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Sometimes life is complicate, sometimes
it is just complex



Preface

Modern life in fully developed countries relies on the coordinated functioning of
several infrastructures such as Electric System, Aqueducts, Communication
Assets, Fresh food distribution chains, Gas-ducts, Oil Pipelines, Transports,
Financial networks, etc. Several of such infrastructures have been regarded as
critical since they provide vital services to sustain the modern technological
society and its development.

During the last decades, the level of awareness about the importance of
protecting our Critical Infrastructures (CIs) has been steadily growing. In this
respect, US has been the first country to take an official financial commitment by
means of the celebrated American Presidential Directive PDD-63 of May 1998
under the Clinton administration. After ten years also the European Community
made a similar commitment through the EUDIR Council Directive 2008/114/EC
(dated December the 8-th, 2008), that has been afterwards implemented by the EU
member states. It has to be noticed that, while the US directive is very broad in its
scope, the EU directive is presently limited to the energetic, transport and financial
sectors.

The functioning of Critical Infrastructures requires both physical components
and human actors. It is therefore important not only to employ reliable components,
but also to understand human behaviour at both individual and collective levels.
Moreover, each infrastructure resorts to other CIs (typically, but not limited to,
energy and ICT) to accomplish its goals: in other words, CIs are inter-dependent.
Identifying, understanding and analysing critical infrastructure interdependencies is
therefore a crucial task to be pursued by the scientific community at both the aca-
demic and applied levels [1].

In the development of CIs, the ICT sector has played a crucial role in several
respects. ICT pervades any complex activity of modern societies based on com-
munications and represents a fundamental part for the governance of any complex
infrastructure. The quality and quantity of information-based services provided to
our modern society has been steadily increasing during last 30 years (Web, e-mail,
e-commerce, social networking, e-banking, e-health, Web-based entertainment,
SCADA systems, etc). In order to improve their performance and to enhance their
reliability, the infrastructures have been endowed with increasingly complex
connection networks and computerized systems, thus allowing their governance
optimization and reducing the humans allocated to that purpose. Nowadays, our
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society is on the verge of a new revolution in which the infrastructures are required
to become smart and to integrate into a smart technological environment. Driving
the advent of a smart society on a painless and secure path represents one of the
most difficult challenges for all the technologically advanced countries.

Most of the infrastructures exhibit a network structure. In the last decade,
stemming from the availability of large data and based on the statistical physicist
perspective of the graph theory, a new paradigm to describe large networks has
blossomed: the Network Science [2, 3].

Network Science has revealed a powerful and unifying tool that enables to treat
on the same footing widely different networked systems, ranging from biology to
sociology to power grids to the Internet and the World Wide Web. In fact, despite
their intrinsic differences, all such networks are large systems consisting of simple
elementary units (the nodes) interacting via basic mechanisms (represented by the
links). Statistical Physics teaches us that this is the case where to expect the
occurrence of emergent behaviours, i.e., of collective (systemic) effects. In fact,
while each component may be perfectly working, the system as a whole can be in a
failure state: as an example, think about a big traffic jam, where all the cars, lights,
indications, navigators and roads are perfectly functioning and yet everybody is
stuck.

Financial networks’ analysis represented the forerunner to assess the concept of
systemic risk in real infrastructures. Nowadays, several financial institutions
consider and employ the global metrics developed by EU network scientists [4] to
assess their risk level and robustness consistently with the Basel III Stress Testing
[5].

Applying the Network Science paradigm to Inter-dependent Critical Infra-
structures has lead to the development of the concept of ‘‘Networks of Networks’’:
the NetONets. While from the graph-theory point of view a network of networks is
just a larger (inhomogeneous) network, in real life infrastructural networks are
governed and operated separately and interactions are only allowed at well-defined
boundaries. Assessing properties on NetONets instead of that on single networks is
like deciding to consider males and females instead of human beings as a single
community: depending on the question to answer, either approach may be the most
fruitful.

The first applications of the NetONets approach to understand critical infra-
structures has been related to the propagation of failures in inter-dependent
infrastructures modelled as either trees or planar lattices [6, 7]. However, the
upheaval of the interest in NetONets has followed the publication of a Nature
paper on a percolation model of cascade failures in coupled ICT/power networks
[8]. Another important step towards real applications has been the analysis of the
North America inter-connected electric systems [9] aiming to reduce the global
vulnerability of the system.

In general, numerous efforts are nowadays devoted to develope the mathematics
of NetONets. While most of the current models have a percolative flavour [10–13],
some new directions in understanding the dynamics on NetONets are being
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explored [14–16] resorting to the spectral properties of networks. The European
efforts on the subject have recently concentrated in the ‘‘MULTIPLEX’’ project
[17] combining top scientists in Complexity and Algorithmic. While the com-
plexity approach allows to concentrate on systemic effects and emergent behavior,
other routes have to be considered to perform the analyses of the systems needed
for several tasks including management, planning the development, enhancing the
security, defining coordinated national and EU/US contingency plans, and
assessing the policies at the state and the regional levels. To such an aim, several
techniques such as I/O models, federated simulations, agent-based models, time-
series analysis are employed. Each of the previous approaches provides a partial
perspective of the system behaviour; however to manage and understand the
complexity of our society, all of them are required. Our book aims to foster a meta-
community able to share and integrate all such perspectives.

This volume is structured along three main sections: part I covers the theoretical
approaches, part II provides some applications and part III is devoted to phe-
nomenological modelling. The former taxonomy has been mainly introduced for
the sake of presentation. However, due to their inter-disciplinarity, it is difficult to
ascribe each contribution to a specific topic only. To improve legibility, each part
of the book is endowed with a brief overview of its contents.

We have spent our best efforts to provide the reader with as different
contributions as possible; most of the authors have been actively involved in the
NetONets and related conference series. However, by no means our book can be
regarded as exhaustive. Probably, the I/O models [18] represent the most sig-
nificant lack in our book. Some of the most important topics, such as the systemic
risk analysis [19] or time series analysis, would have deserved a more extended
treatment. We hope to be able to cover such topics in a nearby future.

Furthermore, there are important topics that are crucial to develop in the nearby
future. In particular, the human behaviour, both at the management and at the end
user levels, must be accounted for improving the analysis, modelling and simu-
lation of inter-dependent infrastructures. Regarding the complexity approach, it is
crucial to build up methodological tools for the statistical analysis of ‘small’
systems. In fact, while most of the current techniques are aimed to understand the
behaviour of the system in the infinite-size limit, almost all infrastructural net-
works exhibit a relatively small size.

We have tried hard to produce a book that could be regarded as an updated
reference for the NetONets state-of-the-art. To the same purpose of providing
updated information, we have also built a website (netonets.org) wherein to gather
and advertise all the initiatives in the field.

One of the main barriers to overcome is the lack of a common language. It is
therefore crucial to foster the up-growing NetONets community providing a
common ground for knowledge sharing. We hope that our efforts will contribute to
such a direction.

As acknowledges the support from the US grant HDTRA1-11-1-0048, the
CNR-PNR National Project ‘‘Crisis-Lab’’ and the EU FET project MULTIPLEX
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Part I
Theoretical Approaches

This part of the book is devoted to the theoretical approaches to interdependent
networks. The state of the art of such a novel and dynamic field is experiencing a
continuous growth. Here we have selected, mainly for historical reasons, the
contributions stemming from the Statistical Physics approach.

Modelling interdependent networks consists in defining different graphs and the
interactions among them. In the multiplex approach, the different layers are
modelled by means of different types of links. In the interacting networks
approach, the different layers are explicitly modelled as separate networks and the
links among them represent the inter-layer interactions.

In Chaps. 1–3 authors rely on ‘static’ approaches aimed at assessing the
robustness and/or the resilience of interdependent systems upon both random
failures and targeted attacks. Considering the dynamics of the systems upon
continuous stressing leads to the introduction of further effects discussed in
Chaps. 4 and 5



Chapter 1
Network of Interdependent Networks: Overview
of Theory and Applications

Dror Y. Kenett, Jianxi Gao, Xuqing Huang, Shuai Shao, Irena Vodenska,
Sergey V. Buldyrev, Gerald Paul, H. Eugene Stanley and Shlomo Havlin

Abstract Complex networks appear in almost every aspect of science and tech-
nology. Previous work in network theory has focused primarily on analyzing single
networks that do not interact with other networks, despite the fact that many real-
world networks interact with and depend on each other. Very recently an analytical
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4 D. Y. Kenett et al.

framework for studying the percolation properties of interacting networks has been
introduced. Here we review the analytical framework and the results for percola-
tion laws for a network of networks (NON) formed by n interdependent random
networks. The percolation properties of a network of networks differ greatly from
those of single isolated networks. In particular, although networks with broad degree
distributions, e.g., scale-free networks, are robust when analyzed as single networks,
they become vulnerable in a NON. Moreover, because the constituent networks of
a NON are connected by node dependencies, a NON is subject to cascading failure.
When there is strong interdependent coupling between networks, the percolation
transition is discontinuous (is a first-order transition), unlike the well-known con-
tinuous second-order transition in single isolated networks. We also review some
possible real-world applications of NON theory.

1.1 Introduction

The interdisciplinary field of network science has attracted great attention in recent
years [1–26]. This has taken place because an enormous amount of data regarding
social, economic, engineering, and biological systems has become available over
the past two decades as a result of the information and communication revolution
brought about by the rapid increase in computing power. The investigation and grow-
ing understanding of this extraordinary amount of data will enable us to make the
infrastructures we use in everyday life more efficient and more robust. The original
model of networks, random graph theory, developed in the 1960s by Erdős and Rényi
(ER), is based on the assumption that every pair of nodes is randomly connected with
the same probability (leading to a Poisson degree distribution). In parallel, lattice net-
works in which each node has the same number of links have been used in physics
to model physical systems. While graph theory was a well-established tool in the
mathematics and computer science literature, it could not adequately describe mod-
ern, real-world networks. Indeed, the pioneering observation by Barabási in 1999
[2], that many real networks do not follow the ER model but that organizational
principles naturally arise in most systems, led to an overwhelming accumulation of
supporting data, new models, and novel computational and analytical results, and
led to the emergence of a new science: complex networks.

Significant advances in understanding the structure and function of networks,
and mathematical models of networks have been achieved in the past few years.
These are now widely used to describe a broad range of complex systems, from
techno-social systems to interactions amongst proteins. A large number of new mea-
sures and methods have been developed to characterize network properties, includ-
ing measures of node clustering, network modularity, correlation between degrees
of neighboring nodes, measures of node importance, and methods for the identifi-
cation and extraction of community structures. These measures demonstrated that
many real networks, and in particular biological networks, contain network motifs—
small specific subnetworks—that occur repeatedly and provide information about
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functionality [8]. Dynamical processes, such as flow and electrical transport in het-
erogeneous networks, were shown to be significantly more efficient compared to ER
networks [27, 28].

Complex networks are usually non-homogeneous structures that exhibit a power-
law form in their degree (number of links per node) distribution. These systems
are called scale-free networks. Some examples of real-world scale-free networks
include the Internet [3], the WWW [4], social networks representing the relations
between individuals, infrastructure networks such as airlines [29, 30], networks in
biology, in particular networks of protein-protein interactions [31], gene regulation,
and biochemical pathways, and networks in physics, such as polymer networks or
the potential energy landscape network. The discovery of scale-free networks has led
to a re-evaluation of the basic properties of networks, such as their robustness, which
exhibit a character that differs drastically from that of ER networks. For example,
while homogeneous ER networks are vulnerable to random failures, heterogeneous
scale-free networks are extremely robust [4, 5]. An important property of these in-
frastructures is their stability, and it is thus important that we understand and quantify
their robustness in terms of node and link functionality. Percolation theory was intro-
duced to study network stability and to predict the critical percolation threshold [5].
The robustness of a network is usually (i) characterized by the value of the critical
threshold analyzed using percolation theory [32] or (ii) defined as the integrated size
of the largest connected cluster during the entire attack process [33]. The percolation
approach was also extremely useful in addressing other scenarios, such as efficient
attacks or immunization [6, 7, 14, 34, 35], for obtaining optimal path [36] as well as
for designing robust networks [33]. Network concepts were also useful in the analy-
sis and understanding of the spread of epidemics [37, 38], and the organizational
laws of social interactions, such as friendships [39, 40] or scientific collaborations
[41]. Moreira et al. investigated topologically-biased failure in scale-free networks
and controlled the robustness or fragility by fine-tuning the topological bias during
the failure process [42].

Because current methods deal almost exclusively with individual networks treated
as isolated systems, many challenges remain [43]. In most real-world systems an indi-
vidual network is one component within a much larger complex multi-level network
(is part of a network of networks). As technology has advanced, coupling between
networks has become increasingly strong. Node failures in one network will cause
the failure of dependent nodes in other network, and vice-versa [44]. This recursive
process can lead to a cascade of failures throughout the network of networks system.
The study of individual particles has enabled physicists to understand the properties
of a gas, but in order to understand and describe a liquid or a solid the interactions
between the particles also need to be understood. So also in network theory, the study
of isolated single networks brings extremely limited results—real-world noninter-
acting systems are extremely rare in both classical physics and network study. Most
real-world network systems continuously interact with other networks, especially
since modern technology has accelerated network interdependency.
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Fig. 1.1 Example of two interdependent networks. Nodes in network B (communications network)
are dependent on nodes in network A (power grid) for power; nodes in network A are dependent
on network B for control information

To adequately model most real-world systems, understanding the interdependence
of networks and the effect of this interdependence on the structural and functional
behavior of the coupled system is crucial. Introducing coupling between networks is
analogous to the introduction of interactions between particles in statistical physics,
which allowed physicists to understand the cooperative behavior of such rich phe-
nomena as phase transitions. Surprisingly, preliminary results on mathematical mod-
els [44, 45] show that analyzing complex systems as a network of coupled networks
may alter the basic assumptions that network theory has relied on for single networks.
Here we will review the main features of the theoretical framework of Network of
Networks (NON), and present some real world applications.

1.2 Overview

In order to model interdependent networks, we consider two networks, A and B, in
which the functionality of a node in network A is dependent upon the functionality
of one or more nodes in network B (see Fig. 1.1), and vice-versa: the functionality
of a node in network B is dependent upon the functionality of one or more nodes in
network A. The networks can be interconnected in several ways. In the most general
case we specify a number of links that arbitrarily connect pairs of nodes across
networks A and B. The direction of a link specifies the dependency of the nodes it
connects, i.e., link Ai → B j provides a critical resource from node Ai to node B j .
If node Ai stops functioning due to attack or failure, node B j stops functioning as
well but not vice-versa. Analogously, link Bi → A j provides a critical resource
from node Bi to node A j .

To study the robustness of interdependent networks systems, we begin by remov-
ing a fraction 1 − p of network A nodes and all the A-edges connected to these
nodes. As an outcome, all the nodes in network B that are connected to the removed
A-nodes by A → B links are also removed since they depend on the removed nodes
in network A. Their B edges are also removed. Further, the removed B nodes will
cause the removal of additional nodes in network A which are connected to the re-
moved B-nodes by B → A links. As a result, a cascade of failures that eliminates
virtually all nodes in both networks can occur. As nodes and edges are removed, each
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network breaks up into connected components (clusters). The clusters in network A
(connected by A-edges) and the clusters in network B (connected by B-edges) are
different since the networks are each connected differently. If one assumes that small
clusters (whose size is below certain threshold) become non-functional, this may
invoke a recursive process of failures that we now formally describe.

Our insight based on percolation theory is that when the network is fragmented the
nodes belonging to the giant component connecting a finite fraction of the network
are still functional, but the nodes that are part of the remaining small clusters become
non-functional. Thus in interdependent networks only the giant mutually-connected
cluster is of interest. Unlike clusters in regular percolation whose size distribution
is a power law with a p-dependent cutoff, at the final stage of the cascading failure
process just described only a large number of small mutual clusters and one giant
mutual cluster are evident. This is the case because the probability that two nodes that
are connected by an A-link and their corresponding two nodes are also connected
by a B-link scales as 1/NB, where NB is the number of nodes in network B. So
the centrality of the giant mutually-connected cluster emerges naturally and the
mutual giant component plays a prominent role in the functioning of interdependent
networks. When it exists, the networks preserve their functionality, and when it does
not exist, the networks split into fragments so small they cannot function on their
own.

We ask three questions: What is the critical p = pc below which the size of any
mutual cluster constitutes an infinitesimal fraction of the network, i.e., no mutual
giant component can exist? What is the fraction of nodes P∞(p) in the mutual giant
component at a given p? How do the cascade failures at each step damage the giant
functional component?

Note that the problem of interacting networks is complex and may be strongly
affected by variants in the model, in particular by how networks and dependency
links are characterized. In the following section we describe several of these model
variants.

1.3 Theory of Interdependent Networks

In order to better understand how present-day crucially-important infrastructures in-
teract, Buldyrev et al. [44] recently developed a mathematical framework to study
percolation in a system of two coupled interdependent networks subject to cascad-
ing failure. Their analytical framework is based on a generating function formalism
widely used in studies of single-network percolation and single-network structure
[41, 44, 46]. Using the framework to study interdependent networks, we can fol-
low the dynamics of the cascading failures as well as derive analytic solutions for
the final steady state. Buldyrev et al. [44] found that interdependent networks were
significantly more vulnerable than their noninteracting counterparts. The failure of
even a small number of elements within a single network in a system may trigger a
catastrophic cascade of events that propagates across the global connectivity. For a



8 D. Y. Kenett et al.

Fig. 1.2 Schematic demon-
stration of first and second
order percolation transitions.
In the second order case, the
giant component is continu-
ously approaching zero at the
percolation threshold p = pc.
In the first order case the giant
component approaches zero
discontinuously. After [47]

pp
c p

c

P∞

First order 

Second order 

fully coupled case in which each node in one network depends on a functioning node
in another network and vice versa, Buldyrev et al. [44] found a first-order discontin-
uous phase transition, which differs significantly from the second-order continuous
phase transition found in single isolated networks (Fig. 1.2). This interesting phe-
nomenon is caused by the presence of two types of links: (i) connectivity links
within each network and (ii) dependency links between networks. Parshani et al.
[45] showed that, when the dependency coupling between the networks is reduced,
at a critical coupling strength the percolation transition becomes second-order.

We now present the theoretical methodology used to investigate networks of
interdependent networks (see Ref. [47]), and provide examples from different classes
of networks.

1.3.1 Generating Functions for a Single Network

We begin by describing the generating function formalism for a single network that
is also useful when studying interdependent networks. Here we assume that all Ni
nodes in network i are randomly assigned a degree k from a probability distribution
Pi (k), and are randomly connected, the only constraint being that the node with
degree k has exactly k links [48]. We define the generating function of the degree
distribution

Gi (x) ≡
∞∑

k=0

Pi (k)xk, (1.1)

where x is an arbitrary complex variable. The average degree of network i is

〈k〉i =
∞∑

k=0

k Pi (k) =
∂Gi

∂x

∣∣∣∣
x→1

= G ′
i (1). (1.2)
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In the limit of infinitely large networks Ni → ∞, the random connection process
can be modeled as a branching process in which an outgoing link of any node has a
probability k Pi (k)/〈k〉i of being connected to a node with degree k, which in turn has
k − 1 outgoing links. The generating function of this branching process is defined as

Hi (x) ≡
∑∞

k=0 Pi (k)kxk−1

〈k〉i
= G ′

i (x)

G ′
i (1)

. (1.3)

The probability fi that a randomly chosen outgoing link does not lead to an infinitely
large giant component satisfies a recursive relation fi = Hi ( fi ). Accordingly, the
probability that a randomly chosen node does belong to a giant component is given
by gi = Gi ( fi ). Once a fraction 1− p of nodes is randomly removed from a network,
its generating function remains the same, but must be computed from a new argument
z ≡ px + 1 − p [46]. Thus P∞,i , the fraction of nodes that belongs to the giant
component, is given by [46],

P∞,i = pgi (p), (1.4)

where
gi (p) = 1 − Gi [p fi (p)+ 1 − p], (1.5)

and fi (p) satisfies
fi (p) = Hi [p fi (p)+ 1 − p]. (1.6)

As p decreases, the nontrivial solution fi < 1 of Eq. (1.6) gradually approaches the
trivial solution fi = 1. Accordingly, P∞,i —selected as an order parameter of the
transition—gradually approaches zero as in the second-order phase transition and
becomes zero when two solutions of Eq. (1.6) coincide at p = pc. At this point the
straight line corresponding to the right hand side of Eq. (1.6) becomes tangent to the
curve corresponding to its left hand side, yielding

pc = 1/H ′
i (1). (1.7)

For example, for Erdős-Rényi (ER) networks [49–51], characterized by the Poisson
degree distribution,

Gi (x) = Hi (x) = exp[〈k〉i (x − 1)], (1.8)

gi (p) = 1 − fi (p), (1.9)

fi (p) = exp{p〈k〉i [ fi (p) − 1]}, (1.10)

and
pc = 1

〈k〉i
. (1.11)
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Finally, using Eqs. (1.4), (1.9), and (1.10), one obtains a direct equation for P∞,i

P∞,i = p[1 − exp(−〈k〉i P∞,i )]. (1.12)

1.3.2 Two Networks with One-to-One Correspondence
of Interdependent Nodes

To initiate an investigation of the multitude of problems associated with interacting
networks, Buldyrev et al. [44] restricted themselves to the case of two randomly
and independently connected networks with the same number of nodes, specified
by their degree distributions PA(k) and PB(k). They also assumed every node in
the two networks to have one B → A link and one A → B link connecting the
same pair of nodes, i.e., the dependencies between networks A and B establish a
isomorphism between them that allows us to assume that nodes in A and B coincide
(e.g., are at the same corresponding geographic location—if a node in network A
fails, the corresponding node in network B also fails, and vice versa). We also assume,
however, that the A-edges and B-edges in the two networks are independent.

