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1 Introduction

In every field of science associated with the observation of systems, regardless if they are
on the scale of the universe or on quantum mechanical scales, one strives to understand
the interplay between units or parts of this system and the underlying rules for these inter-
actions. These investigations will then lead to a discrete set of observations collected on a
finite time scale, i.e. discrete data points. In order to analyze the data obtained from the
experiment one has to use sophisticated methods to understand the relationships inside
the investigated system. Later, they can then be tested against mathematical models or
can yield to the knowledge about relevant parameters of a system.

One speaks about a time series if one observable was measured with successive measure-
ments at different times. The so-called "time series analysis" is a very valuable and often
used tool in almost every field of sicence. This includes fields like neuroscience, geophysics,
atmospheric physics, economics, network theory, signal processing, astronomy, etc.

In the case of this term paper the experiment will be the New York Stock Exchange
and the units of the system are different stocks. The data is obtained on a time scale of
3 years and we wish to understand the relations between different stocks and the inter-
play of economic sectors and subsectors. The concept of correlation is used to identify
significant relations between different stocks. Once it is clear which units of the system
interact with each other it hopefully enables us to understand the nature of these relations.

A lot of work has been done already for the observed correlations of two observables and
their associated time series, but only recently the influence of third observables on such
correlations has been studied. Therefore it is of great interest to understand this topic
furter, not only for economics. The main idea of this paper is to use all available data of
all units of a system and include them into the determination of the correlation. If one pic-
tures such relations as a correlation based network where all units are somehow connected
(or sets of disconnected networks), it becomes clear that only the consideration of all ob-
servables at once can lead to an understanding of the single links. This in turn can allow
us to build models and try to predict the future outcome, once we know the 'pure’ relations.

The paper is organized as follows: In Section 2 I introduced the data under scrutiny.
Sections 3 and 4 will give brief definitions of the concepts of correlation and previous work
in this area. Afterwards, I compare the time-lagged correlation matrix with the time-lagged
partial correlation matrix for synchronous times and for different lags in Section 5 and 6.
Section 7 will be about the temporal behaviour of correlations and the eigenvalue spectra
of such matrices is investigated in Section 8. Finally I conclude in Section 9 and give an
outlook to future work.

2 Data set under investigation

The dataset in use contains the price return values of the 100 largest capitalized stocks in
New York Stock Exchange (NSYE) for the period of 2001 - 2003. It contains 748 trading
days with data points in 5 minutes intervals, where 78 data points account for one single
trading day with 390 minutes trading time. Therefore, the total length of one return time
series is 58344 entries. The price return time series is defined as the difference between two



adjacent price logarithms in time.
#(t) = n(Py(t) — In(P,(t - 1))

Without loss of generality, I rescaled every return time-series to mean zero and unit vari-
ance. -
0%

Here, piz; is the mean value and o;; the standard deviation (or square root of the variance)
of the time series for the ith stock. In general, after the analysis one could transform it
back to the original values. Later this is useful to compare the resulting correlations with
findings of Random Matrix Theory (RMT). In Section 3 the mean value and the variance
are explained in more detail. The data is organized in the data matrix X with dimension
N xT.

The distribution of normalized returns for all 100 stocks is shown in a semilog plot in
Figure 1 and has a tent shape. A closer look at the distribution around zero shows some
anomaly which I account to round-off errors and finite precision in the price values. This
behaviour is presented in Figure 2, but not further investigated.
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Figure 1: Distribution of price returns for Figure 2: Anomaly in distribution of price
all 100 stocks in semilog histogram. returns for all 100 stocks.

3 Correlation and previous work

The investigation of covariances obtained from the time series under scrutiny has a long
history. In general it shows how two quantities are related and how they change mutually,
i.e. if one quanity increases who much does the other change. For example, if one increases
and the other decreases the covariance will be negative. If the two quantities have no causal
relation then the covariance and also the correlation is zero. The reverse is not necessarily
true and one has to be aware of this. The covariance accounts only for linear dependencies
and that has to be kept in mind.

