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AN APPROXIMATE FORMULA FOR PRICING AMERICAN

OPTIONS

Abstract

An approximate formula for pricing American options along the lines of MacMillan
[1986] and Barone-Adesi and Whaley [1987] is presented. This analytical approxima-
tion is as efficient as the existing ones, but it is remarkably more accurate. In particular,
it yields good results for long maturity options for which the existing analytical ones
fare poorly. It is also demonstrated that this approximation is more accurate than
the less efficient methods such as the four-point extrapolation schemes of Geske and
Johnson [1984] and Huang, Subrahmanyam and Yu [1996].



There have been many attempts at pricing American options. Numerical methods such as

the finite difference method of Brennan and Schwartz [1977] and the binomial tree model

of Cox, Ross and Rubinstein [1979] are among the earliest and still widely used ones. Even

though these methods are quite flexible, they are also among the most time consuming ones.

A rare exception among the numerical methods is a recent paper by Figlewski and Gao

[1999]. They show that efficiency and accuracy of the binomial method can be improved

tremendously by fine tuning the tree in the regions where discretization induces the most

serious pricing errors.

The second group of methods includes approximate schemes based on exact representa-

tions of the free boundary problem of the American options or the partial differential equation

satisfied by the option prices. This group includes Geske and Johnson [1984], Bunch and

Johnson [1992], Huang, Subrahmanyam and Yu [1996], Carr [1998] and Ju [1998]. These

methods are essentially analytic approximations and they are convergent in the sense that

as more and more terms are included, they become more and more accurate. However these

methods become inefficient very rapidly.

Another category of methods uses regression techniques to fit an analytical approximation

based on a lower bound and an upper bound of an American option. These methods include

Johnson [1983], and Broadie and Detemple [1996]. These methods can be quite fast, but they

all need regression coefficients which in turn require computing a large number of options

accurately. Another drawback is that these methods are not convergent.

A fourth category of potential methods includes analytical approximations. MacMillan

[1986] and Barone-Adesi and Whaley [1987] are among these methods. A common feature

of these methods is that they are many times faster than most of the aforementioned ones.

A drawback is that they are not very accurate, especially for long maturity options, such as
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the exchange-traded long-term equity anticipation securities (LEAPS).

In the absence of any closed form formula for American options, a reliable analytical

approximation is obviously highly desirable. First, an analytical approximation will likely

be very efficient computationally. Second, such an approximation will not involve regression

coefficients which need to be calibrated and recalibrated. In this article such an analytical

formula is proposed. Even though it can not attain an arbitrary accuracy, for most practical

applications it is accurate enough to be a useful, reliable and efficient method. Another

useful feature of the method is that it is extremely easy to program. Therefore in cases

where execution time is less important than the programming time the present method

offers an appealing choice.

I. DERIVATION OF THE APPROXIMATE FORMULA

Under the usual assumptions, Merton [1973] has shown that the price F of any contingent

claim, whether it is American or European, written on a stock satisfies the following partial

differential equation (PDE):

1

2
σ2S2FSS + (r − δ)SFS − rF − Fτ = 0. (1)

The riskless interest rate r, volatility σ, and dividend yield δ are all assumed to be con-

stants. The value of any particular contingent claim is determined by the terminal condition

and boundary conditions. It should be pointed out that the above PDE only holds for

an American option in the continuation region. Otherwise the option should be exercised

immediately.

Because both American and European options satisfy the same PDE, so does the early

exercise premium V = VA − VE, where VA and VE are the prices of an American option

and its corresponding European counterpart, respectively. Following MacMillan [1986] and
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Barone-Adesi and Whaley [1987], we introduce the following notations:

τ = T − t, h(τ) = 1− e−rτ ,

α =
2r

σ2
, β =

2(r − δ)

σ2
, V = h(τ)g(S, h).

Then g satisfies

S2 ∂2g

∂S2
+ βS

∂g

∂S
− α

h
g − (1− h)α

∂g

∂h
= 0. (2)

The MacMillan [1986] and Barone-Adesi and Whaley [1987] approximations amount to

the assumption that the last term in (2) is zero. Their approximations are very good for

very short maturities since then (1 − h) is close to zero, and good for very long maturities

since then ∂g/∂h is close to zero. For intermediate cases like for maturities ranging from one

year to five years, serious mispricing could result. The approximation that we are about to

introduce gives better results for very short and very long maturity options and substantially

reduces the pricing errors for intermediate maturity options.