Unlike the percolation transition in a single network, the mutual percolation tran-
sition in this model is a first-order phase transition at which the order parameter (i.e.,
the fraction of nodes in the mutual giant component) abruptly drops from a finite
value at pc +ε to zero at pc −ε. Here ε is a small number that vanishes as the size of
network increases N → ∞. In this range of p, a removal of single critical node may
lead to a complete collapse of a seemingly robust network. The size of the largest
component drops from N P∞ to a small value, which rarely exceeds 2.

Note that the value of pc is significantly larger than in single-network percolation.
In two interdependent ER networks, for example, pc = 2.4554/〈k〉, while in a single
network, pc = 1/〈k〉. For two interdependent scale-free networks with a power-law
degree distribution PA(k) ∼ k−λ, the mutual percolation threshold is pc > 0, even
for 2 < λ ≤ 3, when the percolation threshold in a single network is zero.

Note also that, in this new model, networks with a broader degree distribution are
less robust against random attack than networks having a narrower degree distribution
but the same average degree. This behavior also differs from that found in single
networks. To understand this we note that (i) in interdependent networks, nodes
are randomly connected—high degree nodes in one network can connect to low
degree nodes in other networks, and (ii) at each time step, failing nodes in one
network cause their corresponding nodes (and their edges) in the other network
to also fail. Thus although hubs in single networks strongly contribute to network
robustness, in interdependent networks they are vulnerable to cascading failure. If a
network has a fixed average degree, a broader distribution means more nodes with
low degree to balance the high degree nodes. Since the low degree nodes are more
easily disconnected the advantage of a broad distribution in single networks becomes
a disadvantage in interdependent networks.
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The following features have been investigated analytically in Ref. [52], a study
that assumes that the degrees of the interdependent nodes exactly coincide, but that
both networks are randomly and independently connected by their connectivity links.
Reference [52] shows that, for two networks with the same degree distribution PA(k)
of connectivity links and random dependency links, studied in Ref. [44], the fraction
of nodes in the giant component is

P∞ = p[1 − GA(z)]2, (1.13)

where 0 ≤ z ≤ 1 is a new variable z = 1 − p + p fA satisfying equation

[1 − HA(z)][1 − GA(z)]
1 − z

= 1
p
. (1.14)

while in case of coinciding degrees of interdependent nodes Eqs. (1.13) and (1.14)
become respectively

P∞ = p[1 − 2GA(z)+ GA(z2)] (1.15)

and
1 − (1 + z)HA(z)+ zHA(z2)

1 − z
= 1

p
. (1.16)

The left-hand side of Eq. (1.14) always has a single maximum at 0 < zc < 0, and
the solution abruptly disappear if p becomes less than pc, the inverse left hand side
at zc. This situation corresponds to the first order transition. In contrast, the left-hand
side of Eq. (1.16) has a maximum only if H ′

A(1) converges, which corresponds to
λ > 3 when there is a power law tail in the degree distribution. In this case, pc is the
inverse maximum value of the left-hand side of Eq. (1.16), e.g., for ER networks,
pc = 1.7065/〈k〉. When λ < 3, H ′(z) diverges for z → 1 and pc = 0, P∞ = 0
as in the case of regular percolation on a single network, for which Eqs. (1.4), (1.5),
and (1.6) give

P∞ = p[1 − GA(z)], (1.17)

and
1 − HA(z)

1 − z
= 1

p
. (1.18)

Thus for networks with coinciding degrees of the interdependent nodes for λ < 3,
the transition becomes a second-order transition with pc = 0. In the marginal case
of λ = 3, pc > 0, but the transition is second-order.

From Eqs. (1.13)–(1.18) it follows that, if H ′
A(1) converges, the networks with

coinciding degrees of interdependent nodes are still less robust than single networks,
still undergo collapse via a first-order phase transition, but are always more robust
than networks with uncorrelated degrees of interdependent nodes. If the average
degree is fixed, the robustness of the networks with coinciding degrees of inter-
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dependent nodes increases as the degree distribution broadens in the same way as
for single networks. Similar observations have been made in numerical studies of
interdependent networks with correlated degrees of interdependent nodes [53]. In
conclusion, the robustness of interdependent networks increases if the degrees of the
interdependent nodes are correlated, i.e., if the hubs are more likely to depend on
hubs than on low-degree nodes. For the case of common connectivity links in both
networks see Dong et al. [54] and Cellai et al. [55].

1.3.3 Framework of Two Partially Interdependent Networks

A generalization of the percolation theory for two fully interdependent networks
was developed by Parshani et al. [45], who studied a more realistic case of a pair
of partially-interdependent networks. Here both interacting networks have a certain
fraction of completely autonomous nodes whose function does not directly depend
on nodes in the other network. They found that when the fraction of autonomous
nodes increases above a certain threshold, the collapse of the interdependent networks
characterized by a first-order transition observed in Ref. [44] changes, at a critical
coupling strength, to a continuous second-order transition as in classical percolation
theory [32].

We now describe in more detail the framework developed in [45]. This framework
consists of two networks A and B with the number of nodes NA and NB, respectively.
Within network A, the nodes are randomly connected by A edges with degree distri-
bution PA(k), and the nodes in network B are randomly connected by B edges with
degree distribution PB(k). In addition, a fraction qA of network A nodes depends on
the nodes in network B and a fraction qB of network B nodes depends on the nodes in
network A. We assume that a node from one network depends on no more than one
node from the other network, and if Ai depends on B j , and B j depends on Ak , then
k = i . The latter “no-feedback” condition (see Fig. 1.3) disallows configurations that
can collapse without taking into account their internal connectivity [56]. Suppose
that the initial removal of nodes from network A is a fraction 1 − p.

We next present the formalism for the cascade process, step by step (see Fig. 1.4).
The remaining fraction of network A nodes after an initial removal of nodes is
ψ′

1 ≡ p. The initial removal of nodes disconnects some nodes from the giant
component. The remaining functional part of network A thus contains a frac-
tion ψ1 = ψ′

1gA(ψ′
1) of the network nodes, where gA(ψ′

1) is defined by Eqs.
(1.5) and (1.6). Since a fraction qB of nodes from network B depends on nodes
from network A, the number of nodes in network B that become nonfunctional is
(1 − ψ1)qB = qB[1 − ψ′

1gA(ψ′
1)]. Accordingly, the remaining fraction of network

B nodes is φ′
1 = 1 − qB[1 − ψ′

1gA(ψ′
1)], and the fraction of nodes in the giant

component of network B is φ1 = φ′
1gB(φ′

1).
Following this approach we construct the sequence, ψ′

t and φ′
t , of the remaining

fraction of nodes at each stage of the cascade of failures. The general form is given by
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(a)

(b)

Fig. 1.3 Description of differences between the (a) feedback condition and (b) no-feedback con-
dition. In the case (a), node A3 depends on node B2, and node B3 *= B2 depends on node A3, while
in case (b) this is forbidden. In case (a), when q = 1 both networks will collapse if one node is
removed from one network, which is far from being real. So in our model, we use the no-feedback
condition [case (b)]. The blue links between two networks show the dependency links and the red
links in each network show the connectivity links which enable each network to function. After [47]

ψ′
1 ≡ p,

φ′
1 = 1 − qB[1 − pgA(ψ′

1)],
ψ′

t = p[1 − qA(1 − gB(φ′
t−1))],

φ′
t = 1 − qB[1 − pgA(ψ′

t−1)].
(1.19)

To determine the state of the system at the end of the cascade process we look at
ψ′

τ and φ′
τ at the limit of τ → ∞. This limit must satisfy the equations ψ′

τ = ψ′
τ+1

and φ′
τ = φ′

τ+1 since eventually the clusters stop fragmenting and the fractions of
randomly removed nodes at step τ and τ+1 are equal. Denoting ψ′

τ = x and φ′
τ = y,

we arrive at the stationary state to a system of two equations with two unknowns,

x = p{1 − qA[1 − gB(y)]},
y = 1 − qB[1 − gA(x)p]. (1.20)

The giant components of networks A and B at the end of the cascade of failures
are, respectively, P∞,A = ψ∞ = xgA(x) and P∞,B = φ∞ = ygB(y). The nu-
merical results were obtained by iterating system (1.19), where gA(ψ′

t ) and gB(φ′
t )

are computed using Eqs. (1.9) and (1.10). Figure 1.5 shows excellent agreement
between simulations of cascading failures of two partially interdependent networks
with N = 2 × 105 nodes and the numerical iterations of system (1.19). In the simu-



14 D. Y. Kenett et al.

(a)

(b)

(c)

(d)

(e)

Fig. 1.4 Description of the dynamic process of cascading failures on two partially interdependent
networks, which can be generalized to n partially interdependent networks. In this figure, the black
nodes are the survived nodes, the yellow node represents the initially attacked node, the red nodes
are the nodes removed because they do not belong to the largest cluster, and the blue nodes are the
nodes removed because they depend on the failed nodes in the other network. In each stage, for one
network, we first remove the nodes that depend on the failed nodes in the other network or on the
initially attacked nodes. Next we remove the nodes which do not belong to the largest cluster of the
network. After [47]

lations, pc can be determined by the sharp peak in the average number of cascades
(iterations), 〈τ 〉, before the network either stabilizes or collapses [15].

An investigation of Eq. (1.20) can be illustrated graphically by two curves crossing
in the (x, y) plane. For sufficiently large qA and qB the curves intersect at two points
(0 < x0, 0 < y0) and (x0 < x1 < 1, y0 < y1 < 1). Only the second solution (x1, y1)
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Fig. 1.5 Cascade of failures in two partially interdependent ER networks. The giant component
φt for every iteration of the cascading failures is shown for the case of a first order phase transition
with the initial parameters p = 0.8505, a = b = 2.5, qA = 0.7 and qB = 0.8. In the simulations,
N = 2 × 105 with over 20 realizations. The gray lines represent different realizations. The squares
is the average over all realizations and the black line is the theory, Eq. (1.19). After [47]

has any physical meaning. As p decreases, the two solutions become closer to each
other, remaining inside the unit square (0 < x < 1; 0 < y < 1), and at a certain
threshold p = pc they coincide: 0 < x0 = x1 = xc < 1, 0 < y0 = y1 = yc < 1.
For p < pc the curves no longer intersect and only the trivial solution gA(x) =
gB(y) = 0 remains. For sufficiently large qA and qB, P∞,A and P∞,B as a function
of p show a first order phase transition. As qB decreases, P∞,A as a function of p
shows a second order phase transition. For the graphical representation of Eq. (1.20)
and all possible solutions see Fig. 3 in Ref. [45].

In a recent study [33, 57], it was shown that a pair of interdependent networks can
be designed to be more robust by choosing the autonomous nodes to be high degree
nodes. This choice mitigates the probability of catastrophic cascading failure.

1.3.4 Framework for a Network of Interdependent Networks

In many real systems there are more than two interdependent networks, and di-
verse infrastructures—water and food supply networks, communications networks,
fuel networks, financial transaction networks, or power station networks—can be
coupled together [58]. Understanding the way system robustness is affected by such
interdependencies is one of the major challenges when designing resilient infrastruc-
tures.

Here we review the generalization of the theory of a pair of interdependent net-
works [44, 45] to a system of n interacting networks [59, 60], which can be graph-
ically represented (see Fig. 1.6) as a network of networks (NON). We review an
exact analytical approach for percolation of an NON system composed of n fully
or partially coupled randomly interdependent networks. The approach is based on
analyzing the dynamical process of the cascading failures. The results generalize the
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Fig. 1.6 Schematic representation of a network of networks. Circles represent interdependent
networks, and the arrows connect the partially interdependent pairs. For example, a fraction of q3i
of nodes in network i depend on the nodes in network 3. The networks which are not connected by
the dependency links do not have nodes that directly depend on one another. After [47]

known results for percolation of a single network (n = 1) and the n = 2 result found
in [44, 45], and show that while for n = 1 the percolation transition is a second-order
transition, for n > 1 cascading failures occur and the transition becomes first-order.
Our results for n interdependent networks suggest that the classical percolation the-
ory extensively studied in physics and mathematics is a limiting case of n = 1 of a
general theory of percolation in NON. As we will discuss here, this general theory
has many novel features that are not present in classical percolation theory.

In our generalization, each node in the NON is a network itself and each link
represents a fully or partially dependent pair of networks. We assume that each
network i (i = 1, 2, ..., n) of the NON consists of Ni nodes linked together by
connectivity links. Two networks i and j form a partially dependent pair if a certain
fraction q ji > 0 of nodes of network i directly depends on nodes of network j , i.e.,
they cannot function if the nodes in network j on which they depend do not function.
Dependent pairs are connected by unidirectional dependency links pointing from
network j to network i . This convention indicates that nodes in network i get a
crucial commodity from nodes in network j , e.g., electric power if network j is a
power grid.

We assume that after an attack or failure only a fraction of nodes pi in each network
i will remain. We also assume that only nodes that belong to a giant connected
component of each network i will remain functional. This assumption helps explain
the cascade of failures: nodes in network i that do not belong to its giant component
fail, causing failures of nodes in other networks that depend on the failing nodes of
network i . The failure of these nodes causes the direct failure of dependency nodes
in other networks, failures of isolated nodes in them, and further failure of nodes in
network i and so on. Our goal is to find the fraction of nodes P∞,i of each network
that remain functional at the end of the cascade of failures as a function of all fractions
pi and all fractions qi j . All networks in the NON are randomly connected networks
characterized by a degree distribution of links Pi (k), where k is a degree of a node
in network i . We further assume that each node a in network i may depend with
probability q ji on only one node b in network j with no feed-back condition.
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To study different models of cascading failures, we vary the survival time of
the dependent nodes after the failure of the nodes in other networks on which they
depend, and the survival time of the disconnected nodes. We conclude that the final
state of the networks does not depend on these details but can be described by a
system of equations somewhat analogous to the Kirchhoff equations for a resistor
network. This system of equations has n unknowns xi . These represent the fraction
of nodes that survive in network i after the nodes that fail in the initial attack are
removed and the nodes depending on the failed nodes in other networks at the end of
cascading failure are also removed, but without taking into account any further node
failure due to the internal connectivity of the network. The final giant component of
each network is P∞,i = xi gi (xi ), where gi (xi ) is the fraction of the remaining nodes
of network i that belongs to its giant component given by Eq. (1.5).

The unknowns xi satisfy the system of n equations, [53]

xi = pi

K∏

j=1

[q ji y ji g j (x j ) − q ji + 1], (1.21)

where the product is taken over the K networks interlinked with network i by partial
dependency links (see Fig. 1.6) and

yi j =
xi

p j q ji y ji g j (x j ) − q ji + 1
, (1.22)

is the fraction of nodes in network j that survives after the damage from all the net-
works connected to network j except network i is taken into account. The damage
from network i must be excluded due to the no-feedback condition. In the absence
of the no-feedback condition, Eq. (1.21) becomes much simpler since y ji = x j .
Equation (1.21) is valid for any case of interdependent NON, while Eq. (1.22) rep-
resents the no-feedback condition.

A more the most general case of interdependency links was studied by Shao et al.
[56]. They assumed that a node in network i is connected by s supply links to s
nodes in network j from which it gets a crucial commodity. If s = ∞, the node does
not depend on nodes in network j and can function without receiving any supply
from them. The generating function of the degree distribution Pi j (s) of the supply
links G ji (x) = ∑∞

i=0 P ji (s)xs does not include the term P ji (∞) = 1 − q ji , and
hence G ji (1) = q ji ≤ 1. It is also assumed that nodes with s < ∞ can function
only if they are connected to at least one functional node in network j . In this case,
Eq. (1.21) must be changed to

xi = pi

K∏

j=1

{1 − G ji [1 − x j g j (x j )}. (1.23)

When all dependent nodes have exactly one supply link, Gi j (x) = xqi j and Eq. (1.23)
becomes
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xi = pi

K∏

j=1

[1 − q ji + q ji x j g j (x j )], (1.24)

analogous to Eq. (1.21) without the no-feedback condition.

1.3.5 Examples of Classes of Network of Networks

Finally, we present four examples that can be explicitly solved analytically: (i) a
tree-like ER NON fully dependent, (ii) a tree-like random regular (RR) NON fully
dependent, (iii) a loop-like ER NON partially dependent, and (iv) an RR network
of partially dependent ER networks. All cases represent different generalizations of
percolation theory for a single network.

1.3.5.1 Tree-Like NON of ER Networks

We solve explicitly the case of a tree-like NON (see Fig. 1.7) formed by n ER [49–51]
networks with average degrees k1, k2, ...ki , ..., kn , p1 = p, pi = 1 for i *= 1 and
qi j = 1 (fully interdependent). Using Eqs. (1.21) and (1.22) for xi and taking into
account Eqs. (1.8), (1.9) and (1.10), we find that

fi = exp



−pki

n∏

j=1

(1 − f j )



 , i = 1, 2, ..., n. (1.25)

These equations can be solved analytically [59]. They have only a trivial solution
( fi = 1) if p < pc, where pc is the mutual percolation threshold. When the n
networks have the same average degree k, ki = k (i = 1, 2, ..., n), we obtain from
Eq. (1.25) that fc ≡ fi (pc) satisfies

fc = exp
[

fc − 1
n fc

]
. (1.26)

where the solution can be expressed in terms of the Lambert function W−(x), fc =
−[nW−(− 1

n e− 1
n )]−1, where W−(x) is the most negative of the two real roots of the

Lambert equation e[W (x)]W (x)=x for x < 0.
Once fc is known, we can obtain pc and the giant component at pc P∞,n ≡ P∞

pc = [nk fc(1 − fc)
(n−1)]−1,

P∞(pc) = 1− fc
nk fc

.
(1.27)
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Fig. 1.7 Three types of loopless networks of networks composed of five coupled networks. All
have same percolation threshold and same giant component. The dark node is the origin network
on which failures initially occur. After [47]

Equation (1.27) generalizes known results for n = 1, 2. For n = 1, we obtain the
known result pc = 1/k, Eq. (1.11), of an ER network [49–51] and P∞(pc) = 0,
which corresponds to a continuous second-order phase transition. Substituting n = 2
in Eqs. (1.26) and (1.27) yields the exact results of [44].

From Eqs. (1.21)–(1.22) we obtain an exact expression for the order parameter
P∞(pc), the size of the mutual giant component for all p, k, and n values,

P∞ = p[1 − exp(−k P∞)]n . (1.28)

Solutions of Eq. (1.28) are shown in Fig. 1.8a for several values of n. Results are
in excellent agreement with simulations. The special case n = 1 is the known ER
second-order percolation law, Eq. (1.12), for a single network [49–51]. In contrast,
for any n > 1 the solution of (1.28) yields a first-order percolation transition, i.e., a
discontinuity of P∞ at pc.

To analyze pc as a function of n for different k values, we find fc from Eq. (1.26),
substitute it into Eq. (1.27), and obtain pc. Figure 1.8 shows that the NON becomes
more vulnerable with increasing n or decreasing k (pc increases when n increases
or k decreases). Furthermore, when n is fixed and k is smaller than a critical number
kmin(n), pc ≥ 1, which means that when k < kmin(n) the NON will collapse even if
a single node fails. The minimum average degree kmin as a function of the number
of networks is

kmin(n) = [n fc(1 − fc)
(n−1)]−1. (1.29)

Equations (1.25)–(1.29) are valid for all tree-like structures such as those shown in
Fig.1.7. Note that Eq. (1.29) together with Eq. (1.26) yield the value of kmin(1) = 1,
reproducing the known ER result, that 〈k〉 = 1 is the minimum average degree
needed to have a giant component. For n = 2, Eq. (1.29) also yields results obtained
in [44], i.e., kmin = 2.4554.
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1.3.5.2 Tree-Like NON of RR Networks

We review the case of a tree-like network of interdependent RR networks [59, 61]
in which the degree of each network is assumed to be the same k (Fig. 1.7). By
introducing a new variable r = f

1
k−1 into Eqs. (1.21) and (1.22) and the generating

function of RR network [59], the n equations reduce to a single equation

r = (rk−1 − 1)p(1 − rk)n−1 + 1, (1.30)

which can be solved graphically for any p. The critical case corresponds to the
tangential condition leading to critical threshold pc and P∞

pc = r − 1
(rk−1 − 1)(1 − rk)n−1 , (1.31)

P∞ = p



1 −





p

1
n P

n−1
n∞





(

1 −
(

P∞
p

) 1
n
) k−1

k

− 1



 + 1






k



n

. (1.32)

Comparing this with the results of a tree-like ER NON, we find that the robustness
of n coupled RR networks of degree k is significantly higher than the n interdependent
ER networks of average degree k. Although for an ER NON there exists a critical
minimum average degree k = kmin that increases with n below which the system
collapses, there is no such analogous kmin for a RR NON system. For any k > 2,
the RR NON is stable, i.e., pc < 1. In general, this is the case for any network with
any degree distribution such that Pi (0) = Pi (1) = 0, i.e., for a network without
disconnected and singly-connected nodes [61].