It is defined as

Cov(z,y) =o(z,y) =E[(z — E(z)) (y — E(y))]

or the covariance matrix

Cov(X,Y) = Sxy = E (X — E(X)) (Y —E(Y))"| = %7,



for vector quantities X € R", Y € R™. The expectation value is denoted by E(z) and can
be estimated with the average value of a finite time series with

1 I
E(z) = > ().
=1

If the time series is long enough this value will be sufficiently close to the real expectation
value. The quantity Cov(z,x) = o%(z) is refered to as "variance" and o(z) is the associated
"standard deviation".

The covariance quantifies the amount of mutual change whereas the correlation gives a
qualitative measure of how strong two quantities are related. The correlation is defined as
a normalized version of the covariance

o(z,y)
o(z,x)o(y,y)

corr(z,y) = p(z,y) = €[-1,1]

and its values range from -1 to +1. For our normalized returns the covariance and the
correlation have the same numerical value. The covariance estimate, and for normalized
data also the correlation estimate, is obtained via

N(X,X) = %ZX(t)XT(t) - %XXT

To great extent the correlations of synchronous time series have been studied in different
field of researches. Especially the eigenvalue decomposition of the correlation matrix for
multiple interacting quantities, e.g. fincancial stocks , has been proven useful. The eigen-
modes can be related to the identification of clusters and subcluster in different sectors of
economy.

Lately in finance [1, 2, 3| and other sciences [4, 5, 6|, also the partial correlation has been
taken into account since it is a tool to measure the underlying interactions in a correlation
based network. The mathematical framework for it is explained in Section 4. Even fewer
has be done for time-lagged correlations where one looks at p (x(t), y(t + 7)) for some lag 7.
In the case of time-lagged correlation matrices for multiple quantities it is not symmetric
as in the case for synchronous correlation matrices. This introduces another difficulty since
many results of RMT cannot be applied and, additionally, the corresponding eigenvalues
and eigenvectors will be complex. I will address this problem more in Section 8. Recent
publications are |7, 8, 9].

4 Partial Correlation

The partial correlation is the correlation between the residuals of two time series X =
{1,252} after the linear regression to a set of conditional quantities/time series ¥ =
{y1,...,yp}. It represents the mutual dependence of two quantities on each other with-
out the influence of possible other correlated quantities. This means that the variables
x1 and xq, respectively, will be projected on the linear space of Y and the difference be-
tween this "conditional mean" and the original time series x; and x4, respectively, gives
the residual [10]. In the case of only one conditional quantity Y = {y} the conditional
mean writes

o(z,y)
o(y,y)

(y — E(y))



=o(z,y) -y for unit variance and zero mean,

and is exactly a linear regression. The partial variance between the two residuals is then
given by
0 (21, T2|y) = o121y = Cov (z1 — 21(y), T2 — T2(y)) -

For a more general case with an arbitrary finite number of y; the conditial mean is written
as (zero mean) )

X(Y)=ZxyIyy Y
We can then write down the full formula for the partial covariance matrix Yy x|y for X
given Y and make use of the bilinearity of the covariance and the symmetry property of

Yyy = Y%y, and therefore also its inverse ¥y, = [E{,HT.

EXX|Y = Cov (X — EXyE;/%/KX - EXYZ;’%’ Y)
= Cov (X, X) +Cov (ZXYE;/%/ Y, EXYE;%/ Y) — Cov (X, EXYE;%/ Y)
—

=Yxx

— Cov (SxyZyy Y, X)

_ B ) , )

= Sx F (S0 S Y (S V)T ) - F (S S vXT) T - (S v X)
—_—
=YTEy; Ty x
_ B ) ., )
=Yxx + nyzy%/ £ (YYT) EY;EYX — (EXYEY%/ E (YXT)) _ EXYZY%/ [ (YXT)
= Yo+ By By By By P - (EXYZ}_/%/EYX)T — YxySyy Sy x
~——
=1
With Xxy = 3% the last line reduces to
ZxX\Y = EXX — EXYEY%/ZYX — < 1Y 12|y> .
O21)y 0221y

The result holds also for the case of non-vanishing mean values and variances unequal one
for X, Y [10]. Another way of looking at it is as a regression model like

and the coviarance between the residuals
Cov(a,, 2,Y) = E(e(t), (1)

The coefficients can be identified as a; = E(x;) and ; = EXYZ{,%,. For example, whenever
somebody applies autoregressive models or removes the market mode his intention is to
idenitify the underlying raw relationships between single participants on the stock market.
The partial correlation can then be calculated from

012)y

VO11|Y 022|Y

Again, a partial correlation of zero does not necessarily imply causal independence [10].