In the following, hg1 will be the early exercise premium of MacMillan [1986] and Barone-

Adesi and Whaley [1987], hg2 will be a correction to hg1. Let g = g1 + g2, then (2) becomes

S2∂2g1

∂S2
+ βS

∂g1

∂S
− α

h
g1 + S2∂2g2

∂S2
+ βS

∂g2

∂S
− α

h
g2 − (1− h)α(

∂g1

∂h
+

∂g2

∂h
) = 0. (3)

Now let

S2∂2g1

∂S2
+ βS

∂g1

∂S
− α

h
g1 = 0. (4)

A proper solution of g1 for an American option is

g1 = A(h)(S/S∗)λ, (5)

where λ is given by

λ =
−(β − 1) + φ

√
(β − 1)2 + 4α

h

2
,
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S∗ is the critical early exercise stock price for maturity τ , A(h) is a function of h and φ = 1

for calls and φ = −1 for puts. The resulting equation for g2 is given by

S2∂2g2

∂S2
+ βS

∂g2

∂S
− α

h
g2 − (1− h)α(

∂g1

∂h
+

∂g2

∂h
) = 0. (6)

Now let g2 = εg1. The intention is that hg1 will catch most of the early exercise premium

and thus ε will be small compared with one. Plugging in and making use of the fact that g1

satisfies (4), ε satisfies the following PDE:

S2 ∂2ε

∂S2
+ (2S2 1

g1

∂g1

∂S
+ βS)

∂ε

∂S
− (1− h)α((1 + ε)

1

g1

∂g1

∂h
+

∂ε

∂h
) = 0. (7)

Note that no approximations have been made so far. The first approximation we intro-

duce now involving assuming that ∂ε/∂h is zero. Using (5) we have

S2 ∂2ε

∂S2
+ (2λ + β)S

∂ε

∂S
− (1− h)α(1 + ε)

(
A′(h)

A(h)
+ λ′(h) log(S/S∗)− λ(h)

1

S∗
∂S∗

∂h

)
= 0. (8)

Now we introduce our second approximation. For the purpose of solving the above

ordinary differential equation (ODE), (1+ε) is treated as a constant. If (1+ε) is treated as a

constant, the above ODE can be solved easily. Let X = log(S/S∗) and ε = B(h)X2+C(h)X.

Plugging in and matching the coefficients we have

B =
(1− h)αλ′(h)(1 + ε)

2(2λ + β − 1)
= b(1 + ε),

C =
(1− h)α(1 + ε)

2λ + β − 1

(
A′(h)

A(h)
− λ(h)

1

S∗
∂S∗

∂h
− λ′(h)

2λ + β − 1

)
= c(1 + ε),

with

b =
(1− h)αλ′(h)

2(2λ + β − 1)
,

c =
(1− h)α

2λ + β − 1

(
A′(h)

A(h)
− λ(h)

1

S∗
∂S∗

∂h
− λ′(h)

2λ + β − 1

)
.
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Therefore

ε = b(1 + ε)(log(S/S∗))2 + c(1 + ε) log(S/S∗). (9)

It follows that

ε =
X

1−X , (10)

where

X = b(log(S/S∗))2 + c log(S/S∗).

Putting everything together we have that the price of an American option is approximated

by

VA(S) =

{
VE(S) + hA(h)(S/S∗)λ

1−b(log(S/S∗))2−c log(S/S∗) if φ(S∗ − S) > 0,

φ(S −K) if φ(S∗ − S) ≤ 0,
(11)

where VE(S) is the Black-Scholes [1973] European option formula.

To determine the price of an option we need to apply the boundary conditions. Applying

the value match condition we have

φ(S∗ −K) = VE(S∗) + hA(h). (12)

The high contact condition yields

∂VA(S)

∂S
|S→S∗ = φ = φe−δτN(φd1(S

∗)) +
λ(h)hA(h)

S∗
+

chA(h)

S∗
, (13)

where d1(S
∗) is given by

d1(S
∗) =

log(S∗/K) + (r − δ + σ2/2)τ

σ
√

τ
.
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Differentiating the value match condition (12) with respect to h, we have

h
∂A(h)

∂h
= φ

∂S∗(h)

∂h
− ∂VE(S∗, h)

∂h
− ∂VE(S∗, h)

∂S∗
∂S∗(h)

∂h
− A(h)

= φ(1− e−δτN(φd1(S
∗)))

∂S∗(h)

∂h
− ∂VE(S∗, h)

∂h
− A(h). (14)