1.3.5.3 Loop-Like NON of ER Networks

In the case of a loop-like NON (for dependencies in one direction) of n ER networks,
all the links are unidirectional and the no-feedback condition is irrelevant. If the initial
attack on each network is the same 1 − p, qi−1i = qn1 = q, and ki = k, using Eqs.
(1.21) and (1.22) we find that P∞ satisfies

P∞ = p(1 − e−k P∞)(q P∞ − q + 1). (1.33)

Note that when q = 1 Eq. (1.33) has only a trivial solution P∞ = 0, but when q = 0
it yields the known giant component of a single network, Eq. (1.12), as expected.
We present in Fig. 1.8b numerical solutions of Eq. (1.33) for two values of q. Note
that when q = 1 and the structure is tree-like, Eqs. (1.28) and (1.32) depend on n,
but for loop-like NON structures, Eq. (1.33) is independent of n.
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1.3.5.4 RR Network of ER Networks

Now we review results [47] for a NON in which each ER network is dependent
on exactly m other ER networks. This system represents the case of RR network
of ER networks. We assume that the initial attack on each network is 1 − p, and
each partially dependent pair has the same q in both directions with no-feedback
condition. The n equations of Eq. (1.21) are exactly the same due to symmetries, and
hence pc and P∞ can be solved analytically,

pI I
c = 1

k(1 − q)m , (1.34)

P∞ = p
2m (1 − e−k P∞)[1 − q +

√
(1 − q)2 + 4q P∞]m . (1.35)

where pI I
c denotes the critical threshold for the second order phase transition.

Again, as in the case of the loop-like structure, it is surprising that both the critical
threshold and the giant component do not depend on the number of networks n, in
contrast to tree-like NON, but only on the coupling q and on both degrees k and m.
Numerical solutions of Eq. (1.35) are shown in Fig. 1.8. In the special case of m = 0,
Eqs. (1.34) and (1.35) coincide with the known results for a single ER network, Eqs.
(1.11) and (1.12) separately. It can be shown that when q < qc we have “weak cou-
pling” represented by a second-order phase transition and when qc < q < qmax we
have “strong coupling” and a first-order phase transition. When q > qmax the system
become unstable due to the “very strong coupling” between the networks. In the last
case, removal of a single node in one network may lead to the collapse of the NON.

1.3.6 Resilience of Networks to Targeted Attacks

In real-world scenarios, initial system failures seldom occur randomly and can be the
result of targeted attacks on central nodes. Such attacks can also occur in less cen-
tral nodes in an effort to circumvent central node defences, e.g., heavily-connected
Internet hubs tend have more effective firewalls. Targeted attacks on high degree
nodes [4, 6, 7, 13, 42] or high betweenness nodes [62] in single networks dramatically
affect their robustness. To study the targeted attack problem on interdependent net-
works [13, 63–65] we assign a value Wα(ki ) to each node, which represents the prob-
ability that a node i with ki degree will be initially attacked and become inactive, i.e.,

Wα(ki ) =
kα

i∑N
i=1 kα

i

,−∞ < α < +∞. (1.36)

When α > 0, higher-degree nodes are more vulnerable to intentional attack. When
α < 0, higher-degree nodes are less vulnerable and have a lower probability of
failure. The case α = 0, W0 = 1

N , represents the random removal of nodes [44].
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Fig. 1.8 The fraction of nodes in the giant component P∞ as a function of p for three different
examples discussed in Sects. 1.3.5.2–1.3.5.4. (a) For a tree-like fully (q = 1) interdependent NON
is shown P∞ as a function of p for k = 5 and several values of n. The results obtained using Eq.
(1.28). Note that increasing n from n = 2 yields a first order transition. (b) For a loop-like NON,
P∞ as a function of p for k = 6 and two values of q. The results obtained using Eq. (1.33). Note
that increasing q yields a first order transition. (c) For an RR network of ER networks, P∞ as a
function of p, for two different values of m when q = 0.5. The results are obtained using Eq. (1.35)
, and the number of networks, n, can be any number with the condition that any network in the NON
connects exactly to m other networks. Note that changing m from 2 to m > 2 changes the transition
from second order to first order (for q = 0.5). Simulation results are in excellent agreement with
theory. After [47]

In the interdependent networks model with networks A and B described in Ref.
[44], a fraction 1 − p of the nodes from one network are removed with a probability
Wα(ki ) [Eq. (1.36)]. The cascading failures are then the same as those described in
Ref. [44]. To analytically solve the targeted attack problem we must find an equivalent
network A′, such that the targeted attack problem on interdependent networks A and
B can be solved as a random attack problem on interdependent networks A′ and B.
We begin by finding the new degree distribution of network A after using Eq. (1.36)
to remove a 1 − p fraction of nodes but before the links of the remaining nodes that
connect to the removed nodes are removed. If Ap(k) is the number of nodes with
degree k and Pp(k) the new degree distribution of the remaining fraction p of nodes
in network A, then
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Pp(k) =
Ap(k)

pN
. (1.37)

When another node is removed, Ap(k) changes as

A(p−1/N )(k) = Ap(k) − Pp(k)kα

〈k(p)α〉 , (1.38)

where 〈k(p)α〉 ≡ ∑
Pp(k)kα. In the limit of N → ∞, Eq. (1.38) can be presented

in terms of a derivative of Ap(k) with respect to p,

d Ap(k)
dp

= N
Pp(k)kα

〈k(p)α〉 . (1.39)

Differentiating Eq. (1.37) with respect to p and using Eq. (1.39), we obtain

− p
d Pp(k)

dp
= Pp(k) − Pp(k)kα

〈k(p)α〉 , (1.40)

which is exact for N → ∞. In order to solve Eq. (1.40), we define a function
Gα(x) ≡ ∑

k P(k)xkα
, and substitute f ≡ G−1

α (p). We find by direct differentiation
that [46]

Pp(k) = P(k)
f kα

Gα( f )
= 1

p
P(k) f kα

, (1.41)

〈k(p)α〉 = f G ′
α( f )

Gα( f )
, (1.42)

satisfy the Eq. (1.40). With this degree distribution, the generating function of the
nodes left in network A before removing the links to the removed nodes is

G Ab(x) ≡
∑

k

Pp(k)xk = 1
p

∑

k

P(k) f kα
xk . (1.43)

Because network A is randomly connected, the probability of a link emanating from
a remaining node is equal to the ratio of the number of links emanating from the
remaining nodes to the total number of links emanating from all the nodes of the
original network,

p̃ ≡ pN 〈k(p)〉
N 〈k〉 =

∑
k P(k)k f kα

∑
k P(k)k

, (1.44)

where 〈k〉 is the average degree of the original network A, and 〈k(p)〉 is the average
degree of remaining nodes before the links that are disconnected are removed. Re-
moving the links that connect to the deleted nodes of a randomly connected network
is equivalent to randomly removing a (1 − p̃) fraction of links of the remaining
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Fig. 1.9 Dependence of pc on α for SF single and interdependent networks with average degree
〈k〉 = 4 for targeted attacks described in Sect. 3.5. The lower cut-off of the degree is m = 2. The
horizontal lines represent the upper and lower limits of pc. The black dashed line represents pc for
single SF network. After [63]

nodes. It is known [46] that the generating function of the remaining nodes after
random removal of (1 − p̃) fraction of links is equal to the original distribution of
the network with a new argument z = 1 − p̃ + x p̃. Thus the generating function
of the new degree distribution of the nodes left in network A after their links to the
removed nodes are also removed is

G Ac(x) ≡ G Ab(1 − p̃ + p̃x). (1.45)

The only difference in the cascading process under targeted attack from the case
under random attack is in the first stage when network A is attacked. If we find a
network A′ with generating function G̃ A0(x) such that after a random attack with
a (1 − p) fraction of nodes removed the generating function of nodes left in A′ is
the same as G Ac(x), then the targeted attack problem on interdependent networks
A and B can be solved as a random attack problem on interdependent networks A′

and B. We find G̃ A0(x) by solving the equation G̃ A0(1 − p + px) = G Ac(x) and
from, Eq. (1.45),

G̃ A0(x) = G Ab(1 + p̃
p
(x − 1)). (1.46)

This formalism allows us to map the problem of cascading node failure in interdepen-
dent networks caused by an initial targeted attack to the problem of random attack.
We note that the evolution of equations only depends on the generating function of
network A, and not on any information concerning how the two networks interact
with each other. Thus this approach can be applied to the study of other general
interdependent network models.

Finally we analyze the specific class of scale-free (SF) networks. Figure 1.9 shows
the critical thresholds pc of SF networks. Note that pc in interdependent SF networks
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is nonzero for the entire range of α because failure of the least-connected nodes in one
network may lead to failure of well-connected nodes in a second network, making
interdependent networks significantly more difficult to protect than a single network.
A significant role in the vulnerability to random attacks is also played by network
assortativity [66].

1.3.7 Interdependent Clustered Networks

Clustering quantifies the propensity of two neighbors of the same vertex to also
be neighbors of each other, forming triangle-shaped configurations in the network
[1, 10, 67]. Unlike random networks in which there is little or no clustering, real-
world networks exhibit significant clustering. Recent studies have shown that, for
single isolated networks, both bond percolation and site percolation have percolation
and epidemic thresholds that are higher than those in unclustered networks [68–73].
Here we review a mathematical framework for understanding how the robustness of
interdependent networks is affected by clustering within the network components.
We extend the percolation method developed by Newman [68] for single clustered
networks to coupled clustered networks. Huang et al. [65] found that interdepen-
dent networks that exhibit significant clustering are more vulnerable to random node
failure than networks with low significant clustering. They studied two networks, A
and B, each having the same number of nodes N . The N nodes in A and B have
bidirectional dependency links to each other, establishing a one-to-one correspon-
dence. Thus the functioning of a node in network A depends on the functioning of
the corresponding node in network B and vice versa. Each network is defined by a
joint degree distribution Pst (generating function G0(x, y) = ∑∞

s,t=0 Pst xs yt ) that
specifies the fraction of nodes connected to s single edges and t triangles [68]. The
conventional degree of each node is thus k = s + 2t . The clustering coefficient c is

c =
∑

st t Pst∑
k k(k − 1)P(k)/2

. (1.47)

1.3.7.1 Percolation on Interdependent Clustered Networks

To study how clustering within interdependent networks affects a system’s robust-
ness, we apply the interdependent networks framework [44]. In interdependent net-
works A and B, a fraction (1 − p) of nodes is first removed from network A. Then
the size of the giant components of networks A and B in each cascading failure step
is defined to be p1, p2, ..., pn , which are calculated iteratively

pn = µn−1gA(µn−1), n is odd,
pn = µngB(µn), n is even,

(1.48)
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where µ0 = p and µn are intermediate variables that satisfy

µn = pgA(µn−1), n is odd,
µn = pgB(µn−1), n is even. (1.49)

As interdependent networks A and B form a stable mutually-connected giant com-
ponent, n → ∞ and µn = µn−2, the fraction of nodes left in the giant component is
p∞. This system satisfies

x = pgA(y),
y = pgB(x),

(1.50)

where the two unknown variables x and y can be used to calculate p∞ = xgB(x) =
ygA(y). Eliminating y from these equations, we obtain a single equation

x = pgA[pgB(x)]. (1.51)

The critical case (p = pc) emerges when both sides of this equation have equal
derivatives,

1 = p2 dgA

dx
[pgB(x)]

dgB

dx
(x)|x=xc,p=pc , (1.52)

which, together with Eq. (1.51), yields the solution for pc and the critical size of the
giant mutually-connected component, p∞(pc) = xcgB(xc).

Consider for example the case in which networks A and B have Poisson degree
distributions P A

st and P B
st for both s and t :

P A
st = e−µA−νA

µs
Aνt

A

s!t ! ,

P B
st = e−µB−νB

µs
Bν t

B

s!t ! . (1.53)

Using techniques in Ref. [68] it is possible to show that in this case x = p(1 − uA),
y = p(1 − uB), where

uA = vA = e[µA y+2y(1−y)µA](uA−1)+νA p2(v2
A−1),

uB = vB = e[µBx+2x(1−x)µB](uB−1)+νB p2(v2
B−1).

(1.54)

If the two networks have the same clustering, µ ≡ µA = µB and ν ≡ νA = νB, p∞
is then

p∞ = p(1 − eν p2∞−(µ+2ν)p∞)2. (1.55)

Here µ and ν are the average number of single links and triangles per node respec-
tively.

The giant component, p∞, for interdependent clustered networks can thus be
obtained by solving Eq. (1.55). Note that when ν = 0 we obtain from Eq. (1.55) the
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coefficient c. Red dashed line represents critical threshold of shuffled interdependent networks which
originally has clustering coefficient c. The shuffled networks have zero clustering and degree-degree
correlation, but has the same degree distribution as the original clustered networks. Symbols and
dashed lines represent simulation, solid curves represent theoretical results. After [65]

result obtained in Ref. [44] for random interdependent ER networks. Figure 1.10,
using numerical simulation, compares the size of the giant component after n stages
of cascading failure with the theoretical prediction of Eq. (1.48). When p = 0.7 and
p = 0.64, which are not near the critical threshold (pc = 0.6609), the agreement with
simulation is perfect. Below and near the critical threshold, the simulation initially
agrees with the theoretical prediction but then deviates for large n due to the random
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fluctuations of structure in different realizations [44]. By solving Eq. (1.55), we have
p∞ as a function of p in Fig. 1.10 for a given average degree and several values
of clustering coefficients. The figure shows that the interdependent networks with
higher clustering become less robust than the networks with low clustering and the
same average degree k, i.e., pc is a monotonically increasing function of c (see inset
of Fig. 1.10).

1.4 Application to Infrastructure

In interacting networks, the failure of nodes in one network generally leads to the fail-
ure of dependent nodes in other networks, which in turn may cause further damage
to the first network, leading to cascading failures and catastrophic consequences.
It is known, for example, that blackouts in various countries have been the re-
sult of cascading failures between interdependent systems such as communication
and power grid systems [75] (Fig. 1.11). Furthermore, different kinds of critical
infrastructures are also coupled together, e.g., systems of water and food supply,
communications, fuel, financial transactions, and power generation and transmis-
sion (Fig. 1.11). Modern technology has produced infrastructures that are becoming
increasingly interdependent, and understanding how robustness is affected by these
interdependencies is one of the major challenges faced when designing resilient
infrastructures [56, 58, 75, 76].

Blackouts are a demonstration of the important role played by the dependencies
between networks. For example, the 28 September 2003 blackout in Italy resulted in a
widespread failure of the railway network, healthcare systems, and financial services
and, in addition, severely influenced communication networks. The partial failure
of the communication system in turn further impaired the power grid management
system, thus producing a negative feedback on the power grid. This example empha-
sizes how interdependence can significantly magnify the damage in an interacting
network system [44, 45, 58, 75].

Thus understanding the coupling and interdependencies of networks will enable
us to design and implement future infrastructures that are more efficient and robust.

1.5 Application to Finance and Economics

Financial and economic networks are neither static nor independent of one another.
As global economic convergence progresses, countries increasingly depend on each
other through such links as trade relations, foreign direct investments, and flow of
funds in international capital markets. Economic systems such as real estate markets,
bank borrowing and lending operations, and foreign exchange trading are intercon-
nected and constantly affect each other. As economic entities and financial markets
become increasingly interconnected, a shock in a financial network can provoke
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Fig. 1.11 Left: Power grid and Internet dependence in Italy. Analysis of this system can explain the
cascade failure that led to the 2003 blackout. Right: Inter-dependence of fundamental infrastructures.
A further example is a recent event in Cyprus (July 2011), where an explosion caused a failure of
the electrical power lines, which in turn caused the countries water supply to shut down, due to the
strong coupling between these two networks

significant cascading failures throughout the global economic system. Based on the
success of complex networks in modeling interconnected systems, applying complex
network theory to study economic systems has been given much attention [77–84].

The strong connectivity in financial and economic networks allows catastrophic
cascading node failure to occur whenever the system experiences a shock, especially
if the shocked nodes are hubs or are highly central in the network [7, 63, 76, 85, 86].
To thus minimize systemic risk, financial and economic networks should be designed
to be robust to external shocks.

In the wake of the recent global financial crisis, increased attention has been given
to the study of the dynamics of economic systems and to systemic risk in particular.
The widespread impact of the current EU sovereign debt crisis and the 2008 world
financial crisis show that, as economic systems become increasingly interconnected,
local exogenous or endogenous shocks can provoke global cascading system failure
that is difficult to reverse and that can cripple the system for a prolonged period of
time. Thus policy makers are compelled to create and implement safety measures
that prevent cascading system failures or that soften their systemic impact.

To study the systemic risk to financial institutions, we analyze a coupled (bipartite)
bank-asset network in which a link between a bank and a bank asset exists when the
bank has the asset on its balance sheet. Recently, Huang et al. [87] presented a
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model that focuses on real estate assets to examine banking network dependencies
on real estate markets. The model captures the effect of the 2008 real estate market
failure on the US banking network. Between 2000 and 2007, 27 banks failed in
the US, but between 2008 and early 2013 the number rose to over 470. The model
proposes a cascading failure algorithm to describe the risk propagation process during
crises. This methodology was empirically tested with balance sheet data from US
commercial banks for the year 2007, and model predictions are compared with the
actual failed banks in the US after 2007 as reported by the Federal Deposit Insurance
Corporation (FDIC). The model identifies a significant portion of the actual failed
banks, and the results suggest that this methodology could be useful for systemic
risk stress testing for financial systems. The model also indicates that commercial
rather than residential real estate markets were the major culprits for the failure of
over 350 US commercial banks during the period 2008–2011.

There are two main channels of risk contagion in the banking system, (i) di-
rect interbank liability linkages between financial institutions and (ii) contagion via
changes in bank asset values. The former, which has been given extensive empirical
and theoretical study [88–92], focuses on the dynamics of loss propagation via the
complex network of direct counterpart exposures following an initial default. The
latter, based on bank financial statements and financial ratio analysis, has received
scant attention. A financial shock that contributes to the bankruptcy of a bank in
a complex network will cause the bank to sell its assets. If the financial market’s
ability to absorb these sales is less than perfect, the market prices of the assets that
the bankrupted bank sells will decrease. Other banks that own similar assets could
also fail because of loss in asset value and increased inability to meet liability oblig-
ations. This imposes further downward pressure on asset values and contributes to
further asset devaluation in the market. Damage in the banking network thus con-
tinues to spread, and the result is a cascading of risk propagation throughout the
system [93, 94].

Using this coupled bank-asset network model, we can test the influence of each
particular asset or group of assets on the overall financial system. If the value of
agricultural assets drop by 20 %, we can determine which banks are vulnerable to
failure and offer policy suggestions, e.g., requiring mandatory reduction in exposure
to agricultural loans or closely monitoring the exposed bank, to prevent such failure.

The model shows that sharp transitions can occur in the coupled bank-asset system
and that the network can switch between two distinct regions, stable and unstable,
which means that the banking system can either survive and be healthy or collapse.
Because it is important that policy makers keep the world economic system in the
stable region, we suggest that our model for systemic risk propagation might also
be applicable to other complex financial systems, e.g., to model how sovereign debt
value deterioration affects the global banking system or how the depreciation or
appreciation of certain currencies impact the world economy.
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1.5.1 Cascading Failures in the US Banking System

During the recent financial crisis, 371 US commercial banks failed between 1 January
2008 and 1 July 2011. The Failed Bank List from the Federal Deposit Insurance
Corporation (FBL-FDIC) records the names of failed banks and the dates of their
failure. We use this list as an experimental benchmark for our model. The dataset used
as input to the model is the US Commercial Banks Balance Sheet Data (CBBSD)
from Wharton Research Data Services, which contains the amount of assets in each
category that the US commercial banks have on their balance sheets.