Pr2ly =



5 Synchronous correlation matrix

One of the main ideas of my work was to include all available data into the calculation of
the partial correlation matrices, i.e. for every pair i, j of stocks the condition is a N — 2
dimensional vector for synchronous correlation matrices. For time-lagged correlation ma-
trices with lag 7 the dimension will be 7N — 2. For large lags this will be computationally
expensive, but since we have the fortune to live in a time of cheap computational power
the calculation time for small and medium lags (7 = 1,...,15) is quite short.

In order to evaluate this idea I compare it to the factor model Capital Asset Pricing
Model (CAPM).

5.1 CAPM and market mode removal

The CAPM is a linear regression of the returns of one stock onto the so-called market
mode x,,.
Z; (t) =q; + Bifﬁm(t) + € (t)

The market mode results from a coordinate transformation into a space where the data is
"orthogonalized" and has no correlations. This is obtain throught the diagonalization of
Yxx, or rxx respectively. Here X denotes the whole data set. The covariance matrix can
then be written as ¥ = UAUT where A is a diagonal matrix with the eigenvalues of ¥ in
the diagonal. The columns of U are the corresponding unit eigenvectors. The dataset can
then be transformed via X = XU. The idea is that the eigenvalue spectrum typically has
one very large separated eigenvalue and will be the main mode of the market. Assuming
that the eigenvalues are ordered like Ay > Ay > ... > Ay the market mode is calculated

as [7]
N
Ty — Z ulja:j
j=1

It was shown that the entries of eigenvector u,; are almost equal and, hence, show market
behaviour. After the linear regression onto the market mode only the residuals are consid-
ered and investigated.

I think that this can only approximate the raw partial correlations between two stocks
without the influence of third stocks. If the number of considered time series is low (e.g.
in other fields outside of finance) than the estimate will get worse since the market mode
depends also on the stock x; itself (z,, ~ x;).

The residual time series are then arranged in the data matrix X,.,. An example of how a
time series looks against the market mode is illustrated in Figure 3
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Figure 3: Scatter plot of Market mode against one stock time series (blue) and its associated
linear regression. The green dots show the scatter plot for the residuals of this time series
after the market mode removal.

5.2 Comparison to removed market mode time-series

In order to compare the performance of my method I calculated the following synchronous
correlation matrices:

e No removal: p

e Since we have a finite data set there will be noise terms. I scrambled the data matrix
X with random permutations and, therefore, destroyed all the correlations between
the different stocks. It is denoted by ps,

o Market mode removed: p,.s
e Partial correlation with condition on all N — 2 = 98 other stocks: p,

First I check if the random permutations of the data destroyed the correlations. This
is the case as can be seen in Figure 4 and the distribution function of the off-diagonal
elements is Gaussian. This matrix is also called Wishart ensemble and its associated
Wishart distribution. For correlation matrices, and also time-lagged correlation matrices,
of a finite data set with 7' observations for gaussian variables the upper noise limit for
uncorrelated data is [11] (N = 100,T = 58344)

Pmax ~ V/21In (N?2) /T = 0.01777.

As stated before for Figure 1, the distribution function has rather a tent shape than a
gaussian distribution. But as a rough limit approximation this limit will be sufficient.
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Figure 4: Distribution of correlation coefficients for the scrambled data. The fit shows that
the distribution is gaussian. The red dashed lines indicate the upper noise limit and it can
be seen that the distribution lies within these limits.