Using (14) we have

c =
φ(1− h)α

2λ + β − 1

(
1− e−δτN(φd1(S

∗))
hA(h)

− φλ(h)

S∗

)
∂S∗(h)

∂h
−

(1− h)α

2λ + β − 1

(
1

hA(h)

∂VE(S∗, h)

∂h
+

1

h
+

λ′(h)

2λ + β − 1

)
, (15)

where

∂VE(S∗, h)

∂h
=

∂VE(S∗, τ)

∂τ

∂τ

∂h
=

S∗n(d1(S
∗))σe(r−δ)τ

2r
√

τ
−

φδS∗N(φd1(S
∗))e(r−δ)τ/r + φKN(φd2(S

∗)),

d2 = d1 − σ
√

τ .

To find S∗ we ignore the term involving c in (13), which is consistent with our intention

that we treat g2 as a correction to g1. It follows that S∗ solves the following equation:

φ = φe−δτN(φd1(S
∗)) +

λ(h)(φ(S∗ −K)− VE(S∗))
S∗

. (16)

An unexpected benefit of doing so is that the term involving ∂S∗/∂h in (15) is now zero and

c is then approximated by

c = − (1− h)α

2λ + β − 1

(
1

hA(h)

∂VE(S∗, h)

∂h
+

1

h
+

λ′(h)

2λ + β − 1

)
. (17)

Equations (12), (16) and (17) determine hA(h), S∗ and c respectively. hA(h), S∗, b and

c jointly determine the option price from (11). For easy reference we collect the relevant

formulas in Exhibit 1.
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The case r = 0 needs to be considered separately. The above formulas still apply if

the limit r → 0 is taken appropriately. This involves setting α/h = 2/(σ2τ) wherever this

combination appears and r = 0, h = 0 in other places. For easy reference the resulting

formulas for r = 0 are also listed in Exhibit 1.

In most cases not only are the prices of interest but the hedging parameters. They can

be obtained easily using the analytical formulas. For easy reference they are collected in

Exhibit 2.

II. NUMERICAL RESULTS AND COMPARISONS

In this section we present extensive numerical results to compare the accuracy and ef-

ficiency of our new analytical approximation and several other widely used methods. We

choose a binomial tree model with N = 10, 000 time steps as our benchmark for the true

values. Even though better benchmark can be obtained using the state of the art implemen-

tation of the binomial tree of Figlewski and Gao [1999], we have checked that our benchmark

values are accurate to the digit (3rd) reported and are accurate enough for our comparison.

We compare our method (hereafter Mquad) with the four point extrapolation scheme of

Geske and Johnson [1984] (hereafter GJ4), the modified two point Geske-Johnson method of

Bunch and Johnson [1992] (hereafter MGJ2), the four point extrapolation recursive method

of Huang, Subrahmanyam and Yu [1996] (hereafter HSY4), the lower and upper bound ap-

proximation of Broadie and Detemple [1996] (hereafter LUBA), the binomial tree model with

N = 150 time steps (hereafter BT150), the accelerated binomial tree method of Breen [1991]

with N = 150 time steps (hereafter ABT150), and the quadratic analytical approximation

of MacMillan [1986] and Barone-Adesi and Whaley [1987] (hereafter Quad).

We use the root of mean squared errors (RMSE) to measure the overall accuracy of

a set of options and maximum absolute error (MAE) to measure the maximum possible
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error. The computational efficiency is measured using the total CPU time (in seconds)

required to compute the whole set of the options. The computation is done on a Sparc-20 in

FORTRAN. Because there are different techniques to compute the multivariate cumulative

normal functions, no attempt is made to optimize the computations for GJ4. But it is

reasonable to assume that it is much less efficient than MGJ2. We follow Bunch and Johnson

[1992] in the implementation of MGJ2. A more sophisticated optimization routine is not

likely to affect the efficiency and accuracy significantly. For more extensive studies concerning

the computational efficiency of various methods, we leave the reader to other sources, for

example, Broadie and Detemple [1996].

Exhibit 3 reports results for the 27 options considered in Huang, Subrahmanyam and Yu

[1996] and Geske and Johnson [1984]. From the exhibit it is clear that GJ4, HSY4, ABT150,

and Mquad have essentially the same accuracy for these 27 options. BT150 and LUBA are

very accurate and have about the same accuracy for this set of short and moderate maturity

options. MGJ2 is clearly the least accurate method. It has a RMSE of 2.0 cents, MAE of 8.6

cents. It appears that MGJ2 is not a very useful method in terms of efficiency and accuracy.