To build a sound bank-asset coupled system network and systemic risk cascad-
ing failure model, it is important to study the properties of the failed banks and
compare them with the properties of the banks that survive. Thus the asset portfo-
lios of commercial banks containing asset categories such as commercial loans or
residential mortgages are carefully examined. The banks are modeled according to
how they construct their asset portfolios (see the upper panel of Fig. 1.12). For each
bank, the CBBSD contains 13 different non-overlapping asset categories, e.g., bank
i owns amounts Bi,0, Bi,1, ..., Bi,12 of each asset, respectively. The total asset value
Bi and total liability value Li of a bank i are obtained from CBBSD dataset. The
weight of each asset m in the overall asset portfolio of a bank i is then defined as
wi,m ≡ Bi,m/Bi . From the perspective of the asset categories, we define the total
market value of an asset m as Am ≡ ∑

i Bi,m . Thus the market share of bank i in
asset m is si,m ≡ Bi,m/Am .

Studying the properties of failed banks between 2008 and 2011 reveals that, for
certain assets, asset weight distributions for all banks differ from the asset weight
distributions for failed banks. Failed banks cluster in a region heavily weighted with
construction and development loans and loans secured by nonfarm nonresidential
properties while having fewer agricultural loans in their asset portfolios than the
banks that survived. These results confirm the nature of the most recent financial
crisis of 2008–2011 in which bank failures were largely caused by real estate-based
loans, including loans for construction and land development and loans secured by
nonfarm nonresidential properties [95]. In this kind of financial crisis, banks with
greater agricultural loan assets are more financially robust [96]. Failed banks also
tend to have lower equity-to-asset ratios, i.e., higher leverage ratios than the banks
that survived during the financial crisis of 2008–2011 [97].

A financial crisis usually starts with the bursting of an economic or financial
bubble. For example, with the bursting of the dot-com bubble, the technology-heavy
NASDAQ Composite index lost 66 % of its value, plunging from 5048 in 10 March
2000 to 1720 in 2 April 2001. In our current model, the shock in the bank-asset
coupled system originated with the real estate bubble burst. The two categories
of real estate assets most relevant to the failure of commercial banks during the
2008–2011 financial crisis were construction and land development loans and loans
secured by nonfarm and non-residential properties. Although it is widely believed
that the financial crisis was caused by residential real estate assets, the coupled
bank-asset network model does not find evidence that loans secured by 1–4 family
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Fig. 1.12 Bank-asset coupled network model with banks as one node type and assets as the other
node type. Link between a bank and an asset exists if the bank has the asset on its balance sheet.
Upper panel: illustration of bank-node and asset-node. Bi,m is the amount of asset m that bank i
owns. Thus, a bank i with total asset value Bi has wi,m fraction of its total asset value in asset m. si,m
is the fraction of asset m that the bank holds out. Lower panel: illustration of the cascading failure
process. The rectangles represent the assets and the circles represent the banks. From left to right,
initially, an asset suffers loss in value which causes all the related banks’ total assets to shrink. When
a bank’s remaining asset value is below certain threshold (e.g., the bank’s total liability), the bank
fails. Failure of the bank elicits disposal of bank assets which further affects the market value of the
assets. This adversely affects other banks that hold this asset and the total value of their assets may
drop below the threshold which may result in further bank failures. This cascading failure process
propagates back and forth between banks and assets until no more banks fail. After [87]

residential properties were responsible for the commercial bank failures. This result
is consistent with the conclusion of Ref. [95]: that the cause of commercial bank
failure between 2008 and 2011 were commercial real estate-based loans rather than
residential mortgages. For more details regarding the coupled bank-asset model see
Ref. [87].

1.6 Summary and Outlook

In summary, this paper presents the recently-introduced mathematical framework
of a Network of Networks (NON). In interacting networks, when a node in one
network fails it usually causes dependent nodes in other networks to fail which,
in turn, may cause further damage in the first network and result in a cascade of
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failures with catastrophic consequences. Our analytical framework enables us to fol-
low the dynamic process of the cascading failures step-by-step and to derive steady
state solutions. Interdependent networks appear in all aspects of life, nature, and
technology. Examples include (i) transportation systems such as railway networks,
airline networks, and other transportation systems [53, 98]; (ii) the human body as
studied by physiology, including such examples of interdependent NON systems
as the cardiovascular system, the respiratory system, the brain neuron system, and
the nervous system [99]); (iii) protein function as studied by biology, treating pro-
tein interaction—the many proteins involved in numerous functions—as a system
of interacting networks; (iv) the interdependent networks of banks, insurance com-
panies, and business firms as studied by economics; (v) species interactions and the
robustness of interaction networks to species loss as studied by ecology, in which
it is is essential to understand the effects of species decline and extinction [100];
and (vi) the topology of statistical relationships between distinct climatologically
variables across the world as studied by climatology [101].

Thus far only a few real-world interdependent systems have been thoroughly an-
alyzed [53, 98]. We expect our work to provide insights leading further analysis of
real data on interdependent networks. The benchmark models presented here can be
used to study the structural, functional, and robustness properties of interdependent
networks. Because in real-world NONs individual networks are not randomly con-
nected and their interdependent nodes are not selected at random, it is crucial that
we understand the many types of correlation that exist in real-world systems and that
we further develop the theoretical tools to take them into account. Further studies
of interdependent networks should focus on (i) an analysis of real data from many
different interdependent systems and (ii) the development of mathematical tools for
studying real-world interdependent systems. Many real networks are embedded in
space, and the spatial constraints strongly affect their properties [20, 102, 103].
There is a need to understand how these spatial constraints influence the robustness
properties of interdependent networks [98]. Other properties that influence the ro-
bustness of single networks, such as the dynamic nature of the configuration in which
links or nodes appear and disappear and the directed nature of some links, as well as
problems associated with degree-degree correlations and clustering, should be also
addressed in future studies of coupled network systems. An additional critical issue
is the improvement of the robustness of interdependent infrastructures. Our studies
thus far shown that there are three methods of achieving this goal (i) by increasing
the fraction of autonomous nodes [45], (ii) by designing dependency links such that
they connect the nodes with similar degrees [44, 53], and (iii) by protecting the high-
degree nodes against attack [33]. Achieving this goal will provide greater safety and
stability in today’s socio-techno world.

Networks dominate every aspect of present-day living. The world has become
a global village that is steadily shrinking as the ways that human beings interact
and connect multiply. Understanding these connections in terms of interdependent
networks of networks will enable us to better design, organize, and maintain the
future of our socio-techno-economic world.
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Chapter 2
Avalanches in Multiplex and Interdependent
Networks

G. J. Baxter, S. N. Dorogovtsev, A. V. Goltsev and J. F. F. Mendes

Abstract Many real-world complex systems are represented not by single networks
but rather by sets of interdependent networks. In these specific networks, vertices
in each network mutually depend on vertices in other networks. In the simplest rep-
resentative case, interdependent networks are equivalent to the so-called multiplex
networks containing vertices of one sort but several kinds of edges. Connectivity
properties of these networks and their robustness against damage differ sharply from
ordinary networks. Connected components in ordinary networks are naturally gener-
alized to viable clusters in multiplex networks whose vertices are connected by paths
passing over each individual sort of their edges. We examine the robustness of the
giant viable cluster to random damage. We show that random damage to these sys-
tems can lead to the avalanche collapse of the viable cluster, and that this collapse is a
hybrid phase transition combining a discontinuity and the critical singularity. For this
transition we identify latent critical clusters associated with the avalanches triggered
by a removal of single vertices. Divergence of their mean size signals the approach to
the hybrid phase transition from one side, while there are no critical precursors on the
other side. We find that this discontinuous transition occurs in scale-free multiplex
networks whenever the mean degree of at least one of the interdependent networks
does not diverge.

2.1 Introduction

The network representation of complex systems is successfully exploited in various
sciences [1]. Numerous real-world systems, however, cannot be represented by a
single network. Instead, they consist of several interacting networks. In simple sit-
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(a) (b)

Fig. 2.1 a Two interdependent networks. A vertex in one network has a mutual dependence,
represented by grey vertical lines, on zero or one vertex in the other network. b This can be reduced
to a multiplex network by merging the mutually dependent vertices, and representing the edges of
each network by different kinds or colours of edges

uations, these interactions can be represented by interlinks connecting vertices in
different networks [2, 3]. When these interconnections and edges in all these net-
works are identical, then it is possible to describe the structural organization of this
set of networks and the statistics of its connected components similarly to ordinary
networks [4]. Here we consider significantly more interesting systems in which ver-
tices in each network mutually depend on vertices in other networks in the sense that
the removal (or, generally, change of the state) of a vertex in one network immedi-
ately leads to the removal (or change of the state) of its neighbour in another network.
These interdependent networks describe numerous complex systems, both natural
[5], and man-made [6, 7]. Importantly, the interdependencies can make a system
more fragile: damage to one element can lead to avalanches of failures throughout
the system [8, 9]. Recent theoretical investigations of interdependent networks con-
sisting of two [10] or more [11] subnetworks have shown that small initial failures
can cascade back and forth through the networks, leading, at some critical point, to
the collapse of the whole system in a discontinuous phase transition.

In the original formulation of the problem [10] the researchers focused on the
final result of the removal of a finite 1 − p fraction of vertices from one of the
interdependent networks. This removal leads to a complicated infinite (for infinite
networks) cascade in back-and-forth damage propagation. Below a critical point pc,
this cascade of failures eliminates the interdependent networks completely, while
above the transition, the cascade sweeps out a finite fraction of the networks. Son
et al. [12] showed the original approach of studying two interdependent networks can
be simplified, if one uses the equivalence of a wide class of interdependent networks
to a multiplex network problem. They proposed a simple mapping from the model
used in [10] in which a vertex in one network has a mutual dependence on no more
than one vertex in the other network, to a multiplex network with one kind of vertex
but two kinds of edges. The mapping is achieved by simply merging the mutually
dependent vertices from the two networks. Figure 2.1 explains this mapping. In graph
theory, the multiplex networks are also called graphs with coloured edges.

As we will see, the phase transition in this system is discontinuous, and hybrid
in nature, in contrast to ordinary percolation that occurs as a continuous phase tran-
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sition. The difference between hybrid and continuous phase transitions is that the
hybrid transition has a discontinuity like a first-order transition, but exhibits critical
behavior near the transition, like a second-order transition. Moreover, the hybrid
transition is asymmetric: critical correlations appear on only one side of the critical
point, whereas they appear on both sides of a continuous phase transition. Another
intriguing phenomenon appearing at the critical point of the hybrid transition is scale-
invariant avalanches that are absent in a continuous phase transition. Each avalanche
is triggered by removal of a single vertex and results in the elimination of multiple
vertices. To highlight this principal difference from continuous phase transitions, let
us compare with, for example, the continuous percolation phase transition. This is
a second order phase transition in an equilibrium system. Percolation can be repre-
sented as the removal of uniformly randomly chosen vertices. Removal of a vertex
can only split a cluster (connected component) into smaller clusters but, it cannot
trigger an avalanche.

In this chapter we describe these discontinuous phase transitions. Our aim is to
expand and deepen the understanding of the nature of the phase transition and the
avalanche collapse in interdependent and multiplex networks. This understanding
has been lacking until recently. We investigate the damage caused by the removal of
a single node chosen at random from an infinite network. The removal of a single
vertex causes an avalanche of damage (so named to distinguish it from the cascades of
failures mentioned above, which are caused by the sudden removal of a finite fraction
of the vertices in the network). Our method allows the identification of individual
avalanches and the study of their structure.

Why is the problem of the avalanches triggered by the removal of a single vertex
principally important and attractive for researchers? The reason is that the statistics
of these individual avalanches reveals the critical divergence at the phase transition
point. To understand a phase transition, it is not sufficient to obtain an equation
showing the emergence of a non-zero order parameter. For continuous and hybrid
transitions, one should also find the divergence of susceptibility associated with this
transition, and also describe critical correlations. It is avalanches that are responsible
for critical correlations. The mean size of the individual avalanches triggered by a
randomly removed vertex plays a role of susceptibility and diverges at the critical
point manifesting the hybrid transition. The second reason, with a practical perspec-
tive, is that knowledge of the organization of individual avalanches enables one to
control them and increase robustness of the system.

In the remainder of this chapter, then, we will generally consider multiplex net-
works, but it should be noted that the results are identical to those for two interdepen-
dent networks as defined above, and may be qualitatively extended to interdependent
networks in general. The results presented in this chapter are based on results obtained
in our paper [13].

This chapter is organised as follows. In Sect. 2.2 we define the multiplex network
model, and give an algorithm for identifying the viable clusters. In Sect. 2.3 we derive
basic equations for the size of the giant viable cluster, and show how the location and
scaling of the transition may be obtained. In Sect. 2.4 we analyse the structure and
statistics of the avalanches associated with the transition. These results are extended
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(b)(a)

Fig. 2.2 a In an ordinary network, two vertices i and j belong to the same cluster if there is a path
connecting them. b In a multiplex network, vertices i and j belong to the same viable cluster if
there is a path connecting them for every kind of edge, following only edges of that kind. In the
example shown, there are m = 3 kinds of edges. Vertices i and j are said to be 3-connected

to the special case of scale-free networks in Sect. 2.5. Results are summarised in
Sect. 2.6.

2.2 Viable Clusters and Algorithm

In ordinary networks, two vertices are connected if there is a path between the ver-
tices. Based on this notion, one introduces clusters of connected vertices and studies
emergence of the giant connected component of a graph. In multiplex network, this
notion of connection between vertices must be modified. We consider a set of ver-
tices connected by m different types of edges. The connections are essential to the
function of each site, so that a vertex is only viable if it maintains connections of
every type to other viable vertices. A viable cluster is defined as follows: For every
kind of edge, and for any two vertices i and j within a viable cluster, there must be
a path from i to j following only edges of that kind. In other words, in multiplex
network with m types of edges, two vertices are m-connected if for every type of
edges there is a path between these vertices. Based on this definition, a viable cluster
is then a cluster of m-connected vertices. Figure 2.2 explains the viable clusters. In
a large system, we wish to find when there is a giant cluster of viable vertices. From
this definition of viable clusters, it follows that any giant viable cluster is a subgraph
of the giant connected component of each of the m networks formed by considering
only a single type of edge in the multiplex network. The absence of, at least, any one
giant connected component means the absence of the giant viable cluster. Note that
viable clusters are simple generalization of clusters of connected vertices in ordinary
networks with a single type of edges. The important difference is that in a multiplex
networks we demand that vertices in a viable cluster must be connected by every
type of edges (m-connected). It is this additional condition that leads to discontinu-
ous emergence of the giant viable cluster as a result of a hybrid phase transition in
contrast to a continuous phase transition in ordinary percolation.

The viable clusters of any size may be identified by an iterative pruning algorithm,
based on the principles of percolation. Here we give such an algorithm for identifying
viable clusters that may be implemented, for example, in a computer program for
investigations of the resilience of real-world multiplex networks.
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(a) (b) (c) (d) (e)

Fig. 2.3 An example demonstrating the algorithm for identifying a viable cluster in a small network
with two kinds of edges. a In the original network, in step (i) we select vertex 0 as the test vertex.
b In step (ii) we identify the clusters of vertices connected to 0 by each kind of edge. c Step (iii):
the intersection of these two clusters forms becomes the new candidate set for the viable cluster
to which 0 belongs. d We repeat steps (ii) using only vertices from the candidate set shown in
c. Repeating step (iii), we find the overlap between the two clusters from d, shown in e. Further
repetition of steps (ii) and (iii) does not change this cluster, meaning that the cluster consisting of
vertices 0, 1, 3 and 4 is a viable cluster

Fig. 2.4 A small network with two kinds of edges (left). Applying the algorithm described in the
text, non-viable vertices are removed, leaving two viable clusters (right)

Consider a multiplex network, with vertices i = 1, 2, . . . , N connected by m
kinds of edges labeled s = a, b, . . .. Viable clusters in any multiplex network may
be identified by the following algorithm.

(i) Choose a test vertex i at random from the network.
(ii) For each kind of edge s, compile a list of vertices that can be reached from i by

following only edges of type s.
(iii) The intersection of these m lists forms a new candidate set for the viable cluster

containing i .
(iv) Repeat steps (ii) and (iii) but traversing only the current candidate set. When

the candidate set no longer changes, it is either a viable cluster, or contains only
vertex i .

(v) To find further viable clusters, remove the viable cluster of i from the network
(cutting any edges) and repeat steps (i)–(iv) on the remaining network beginning
from a new test vertex.

Repeated application of this procedure will identify every viable cluster in the
network. A simple example of the use of the algorithm to identify a small viable
cluster is given in Fig. 2.3. The results of applying the algorithm to a graph containing
two finite viable clusters is illustrated in Fig. 2.4.
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Fig. 2.5 Diagrammatic representation of Eq. (2.1) in a system of two interdependent networks a
and b. The probability Xa, represented by a shaded infinity symbol can be written recursively as a
sum of second-neighbor probabilities. Open infinity symbols represent the equivalent probability Xb
for network b, which obeys a similar recursive equation. The filled circle represents the probability
p that the vertex remains in the network

2.3 Hybrid Transition in Multiplex Networks

In this section we will study collapse of giant viable cluster in multiplex networks
damaged by random removal of vertices. We will use the fraction p of vertices
remaining undamaged as a control variable, however other control variables such as
mean degree could also be used. As we will show below, in uncorrelated random
networks the giant viable cluster collapses at a critical undamaged fraction pc in
a discontinuous hybrid transition, similar to that seen in the k-core or bootstrap
percolation [14, 15].

Hybrid transitions, like those which occurs in the collapse of multiplex and inter-
dependent networks, and associated avalanches, also occur in a wide variety of other
systems. For example, a jump in activity in neural networks [16], population collapse
in biological systems [17, 18], jamming and rigidity transitions and glassy dynamics
[19, 20], and magnetic systems [21].

Let us construct the basic equations which allow us to analyse the hybrid transition.
Consider the case of sparse uncorrelated networks, which are locally tree-like in
the infinite size limit N → ∞. In order to find the giant viable cluster, we take
advantage of the locally tree-like property of the network, and define Xs , with the
index s ∈ {a, b, . . .}, to be the probability that, on following an arbitrarily chosen
edge of type s, we encounter the root of an infinite sub-tree formed solely from type
s edges, whose vertices are also each connected to at least one infinite subtree of
every other type. We call this a type s infinite subtree. This is illustrated in Fig. 2.5,
which shows the probability Xa as the sum of second-level probabilities in terms of
Xa and Xb. The vector {Xa, Xb, . . .} plays the role of the order parameter. Writing
this graphical representation in equation form, using the joint degree distribution
P(qa, qb, . . .), we arrive at the self consistency equations

Xs = p
∑

qa , qb,...

qs

〈qs〉
P(qa, qb, . . .)

[
1 − (1 − Xs)

qs−1]∏

l '=s

[
1 − (1 − Xl)

ql
]

≡ Ψs(Xa, Xb, . . .) . (2.1)

The multiplier p in Eq. (2.1) is the probability that the vertex remains in the network.
The term (qs/〈qs〉)P(qa, qb, . . .) gives the probability that on following an arbitrary



2 Avalanches in Multiplex and Interdependent Networks 43

(a) (b)

Fig. 2.6 Viable and critical viable vertices for two interdependent networks. a A vertex is in the
giant viable cluster if it has connections of both kinds to giant viable subtrees, represented by infinity
symbols, which occur with probabilities Xa (shaded) or Xb (open)—see text. b A critical viable
vertex of type a has exactly one connection to a giant sub-tree of type a

edge of type s, we find a vertex with degrees qa, qb, . . ., while [1 − (1− Xa)
qa ] is

the probability that this vertex has at least one edge of type a '= s leading to the
root of an infinite sub-tree of type a edges. This becomes [1 − (1− Xs)

qs−1] when
a = s. The argument leading to Eq. (2.1) is similar to that used in [12]. Later it will
be useful to write the right-hand side of this equation as Ψs(Xa, Xb, . . .).

A vertex is then in the giant viable cluster if it has at least one edge of every type
s leading to an infinite type s sub-tree (probability Xs), as shown in Fig. 2.6a.

S = p
∑

qa ,qb,...

P(qa, qb, . . .)
∏

s=a,b,...

