physics Department, Boston University

Dynamical Importance

Background

 The largest eigenvalue of the network adjacency matrix λ turns out to be very important in the properties of different dynamical networks. [4]
Examples are discussed in [3, 5, 1, 2].



Dynamical Importance

Background

- The largest eigenvalue of the network adjacency matrix λ turns out to be very important in the properties of different dynamical networks. [4]
 Examples are discussed in [3, 5, 1, 2].
- λ is proven to be always real and positive. [2] It is about the whole network.

Dynamical Importance

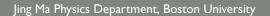
Definition

• The dynamical importance of a node is defined as

$$I_k \triangleq = -rac{\Delta\lambda_k}{\lambda},$$

where $\Delta \lambda_k$ is the change of λ upon removal of node k. [4]

• The dynamical importance of a link is defined as


$$I_k \triangleq = -\frac{\Delta \lambda_{ij}}{\lambda},$$

where $\Delta \lambda_{ij}$ is the change of λ upon removal of the link between *i* and *j*. [4]

Jing Ma Physics Department, Boston University

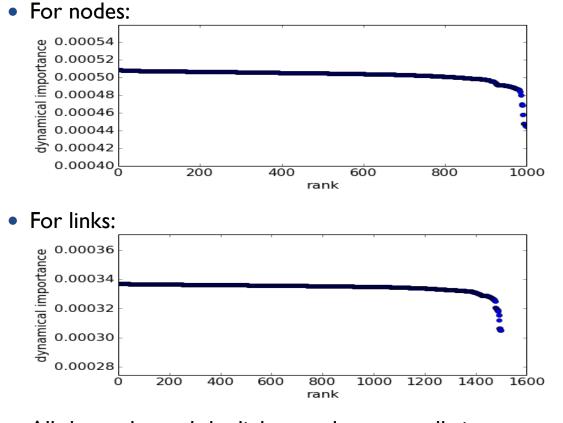
Methods

• What are the dynamical importance distributions of nodes or links?

Methods

- What are the dynamical importance distributions of nodes or links?
- There are four types of network models in the Python library 'networkx': Regular Graph Erdos Renyi Random Graph Watts Strogatz Small World Graph Barabasi Albert Scale Free Graph

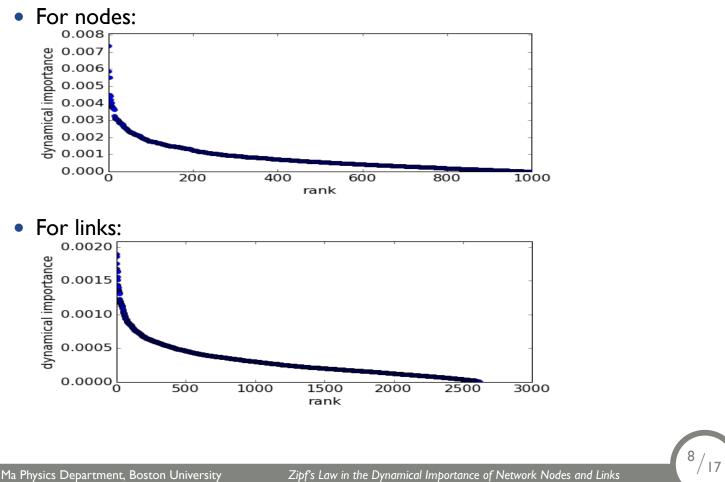
Jing Ma Physics Department, Boston University


Methods

- What are the dynamical importance distributions of nodes or links?
- There are four types of network models in the Python library 'networkx': Regular Graph Erdos Renyi Random Graph Watts Strogatz Small World Graph Barabasi Albert Scale Free Graph
- Simulations are done to calculate I_k for each node or I_{ij} for each link, and then sorted in descending order.

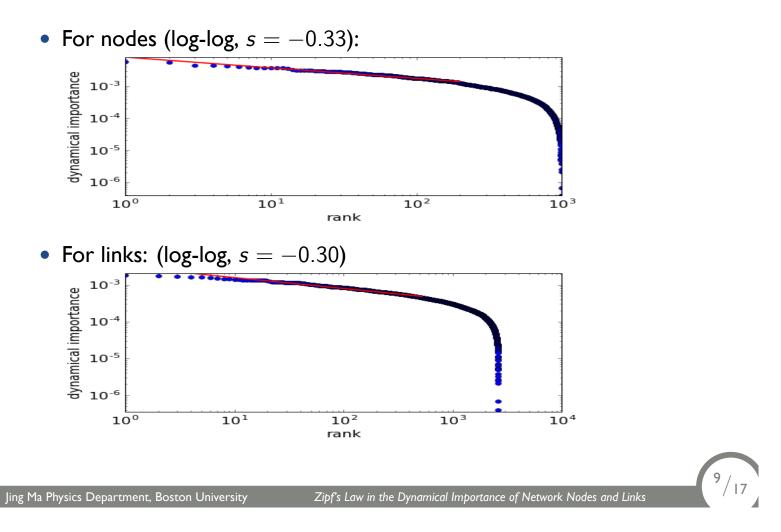
Jing Ma Physics Department, Boston University

Results – Regular Graph

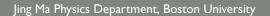


• All the nodes and the links are almost equally important.