Even though Quad is not as accurate as GJ4, HSY4, LUBA, BT150, ABT150, and Mquad,

for these short and moderate maturity options, it is still an efficient and reliable method.

The 20 call options considered in Exhibit 4 are adopted from Table 1 in Broadie and De-

temple [1996]. The general observation concerning Exhibit 3 also holds here. It is reasonable

to conclude that for options with maturities less than 0.5 years, except perhaps MGJ2 and

Quad, all other methods should give similar and reliable results.

For the options considered in Exhibit 3 and Exhibit 4, the improvement of Mquad over

Quad is that the RMSE and MAE of the former are about only half or less of those of the

latter. The improvement of Mquad over MGJ2 is more drastic. Mquad is also extremely
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efficient. It is about 20 times or more faster than MGJ2 and GJ4. It is also about 7 times

faster than HSY4 and 15 times faster than LUBA. For short and moderate maturity options,

Mquad could be the choice of methods in many applications.

To test the accuracies of these methods for longer maturity options, we consider the 20

put options in Table V of Barone-Adesi and Whaley [1987] in Exhibit 5 and the 20 call

options in Table 2 of Broadie and Detemple [1996] in Exhibit 6. For these long maturity

options, except LUBA and BT150, Mquad outperforms all the other methods substantially.

The MAE and RMSE of GJ4 are about as twice as those of Mquad. The MAE and RMSE

of Mquad are about 1.6 and 3 times smaller than those of HSY4. The improvement of

Mquad over Quad is more drastic. Its RMSE and MAE are more than five times smaller

than those of Quad. The improvement of Mquad over MGJ2 is even more drastic. Its RMSE

and MAE are about ten or more times smaller than those of MGJ2. The improvement of

Mquad over ABT150 is also substantial. It is clear from Exhibit 5 and Exhibit 6 that for

options with long maturities, Quad, MGJ2 and ABT150 cease to be reliable methods and

the reliabilities of GJ4 and HSY4 are greatly reduced. On the other hand, considering the

efficiency and accuracy, Mquad could still be the choice of methods for long maturity options

if the requirement for accuracy is not too stringent.

III. Summary and Discussions

We have proposed a new approximate analytical formula for pricing American options.

Our analytical approximation is as efficient as the existing ones such as that of MacMillan

[1986] and Barone-Adesi and Whaley [1987] and much more efficient than other methods such

as the four point extrapolation schemes of Geske and Johnson [1984] and Huang, Subrah-

manyam and Yu [1996], the modified two point Geske-Johnson of Bunch and Johnson [1992]

and the accelerated binomial model of Breen [1991] with 150 time steps. Our analytical
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approximation is markedly more accurate than the equally efficient analytical approxima-

tion of MacMillan [1986] and Barone-Adesi and Whaley [1987] and the modified two point

Geske-Johnson of Bunch and Johnson [1992] for both short and long maturity options. For

short maturity options, our approximation and those of Geske and Johnson [1984], Huang,

Subrahmanyam and Yu [1996] yield similar results. For long maturity options, our approxi-

mation is more accurate than those of Geske and Johnson [1984], and Huang, Subrahmanyam

and Yu [1996]. A drawback of our approximation is that it is not convergent. Nevertheless,

considering the efficiency and accuracy of the present approximation, it should be a useful

and reliable tool for pricing American options.

Even though we have only discussed standard American stock options, our approximation

obviously applies to other American options such as futures options, quanto options, index

options and currency options.
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EXHIBIT 1

FORMULAS FOR OPTION PRICE

VA(S) =

{
VE(S) + hA(h)(S/S∗)λ(h)

1−X if φ(S∗ − S) > 0,

φ(S −K) if φ(S∗ − S) ≤ 0,

where VE(S) is the Black-Scholes [1973] European option formula (φ = 1 for calls and φ = −1

for puts), hA(h) = φ(S∗ −K)− VE(S∗) and S∗ solves the following equation:

φ = φe−δτN(φd1(S
∗)) +

λ(h)(φ(S∗ −K)− VE(S∗))
S∗

,

and X , b and c are given by

X = b(log(S/S∗))2 + c log(S/S∗), b =
(1− h)αλ′(h)

2(2λ + β − 1)
,

c = − (1− h)α

2λ + β − 1

(
1

hA(h)

∂VE(S∗, h)

∂h
+

1

h
+

λ′(h)

2λ + β − 1

)
,

where

τ = T − t, h(τ) = 1− e−rτ , α =
2r

σ2
, β =

2(r − δ)