[
1 − (1−Xs)

qs
]
, (2.2)

which is equal to the relative size of the giant viable cluster of the damaged network.
A hybrid transition appears at the point where Ψs(Xa, Xb, . . .) first meets Xs at

a non-zero value, for all s. This occurs when

det[J − I] = 0 (2.3)

where I is the unit matrix and J is the Jacobian matrix Jab = ∂Ψb/∂ Xa . The critical
point pc is found by solving Eqs. (2.1) and (2.3) together. To find the scaling near
the critical point, we expand Eq. (2.1) about the critical value X (c)

s . We find that

Xs − X (c)
s ∝ (p − pc)

1/2. (2.4)

This square-root scaling is the typical behaviour of the order parameter near a hybrid
transition. In the next section we will show that this results from avalanches which
diverge in size near the transition. The scaling of the size of the giant viable cluster,
S, immediately follows

S − Sc ∝ (p − pc)
1/2. (2.5)

A similar result is found for other control parameters, for example, mean degrees of
the vertices.
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Fig. 2.7 A critical cluster. Removal of any of the shown viable vertices will result in the removal
of all downstream critical viable vertices. Vertices 2–5 are critical vertices. Removal of the vertex
labeled 1 will result in all of the shown vertices being removed (becoming non-viable). Removal
of vertex 2 results in the removal of vertices 3, 4, and 5 as well, while removal of vertex 4 results
only in vertex 5 also being removed. As before, infinity symbols represent connections to infinite
viable subtrees. Other connections to non-viable vertices or finite viable clusters are not shown

2.4 Structure of Avalanches

Having established the behaviour of the order parameter, Xs , and the location of
the hybrid transition, we now turn to examining avalanches, in order to understand
the nature of the transition more completely. We focus on the case of two types of
edges. Consider a viable vertex that has exactly one edge of type a leading to a type
a infinite subtree, and at least one edge of type b leading to a type b infinite subtree.
We call this a critical vertex of type a. It is illustrated in Fig. 2.6b. Critical vertices
of type a will drop out of the viable cluster if they lose their single link to a type
a infinite subtree. A vertex may have outgoing edges of this kind, so that removal
of this vertex from the giant viable cluster also requires the removal of the critical
vertices which depend on it. This is the way that damage propagates in the system.
The removal of a single vertex can result in an avalanche of removals of critical
vertices from the giant viable cluster. To represent this process visually, we draw a
diagram of viable vertices and the edges between them. We mark the special critical
edges, that critical viable vertices depend on, with an arrow leading to the critical
vertex. An avalanche can only transmit in the direction of the arrows. For example,
in Fig. 2.7, removal of the vertex labeled 1 removes the essential edge of the critical
vertex 2 which thus becomes non-viable. Removal of vertex 2 causes the removal of
further critical vertices 3 and 4, and the removal of 4 then requires the removal of
5. Thus critical vertices form critical clusters. At the head of each critical cluster is
a ‘keystone vertex’ (e.g. vertex 1 in the figure) whose removal would result in the
removal of the entire cluster. Graphically, upon removal of a vertex, we remove all
vertices found by following the arrowed edges, which constitutes an avalanche. Note
that an avalanche is a branching process. Removing a vertex may lead to avalanches
along several edges emanating from the vertex (for example, in Fig. 2.7, removing
vertex 2 leads to avalanches along two edges).As we approach the critical point from
above, the avalanches increase in size. The mean size of avalanches triggered by a
randomly removed vertex finally diverges in size at the critical point, which is the
cause of the discontinuity in the size of the giant viable cluster, which collapses to
zero. These avalanches are thus an inherent part of a hybrid transition.
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Fig. 2.8 Symbols used in
the diagrams to represent
key probabilities. Solid lines
represent edges of type a,
dashed lines represent edges
of type b

Fig. 2.9 a The probability
Ra can be defined in terms of
the second-level connections
of the vertex found upon
following an edge of type a.
Note that possible connections
to ‘dead ends’—vertices not in
the viable cluster (probability
1−Xa −Ra or 1−Xb−Rb) are
not shown. b The equivalent
graphical equation for the
probability Rb

(a)

(b)

We can use a generating function approach, similar to that developed by Newman
[4] to calculate the sizes and structure of avalanches. There are three possibilities
when following an arbitrarily chosen edge of a given type: (i) with probability Xs
we encounter a type s infinite subtree (ii) with probability Rs we encounter a vertex
which has a connection to an infinite subtree of the opposite type, but none of the
same type. Such a vertex is part of the giant viable cluster if the parent vertex was; or
(iii) with probability 1 − Xs − Rs , we encounter a vertex which has no connections
to infinite subtrees of either kind. These probabilities are represented graphically in
Fig. 2.8. We will use these symbols in subsequent diagrams.

The probability Ra obeys

Ra =
∑

qa

∑

qb

qa

〈qa〉 P(qa, qb)(1−Xa)
qa−1 [

1−(1−Xb)
qb

]
(2.6)

and similarly for Rb. This equation is represented graphically in Fig. 2.9.
The generating function for the size of an avalanche triggered by removing an

arbitrary type a edge which does not lead to an infinite type a subtree can be found
by considering the terms represented in Fig. 2.10. The first term represents the proba-
bility, upon following an edge of type a (solid lines) of reaching a “dead end”, that is,
a vertex with no connection to a type b subtree (and hence is not a viable vertex). In
other words, a critical cluster of size 0. The second term represents a critical cluster of
size 1: the vertex encountered has a connection to the type b infinite subtree (infinity
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Fig. 2.10 Representation of the generating function Ha(x, y) (right-hand side of Eq. 2.8) for the
size of a critical cluster encountered upon following an edge of type a

symbol), but no further connections to viable vertices. Subsequent terms represent
recursive probabilities that the vertex encountered has 1 (third and fourth terms), 2
(fifth, sixth, seventh terms) or more connections to further potential critical clusters.
The variable u (for type a edges) or v (type b) are assigned to each such edge. The
equation for this generating function can be written in terms of functions Fa(x, y)
and Fb(x, y) which we define as follows:

Fa(x, y) ≡
∑

qa

∑

qb

qa

〈qa〉 P(qa, qb)xqa−1
qb∑

r=1

(
qb

r

)
Xr

b yqb−r (2.7)

and similarly for Fb(x, y), by exchanging all subscripts a and b. While the function
Fa(x, y) does not necessarily represent a physical quantity or probability, we can see
that it incorporates the probability of encountering a vertex with at least one child
edge of type b leading to a giant viable subtree (probability Xb) upon following an
edge of type a. All other outgoing edges then contribute a factor x (for type a edges)
or y (type b).

In terms of these functions, we can write the generating function for the number
of critical vertices encountered upon following an arbitrary edge of type a (that is,
the size of the resulting avalanche if this edge is removed) as

Ha(u, v) = 1 − Xa − Ra + uFa[Ha(u, v), Hb(u, v)] (2.8)

and similarly for Hb(u, v), the corresponding generating function for the size of the
avalanche caused by removing a type b edge:

Hb(u, v) = 1 − Xb − Rb + vFb[Ha(u, v), Hb(u, v)]. (2.9)

These recursive equations can be understood by noting that Ha(0, v)
= 1 − Xa − Ra is the probability that an arbitrarily chosen edge leads to a vertex
outside the viable cluster. Here u and v are auxiliary variables. Following through a
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critical cluster, a factor u appears for each arrowed edge of type a, and v for each
arrowed edge of type b. For example, the critical cluster illustrated in Fig.2.7 con-
tributes a factor u2v2. The mean number of critical vertices reached upon following
an edge of type a, i.e. the mean size of the resulting avalanche if this edge is removed,
is given by ∂u Ha(1, 1) + ∂v Ha(1, 1), where ∂u signifies the partial derivative with
respect to u.

Unbounded avalanches emerge at the point where ∂u Ha(1, 1) [or ∂v Hb(1, 1)]
diverges. Taking derivatives of Eq. (2.8),

∂u Ha(u, v) = Fa[Ha, Hb] + u
{
∂u Ha∂x Fa[Ha, Hb] + ∂u Hb∂y Fa[Ha, Hb]

}

(2.10)

∂v Ha(u, v) = u
{
∂v Ha∂x Fa[Ha, Hb] + ∂v Hb∂y Fa[Ha, Hb]

}
(2.11)

with similar equations for ∂u Hb(u, v) and ∂v Hb(u, v). Some rearranging gives

∂u Ha(1, 1) = Ra + ∂u Hb(1, 1)∂y Fa(1 − Xa, 1 − Xb)

1 − ∂x Fa(1 − Xa, 1 − Xb)
(2.12)

and

∂v Ha(1, 1) = ∂u Ha(1, 1)∂x Fb(1 − Xa, 1 − Xb)

1 − ∂y Fb(1 − Xa, 1 − Xb)
(2.13)

where we have used that Ha(1, 1) = 1 − Xa and Fa(1 − Xa, 1 − Xb) = Ra .
From Eqs. (2.1) and (2.7),

∂x Fa(1 − Xa, 1 − Xb) =
∂

∂ Xa
Ψa(Xa, Xb) (2.14)

∂y F1(1 − Xa, 1 − Xb) =
〈qa〉
〈qb〉

∂

∂ Xa
Ψb(Xa, Xb), (2.15)

and similarly for ∂x F1b and ∂y F1b, which when substituted into (2.12) and (2.13)
gives

∂u Ha(1, 1) =
Ra[1 − ∂

∂ Xb
Ψb(Xa, Xb)]

det[J − I] . (2.16)

We see that the denominator exactly matches the left-hand side of Eq. (2.3), meaning
that the mean size of avalanches triggered by random removal of vertices diverges
exactly at the point of the hybrid transition.

The mean size of the avalanche triggered by the removal of a randomly chosen ver-
tex can be related to the susceptibility of the giant viable cluster to random damage,
similar to the susceptibility for ordinary percolation. In the latter case, the suscepti-
bility is defined as the mean size of the cluster to which a randomly chosen vertex
belongs [22]. Due to the similarity of Eq. (2.4) to the k-core version [23], we can
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expect that, at the critical point p = pc, the size distribution of avalanches triggered
by randomly removed vertices obeys a power law p(s) ∝ s−σ with σ = 3/2.

2.5 Avalanches in Scale-Free Networks

In ordinary and k-core percolation, networks with degree distributions that are asymp-
totically power laws P(q) ∼ q−γ may exhibit qualitatively different transitions
from those described above, especially when γ < 3. To investigate such effects
in the giant viable cluster, we consider two uncorrelated scale-free networks, so
P(qa, qb) = Pa(qa)Pb(qb), having powerlaw degree distributions with fixed mini-
mum degree q0 = 1 (then 〈q〉 ≈ (γ − 1)q0/(γ − 2)), so that

Ps(qs) = ζ(γs)q−γs (2.17)

where s takes the values a or b, and ζ(γ ) is the Riemann zeta function. As before,
we apply random damage to the system as a whole as a control parameter, so that
vertices survive with probability p.

First consider the case that at least one of the degree distribution exponents γa
and γb is greater than three. The giant viable cluster is necessarily a subgraph of
the overlap between the giant-components of each graph. We know from ordinary
percolation that for γ > 3, the giant component appears at a finite value of p [24]. It
follows that the giant viable cluster, also, cannot appear from p = 0; there must be a
finite threshold pc, (with a hybrid transition). This is true even if one of the networks
has γs < 3.

The more interesting case is when γa, γb < 3, when the percolation threshold is
zero for each network when considered separately. Let us write γa = 2 + δa and
γb = 2+ δb, and examine the behavior for small δa and δb. We proceed by assuming
that in this situation, for p near pc, Eq. (2.1) have a solution with small Xa , Xb , 1.
Writing only leading orders of Xa and Xb, and δa and δb, we find that

Ψa(Xa, Xb) = p
π2

6 δb
X δa

a

(
Xb − X1+δb

b

)
(2.18)

and similarly for Ψb(Xa, Xb). The location of the critical point is found from Eq.
(2.3) which becomes

δa + δb = p
π2

6
X δa

a X δb
b

(
Xa

Xb
+ Xb

Xa

)
. (2.19)

Substituting Eq. (2.18) into (2.1) and solving with Eq. (2.19), we find Xs and S at pc.
We find in general that the hybrid transition persists for δa, δb '= 0, that is pc > 0, but
that the height of the discontinuity X (c)

s at the hybrid transition becomes extremely
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small for small δ small. In experiments or simulations, this could be misinterpreted
as evidence of a continuous phase transition.

To illustrate the results in this case, we describe two representative examples.
First, we fix δb at some small value, and examine the limit δa → 0, so that δa , δb.
That is, γa → 2 while γb > 2. We find that the location, pc, of the transition tends
to a finite value as δa → 0, proportional to the larger δb,

pc =
√

1 − 2 f
f (1 − f )2

δb

ζ(2)
≈ 1.19δb, (2.20)

where f ≈ 0.236. The values of Xa and Xb become very small at the critical point,
Xb = f 1/δb and Xa ≈ 1.5Xb, meaning the size of the giant viable cluster at the
critical point is exponentially small

Sc =
(

1 − 2 f
f

)3/2

f 2/δb = Ae−B/δb (2.21)

where A ≈ 3.36 and B ≈ 2.89. We see that a hybrid transition occurs, albeit with
an extremely small discontinuity, at a non-zero threshold pc as long as at least one
of δa and δb is not equal to zero.

To examine the case that both δa and δb tend to zero, we consider the symmetric
case δa = δb ≡ δ. Then Xa = Xb ≡ X .

Equation (2.1) become a single equation,

Ψ (X) ≈ p
ζ(2)
δ

(
X1+δ − X1+2δ

)
. (2.22)

The discontinuity is found by requiring Ψ ′(X) = 1 [from Eq. (2.3)] which condition
becomes

Ψ ′(X) ≈ p ζ(2)
[
(1 + δ)X δ − (1 + 2δ)X2δ

]
= 1. (2.23)

Solving these two equations, we find that Xc = (1/2)1/δ and

pc = 24
π2 δ (2.24)

Sc = 4
(

1
2

)2/δ

. (2.25)

The location of the hybrid transition tends to p = 0 as δ → 0, and the size of the
‘jump’ becomes very small even for nonzero δ, but vanishes completely as δ → 0. In
Fig. 2.11 we plot the size of the giant viable cluster in this symmetric case for three
values of γ . For values not close to two, the transition looks similar to that observed
in, say, Erdős–Rényi graphs. As γ approaches 2, however, we see that the height
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Fig. 2.11 Size of the giant viable cluster S as a function of the fraction p of vertices remaining
undamaged for two symmetric powerlaw distributed networks with, from right to left, γ = 2.8,
2.5, and 2.1. The height of the jump becomes very small as γ approaches 2, but is not zero, as seen
in the inset, which is S versus p on a logarithmic vertical scale for γ = 2.1

of the discontinuity becomes extremely small. Nevertheless, the square-root scaling
and non-zero critical point are retained.

We can also examine the behaviour of X and S above the transition (p > pc).
Expanding Ψ (X) about Xc we find that

X − Xc

Xc
= 12

π2 δ pc

(
p − pc

pc

)1/2

(2.26)

which holds so long as p − pc , δ3. That is, the scaling of the order parameter X ,
and hence the size of the giant viable cluster, S, is square-root in a narrow region of
width O(δ3) above the hybrid transition. This region disappears as δ → 0.

2.6 Conclusions

In conclusion, we have studied the robustness of multiplex networks, which are
networks with two or more different kinds of edges. There is a direct mapping
between such multiplex networks and interdependent networks, in which vertices in
one network depend on at most one vertex in another network. We found that the giant
viable cluster of a multiplex network with two or more kinds of edges collapses with
a discontinuous hybrid transition. The collapse occurs through avalanches which
diverge in size when the transition is approached from above. We described critical
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clusters associated with these avalanches. The avalanches are responsible for both the
critical scaling and the discontinuity observed in the size of the giant viable cluster.
Remarkably, these specific clusters and avalanches in our problem turned out to be
organized in a novel way, different from those in the k-core [15, 23] and bootstrap
percolation [14] problems.

In contrast to ordinary networks, where two vertices are connected if there is a
path between them, in multiplex network with m types of edges, two vertices are m-
connected if for every kind of edge there is a path from one to another vertex. Based
on this notion, we introduced viable clusters as clusters of m-connected vertices
in multiplex network. This new notion of connectivity between vertices leads to the
emergence in a multiplex network of a giant viable cluster in a hybrid phase transition
in contrast to a continuous phase transition in ordinary percolation.

Surprisingly, when the degree distributions are asymptotically power-law P(q) ∝
q−γ the critical point pc (taking the undamaged fraction of vertices p as the control
parameter) remains at a finite value even when the exponents γ of the degree distrib-
utions are below three, remaining finite until both exponents reach two, in agreement
with an argument given in [10]. This is in stark contrast to ordinary percolation in
complex networks, in which the threshold falls to zero as soon as γ reaches three
[25, 26]. We show, further, that the nature of the transition does not change. Although
the height of the discontinuity becomes extremely small near γ = 2, it remains finite
near this limit (see Fig. 2.11). The critical clusters may have important practical appli-
cations, helping to identify vulnerabilities to targeted attack, as well as informing
efforts to guard against such attack.
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Chapter 3
Multiplex Networks

Kyu-Min Lee, Jung Yeol Kim, Sangchul Lee and K.-I. Goh

Abstract Typical complex system operates through multiple types of interactions
between its constituents. The collective function of these multiple interactions, or
multiple network layers, is often non-additive, resulting in nontrivial effects on the
network structure and dynamics. To better model such situations, the concept of mul-
tiplex network, the network with explicit multiple types of links, has recently been
applied. In this contribution, we survey recent studies on this subject, focused on
the notion of correlated multiplexity. Empirical multiplex network analysis as well
as analytical results on the random graph models of correlated multiplex networks
are presented, followed by a brief summary of dynamical processes on multiplex
networks. It is illustrated that a multiplex complex system can indeed exhibit struc-
tural and dynamical properties that cannot be represented by its individual layer’s
properties alone, establishing the network multiplexity as an essential ingredient in
the new physics of “network of networks.”

3.1 Introduction

In the last decade, network science has successfully established itself as a unified
framework for studying complex systems [1, 2]. Along with its impressive success,
the framework has continuously been evolving. One of the most current evolution of
complex network theory is the study of multiplex networks, the networks with more
than one type of links [3]. Indeed, most studies until quite recently have focused on
isolated, single networks, ignoring the existence of multiple types of interactions. In
most, if not all, real-world complex systems, however, nodes in the system can engage
in more than one type of interactions, and such multiple interactions can make a non-
additive effect on network structure and the dynamics on it. For example, as illustrated
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Fig. 3.1 A cartoon of multi-
plex social network as a triplex
network consisting of friend-
ship, family, and work-related
acquaintanceship layers

family
friends

work-related

in Fig. 3.1, people in a society interact via their friendship, family relationship, and/or
more formal work-related acquaintanceship, etc., which are collectively responsible
for complex emergent social phenomena [4, 5]. Countries in the global economic
system also interact via various international relations ranging from commodity trade
to political alliance [6]. Even proteins in a cell participate in multiple layers of
interactions and regulations, from transcriptional regulations and metabolic synthesis
to signaling [7]. Obviously, in dealing with such problems the multiplex network
representation would be a more appropriate description than the single network, or
simplex, one.

In this contribution, we will survey recent works on the topic of multiplex net-
works. We begin with an analysis of real-world multiplex coauthorship network data
to introduce the notion of correlated multiplexity in Sect. 3.2. Then the random graph
model of correlated multiplex network is introduced in Sect. 3.3. In Sect. 3.4, ana-
lytical formalism based on the joint degree distribution for analyzing the structural
properties of multiplex random graph models is developed. The cases of duplex ran-
dom graphs and duplex scale-free networks are studied in detail in Sects. 3.5 and 3.6,
respectively. Topics of network robustness and network dynamics are briefly dis-
cussed in Sects. 3.7 and 3.8, respectively. Finally, we will conclude our contribution
with a summary and outlook.

3.2 Correlated Multiplexity

In most previous studies of coupled networks—in context of layered, interacting,
interdependent networks [8–10]—network layers were coupled randomly. In real-
world complex systems, however, nonrandom structure in network multiplexity can
be prominent. For example, a person with many links in the friendship layer is likely
to also have many links in another social network layer, being a friendly person. We
termed the correlated multiplexity [3] to refer such a nonrandom pattern of network
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multiplexity. Examples of correlated multiplexity are widespread. Some of examples
reported in the literature are:

• Social networks: online-game network [11], coauthorship network [12].
• Organizational networks [13].
• Transportation networks [8, 14, 15].
• Cellular network: Interaction network and perturbation network [16].
• Economic networks: Trade networks in different industrial sectors [17].

The most frequent pattern of correlated multiplexity is the positively correlated
multiplexity, such that a node with large degree in one layer likely has more links
in the other layer as well. For example, in the online game social network data [11],
it was shown that different positive social relations such as friendship and trade are
highly correlated as well as overlap.

In Fig. 3.2, we present our own analysis of a multiplex coauthorship network [12].
The network consists of a set of researchers who are connected with one another
by three types of collaboration links, first being due to publications in the field of
fractal surface growth (denoted KPZ, representing Kardar-Parisi-Zhang equation),
second in the field of self-organized criticality (denoted SOC, representing Self-
Organized Criticality), and third in the field of complex network theory (denoted
CNR, representing Complex Network Research), resulting in a triplex network (for
more details on the data collection, see [12]). Despite the separation of timescales
of three research topics, degree distributions of the three network layers, and that of
the superposed network, are indistinguishable (Fig. 3.2a, inset). Within the individual
layer, analysis of degree distributions of restricted set of nodes that participate in more
than one layers reveals that there indeed exists a positively correlated multiplexity
pattern: the more layer a node participates to, the more likely would they have larger
degrees (Fig. 3.2a). The analysis of joint degree distributions (Fig. 3.2c,d) confirms
this finding. There is a systematic enrichment of joint degree distribution near the
diagonal of the plots, revealing strong correlation between degrees of a node in two
network layers. In addition, it was found that a pair of nodes which are closer in
one layer tend to be also closer in another layer (Fig. 3.2b). This result extends the
classical concept of multiplexity that accounts only for direct link overlap [4] and
demonstrates the effect of network multiplexity at all scales.