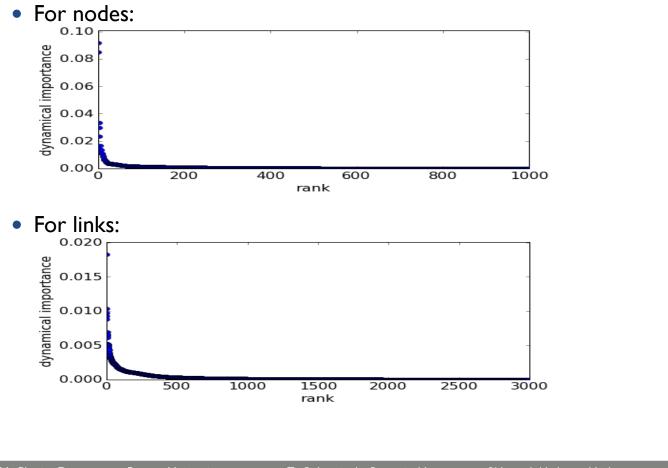
Jing Ma Physics Department, Boston University



Results – Erdos Renyi Random Graph

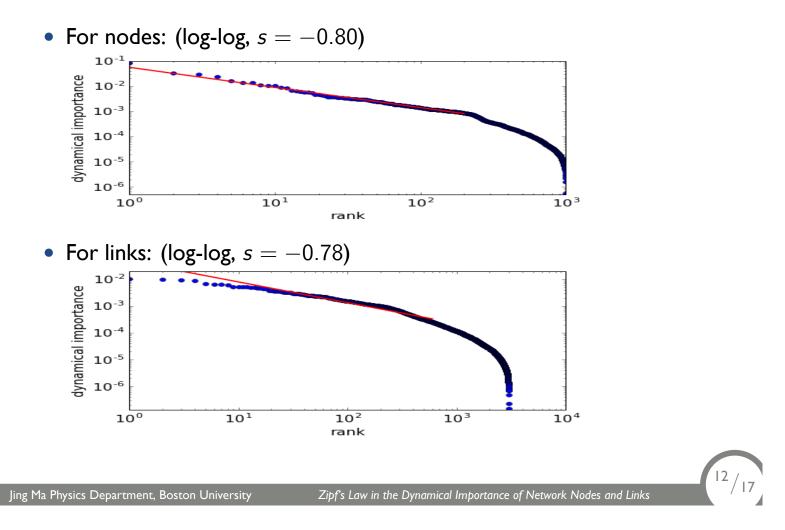

Jing Ma Physics Department, Boston University

Results – Erdos Renyi Random Graph


Results – Watts Strogatz Small World Graph

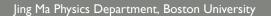
• Doesn't converge when the largest eigenvalue is calculated.

Results – Barabasi Albert Scale Free Graph



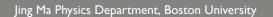
Jing Ma Physics Department, Boston University

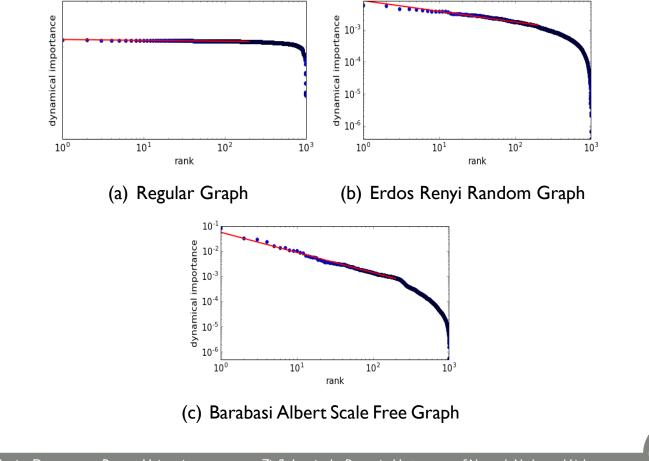
Zipf's Law in the Dynamical Importance of Network Nodes and Links