σ2
,

λ(h) =
−(β − 1) + φ

√
(β − 1)2 + 4α

h

2
, λ′(h) = − φα

h2
√

(β − 1)2 + 4α
h

,

∂VE(S∗, h)

∂h
=

S∗n(d1(S
∗))σe(r−δ)τ

2r
√

τ
− φδS∗N(φd1(S

∗))e(r−δ)τ/r + φKN(φd2(S
∗)),

d1(S
∗) =

log(S∗/K) + (r − δ + σ2/2)τ

σ
√

τ
, d2 = d1 − σ

√
τ ,

If r = 0 and the option is a call, we use the following limiting values,

λ =
−(β − 1) + φ

√
(β − 1)2 + 8

σ2τ

2
, b =

−2

σ4τ 2((β − 1)2 + 8
σ2τ

)
,

c =
−φ√

(β − 1)2 + 8
σ2τ

(
S∗n(d1(S

∗))e−δτ

hA(h)σ
√

τ
− φ2δS∗N(φd1(S

∗))e−δτ

hA(h)σ2
+

2

σ2τ
− 4

σ4τ 2((β − 1)2 + 8
σ2τ

)

)
.
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EXHIBIT 2

FORMULAS FOR HEDGING PARAMETERS DELTA, GAMMA and THETA

∆ = φe−δτN(φd1(S
∗)) +

(
λ(h)

S(1−X )
+

X ′(S)

(1−X )2

)
(φ(S∗ −K)− VE(S∗))(S/S∗)λ(h),

Γ = φe−δτ n(φd1(S
∗))

Sσ
√

τ
+

(
2λ(h)X ′(S)

S(1−X )2
+

2X ′2(S)

(1−X )3
+

X ′′(S)

(1−X )2
+

λ2(h)− λ(h)

S2(1−X )

)

(φ(S∗ −K)− VE(S∗))(S/S∗)λ(h),

where n(·) is the standard normal density function and

X ′(S) =
2b

S
log(

S

S∗
) +

c

S
,

X ′′(S) =
2b

S2
− 2b

S2
log(

S

S∗
)− c

S2
.

Theta can be easily obtained through the PDE satisfied by the option price,

Θ = rVA − 1

2
σ2S2Γ− (r − δ)S∆.
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EXHIBIT 3

VALUES OF AMERICAN PUTS (S = $40, r = 0.0488, δ = 0.0)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
(K, σ, τ (yr)) TRUE GJ4 MGJ2 HSY4 LUBA BT150 ABT150 Quad Mquad

(35, 0.2, 0.0833) 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.007 0.006
(35, 0.2, 0.3333) 0.200 0.200 0.200 0.200 0.200 0.199 0.199 0.204 0.201
(35, 0.2, 0.5833) 0.433 0.432 0.431 0.434 0.433 0.434 0.434 0.442 0.433
(40, 0.2, 0.0833) 0.852 0.853 0.852 0.854 0.852 0.851 0.851 0.850 0.851
(40, 0.2, 0.3333) 1.580 1.581 1.580 1.587 1.580 1.578 1.574 1.577 1.576
(40, 0.2, 0.5833) 1.990 1.991 1.992 1.999 1.990 1.989 1.984 1.989 1.984
(45, 0.2, 0.0833) 5.000 4.999 5.000 5.002 5.000 5.000 4.997 5.000 5.000
(45, 0.2, 0.3333) 5.088 5.095 5.002 5.095 5.090 5.089 5.102 5.066 5.084
(45, 0.2, 0.5833) 5.267 5.272 5.244 5.263 5.268 5.268 5.285 5.236 5.260
(35, 0.3, 0.0833) 0.077 0.077 0.077 0.078 0.077 0.078 0.077 0.078 0.078
(35, 0.3, 0.3333) 0.698 0.697 0.696 0.698 0.698 0.699 0.698 0.701 0.697
(35, 0.3, 0.5833) 1.220 1.219 1.217 1.223 1.220 1.224 1.224 1.228 1.218
(40, 0.3, 0.0833) 1.310 1.310 1.309 1.312 1.310 1.308 1.308 1.308 1.309
(40, 0.3, 0.3333) 2.483 2.482 2.481 2.492 2.483 2.480 2.476 2.478 2.477
(40, 0.3, 0.5833) 3.170 3.173 3.170 3.184 3.170 3.166 3.159 3.167 3.161
(45, 0.3, 0.0833) 5.060 5.060 5.067 5.060 5.060 5.060 5.063 5.047 5.059
(45, 0.3, 0.3333) 5.706 5.701 5.733 5.697 5.704 5.707 5.698 5.679 5.699
(45, 0.3, 0.5833) 6.244 6.237 6.281 6.230 6.243 6.245 6.239 6.215 6.231
(35, 0.4, 0.0833) 0.247 0.247 0.246 0.247 0.247 0.245 0.245 0.247 0.247
(35, 0.4, 0.3333) 1.346 1.345 1.344 1.347 1.346 1.350 1.350 1.349 1.344
(35, 0.4, 0.5833) 2.155 2.157 2.152 2.160 2.155 2.160 2.159 2.162 2.150
(40, 0.4, 0.0833) 1.768 1.768 1.768 1.769 1.768 1.766 1.766 1.766 1.767
(40, 0.4, 0.3333) 3.387 3.363 3.386 3.397 3.388 3.384 3.383 3.382 3.381
(40, 0.4, 0.5833) 4.353 4.356 4.351 4.370 4.353 4.348 4.339 4.349 4.342
(45, 0.4, 0.0833) 5.287 5.286 5.295 5.285 5.286 5.287 5.286 5.273 5.288
(45, 0.4, 0.3333) 6.510 6.509 6.520 6.513 6.509 6.510 6.505 6.487 6.501
(45, 0.4, 0.5833) 7.383 7.383 7.387 7.398 7.383 7.390 7.381 7.360 7.367