All correlation matrices are shown in Figure 5. The distinct dark blue line (almost no
correlation) in the untouched data indicates a stock almost decoupled from the rest of the
stocks. This stock belongs to the Newmont Mining Corporation which is one of the largest
producers of gold. Therefore, it will be closely related with the gold price which is known
to be very stable. Hence, it is not very correlated with the rest of the stocks. In comparison
with the removed market mode data it can be seen that most of the cross-correlations in
the untouched data are due to the market mode. But there is also a noticable difference
between p,.s and p,. The distributions of the correlation coefficients is presented in Figure 6
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Figure 5: Synchronous correlation for untouched data, scrambled data, market mode re-
moved data and the partial correlation. There is only very little negative correlation in all
unscrambled correlation matrices.
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Figure 6: Distribution of synchronous correlation coefficients without autocorrelations. All
three distributions show fat tail behaviour. There is a distinct difference between p,.., and

Pp-

In the next step I compare the real-valued eigenvalue spectrum of p,.s and p, in order
to see difference. This is of particular interest since the eigenvalue outside of the noise



spectrum are used to identify clusters and subclusters in the correlation based networks of
stocks. The eigenvalue spectrum of a real symmetric random gaussian matrix was pointed
out by Wigner [12]. If the matrix has the size N x N the spectrum is given by

flz) = VAN o2 — z2
= 27 No?

In order to test the data the eigenvalue spectrum of pg.. is compared to Wigner’s semicircle
law in Figure 7. The variance o2 of the gaussian distribution is empirically obtained from
the fit in Figure 4. Notice that the diagonal elements of the correlation matrix were set to
zero, or in other words, I substracted the identity matrix 1. This accounts simply to a
shift of the spectrum of one. This can be seen easily from the characteristic equation:

det((p—1) — M) =det(p— (1+ ML) =det(p— A1) =0 = I=X-1

8 Correlatipn coefficilent distriblution Dorr

-0.05 0.00 0.05
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Figure 7: Eigenvalue distribution of the correlation matrix for scrambled data. The blue
solid line describes Wigner’s semicircle law for the variance fitted from the correlation
coefficient distribution fit. They are in good agreement.

The two eigenvalue spectrums are shown in Figure 8. Both distributions show them same
overall structure of large positive eigenvalues. But there are still differences, for example
the value of the largest eigenvalue differs from each other. This will result and a different
correlation based network and, maybe, also in different sector clustering. I will address
this issue in the summary.
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Figure 8: Eigenvalue spectrum of p,.s and p,. Wigner’s semicircle law and the eigenvalue
distribution for p,., is also included to idenitify the eigenvalues outside the noise spectrum.

6 Time-lagged correlation matrix

The next step in my analysis is the investigation of time-lagged partial correlations (LPCs).
This includes again a comparison with for the market mode removed data. First, I show
the general structure of such asymmetric matrices for a lag of unit time and, secondly,
the evolution of the matrix structure. The time-lagged correlation matrix for the market
removed data set is obtained with

res - _r ZXT@S XZ;S U+ 7—)

For the time-lagged partial correlation CJ T use the same formula as for the synchronous
partial correlation, but include every lagged time series (up to lag 7) in the conditions as
well.

X =A{a;(t),z;(t +7)}
Y = {ml(t), e @ia (), 2 (), an (), (T =), ot (T —K)), .
Tyt 7). 2y (4T 2 (E 4T, .,xN(t—i—T)}

The matrix C} can then be calculated from the partial covariance matrix as explained in
Section 4. Again, Y has a large dimension: (7N —2) x (T' — 7).

6.1 Cause and reaction

The investigate the structure of LPCs for a lag of one unit time I define two quantities to
measure how much one stock can influence other stocks after one unit time and how much
it gets influenced from other stocks, or how much it reacts to other stocks.

cause(z;) g

n#i

reactlon xl g

n#i

The autocorrelation entries are excluded because they give the same contribution to both
measures and only the cross-correlation are of interest.