/17

Results – Barabasi Albert Scale Free Graph

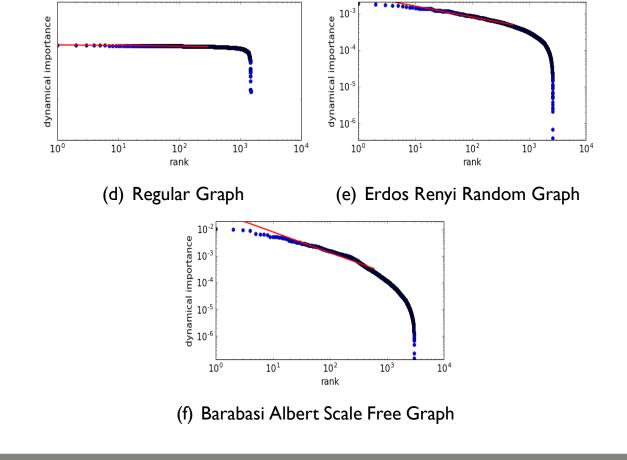
Zipf's Law in the Dynamical Importance Zipf's Law


• "Many types of data studied in the physical and social sciences can be approximated with a Zipfian distribution, one of a family of related discrete power law probability distributions." [6]


Zipf's Law in the Dynamical Importance Zipf's Law

- "Many types of data studied in the physical and social sciences can be approximated with a Zipfian distribution, one of a family of related discrete power law probability distributions." [6]
- A quantity is in a power law in terms of its rank.

Zipf's Law in the Dynamical Importance Nodes (log-log)

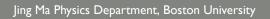


Jing Ma Physics Department, Boston University

Zipf's Law in the Dynamical Importance of Network Nodes and Links

|4/17

Zipf's Law in the Dynamical Importance Links (log-log)


Jing Ma Physics Department, Boston University

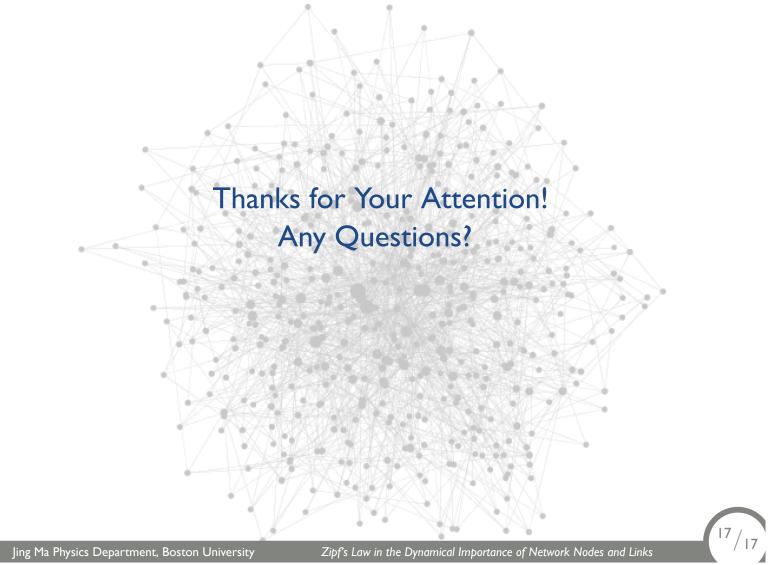
Zipf's Law in the Dynamical Importance of Network Nodes and Links

¹⁵/17

Take Home Message

• The largest eigenvalue of the network adjacency matrix λ is very important in the properties of networks.

Take Home Message

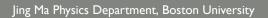

- The largest eigenvalue of the network adjacency matrix λ is very important in the properties of networks.
- The dynamical importance of a node or a link can be defined as the percentage decrease in λ upon its removal.

Take Home Message

- The largest eigenvalue of the network adjacency matrix λ is very important in the properties of networks.
- The dynamical importance of a node or a link can be defined as the percentage decrease in λ upon its removal.
- The dynamical importance of nodes obeys perfect Zipf's Law. The dynamical importance of links obeys less-than-perfect Zipf's Law.

Jing Ma Physics Department, Boston University

nD Cvetković and Peter Rowlinson. The largest eigenvalue of a graph: A survey. Linear and multilinear algebra, 28(1-2):3–33, 1990.
Charles R MacCluer. The many proofs and applications of perron's theorem. <i>Siam Review</i> , 42(3):487–498, 2000.
Juan G Restrepo, Edward Ott, and Brian R Hunt. Onset of synchronization in large networks of coupled oscillators. <i>Physical Review E</i> , 71(3):036151, 2005.
Juan G Restrepo, Edward Ott, and Brian R Hunt. Characterizing the dynamical importance of network nodes and links. <i>Physical review letters</i> , 97(9):094102, 2006.
Yang Wang, Deepayan Chakrabarti, Chenxi Wang, and Christos Faloutsos. Epidemic spreading in real networks: An eigenvalue viewpoint.


Jing Ma Physics Department, Boston University

In Reliable Distributed Systems, 2003. Proceedings. 22nd International Symposium on, pages 25-34. IEEE, 2003.

Eric W. Weisstein. Zipf's law. MathWorld.