RMSE 0.005 0.020 0.007 0.002 0.003 0.007 0.013 0.006
MAE 0.024 0.086 0.017 0.006 0.007 0.018 0.031 0.016

CPU (sec) À 9.5e-02 9.5e-2 3.1e-02 8.0e-2 4.1e-1 3.2e-1 4.2e-3 4.8e-3

The ‘TRUE’ value is based on binomial with N = 10, 000. Columns 3-10 represent the
methods Geske and Johnson [1984], Bunch and Johnson [1992], Huang, Subrahmanyam
and Yu [1996], Broadie and Detemple [1996], binomial and accelerated binomial with N =
150, MacMillan [1986] and Barone-Adesi and Whaley [1987], and the modified quadratic
approximation of this article. RMSE is the root of mean squared errors. MAE is the
maximum absolute error. CPU is the total computing time for the whole set of options.
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EXHIBIT 4

VALUES OF AMERICAN CALLS (K = $100, τ = 0.5 years)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
(S, σ, r, δ) TRUE GJ4 MGJ2 HSY4 LUBA BT150 ABT150 Quad Mquad

(80, 0.2, 0.03, 0.07) 0.219 0.219 0.219 0.220 0.220 0.220 0.218 0.230 0.222
(90, 0.2, 0.03, 0.07) 1.386 1.385 1.382 1.390 1.386 1.392 1.392 1.405 1.386
(100, 0.2, 0.03, 0.07) 4.783 4.785 4.786 4.804 4.782 4.778 4.758 4.782 4.768
(110, 0.2, 0.03, 0.07) 11.098 11.089 11.255 11.069 11.098 11.098 11.104 11.041 11.079
(120, 0.2, 0.03, 0.07) 20.000 20.007 20.000 20.053 20.000 20.000 20.009 20.000 20.000
(80, 0.4, 0.03, 0.07) 2.689 2.686 2.683 2.690 2.689 2.690 2.689 2.711 2.687
(90, 0.4, 0.03, 0.07) 5.722 5.721 5.716 5.736 5.723 5.731 5.735 5.742 5.711
(100, 0.4, 0.03, 0.07) 10.239 10.245 10.235 10.275 10.240 10.227 10.215 10.242 10.214
(110, 0.4, 0.03, 0.07) 16.181 16.183 16.211 16.201 16.182 16.177 16.144 16.152 16.146
(120, 0.4, 0.03, 0.07) 23.360 23.342 23.477 23.329 23.357 23.353 23.335 23.288 23.321
(80, 0.3, 0.00, 0.07) 1.037 1.035 1.032 1.037 1.037 1.041 1.038 1.062 1.040
(90, 0.3, 0.00, 0.07) 3.123 3.124 3.115 3.144 3.123 3.118 3.115 3.147 3.118
(100, 0.3, 0.00, 0.07) 7.035 7.038 7.041 7.067 7.035 7.029 7.003 7.028 7.015
(110, 0.3, 0.00, 0.07) 12.955 12.934 13.064 12.909 12.953 12.960 12.937 12.886 12.928
(120, 0.3, 0.00, 0.07) 20.717 20.742 20.438 20.727 20.721 20.719 20.833 20.607 20.695
(80, 0.3, 0.07, 0.03) 1.664 1.664 1.664 1.664 1.664 1.668 1.668 1.665 1.664
(90, 0.3, 0.07, 0.03) 4.495 4.495 4.495 4.495 4.495 4.485 4.485 4.495 4.495
(100, 0.3, 0.07, 0.03) 9.250 9.251 9.251 9.251 9.251 9.237 9.237 9.251 9.251
(110, 0.3, 0.07, 0.03) 15.798 15.797 15.798 15.798 15.798 15.803 15.803 15.799 15.798
(120, 0.3, 0.07, 0.03) 23.706 23.708 23.706 23.706 23.706 23.709 23.709 23.709 23.707