The three time-lagged correlation matrices C*, C},, and C} including cause and reaction
are shown in Figures 9, 10 and 11.
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'Els'ime—lagged correlation matrix C*
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Figure 9: Time-lagged correlation matrix for the untouched data including cause and
reaction. In the lower left plot blue pixels indicate negative correlation and red pixels
represents positive correlation. A very distinct feature of the plot is the pattern of vertical
lines which indicate that every stocks gets influenced almost equally by every other stock
after one time lag. This accounts to the market mode. The upper right subplot shows
the distribution of reaction versus cause. It can be seen that the distribution is stretched
out due to the vertical pattern. Also the autocorrelations in the diagonal entries can be
distinguished from the rest and show mostly negative correlations.

12



1'Iéime—lagged correlation matrix C
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Figure 10: Time-lagged correlation matrix for the market mode removed data including
cause and reaction. The pattern of vertical lines related to the market mode is not existing
anymore. The autocorrelations still exhibit negative behaviour. Interestingly the distri-
bution of cause and reaction shows a linear behaviour and seems to be correlated. Thus,
stocks with a strong future influence on other stocks also tend to be more influenced by
stocks in the past.
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O'gime—lagged correlation matrix C,
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Figure 11: Time-lagged partial correlation matrix including cause and reaction. In com-
parison with C!,. the lower left plot of C’; shows more distinct single pixels of strong
correlation. A comparison of the scale indicates that the numerical values for the market
removed data are lower. Therefore, the influence of other stocks seems to dampen the
raw correlation between two stocks. As before, almost all of the autocorrelations are in a
negative range and also for the LPCs cause and reaction seems to be positive correlated.

6.2 Lag evolution

Just a remark on the time scale of computation: With the high-level scripting language
PYTHON and an ordinary computer the calculation of the time-lagged partial correlation
matrix up to lag 10 is on a minute time-scale. For the range up to lag 30 it operates on
an hour time scale. I believe the use of a programming language like C++ and parallel
computing would speed up the calculation significantly.

In the following plots I compare the time-lagged correlation matrices of different

lags for the untouched, scrambled and market mode removed data with the time-lagged
partial correlation (Figures 12, 13, 14 and 15).
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Time-lagged Correlation matrices for lag 1
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Time-lagged Correlation matrices for lag 3
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Figure 13: Time-lagged correlation for C3,
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Time-lagged Correlation matrices for lag 6
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Figure 14: Time-lagged correlation for C°, Cf,., C%.. and C} for lag 6. The time-lagged

partial autocorrelations cannot be distinguished by eye anymore from the surrounding
partial cross-correlations.

Time-lagged Correlation matrices for lag 15
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Especially the case of 7 = 3 gives evidence that the raw correlations between two stocks
are suppressed by the influence of many other influential stocks. For the removed mar-
ket mode data the autocorrelations shift towards the noise spectrum, whereas the partial
autocorrelation are still outside the noise spectrum.

7 Time evolution of autocorrelations and strong cross-
correlations

In this section I want to have a closer look at the time evolution of single strong time-
lagged cross-correlations (LPCCs) and of the partial autocorrelations. As pointed out in
the section above the time scale of the decay time will be different for the time-lagged
correlations of the market mode removed data and the LPCs because of the damping
influence, due to correlations with all other stocks.

7.1 Partial autocorrelations

The autocorrelations of the market mode removed data and the partial autocorrelations
is shown in Figures 16 and 17. As mentioned above for C7 . almost all autocorrelations
evolved into the noise region at 7 = 3. Whereas for the partial autocorrelations of C the
same behaviour happens at 7 = 6. This shows again how the raw correlations to other

stocks dampen. The noise limit given in [11] gives as very good approximate limit.

AC forl all stocks

0.05 . |
0.00
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5 -005
e
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—0-205 5 10 15 20

7[5 min]

Figure 16: Temporal evolution of the autocorrelations of C7, . and their exponentials fits.

The dashed black lines correspond to the noise limit p,,4.-
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PAC for all stocks
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Figure 17: Temporal evolution of the autocorrelations of C} and their exponentials fits.
The dashed black lines correspond to the noise limit p,q.

