Network Science, Fall 2016

Dr. Jianxi Gao, Prof. H. E. Stanley

Homework 4, due by October 28th, 9:30am (before the class)

Write your name at the top of your homework before handing it in, and show the detailed calculation. Staple all pages together.

- a) Find the normalization factor A, assuming that the network has a power law degree distribution with $2 < \gamma < 3$, with minimum degree k_{\min} and maximum degree k_{\max} .
- b) Calculate the average degree of the neighbors of a randomly chosen node in a network with $N = 10^4$, $\gamma = 2.3$, $k_{\min} = 1$ and $k_{\max} = 1,000$. Compare the result with the average degree of the network, $\langle k \rangle$.
- c) Calculate the k_{\min} of a network with $N = 10^4$, $\gamma = 2.3$, and $\langle k \rangle = 6$. Note that k_{\min} is not necessary to be an integer, for example $k_{\min} = 2.5$ means that there is the same fraction of nodes with degree 2 and 3, and the minimal degree is 2.
- d) Write a computer code to generate networks of size N with a power-law degree distribution with degree exponent γ , and with minimal degree k_{\min} . Generate three networks with $\gamma = 2.5$, N = 500, and with minimal degree $k_{\min} = 1$, $k_{\min} = 2$, and $k_{\min} = 3$, and visualize the networks.
- e) Generate a network with N = 1,000 nodes using the Barabasi-Albert model with $m = m_0 = 4$, and calculate the maximum degree.