RMSE 0.009 0.080 0.023 0.001 0.006 0.031 0.038 0.017
MAE 0.025 0.279 0.053 0.004 0.013 0.116 0.110 0.039

CPU (sec) À 6.6e-2 6.6e-2 2.9e-2 6.2e-2 3.0e-1 2.4e-1 2.9e-3 3.4e-3

The ‘TRUE’ value is based on binomial with N = 10, 000. Columns 3-10 represent the
methods Geske and Johnson [1984], Bunch and Johnson [1992], Huang, Subrahmanyam
and Yu [1996], Broadie and Detemple [1996], binomial and accelerated binomial with N =
150, MacMillan [1986] and Barone-Adesi and Whaley [1987], and the modified quadratic
approximation of this article. RMSE is the root of mean squared errors. MAE is the
maximum absolute error. CPU is the total computing time for the whole set of options.
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EXHIBIT 5

VALUES OF AMERICAN PUTS (K = $100, τ = 3.0 years, σ = 0.2, r = 0.08)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
(S, δ) TRUE GJ4 MGJ2 HSY4 LUBA BT150 ABT150 Quad Mquad

(80, 0.12) 25.658 25.653 25.949 25.686 25.657 25.647 25.545 26.245 25.725
(90, 0.12) 20.083 20.109 20.201 20.128 20.083 20.078 20.030 20.641 20.185
(100, 0.12) 15.498 15.512 15.550 15.536 15.499 15.478 15.475 15.990 15.608
(110, 0.12) 11.803 11.802 11.824 11.823 11.803 11.810 11.840 12.221 11.905
(120, 0.12) 8.886 8.880 8.897 8.894 8.886 8.884 8.907 9.235 8.974
(80, 0.08) 22.205 22.208 22.711 22.245 22.199 22.199 22.384 22.395 22.148
(90, 0.08) 16.207 16.164 16.531 16.134 16.199 16.205 16.201 16.498 16.170
(100, 0.08) 11.704 11.705 11.811 11.718 11.699 11.690 11.662 12.030 11.700
(110, 0.08) 8.367 8.389 8.407 8.436 8.363 8.378 8.356 8.687 8.390
(120, 0.08) 5.930 5.944 5.931 5.988 5.926 5.933 5.932 6.222 5.968
(80, 0.04) 20.350 20.513 20.000 20.523 20.334 20.344 20.577 20.326 20.336
(90, 0.04) 13.497 13.525 14.025 13.378 13.498 13.491 13.677 13.563 13.471
(100, 0.04) 8.944 8.841 9.109 8.804 8.942 8.934 8.910 9.108 8.931
(110, 0.04) 5.912 5.890 5.931 5.919 5.912 5.919 5.872 6.123 5.920
(120, 0.04) 3.898 3.905 3.882 3.978 3.898 3.897 3.848 4.115 3.922
(80, 0.0) 20.000 19.731 20.000 19.846 20.000 20.000 19.467 20.000 20.000
(90, 0.0) 11.697 11.884 10.176 11.761 11.695 11.684 12.014 11.634 11.705
(100, 0.0) 6.932 6.927 6.939 6.786 6.935 6.921 7.081 6.962 6.956
(110, 0.0) 4.155 4.103 4.145 4.090 4.155 4.154 4.100 4.257 4.190
(120, 0.0) 2.510 2.491 2.455 2.559 2.511 2.506 2.485 2.640 2.551
RMSE 0.087 0.401 0.085 0.0048 0.009 0.166 0.297 0.053
MAE 0.269 1.521 0.173 0.017 0.020 0.533 0.587 0.110