3.3 Random Graph Model of Correlated Multiplexity

For a systematic mathematical understanding of correlated multiplexity, one needs
a graph model. There exist a few random graph models with multiple link-types
(or colored edges) [3, 18, 19]. Here we present a way to build correlated multiplex
networks, following [3].

Given two network layers with equal number of nodes, we define three particu-
lar couplings: (i) uncorrelated, (ii) maximally-positive (MP), and (iii) maximally-
negative (MN) correlated couplings (Fig. 3.3). In the uncorrelated coupling, we
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Fig. 3.2 Patterns of correlated multiplexity in multiplex coauthorship network. a Degree distri-
bution of nodes participating in a single (diamond), double (circle), and triple layers (square). b
Conditional distance distribution P(dKPZ |dSOC) in KPZ-layer of pairs of nodes of distance dSOC in
SOC-layer. c Joint degree distribution P(kSOC, kKPZ ), and d Significance plot based on Z-score with
respect to randomly coupled counterpart. Z-score is obtained as Z = (Preal − 〈Prandom〉)/σPrandom ,
where the average and standard deviation for Prandom are evaluated over 104 independent random-
izations

couple the two layers randomly, that is, we use a random matching between a node
in one layer to a node in the other layer. In the MP correlated coupling, a node’s
degrees in different layers are maximally correlated in their degree order; the node
that is hub in one layer is also the hub in the other layer, and the node that has the
smallest degree in one layer also has the smallest degree in other layer. Likewise,
in the MN correlated coupling, a node’s degrees in different layers are maximally
anti-correlated in their degree order.

These three particular couplings are useful in their mathematical simplicity and
tractability, thus highlighting the effect of correlated multiplexity. Yet in real-world
multiplex systems the correlated multiplexity would hardly be maximal. The cases
of partially correlated multiplexity can be constructed by maximally correlating a
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MP MNUNCORRELATED

+

Fig. 3.3 Schematic illustration of constructing the correlated multiplex networks discussed in the
text. MP (MN) stands for maximally-positive (maximally-negative) correlated multiplexity

fraction q of nodes in the network while randomly coupling the rest fraction 1 − q.
Using this method one can interpolate between MP, through uncorrelated, and MN
couplings, modulating the strength of correlated multiplexity.

3.4 Analytical Formalisms

3.4.1 Degree Distributions

The information of degree distribution of a multiplex network with " layers ("-
plex network) can be encoded in the joint degree distribution P({kα}) ≡ P(k1, k2,

· · · , k"). (Throughout this work, we will use Greek subscript to denote the layer
index). The degree distribution within a layer α, denoted as πα(kα), can be obtained
as the marginal distribution, πα(kα) =

∑
{kβ %=α} P(k1, k2, · · · , k"). The total degree

of a node in the multiplex network is given by k = ∑
α kα , which can differ from the

number of distinct connected nodes when there are link overlaps between network
layers. Such link overlaps can be neglected for large, sparse random graphs, but can
be significant in real-world multiplex networks as in multiplex social network data
[11, 12]. One can obtain the total degree distribution P(k) from the joint degree
distribution as P(k) = ∑

{kµ} P({kµ})δk,
∑

ν kν
, where δ denotes Kronecker delta

symbol.
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3.4.2 Emergence of the Giant Component

Having established a way to construct the total degree distribution P(k), it is tempting
to use it to calculate the connected components properties via standard generating
function technique [20]. It turns out that, however, this simplified procedure works
only when the degree distributions of all layers are identical, as we will see shortly.

Now we develop a theory which exploits the full joint degree distribution P({kα}),
applicable when every layer is uncorrelated and locally tree-like, as in random graph
models. Let us define uα to be probability that a node reached by a randomly chosen
link in layer α does not belong to the giant component (which is connected via any
types of links). Following a similar reasoning as the standard generating function
technique, one can construct the self-consistency equations for uα’s as

uα =
∑

{kµ}

kαP({kµ})
zα

∏
ν ukν

ν

uα
(α = 1, · · · , ") , (3.1)

where zα is the mean degree of layer α. Then the probability that a randomly chosen
node belongs to the giant component (that is, the giant component size), denoted S,
can be obtained as

S = 1 −
∑

{kµ}
P({kµ})

∏

ν

ukν
ν , (3.2)

with uν’s being the solution of Eq. (3.1). Therefore, the giant component exists (that
is, S > 0) if Eq. (3.1) has a nontrivial solution other than (u1, · · · , u") = (1, · · · , 1).
This condition can be extracted from the Jacobian of Eq. (3.1), which reads in the
case of duplex network

1
4




(

κ1

z1
+ κ2

z2

)
+

√(
κ1

z1
− κ2

z2

)2

+ 4κ2
12

z1z2



 > 1 , (3.3)

where κ1 = 〈k2
1〉, κ2 = 〈k2

2〉, and κ12 = 〈k1k2〉 are second-order moments of joint
degree distribution.

When the degree distributions of all layers are identical, one has the solution of
Eq. (3.1) satisfying u1 = u2 = · · · = u", which reduces Eqs. (3.1–3.3) to those of
standard generating function technique [20]. For example, Eq. (3.3) reduces to the
well-known Molloy-Reed criterion for the total degree distribution, 〈k2〉−2〈k〉 > 0,
with k = k1 + k2 [21]. This shows that in such a case, one can use the reduced total
degree distribution P(k) to study the component structure, but in general Eqs. (3.1–
3.3) should be used to have the correct results. Note that similar generating function-
type techniques for clustered [22], multi-type [23], and interdependent networks [24]
have also been developed recently, which slightly differ from the current formalism.
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3.4.3 Degree-Degree Correlations

The fact that one cannot use the reduced total degree distribution P(k) for compo-
nent structure of correlated multiplex network suggests that the superposed network
possesses degree correlations even when uncorrelated random networks are coupled.
To show this explicitly, let us consider the assortativity coefficient r defined as [25]

r = 〈kk′〉l − 〈k〉2
l

〈k2〉l − 〈k〉2
l

, (3.4)

where k and k′ are the total degrees of nodes at two ends of an edge and 〈· · · 〉l denotes
the average over all edges in the superposed network. Nonzero value of r dictates the
presence of degree-degree correlations between connected nodes. Following the steps
developed in [22], one can show that the numerator of Eq. (3.4) can be expressed,
after some manipulations, as

∑

k,k′
kk′Q(k, k′) −




∑

k,k′
kQ(k, k′)




2

=
∑

µ

cµX2
µ −

(
∑

µ

cµXµ

)2

= 1
2

∑

µ,ν

cµcν(Xµ − Xν)
2 ≥ 0 , (3.5)

where Q(k, k′) denotes the probability that a randomly chosen link (of any kind)
connects two nodes with total degree k and k′ at each end, cα is the fraction of links
of type α, such that

∑
α cα = 1, and Xα is the expected total degree of a node that is

reached by following a randomly chosen link of type α, which is related to the joint
degree distribution as

Xα =
∑

k

k
∑

{kµ}
kαP({kµ})δ(k −

∑

ν

kν)/zα . (3.6)

Therefore, a multiplex network can become assortative (r > 0), even when uncorre-
lated layers are coupled, unless the degree distributions of all layers are identical, so
that all Xα’s are equal. (Another exception is the uncorrelated multiplex ER graphs,
see Sect. 3.5.1.) It also allows one to calculate the assortativity coefficient r, once the
joint degree distribution is given.
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3.5 Duplex ER Graphs

To illustrate basic effects of multiplex couplings, in this section we apply the for-
malism to duplex Erdős-Rényi (ER) graphs [26] in which two ER graph layers are
multiplex coupled, summarizing the results reported in [3].

3.5.1 Uncorrelated Duplex ER Graphs

In the absence of correlation between network layers, the joint degree distribution
factorizes, Puncorr(k1, k2) = π1(k1)π2(k2). The total degree distribution is then given
by the convolution of πα(kα), Puncorr(k) = ∑k

k1=0 π1(k1)π2(k − k1). It is easy to
see that the resulting superposed network is nothing but an ER graph with the total
mean degree z1 + z2, so that

Puncorr(k) =
e−zzk

k! (3.7)

with z = z1+z2. The connectivity and component properties follow the conventional
behaviors [20, 26].

3.5.2 Duplex ER Networks with Equal Link Densities

The case of duplex ER networks with layers of equal link densities is particularly
simple, as one can use standard generating function technique with the total degree
distribution. Furthermore it is amenable for a number of explicit exact results.

MP coupling.—In this case, degrees of a node in the two layers would become
almost equal in the thermodynamic limit (more precisely, relative dispersion of the
two degrees would decay with N and vanish as N → ∞), so that the total degree
distribution of the duplex network can be approximated as

PMP(k) =
{

e−z1 zk/2
1 /(k/2)! (k even),

0 (k odd),
(3.8)

where z1 is the mean degree of the layer 1. Therefore, the Molloy-Reed criterion is
fulfilled for all nonzero z1, as 〈k2〉−2〈k〉 = 4(z1+z2

1)−2(2z1) = 4z2
1 > 0 for z1 %= 0,

which can also follow from the condition Eq. (3.3). This means that surprisingly the
giant component exists for any nonzero link density, that is, the critical single-layer
mean degree zc above which the giant component exists vanishes,
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zMP
c = 0 . (3.9)

One can further obtain the giant component size S and the average size of finite
components 〈s〉 from the standard generating function technique [20], which are
given explicitly by:

S = 1 − P(0) = 1 − e−z1 , (3.10)

and
〈s〉 = 1 . (3.11)

This shows that the giant component grows linearly in the vicinity of zMP
c , and

that only the isolated nodes are outside the giant component and all the linked nodes
form a single giant component. All these predictions are fully supported by numerical
simulations (Fig. 3.4).

MN coupling.—In this case, there exist distinct regimes of z1, three of which
among them are of relevance for the giant component properties (in N → ∞ limit).

(i) 0 ≤ z1 ≤ ln 2.

In this regime, more than half of nodes are of degree zero in each layer so every
linked node in one layer is coupled with a degree-0 node in the other layer under
MN coupling. After some inspection one obtains the total degree distribution
P(k) as

PMN (k) =
{

2π(0) − 1 (k = 0),
2π(k) (k ≥ 1). (3.12)

In this regime there is no giant component.

(ii) ln 2 ≤ z1 ≤ z∗.

Following similar steps,P(k) in this regime is obtained as

PMN (k) =






0 (k = 0),
2[2π(0)+ π(1) − 1] (k = 1),
2π(2) − 2π(0)+ 1 (k = 2),
2π(k) (k ≥ 3).

(3.13)

In this regime, 〈k2〉 − 2〈k〉 = 2(z2
1 − z1 − 2e−z1 + 1), which becomes positive

for z1 > zMN
c where

zMN
c = 0.838587497... (3.14)

Therefore the giant component emerges at a much higher link density. Being
delayed in its birth, however, the giant component grows more abruptly once
formed (Fig. 3.4c). This regime is terminated at z1 = z∗, determined by the
condition 2π(0)+ π(1) = 1, from which we have z∗ = 1.14619322...

(iii) z1 ≥ z∗.
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Fig. 3.4 a, b Total degree distribution P(k) of duplex ER graphs with z1 = z2 = 0.7 (a) and
z1 = z2 = 1.4 (b). Different symbols denotes MP (square), uncorrelated (circle), and MN (diamond)
couplings. c, d The giant component size S (c) and the average size of finite components 〈s〉 (d)
as a function of z1 of duplex ER graphs with z1 = z2. Same symbols as (a, b) are used. Gray
shade denotes the region in which S = 1 for the MN case (z1 > z∗). Lines represent the theoretical
curves and symbols the numerical simulation results. Errorbars denote standard deviations. Adapted
from [3]
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In this regime we have P(0) = P(1) = 0 and thereby S = 1. This means that
the entire network becomes connected into a single component at this finite link
density z∗, which can never be achieved for ordinary ER networks.

All these theoretical results are confirmed numerically (Fig. 3.4). Meanwhile, it is
noteworthy that despite these abnormal behaviors and apparently more rapid growth
of S near zc, the critical behavior in the MN case is found to be consistent with that
of standard mean-field [3].

Imperfect correlated multiplexity.—So far we have seen that maximally correlated
or anti-correlated multiplexity crucially affects the onset of emergence of giant com-
ponent in multiplex ER networks. For a partially correlated duplex ER network (with
equal link densities) in which a fraction q of nodes are maximally correlated coupled
while the rest fraction 1 − q are randomly coupled, the total degree distribution can
be obtained as Ppartial(k) = qPmaximal(k) + (1 − q)Puncorr(k), where maximal is
either MP or MN . Using Eqs. (3.8, 3.12, 3.13) and following similar steps as in the
previous section we obtain the critical link density as a function of q as

zc = (1 − q)/2 (3.15a)

for positively correlated case and

zc =
{

1/(2 − q) (q < 2 − 1/ ln 2),
z1(q) (q > 2 − 1/ ln 2) (3.15b)

for negatively correlated case, where z1(q) is the solution of (2−q)z2
1 −z1−2qe−z1 +

q = 0. This result shows that zc depends continuously on q (Fig. 3.5), illustrating
that the effect of correlated multiplexity is present for general q.
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Fig. 3.6 a, c, e Numerical simulation results of the size of giant component of duplex ER networks
of size N = 104 with a MP, c uncorrelated, and e MN couplings. b, d, f The giant component
size S (red) is plotted for z2 = 0.4, along with the assortativity coefficient r (blue) for the MP (b),
uncorrelated (d), and MN (f) cases. Theoretical predictions based on the joint degree distribution in
Sect. 3.4 are shown in lines, demonstrating excellent agreements with simulations. Errorbars denote
standard deviations from 104 independent runs. Adapted partly from [3]
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3.5.3 Duplex ER Networks with General Link Densities

In this section we consider general duplex ER networks with z1 %= z2. Qualitative
picture of behavior of giant component size is similar to the equal link density case:
the giant component emerges at lower link densities for the MP case but grows more
slowly than the uncorrelated case, whereas it emerges at higher link densities for the
MN case but grows more abruptly and connects all the nodes in the network at finite
link density (Fig. 3.6).

It should be emphasized, however, that one should use the formalism in Sect. 3.4,
which fully exploits the joint degree distribution, in order to obtain correct theoretical
results for z1 %= z2 (Fig. 3.4b, d, f). Indeed, the assortativity coefficient r calculated
both analytically by Eqs. (3.4–3.6) and numerically shows that it is assortative in MP
and MN cases, except for z1 = z2. This clearly shows that the correlated multiplexity
can not only modulate the total degree distribution P(k) of the superposed network
but also introduce higher-order correlations in its network structure.

3.6 Duplex SF Networks

Now we consider a duplex scale-free (SF) network, in which two SF networks con-
structed by the static model [27] are multiplex-coupled. The static model network is
constructed as follows. Each node i (i = 1, · · · ,N) is assigned a weight wi = i−a,
where a is a constant greater than 1. By successively connecting two nodes each cho-
sen with probability proportional to its weight until desired number of links are made,
one obtains a network with asymptotic power-law degree distribution π(k) ∼ k−γ ,
with γ (called the degree exponent) given by γ = 1 + 1/a [27]. Thus one can tune
both the degree exponent and the mean degree of the network.

An important property of SF networks is the vanishing percolation threshold for
γ ≤ 3 [28], fundamentally different from the case with γ > 3. The case of γ = 2.5
is examined first (Fig. 3.7a). In this case the giant component exists for any z1 > 0
even in the single layer, so zc = 0 in all three cases. For small z1, MP has the largest
giant component size as in the ER case. Peculiar behavior is observed for the MN
coupling, in which the giant component size increases slowly until it makes a jump
around zjump ≈ 1.05, almost doubling its size. This unusual behavior is rooted in
the fact that with MN coupling each layer’s hub supports giant component of its
own and the two giant components are totally disjoint until the link density reaches
the threshold zjump. Beyond this threshold, the two equally-large giant components
cannot but overlap and merge, thereby making a jump. This picture is supported by the
observations that sizes of the largest and second largest component are almost equal,
and the position of jump coincides with the point at which all nodes in the network
acquire at least one link (Fig. 3.7a, inset). The case of γ = 5.0 is examined next
(Fig. 3.7b), yielding overall similar qualitative behaviors as the duplex ER networks,
without any discontinuous jump.
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Fig. 3.7 Giant component size of duplex SF networks of equal link densities with γ = 2.5 (a) and
γ = 5.0 (b). Symbols stand for uncorrelated (◦), MP (!), and MN (/) couplings. (Inset) Size of
largest (/) and second largest (") components, together with the fraction of nonzero-degree nodes
(∗), for MN coupling

3.6.1 Betweenness and Load

Betweenness centrality [29] or load [27] is a widely-used centrality measure which
characterizes the potential burden or traffic over a node in a network due to simple
shortest path-based transport protocols. It has been shown that the load distribution
of SF network also follows a power law, with the exponent ≈ 2.2 for non-tree SF
networks with 2 < γ ≤ 3 [27]. Here we examine how the betweenness and its
distribution are affected by the multiplex coupling of SF networks. From the scaling
perspective, neither the degree exponent nor the power-law exponent for betweenness
distribution is found to be affected by the multiplex coupling (Fig. 3.8a, b). Looking
at the individual node level, it is found that the betweenness changes most when the
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two networks are coupled randomly, rather than in a MP or MN way (Fig. 3.8c–h).
This suggests that in MP or MN coupling the pathway structure is weakly affected and
topological centralities of hub nodes are largely preserved. Concepts of betweenness
and load are intimately related with the definition of shortest path. One interesting
issue in this regard is the concept of optimal path in multiplex networks with the
context and interplay between layers fully taken into account, which deserves further
study.
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Fig. 3.9 Schematic diagram of intentional attack on MP and MN type multiplex networks. From left
to right, nodes are removed in descending order of the total degree to simulate an intentional attack,
and the size of largest connected component in the remaining superposed network is monitored

3.7 Robustness of Multiplex Networks

Having established that correlated multiplexity can significantly affect the overall
connectivity of multiplex networks, the next question we might have is its impact on
network robustness against random failures or intentional attack [2]. For example, as
the cartoon diagram in Fig. 3.9 shows, the way how the network layers are multiplex-
coupled can alter the resilience of the superposed network against attack. It has also
been shown that robustness of interdependent networks to cascade of failures can be
affected by the correlated coupling [14, 30].

As a preliminary case study, here we use the multiplex coauthorship network in-
troduced in Sect. 3.2 and examine the topological robustness under various failure
and attack scenarios. We construct the SOC-KPZ coauthorship network, consisting
of the nodes participating in both layers and the links among them. Then we simulate
virtual random node or link failures and degree-based intentional node attacks, and
measure the fraction of nodes in the initial largest component that still form largest
component in the remaining superposed network, denoted S/S0, as a function of
the fraction of removed nodes or links f . We also compare the results against those
obtained from three shuffled networks, in which the two layers are MP, uncorrelated,
and MN-coupled (obtained by shuffling the node names in each layer according to
the coupling rule, while controlling the link density of the superposed network to be
equal) (Fig. 3.10). It is noteworthy that even though the coauthorship networks show
positive correlated multiplexity (Fig. 3.2), the topological robustness properties do
not always correspond to those of MP-correlated networks. For example, the real
coauthorship network is more vulnerable, albeit slightly, to random link removals
than its uncorrelated versions, in contrast to the higher robustness of MP-correlated
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networks than the uncorrelated ones (Fig. 3.10b). Such discrepancy indicates the
presence of higher-order correlations in the coupling structure of real multiplex net-
works, beyond the degree correlation. More systematic investigation on this topic
using model networks is currently underway (B. Min et al., arXiv:1307.1253).
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3.8 Dynamics on Multiplex Networks

Multiplexity can also have impact on network dynamics [31]; in fact it is one of the
ultimate goals of the study of multiplex networks to understand what the generic
effect of correlated multiplexity on various dynamic processes occurring on top of
real-world multiplex complex systems. This may have implications on many pro-
found real-world complex systems problems, such as understanding, predicting, and
controlling systemic risk and collective social movement. Dynamics with multiplex-
ity in general, poses the question of how the interplay of different network layers
can bring about emergent dynamic consequences, and in many cases calls for devel-
opment of new theoretical tools, similarly to what we did in Sect. 3.4 for structural
analysis, which raises theoretical challenge as well.

Study of dynamical processes on multiplex networks is still in its infancy, yet
is rapidly growing over the years [32–39]. Surveying all these recent effort would
already require a separate contribution; here we could merely compile them with a
brief summary of key findings. Given the obvious relevance of multiplex-network
framework for many real-world problems, such as social cascades in social networks
[5] or dynamics of systemic risk [40], this list is expected to expand quickly so is by
no means meant to be exhaustive.