Interestingly, the are a few autocorrelations outside the noise region for 7 =
8,9,10,11,16, 18,19 for both, the autocorrelations of C7_, and the partial autocorrelations.
This could indicate significant autocorrelations not described by a simple exponential de-
cay.

The distributions of the decay time fit parameter are presented in Figure 18. For the auto-
correlations of C7_, the peak of the distribution is below 7 = 1 and peaks at approximately
7= 0.5 = 2.5min. The peak for the partial autocorrelation is apprixmately center around
7 =14 = Tmin.

2_,Pistribution AC fit decay time (for A>p,..) 2Distribution PAC fit decay time (for A>p_ )

Count
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Figure 18: The plot on the left shows the distribution of the decay time constant of
the exponential fits to the temporal evolution of the autocorrelations of C7,.. Only time

constants are considered for which the associated amplitude fit parameter A lies outside
the noise spectrum. The plot on the right side corresponds to the partial autocorrelations.

7.2 Partial cross-correlations

The time-lagged cross-correlations can extend the analysis of cluster identification for syn-
chronous correlations. It gives insight how stocks influence each other in the future. I
expect stocks from the same sector will have strong time-lagged correlations to each other
and appear as symmetric elements in the time-lagged correlation matrix (cf; ~ cJ;). Asym-
metric entries will represent a directed future influence of stock 7 to stock j without getting
influenced by stock j. Here only the time-lagged partial correlations are considered in order
to test their typical time scale. I applied a threshold of +0.05 ~ 3pynq. to the off-diagonal
entries of C; to filter the strongest time-lagged partial cross-correlations. Figure 19 shows
the resulting matrix after the filtering. Most entries in the lower left triangle below the
diagonal have a symmetric partner in the upper right triangle. Also entries in the upper
right triangle without a symmetric partner can be seen.

Similarly to the analysis above I study the evolution of the correlations over the lag time.
The result is depicted in Figure 20. The temporal dependence is almost the same as for
the partial autocorrelations and the decay time distribution peak has the same position
at approximately 7 = 1.4 = Tmin. Therefore, all correlation in C7 decay on the same
timescale.

(I;_PCCs with threshold 0.05 for 7=1
: 0.16
20l 0.12
0.08
a0l ' ' . | Ho.oa
. 0.00
60} - o | ]-0.04
. -0.08
80 ~0.12

-0.16

0 20 40 60 80

Figure 19: Time-lagged partial correlation matrix without diagonal elements and a filter
threshold of 0.05.
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Jtrong lagged partial cross-correlations (LPCC)
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Figure 20: Temporal evolution of the strong time-lagged partial cross-correlations of €}
and their exponential fits in the left plot. The dashed black lines correspond to the noise
limit ppq.. The right plot shows the distribution of the fit parameter for the decay time
constant of the exponential fit function.

In Figure 21 I present LPCCs which exhibit peaks at lags different than zero or one.

They weren’t investigated further but in order to measure its significance a more thorough
analysis of the extension of the noise region is needed.

0.04

0.02} ¢

0.00¢

Correlation [1]

—0.02}

-0.04

Figure 21: Time-lagged partial cross-correlations with correlation peaks above 0.03 for lags
greater than one. The dashed black lines correspond to the noise limit p,q,.

8 Eigenvalue distribution of time-lagged partial corre-
lation matrices
In |7] the eigenvalue decomposition analysis was extended to time-lagged correlation ma-

trices. Following this approach the eigenvalue spectrum is complex, because in general the
time-lagged correlation matrices will be asymmetric. As in the case for synchronous corre-
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lation matrices one wants to distinguish the relevant eigenvalues from the noise spectrum.

8.1 Random Matrix theory for asymmetric real random matrices

For asymmetric random gaussian matrices the eigenvalue density in the complex plane for
N — o0 has the form of a circle [13]

1

2?2+ <a?