CPU (sec) À 6.7e-02 6.7e-2 2.5e-02 5.4e-2 3.0e-1 2.4e-1 2.8e-3 3.2e-3

The ‘TRUE’ value is based on binomial with N = 10, 000. Columns 3-10 represent the
methods Geske and Johnson [1984], Bunch and Johnson [1992], Huang, Subrahmanyam
and Yu [1996], Broadie and Detemple [1996], binomial and accelerated binomial with N =
150, MacMillan [1986] and Barone-Adesi and Whaley [1987], and the modified quadratic
approximation of this article. RMSE is the root of mean squared errors. MAE is the
maximum absolute error. CPU is the total computing time for the whole set of options.
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EXHIBIT 6

VALUES OF AMERICAN CALLS (K = $100, τ = 3.0 years)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
(S, σ, r, δ) TRUE GJ4 MGJ2 HSY4 LUBA BT150 ABT150 Quad Mquad

(80, 0.2, 0.03, 0.07) 2.580 2.588 2.560 2.644 2.580 2.576 2.531 2.711 2.605
(90, 0.2, 0.03, 0.07) 5.167 5.155 5.164 5.195 5.168 5.168 5.087 5.301 5.182
(100, 0.2, 0.03, 0.07) 9.066 9.014 9.216 8.941 9.065 9.056 9.023 9.154 9.065
(110, 0.2, 0.03, 0.07) 14.443 14.446 14.982 14.288 14.444 14.443 14.666 14.444 14.430
(120, 0.2, 0.03, 0.07) 21.414 21.578 20.000 21.488 21.412 21.405 21.757 21.336 21.398
(80, 0.4, 0.03, 0.07) 11.326 11.344 11.352 11.440 11.327 11.311 11.231 11.625 11.336
(90, 0.4, 0.03, 0.07) 15.722 15.714 15.796 15.769 15.724 15.714 15.617 16.028 15.711
(100, 0.4, 0.03, 0.07) 20.793 20.741 21.028 20.720 20.793 20.772 20.660 21.084 20.760
(110, 0.4, 0.03, 0.07) 26.494 26.401 26.938 26.297 26.489 26.492 26.347 26.749 26.440
(120, 0.4, 0.03, 0.07) 32.781 32.676 33.569 32.512 32.772 32.797 32.833 32.982 32.709
(80, 0.3, 0.00, 0.07) 5.518 5.514 5.495 5.600 5.520 5.527 5.483 5.658 5.552
(90, 0.3, 0.00, 0.07) 8.842 8.795 8.889 8.809 8.843 8.842 8.761 8.947 8.868
(100, 0.3, 0.00, 0.07) 13.142 13.064 13.345 12.948 13.142 13.128 13.095 13.177 13.158
(110, 0.3, 0.00, 0.07) 18.453 18.419 19.101 18.191 18.453 18.450 18.636 18.394 18.458
(120, 0.3, 0.00, 0.07) 24.791 24.894 25.265 24.643 24.797 24.788 25.194 24.638 24.786
(80, 0.3, 0.07, 0.03) 12.146 12.144 12.146 12.147 12.145 12.162 12.167 12.282 12.177
(90, 0.3, 0.07, 0.03) 17.368 17.366 17.372 17.371 17.368 17.377 17.385 17.553 17.411
(100, 0.3, 0.07, 0.03) 23.348 23.345 23.356 23.355 23.349 23.317 23.331 23.586 23.402
(110, 0.3, 0.07, 0.03) 29.964 29.962 29.976 29.977 29.964 29.956 29.975 30.259 30.028
(120, 0.3, 0.07, 0.03) 37.104 37.108 37.126 37.126 37.104 37.100 37.118 37.459 37.177

RMSE 0.060 0.441 0.126 0.003 0.012 0.150 0.200 0.037
MAE 0.164 1.414 0.269 0.009 0.031 0.403 0.355 0.073

CPU (sec) À 6.2e-2 6.2e-2 3.0e-2 6.0e-2 3.0e-2 2.4e-1 2.7e-3 3.3e-3

The ‘TRUE’ value is based on binomial with N = 10, 000. Columns 3-10 represent the
methods Geske and Johnson [1984], Bunch and Johnson [1992], Huang, Subrahmanyam
and Yu [1996], Broadie and Detemple [1996], binomial and accelerated binomial with N =
150, MacMillan [1986] and Barone-Adesi and Whaley [1987], and the modified quadratic
approximation of this article. RMSE is the root of mean squared errors. MAE is the
maximum absolute error. CPU is the total computing time for the whole set of options.
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