One of the first studies on multiplex dynamics was the study of sandpile dynamics
[32], where it is found that the scaling behavior of avalanche does not change by the
multiplex coupling, despite alterations in the detailed cascade dynamics. Generalized
models of behavioral cascades in multiplex social networks [33, 34] showed that
the multiplexity can facilitate global cascades compared to null models of simplex
networks. In the study of random Boolean network on multiplex networks [35], the
multiplex coupling is shown to support stabilization of the system even when each
single layer is in the unstable chaotic state. In studies of evolutionary dynamics on
multiplex networks, it was shown that the cooperative behavior is enhanced when
individuals interact through multiple network layers [36, 37]. In the study of diffusion
dynamics on multiplex networks [38], the existence of multiple channels of diffusive
motion is shown to speed up the diffusion process. These studies collectively highlight
how the dynamical properties on multiplex networks can differ from those of a single
or simplex network.

3.9 Summary and Outlook

In summary, we have surveyed recent studies on multiplex networks, the networks
with explicit multiple types of links, which is a better representation of real-world
complex systems. Particularly emphasized are the notion of correlated multiplexity
and its effect on the structural properties of multiplex network system. We have in-
troduced the random graph models of correlated multiplex networks and developed
analytical formalism to study its structural properties. Applications to multiplex
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ER and SF networks demonstrated that the correlated multiplexity can dramatically
change the properties of the giant component. This shows that a multiplex complex
system can exhibit structural properties that cannot be represented by its individ-
ual network layer’s properties alone. Such nontrivial, emerging multiplex structure
should entail significant impact on dynamical processes occurring on it, opening a
vast avenue of future studies on the impact of correlated multiplexity on network
dynamics and function [14, 30].

The concepts and tools for the multiplex network should also be useful in the
study of related subjects of recent interest such as layered [8], multi-type [23], in-
teracting [9, 41], and interdependent networks [10, 24, 42], which share similar
theoretical framework and mathematical techniques. Notable areas for further in-
vestigation would be, to name but a few, the multiplex network evolution [43] and
the role of negative or antagonistic interactions between layers [11, 44]. Altogether,
these studies will cooperatively help establish unified framework for the emerging
paradigm of “network of networks,” and the concept of network multiplexity will
play an essential role in this collective endeavor.
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Chapter 4
Modeling Interdependent Networks as Random
Graphs: Connectivity and Systemic Risk

R. M. D’Souza, C. D. Brummitt and E. A. Leicht

Abstract Idealized models of interconnected networks can provide a laboratory for
studying the consequences of interdependence in real-world networks, in particular
those networks constituting society’s critical infrastructure. Here we show how ran-
dom graph models of connectivity between networks can provide insights into shifts
in percolation properties and into systemic risk. Tradeoffs abound in many of our
results. For instance, edges between networks confer global connectivity using rela-
tively few edges, and that connectivity can be beneficial in situations like communi-
cation or supplying resources, but it can prove dangerous if epidemics were to spread
on the network. For a specific model of cascades of load in the system (namely, the
sandpile model), we find that each network minimizes its risk of undergoing a large
cascade if it has an intermediate amount of connectivity to other networks. Thus, con-
nections among networks confer benefits and costs that balance at optimal amounts.
However, what is optimal for minimizing cascade risk in one network is subopti-
mal for minimizing risk in the collection of networks. This work provides tools for
modeling interconnected networks (or single networks with mesoscopic structure),
and it provides hypotheses on tradeoffs in interdependence and their implications for
systemic risk.
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4.1 Introduction

Collections of networks occupy the core of modern society, spanning technologi-
cal, biological, and social systems. Furthermore, many of these networks interact
and depend on one another. Conclusions obtained about a network’s structure and
function when that network is viewed in isolation often change once the network is
placed in the larger context of a network-of-networks or, equivalently, when viewed
as a system composed of complex systems [13, 15]. Predicting and controlling these
über-systems is an outstanding challenge of increasing importance because system
interdependence is growing in time. For instance, the increasingly prominent “smart
grid” is a tightly coupled cyber-physical system that relies on human operators and
that is affected by the social networks of human users. Likewise, global financial
markets are increasingly intertwined and implicitly dependent on power and com-
munication networks. They are witnessing an escalation in high frequency trades
executed by computer algorithms allowing for unanticipated and uncontrolled col-
lective behavior like the “flash crash” of May 2010. Reinsurance companies uncan-
nily forecast the increase of extreme events (in particular in the USA) just weeks
before the onslaught of Superstorm Sandy [59] and stressed the urgent need for new
scientific paradigms for quantifying extreme events, risk, and interdependence [54].

Critical infrastructure provides the substrate for modern society and consists of
a collection of interdependent networks, such as electric power grids, transporta-
tion networks, telecommunications networks, and water distribution networks. The
proper collective functioning of all these systems enables government operations,
emergency response, supply chains, global economies, access to information and
education, and a vast array of other functions. The practitioners and engineers who
build and maintain critical infrastructure networks have long been cataloging and ana-
lyzing the interdependence between these distinct networks, with particular emphasis
on failures cascading through coupled systems [19, 21, 29, 42, 51, 55, 56, 60, 61,
63].

These detailed, data driven models are extremely useful but not entirely practical
due to the diversity within each infrastructure and due to difficulty in obtaining data.
First, each critical infrastructure network is independently owned and operated, and
each is built to satisfy distinct operating regimes and criteria. For instance, consider
the distinct requirements and constraints of a municipal transportation system versus
a region of an electric power grid. Even within a municipal transportation system
there exist multiple networks and stakeholders, such as publicly funded road net-
works and private bus lines and train networks. Second, there are few incentives
for distinct operators to share data with others, so obtaining a view of a collection
of distinctly owned systems is difficult. Third, the couplings between the distinct
types of infrastructure are often only revealed during extreme events; for instance,
a natural gas outage in New Mexico in February 2011 caused rolling electric power
blackouts in Texas [16]. Thus, even given the most detailed knowledge of individual
critical infrastructure systems, it is still difficult to anticipate new types of failures
mechanisms (i.e., some failure mechanisms are “unknown unknowns”).
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Idealized models for interdependent networks provide a laboratory for discover-
ing unknown couplings and consequences and for developing intuition on the new
emergent phenomena and failure mechanisms that arise through interactions between
distinct types of systems. In fact, the idea of modeling critical infrastructure as a col-
lection of “complex interactive networks” was introduced over a decade ago [3].
Yet idealized models are only starting to gain traction [58, 71], and they are largely
based on techniques of random graphs, percolation and dynamical systems (with
many tools drawn from statistical physics). Despite using similar techniques, these
models can lead to contrasting conclusions. Some analytic formulations show that
interdependence makes systems radically more vulnerable to cascading failures [15],
while others show that interdependence can confer resilience to cascades [13].

Given a specified set of network properties, such as a degree distribution for the
nodes in the network, random graph models consider the ensemble of all graphs that
can be enumerated consistent with those specified properties. One can use probability
generating functions to calculate the average or typical properties of this ensemble
of networks. In the limit of an infinitely large number of nodes, the generating func-
tions describing structural and dynamic properties are often exactly solvable [52],
which makes random graphs appealing models that are widely used as simple mod-
els of real networks. Of course there are some downsides to using the random graph
approach, which will require further research to quantify fully. First, in the real-
world we are typically interested in properties of individual instances of networks,
not of ensemble properties. Second, percolation models on random graphs assume
local, epidemic-like spreading of failures. Cascading failures in the real-world, such
as cascading blackouts in electric power grids, often exhibit non-local jumps where
a power line fails in one location and triggers a different power line hundreds of
miles away to then fail (e.g., see Ref. [1]). This issue is discussed in more detail
below in Sect. 4.3.4.1. Nonetheless, random graphs provide a useful starting point
for analyzing the properties of systems of interdependent networks.

Here, in Sect. 4.2 we briefly review how random graphs can be used to model
the structural connectivity properties between networks. Then, in Sect. 4.3 we show
how, with the structural properties in place, one can then analyze dynamical process
unfolding on interconnected networks with a focus on cascades of load shedding.

4.2 Random Graph Models for Interconnected Networks

Our model of “interconnected networks” consists of multiple networks (i.e., graphs)
with edges introduced between them. Thus, the system contains multiple kinds of
nodes, with one type of node for each network, and one type of edge. A simple
illustration of a system of two interconnected networks is shown in Fig. 4.1. (A
related class of graphs called multiplex networks considers just one type of node
but multiple kinds of edges [49, 70].) This general framework can model different
kinds of systems that have connections to one another, or it can capture mesoscopic
structure in a single network, such as communities and core-periphery structure.
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Fig. 4.1 A stylized illustra-
tion of two interconnected
networks, a and b. Nodes
interact directly with other
nodes in their immediate net-
work, yet also with nodes in
the second network

4.2.1 Mathematical Formulation

Here we briefly review the mathematics for calculating the structural properties of
interconnected networks as discussed in Ref. [40]. In a system of d ≥ 2 interacting
networks, an individual network µ is characterized by a multi-degree distribution
{pµk }, where k is a d-tuple, (k1, . . . , kd), and pµk is the probability that a randomly
chosen node in network µ has kν connections with nodes in network ν. A random
graph approach considers the ensemble of all possible networks consistent with this
multi-degree distribution. To realize a particular instance of such a network we take
the “configuration model” approach [10, 47]. Starting from a collection of isolated
nodes, each node independently draws a multi-degree vector from {pµk }. Next, each
node is given kν many “edge stubs” (or half-edges) of type ν. We create a graph
from this collection of labeled nodes and labeled edge stubs by matching pairs of
compatible edge stubs chosen uniformly at random. For instance, an edge stub of
type ν belonging to a node in network µ is compatible only with edge stubs of type
µ belonging to nodes in network ν. Generating functions allow us to calculate the
properties of this ensemble.

The generating function for the {pµk } multi-degree distribution is

Gµ(x) =
∞∑

k1=0

· · ·
∞∑

kd=0

pµk

d∏

ν=1

xkν
ν , (4.1)

where x is the d-tuple, x = (x1, . . . , xd). This is a generating function for a prob-
ability distribution already known to us (our multi-degree distribution for network
µ), and thus not terribly informative on its own. However, we can derive additional
generating functions for probability distributions of interest, such as the distribu-
tion of sizes of connected components in the system. However, we much first derive
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Fig. 4.2 A diagramatical representation of the topological constraints placed on the generating
function Hµν(x) for the distribution of sizes of components reachable by following a randomly
chosen ν-µ edge. The labels attached to each edge indicate type or flavor of the edge, and the sum
runs over over all possible flavors

two intermediate generating function forms, one for the probability distribution of
connectivity for a node at the end of a randomly chosen edge and a second for the
probability distribution of component sizes found at the end of a random edge. Ref-
erence [52] contains a clear and thorough discussion of this approach for a single
network, which we apply here to multiple networks.

First consider following an edge from a node in network ν to a node in network
µ. The µ node is kν times more likely to have ν-degree kν than degree 1. Thus the
probability qµν

k of reaching a µ-node of ν-degree kν is proportional to kν pµk1···kν ···kd
.

Accounting for the fact that we have followed an edge from a node in ν to a node
in µ, the properly normalized generating function for the distribution of additional
edges from that µ-node is

Gµν(x) =
∞∑

k1=0

· · ·
∞∑

kd=0

(kν + 1)pµk1···(kν+1)···kl

kµν

d∏

γ=1

x
kγ
γ =

G
′ν
µ (x)

G ′ν
µ (1)

. (4.2)

Here kµν = ∑
k1
· · ·∑kd

kν pµk is the normalization factor accounting for Gµν(1) =
1 and kµν is also the average ν-degree for a node in network µ. We use G

′ν
µ (x) to

denote the first derivative of Gµ(x) with respect to xν and thus G
′ν
µ (1) = kµν . A

system of d interacting networks has d2 excess degree generating functions of the
form shown in Eq. 4.2.

Now consider finding, not the connectivity of the µ-node, but the size of the
connected component to which it belongs. This probability distribution for sizes
of components can be generated by iterating the random-edge-following process
described in Eq. 4.2, where we must consider all possible types of nodes that could
be attached to that µ-node. For an illustration see Fig. 4.2. In other words, the µ-
node could have no other connections; it might be connected to only one other node
and that node could belong to any of the d networks; it might be connected to two
other nodes that could each belong to any of the d networks; and so on. Iterating the
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random-edge construction for each possibility leads to a generating function Hµν for
the sizes of components at the end of a randomly selected edge

Hµν(x) = xµqµν
0···0 (4.3)

+ xµ
1∑

k1...kd=0

δ1,
∑d

λ=1 kλ
qµν

k1···kd

d∏

γ=1

Hγµ(x)kγ

+ xµ
2∑

k1,...,kd=0

δ2,
∑d

λ=1 kλ
qµν

k1···kd

d∏

γ=1

Hγµ(x)kγ + · · · ,

where δi j is the Kronecker delta. Reordering the terms, we find that Hµν can be
written as a function of Gµν as follows:

Hµν(x) = xµ
∞∑

k1=0

· · ·
∞∑

kd=0

qµν
k1···kd

d∏

γ=1

Hγµ(x)kγ

= xµGµν[H1µ(x), . . . , Hdµ(x)]. (4.4)

Here again, for a system of d networks, there are d2 self-consistent equations of the
form shown in Eq. 4.4.

Now instead of selecting an edge uniformly at random, consider a node chosen
uniformly at random. This node is either isolated or has edges leading to other nodes
in some subset of the d networks in the system. The probability argument above
allows us to write a self-consistency equation for the distribution in component sizes
to which a randomly selected node belongs:

Hµ(x) = xµGµ[H1µ(x), . . . , Hdµ(x)]. (4.5)

With this relation for Hµ, we can now calculate the distribution of component sizes
and the composition of the components in terms of nodes from various networks.
However, our current interest is not in finding the exact probability distribution
of the sizes of connected components, but in finding the emergence of large-scale
connectivity in a system of interacting networks. To address this problem, we need
only to examine the average component size to which a randomly chosen node
belongs. For example, the average number of ν-nodes in the component of a randomly
chosen µ-node is

〈sµ〉ν = ∂

∂xν
Hµ(x)

∣∣∣∣
x=1

= δµνGµ[H1µ(1), . . . , Hdµ(1)]

+
d∑

λ =1

G
′λ
µ [H1µ(1), . . . , Hdµ(1)]H

′ν
λµ(1)
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= δµν +
d∑

λ=1

G
′λ
µ (1)H

′ν
λµ(1). (4.6)

Table 4.1 shows the explicit algebraic expressions derived from Eq. 4.6 for a
system of d = 2 networks with two different forms of internal degree distribution
and types of coupling between networks. Where the algebraic expression for 〈sµ〉ν
diverges marks the percolation threshold for the onset of a giant component. For
instance, the first case shown in Table 4.1 is for two networks, a and b, with internal
Poisson distributions, coupled by a third Poisson distribution. For this situation, the
percolation threshold is defined by the expression (1 − kaa)(1 − kbb) = kabkba .

4.2.2 Consequences of Interactions

To quantify the consequences of interaction between distinct networks, we want to
compare results obtained from the calculations above to a corresponding baseline
model of a single, isolated network. Interesting differences already arise for the case
of d = 2 interacting networks, which we focus on here. Consider two networks,
a and b, with na and nb nodes respectively. They have multi-degree distributions
pa

kakb
and pb

kakb
respectively. The reference single network, C, neglects the network

membership of the nodes. It is of size nC = na+nb nodes, and has degree distribution

pk =



 fa

k∑

ka ,kb=0

(
pa

kakb
δka+kb,k

)
+ fb

k∑

ka ,kb=0

(
pb

kakb
δka+kb,k

)


 ,

where fa = na/(na+nb) and fb = nb/(na+nb). In other words, network C is a com-
posite view that neglects whether a node belongs to network a or b. So a node that had
degree {ka, kb} in the interacting network view has degree k = ka+kb in the compos-
ite, C, view. We compare the properties of the ensemble of random graphs constructed
from the interconnected networks multi-degree distribution,

{
pa

kakb
, pb

kakb

}
, to the

properties of the ensemble constructed from the composite, pk , degree distribution
(Fig. 4.3).

In Ref. [39], we analyze the situation for two networks with distinct internal
Poisson distributions coupled together via a third Poisson distribution. We show
that large-scale connectivity can be achieved with fewer total edges if the network
membership of the node is accounted for (i.e., the composite C view requires more
edges to achieve a giant component).

Next we show that other effects are possible for different types of networks.
For instance, the degree distributions that are a truncated power law describe many
real-world networks, such as the connectivity between Autonomous Systems in the
Internet and connectivity patterns in social contact networks [20]. Yet many critical
infrastructure networks (such as adjacent buses in electric power grids) have very
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(a) (b)

Fig. 4.3 Comparing random graph models which account for interacting networks (red line) to ran-
dom graph models with the identical degree distribution, but which neglect network membership
(dashed black line). a The fraction of nodes in the largest connected component for two intercon-
nected networks with Poisson degree distribution, as edges are added to network b. Accounting
for network structure allows for a giant component to emerge with fewer edges. Here na = 4nb.
b The corresponding fractional size of the giant component for a network with a Poisson degree
distribution coupled to a network with a truncated power law degree distribution as the power law
regime is extended. Here was see the opposite effect to a, where large scale connectivity is delayed
by accounting for network membership

narrow degree distributions, which we approximate here as Poisson. Thus, we are
interested in the consequences of coupling together networks with these different
types of distributions. Let network a have an internal distribution described by a
truncated power law, pa

ka
∝ k−τa

a exp(−k/κa), and network b have an internal Poisson
distribution. Coupling these networks via a distinct Poisson distribution is described
by the second case shown in Table 4.1. Here, the composite C view requires fewer
edges to achieve a giant component, so large-scale connectivity requires more edges
if the network membership of the nodes is accounted for. The effects in shifting the
percolation transition can be amplified if the networks are of distinct size, na (= nb.
For more details on these percolation properties of interconnected networks, see
Refs. [39, 40]. Also, see Ref. [38] for a discussion of how correlations in multiplex
networks can alter percolation properties.

4.3 Application: Sandpile Cascades on Interconnected Networks

Equipped with a random graph model of interconnected networks and an understand-
ing of its percolation properties, we now use this framework to analyze systemic risk
by studying a dynamical process occurring on such interconnected networks. Here
we seek a model that captures risk of widespread failure in critical infrastructures.
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4.3.1 The Sandpile Model as a Stylization of Cascading Failure
in Infrastructure

A common feature of many infrastructures is that their elements hold load of some
kind, and they can only hold a certain amount of it. For example, transmission lines
of power grids can carry only so much electricity before they trip and no longer carry
electricity [18]; banks can withstand only so much debt without defaulting [30];
hospitals can hold only so many patients; airports can accommodate only so many
passengers per day. When a transmission line, bank, hospital or airport partially or
completely fails, then some or all of its load (electricity, debt, patients or travelers)
may burden another part of that network or a completely different kind of network. For
instance, when a transmission line fails, electricity quickly reroutes throughout the
power grid (the same network), whereas when an airport closes due to a catastrophe
like a volcano eruption [31] travelers may overwhelm railway and other transportation
networks.

In addition to loads and thresholds, another commonality among certain risks of
failure in infrastructure are heavy-tailed probability distributions of event size. In
electric power systems, for instance, the amount of energy unserved during 18 years
of North American blackouts resembles a power law over four orders of magnitude,
and similarly broad distributions are found in other measures of blackout size [18].
In financial markets, stock prices and trading volume show power law behavior, in
some cases with exponents common to multiple markets [22, 26]. In interbank credit
networks, most shocks to banks result in small repercussions, but the 2008 financial
crisis demonstrates that large crises continue to occur. Similarly broad distributions
of event sizes also occur in natural systems such as earthquakes [64], landslides [32]
and forest fires [45, 65]. Some evidence suggests that engineered systems like electric
power grids [18] and and financial markets [22], not to mention natural catastrophes
like earthquakes [64], landslides [32] and forest fires [45, 65], all show heavy-tailed
event size distributions because they self-organize to a critical point.

An archetypal model that captures these two features—of units with capacity
for load and of heavy-tailed event size distributions—is the Bak-Tang-Wiesenfeld
(BTW) sandpile model [5, 6]. This model considers a network of elements that hold
load (grains of sand) and that shed their load to their neighbors when their load
exceeds their capacity. Interestingly, one overloaded unit can cause a cascade (or
avalanche) of load to be shed, and these cascades occur in sizes and durations dis-
tributed according to power laws. This deliberately simplified model ignores detailed
features of real systems, but its simplicity allows comprehensive study that can in
turn generate hypotheses to test in more realistic, detailed models, which we will
discuss in Sect. 4.3.4.
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4.3.2 Defining the Sandpile Model on Networks

First studied on a two-dimensional lattice [5, 6], the BTW model has recently been
studied on random graphs [11, 13, 17, 27, 28, 35–37, 41, 53], in part because many
critical infrastructure like power, water, transportation and finance have network
structure. There are different ways to implement the sandpile model on a network,
but these implementations only differ in specifics. Here we study the following natural
formulation [27, 28, 36, 37].