0 otherwise

A proper scaling with a = v/No gives an estimate for the support of the noise spectrum
for eigenvalues of C7,.. To verify the goodness of this estimation I generated asymmetric
random matrices (dimension N x N) with uncorrelated gaussian entries and compared the
eigenvalue spectrum to the density given above. As shown in Figure 22 the agreement is

good.

0_rda:fal asym. gaussian ensemble: o> = 0.0042

0.00] ==

Imag(EV)

o SR
0'915.05 0.00 0.05

Real(EV)

Figure 22: Eigenvalue distribution of 100 asymmetric random gaussian matrices with di-
mension N X N. The red solid lines shows the theoretical support for N — oo. The
distinct gap of imaginary parts in the vicinity of the real axis and the higher density for
real eigenvalues is due to higher level repulsion near the real axis as stated in [13]

A more thorough analysis is given in 7], where the authors extended the results of [14] for
symmetric cases to asymmetric real random matrices.

8.2 Eigenvalue distribution comparison

The eigenvalue spectra for different lags(r = 1,3, 14) are shown in Figures 23, 24 and 25.
For the non-scrambled time-lagged correlation matrices the theoretical noise support is
shifted by the average value of the diagonal elements. As shown in Section 5.2 the diagonal
elements shift the whole spectrum along the real axis. For small lags the spectra of the
market mode removed data and the partial lagged correlation matrix show different shapes.
C7., typically has one large real eigenvalue or one pair of complex eigenvalues separated
from the bulk spectrum and with a large positive real value. For greater lags the shapes
will be similar and, interestingly, there is always a fraction of eigenvalues outside the noise
spectrum, e.g. 7 = 14.
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Figure 23: Eigenvalues of C\,,, C}., and C} (7 = 1). The red solid line indicates the theo-
retical support for eigenvalues of an asymmetric random gaussian matrix. The scrambled
data shows very good agreement with the theoretical result not only for 7 = 1, but for all

considered lags.
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Figure 24: Eigenvalues of C%,,, C?., and C} (7 = 3). The red solid line indicates the theo-
retical support for eigenvalues of an asymmetric random gaussian matrix. The scrambled
data shows very agreement with that limit.
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Figure 25: Eigenvalues of CJ}, C}J, and C}* (7 = 14). The red solid line indicates
the theoretical support for eigenvalues of an asymmetric random gaussian matrix. The

scrambled data shows very agreement with that limit.

A further analysis will include an investigation of the associated eigenvectors and the
structure of the time-lagged correlation matrices. I believe that the deformation of the
eigenvalue spectrum for C’; along the real axis is related to the strong symmetric cross-
correlations. Generally speaking, the symmetric portion is related to real eigenvalues,
whereas the antisymmetric portion of a matrix relates to pure complex pairs of eigenvalues.
So far I couldn’t find any reference on that and neither do I have a mathematical proof
for that. It is purely hypothetical and has to be investigated in the future. In summary,
these results are more a proof of concept for identifying siginicant information about the
correlations.

9 Conclusion and Outlook

The concept of partial correlation including all other stocks at once has been succesfully
applied to the NYSE data from 2001-2003. Surprisingly, the third party correlation did
dampen the raw correlation between two stocks. I expected the opposite to be the case.
Furthermore, T was able to show that stocks with strong influence on all other stocks
within one unit time (five minutes) are also more likely to be influenced by all other
stocks. A typical exponential decay time of seven minutes seems to be a property of both,
autocorrelations and cross-correlations. In the last part it was shown that even for great
lags 7 eigenvalues of the time-lagged correlation matrix lie outside of the noise region. It
would be interesting to investigate the eigenvalue spectrum further in order to understand
the relation between the shape of the matrix, in terms of symmetric and antisymmetric
parts, and the associated shape of the eigenvalue spectrum. Future work could include
the creation of a model based on the observed partial correlations outside the noise region.
Also previous work of cluster identification for synchronous correlations could be repeated
for the partial correlations. Also time-lagged partial correlations could be used to compare
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with work done on partial correlations with only one or two conditions [1, 2|. Finally, I
think it would be very useful to do a singular value decomposition to see what are the
strongest mutual changes between lags.
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