Each node holds grains of sand, which we interpret as units of load. Nodes can
hold only a certain number of grains. When the number of grains equals or exceeds
the node’s threshold, then the node topples and moves sand to its neighbors. A natural
choice for the threshold of a node is its degree, so that when a node topples it sends
one grain to each of its neighbors. Other thresholds have been studied [27, 36], but
these other rules for the threshold require nodes to shed sand to (for example) a
random subset of their neighbors.

The BTW sandpile model consists of a sequence of cascades (avalanches), defined
as follows. First, drop a grain of sand on a node chosen uniformly at random. If the
node’s number of grains is greater than or equal to its threshold (i.e., its degree), then
that node is considered overwhelmed or unstable, and that node sheds (moves) all its
load to its neighbors by sending one grain to each neighbor. These neighbors may
in turn exceed their thresholds and have to topple, and subsequently their neighbors
may topple, and so on. Once no node exceeds its threshold, we record the number
of nodes that toppled (the cascade size), and the process begins again by dropping a
grain on a random node.

In order to prevent the system from becoming inundated with sand, grains of
sand must somehow be removed. Following [28], we choose the following rule for
dissipation of sand: whenever a grain of sand is sent from one node to another node,
with some small, fixed probability that grain is removed from the system.

The quantities of interest are measured in the dynamical equilibrium state that the
system reaches after many cascades have occurred, because the system self-organizes
to a critical point. Specifically, if the network begins without any sand, then sand
slowly builds up in the system. After a large number of cascades (e.g., an order of
magnitude more than the number of nodes), the system appears to reach a dynamical
equilibrium at which the amount of sand does not change significantly relative to the
system size. On one hand, large cascades tend to destroy lots of sand because of the
rule for dissipating sand described above. On the other hand, when the amount of
sand in the system is low, then cascades are typically smaller, so the amount of sand
tends to increase. These effects balance so that the system seeks a critical point at
which the probability distribution of cascade size (and of other measures like cascade
duration) show power law behavior [28, 53]. These power law–distributed cascades
can therefore serve as a useful, stylized model for risk of large cascading failures in
infrastructures.
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4.3.3 Results for the Sandpile Model on Interconnected Networks:
Optimal Interconnectivity, the Yellowstone Effect, and
Systemic Risk

In this subsection, we highlight three results from Ref. [13]. Next, in Sect. 4.3.4, we
comment on current and future work to understand the sandpile model on isolated
and interconnected networks, as well as on work to understand risk in interdependent
infrastructures and other examples of optimal, intermediate amounts of connectivity.

We begin by studying one of the simplest interconnected networks, two random 3-
regular graphs a and b with edges introduced between them. Specifically, each node
in network a (b) has 3 neighbors in network a (b, respectively). Networks a and b have
identical number of nodes. Next, a fraction p of nodes in a have one edge to a neighbor
in the other network. (In the notation of the join degree distributions in Sect. 4.2.1,
the degree distribution of network a is pa

ka ,kb
= δka ,3

[
pδkb,1 + (1 − p)δkb,0

]
, and

vice versa for network b.) This “interconnectivity” parameter p ∈ [0, 1] measures
the coupling between the two networks. The threshold of each node is its total degree.

One motivating example for this choice of interconnected networks are power
grids. The degree of a typical node in the transmission grid (the part of a power grid
that moves electric energy at high voltage) is approximately 3 [13], so we chose
to study random 3-regular graphs. (Using 3-regular graphs rather than, say, Erdős-
Rényi random graphs, simplifies the degree distribution to delta functions and hence
simplifies branching process approximations of cascades [13].) Moreover, power
grids have modular structure because they consist of “regions” or “control areas”.
Historically, each region was its own grid, and then these grids began connecting
with one another, so that now one grid can span an entire continent. Each region
of the grid is typically more densely connected within the region than with other
regions. Furthermore, this modular structure is not static: grids continue to build
new transmission lines between regions in order to, for example, accommodate wind
power [34]. Increasing the interconnectivity p in our model vaguely captures the
construction of new transmission lines between regions of a power grid.

Other infrastructures, from interbank credit networks [46] to transportation [48],
exhibit modular structure at different scales. In some cases, these modules are becom-
ing more interconnected over time, as lending, travel and trade become more global.
Understanding how this increase in connectivity affects systemic risk is a problem
that transcends disciplines. Though the sandpile model does not capture any one of
these infrastructures accurately, it self-organizes to a critical point at which cascades
occur in sizes described by power laws, and this behavior vaguely resembles large
fluctuations in many engineered and natural systems. Thus, the sandpile model can be
useful for generating hypotheses to test in more realistic models. Next we highlight
three such hypotheses.
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Fig. 4.4 The chance that a network a connected to another network b suffers a cascade larger
than half its network [gold curve, Pr(Ta > 1000)] has a minimum at a critical amount of inter-
connectivity p∗. Networks that want to mitigate their largest cascades would prefer to build or
demolish interconnections to operate at this critical point p∗. The blue (red) curve is the chance
Pr(Taa > 1000) [Pr(Tba > 1000)] that a cascade that begins in a (b) topples at least 1000 nodes
in a. Increasing interconnectivity only exacerbates the cascades inflicted from b to a (red), but
interestingly it initially suppresses the local cascades in a (For each p, we run a simulation on one
realization of two random 3-regular graphs with 2000 nodes each; each node has a neighbor in the
other network with probability p. The dissipation parameter is 0.01, the amount that makes the
largest cascades slightly smaller than the size of the system. The inset depicts a small example with
30 nodes per network and p = 0.1.)

4.3.3.1 Optimal Interconnectivity

Suppose each network a, b is a region of a power grid and that each region is owned
by a different utility. (To reiterate, the sandpile model misses crucial features of
power grids, described below in Sect. 4.3.4.1, but we use the power grid example to
facilitate interpretation of results.) If each network (think “each utility in the power
grid”) a, b wants to reduce the risk of cascading failure in its own network, then how
many interconnections (edges between the networks) would they want?

Figure 4.4 shows the striking result that each network a, b would want to build
some interconnections but not too many. Specifically, define a large cascade in a
network as a cascade that topples at least half of the network. In Fig. 4.4, a has 2000
nodes, so a large cascade in a is one that causes at least 1000 toppling events in
a. (The results are rather insensitive to changes in this cutoff for calling cascades
large; see [13, Fig. 4]. Also, Sect. 4.3.3.2 explores the risk of small cascades.) The
chance of a large cascade in a network is a measure of that network’s risk. The gold
curve of Fig. 4.4 shows that a network’s risk decreases and then increases with the
interconnectivity p, with the minimum occurring at an intermediate interconnectivity
p∗. Thus, two initially isolated networks would want to build interconnections up to
p∗ in order to reduce their own risk of large cascades.
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The 70 % drop in the risk of either network due to increasing interconnectivity p
from 0.001 to p∗ = 0.075 ± 0.01 is significant. If these cascades were blackouts,
then utility a (say) would experience 70 % fewer large blackouts. Why? By building
p∗Na = 150 ± 20 edges (transmission lines) with its neighboring network b, the
networks can collectively share their risk of large blackouts.

To further illustrate this “optimal interconnectivity” p∗, we distinguish cascades
that begin in network a (the blue curve labeled “local cascades” in Fig. 4.4) from
cascades that begin in network b (the red curve labeled “inflicted cascades”). As inter-
connectivity p increases, the chance of a large inflicted cascade increases monoton-
ically, because building interconnections opens new avenues for large cascades to
spread to the other network.

More interestingly, building some interconnections (but not too many) suppresses
local cascades. That is, when interconnectivity p is small, the more edges a has with
b, the lower the chance that a cascade begun in a topples a number of nodes in a
greater than half the size of a. One reason for this suppression of local cascades is
that nodes with an edge to the other network have larger threshold (because their
degree is 4 rather than 3), so they topple less often when they receive sand. (How-
ever, the repercussions of toppling a degree-4 node are worse because they hold more
sand.) Another reason that some interconnectivity suppresses local cascades is that
more interconnections make the cascades less confined to one network and instead
become more spread out among the two networks (see [13, Fig. S10]). This phenom-
enon of sharing risk resembles the tenet of diversification in investment portfolios in
finance [2, 9].

Before proceeding, we note a similarity between optimal interconnectivity and
equilibria in economics. Just as rational agents seek more of something as long
as the marginal benefits exceed the marginal costs, a network would seek more
interconnectivity as long as the marginal benefits exceed the marginal costs. In the
sandpile model, building interconnections confers more benefits than costs initially,
where benefits are reduction in risk of large cascades. In a competitive market,
consumers and firms converge on the optimal price p∗ at which the marginal benefit of
the last unit consumed equals the marginal cost. Analogously, two networks seeking
to mitigate their risk of large cascades converge on the optimal interconnectivity p∗

at which the marginal benefits of the last edge built equal the marginal cost. More
realistic models of connections within and between networks would also incorporate
the costs of building and maintaining a new link, and this cost would presumably
change the optimal number of links p∗.

Perhaps many interconnected networks are what Nassim Taleb calls “antifragile”,
meaning that they become more robust against large-scale catastrophes [66] if they
have some variability [67] from input from external networks (e.g., interconnectivity
p∗ > 0).
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Fig. 4.5 a Networks mitigating the smallest cascades of size Ta ∈ [1, 50] seek isolation p = 0,
while b networks suppressing intermediate cascades Ta ∈ [50, 100) seek isolation p = 0 or strong
coupling p = 1, depending on the initial interconnectivity p in relation to the unstable critical point
p∗ ≈ 0.12 ± 0.02. But networks like power grids that mitigate large cascades c, d would seek
interconnectivity at the stable equilibrium p∗ ≈ 0.12 ± 0.02. The qualitative shape of the plots in
the bottom figures and the location of p∗ are robust to changes in the window * ≤ Ta ≤ * + 50
for all 200 ≤ * ≤ 800 (Here we show results from simulations on two random 3-regular graphs
with 1000 nodes each, which is half the network size as in Fig. 4.4, to show how p∗ decreases with
system size.)

4.3.3.2 Yellowstone Effect: Why Suppressing Small Cascades Can Increase
the Risk of Large Ones

Rather than seeking to mitigate their risk of large cascades (and hence seeking inter-
connectivity p∗), what if the two networks a, b seek to mitigate their risk of small
cascades? Figure 4.5 shows that the risk of small cascades increases monotonically
with interconnectivity p. Thus, p = 0 minimizes the risk of small cascades.

However, by Fig. 4.4, p = 0 is a local maximum in the risk to each network.
Thus, by seeking p = 0 to mitigate their own small cascades, networks a, b would
increase their risks of large cascades. The same phenomenon is thought to occur in
suppressing blackouts [18] and forest fires [45]. In fact, this phenomenon has been
given the name the “Yellowstone effect” because suppressing small forest fires in
Yellowstone National Park, WY, in the twentieth century densified forest vegetation
and hence increased the risk of massive forest fires [45]. What Fig. 4.5 demonstrates
is that interconnectivity is another mechanism that can cause the Yellowstone effect.
This result suggests that we should look for similar phenomena in more realistic
models.
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Fig. 4.6 Increasing the interconnectivity p between two random 3-regular graphs extends the tail
of the total avalanche size distribution s(t), which does not distinguish whether toppled nodes are
in network a or b. The inset shows a rank-size plot on log-log scales of the number of topplings t in
the largest 104 avalanches (with 2 × 106 grains of sand dropped), showing that adding more edges
between random 3-regular graphs enlarges the largest global cascades by an amount on the order
of the additional number of interconnections. As expected theoretically [28], when a and b nodes
are viewed as one network, s(t) ∼ t−3/2 for large t (green line)

4.3.3.3 Risk-Avoiding Networks Can Exacerbate System-Wide Risk

If two networks act in a greedy, rational manner to mitigate their own risk of large
cascades, without regard to the risk of the other network, then by Sect. 4.3.3.1 each
network would seek the optimal, intermediate amount of interconnectivity p∗. What
is the effect of this self-interested behavior on the system as a whole?

Figure 4.6 shows that every increase in interconnectivity p tends to increase the
size of the largest cascades in the whole system (where the size of the cascade
no longer distinguishes types of nodes). The main plot of Fig. 4.6 is the cascade
size distribution s(t), which is the probability of observing a cascade with t many
toppling events (in the equilibrium state of the system after many cascades have
been run without collecting statistics), for interconnectivity p = 10−3, 10−2, 10−1.
(As expected [28], the avalanche size distribution shows power law behavior with
exponent −3/2 over at least two orders of magnitude, and more detailed theoretical
arguments confirm this conclusion [53].)

To illustrate the tail behavior of the cascade size distribution s(t), the inset of
Fig. 4.6 shows a rank-size plot of the largest cascades in the whole system. This
plot shows that, as p increases, global cascades become larger by an amount on the
order of the additional number of interconnections. Because each interconnection
confers an addition to the threshold of nodes and hence to the capacity of the system
to hold sand, the system holds more sand in the dynamic equilibrium state, so the
largest cascades can involve more sand. Similar phenomena occur in transportation
systems and electric power grids. Building a new bridge to Manhattan, for example,
can paradoxically worsen traffic because people use the new capacity (the so-called
Braess’ Paradox [12]). Similarly, the benefits of upgrades to power grids are often
fleeting, because operators seek to efficiently use their costly infrastructure [18].
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4.3.4 Optimal Connectivity in Models Other Than the Sandpile
Model

Because the sandpile model self-organizes to a critical point, it has relatively few
parameters, so its behavior can be explored somewhat comprehensively. By contrast,
detailed models of real systems can have so many parameters that they are difficult to
comprehend, and many parameters are difficult to measure in the real world. Thus,
the interesting behavior of the sandpile model—such as power law distributions
of cascade size, optimal interconnectivity, the Yellowstone effect and system-wide
risk—can serve as hypotheses to test and refine in more realistic models.

Next we review recent work in calculating optimal interdependence and optimal
connectivity in power grids, bank networks and social systems.

4.3.4.1 Cascading Failures in Power Grids: Why Topological Models do not
Suffice, and What Details are Needed

One of the promises of the burgeoning field of complex networks is to simplify the
complicated behavior of real systems. Unfortunately, power grids are one example
for which naïve, topological network approaches do not appear to suffice [14, 33].

Furthermore, most of these topological models, like the sandpile model, treat a
cascading failure like an epidemic that spreads between adjacent nodes. By contrast,
failures in the power grid spread non-locally: when a node in a power grid (such
as a bus or a substation) fails or, more commonly, an edge (a transmission line)
trips, the electric power re-routes almost instantly to all parallel paths, inversely
proportionally to the impedances on lines. Thus, a failure can trigger other failures
hundreds of kilometers away [24]. Models that lack this non-locality (or that have
non-local failures but via completely different mechanisms) offer little insight into
cascading failures in power grids [33].

What then is needed to offer insight for blackouts in power grids? A first step
and essential ingredient are the linearized direct current (DC) equations, an approx-
imation of the physics of electric power. These equations require data on the power
injections at every node (which is positive for generators, negative for load buses)
and the impedances and capacities of lines. Thus, the topological structure of a power
grid is insufficient to run the DC power flow equations; these “thin” networks need
to be augmented with data on the buses and transmission lines. (The MATLAB soft-
ware MATPOWER [72] provides a useful starting point because it contains data on
the Polish power grid. Another approach is to generate statistically correct power
grid topologies [69].)

Equipped with a physics-based model of electric power flow in a grid, one must
choose what failure mechanisms to model. Unfortunately, the number of failure
mechanisms is large; examples include thermal overloads, relay failure, voltage col-
lapse, dynamic instability and operator error [23]. The state-of-the-art is to model a
subset of these failure mechanisms (see, e.g., [7, 23, 50]).
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Such a detailed, physics-based, data-driven model of cascading failures might find
rather rich pictures of optimal interconnectivity between regions of a power grid.
The model space would likely be much richer than that of the sandpile model. But
solving this problem once is not enough because modern power grids are changing.
For instance, rapid deployment of smart grid technologies enable greater control
and measurement of the grid. Renewable energy will stress the grid in new ways,
as generation becomes more intermittent and increasingly located in sunny, windy
locations, thereby changing the import of power between regions. These changes to
the grid make studies of optimal grid structure all the more timely and important.

4.3.4.2 Optimal Interconnectivity in Bank Networks, Coupled Transportation
Networks and Social Systems

The notion of optimal, intermediate amounts of connectivity is not new. For example,
Battiston et al. [9] found that a network of banks is most resilient to cascading default
if banks have an intermediate amount of risk diversification. What made this result
novel was its contrast with the common wisdom in the financial literature that more
diversification is always better [2]. In another model of bank default, if banks lend
to an intermediate number of other banks, then the banks can be the most fragile and
still not suffer cascading default [8].

Optimal coupling has also been found in a model of transportation on coupled
spatial networks [48]. If a transportation administrator wishes to minimize both
the average travel time and the amount of congestion, then a nontrivial, optimal
“coupling” between, say, a rail network and a road network can emerge. Like in the
sandpile model on interconnected graphs [13], two competing forces (efficiency and
congestion in the transportation model) can balance at optimal amounts of coupling.

Optimal connectivity has also been found in strategic games played on networks.
For example, a social network playing the minority game is most efficient at an
intermediate amount of connectivity [4, 44]. Optimal interconnectivity between two
networks has been found in the public goods game, where the interconnectivity
p = 1/2 maximizes cooperation [68].

These results in financial and social models suggest that optimal connectivity (and
interconnectivity) may be common in networks. If the dynamics occurring on some
network have opposing tradeoffs, then these tradeoffs may balance at critical points.
Whether the corresponding real systems—such as power grids, bank networks or
social networks—can sense and respond to these tradeoffs and hence operate at the
optimal points remains an open question. The answers would likely be essential to
any effort to control such systems [43].
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4.4 Conclusion and Future Work

Why might two networks build connections between them? This chapter demon-
strates two reasons: to efficiently provide global connectivity and to reduce the risk
that either system suffers a large cascading failure.

This work belongs to a movement to study mesosopic, intermediate-scale structure
in networks, and not just global structure (like degree distributions) and microscopic
structure (like clustering coefficients). Two prominent examples of mesoscopic struc-
ture in networks are community (or modular) structure and core-periphery. There
exist many tools for finding community structure in networks (see the reviews [25,
57]) and comparatively fewer tools for finding core-periphery structure [62]. But we
are only just beginning to learn about the effect of this mesoscopic structure on the
system’s percolation properties (Sect. 4.2, Ref. [40]) and on dynamics occurring on
the network (Sect. 4.3, Ref. [13]).

Another challenge is to study the converse: how the dynamics on the network affect
its mesoscopic structure. In the sandpile model on interconnected networks [13], large
cascades in one network may convince it to build more interconnections and hence
to change the mesoscopic structure. Similarly, in power grids, large blackouts can
provoke upgrades to the grid, which can include new transmission lines that change
the structure of the grid. Large financial crises alter web of financial interactions
among banks [46]. Widespread defection in a social network may alter its social ties.
Thus, rare, catastrophic events [66] may be a sign of a network in the throes of its
path toward optimal connectivity, if one exists.
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Chapter 5
Thresholds and Complex Dynamics
of Interdependent Cascading Infrastructure
Systems
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Abstract Critical infrastructures have a number of the characteristic properties
of complex systems. Among these are infrequent large failures through cascading
events. These events, though infrequent, often obey a power law distribution in their
probability versus size which suggests that conventional risk analysis does not apply
to these systems. Real infrastructure systems typically have an additional layer of
complexity, namely the heterogeneous coupling to other infrastructure systems that
can allow a failure in one system to propagate to the other system. Here, we model
the infrastructure systems through a network with complex system dynamics. We
use both mean field theory to get analytic results and a numerical complex systems
model, Demon, for computational results. An isolated system has bifurcated fixed
points and a cascading threshold which is the same as the bifurcation point. When
systems are coupled, this is no longer true and the cascading threshold is different
from the bifurcation point of the fixed point solutions. This change in the cascading
threshold caused by the interdependence of the system can have an impact on the
“safe operation” of interdependent infrastructure systems by changing the critical
point and even the power law exponent.
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5.1 Introduction

Many critical infrastructure systems exhibit the type of behavior that has come to
be associated with “Complex System” dynamics. These systems range from elec-
tric power transmission and distribution systems, through communication networks,
commodity transportation infrastructure and arguably all the way to the economic
markets themselves. There has been extensive work in the modeling of some of these
different systems. However, because of the intrinsic complexities involved, modeling
of the interaction between these systems has been limited [1–3]. At the same time, one
cannot simply take the logical view that the larger coupled system is just a new larger
complex system because of the heterogeneity introduced through the coupling of the
systems. While the individual systems may have a relatively homogeneous structure,
the coupling between the systems is often both in terms of spatial uniformity and in
terms of coupling strength, fundamentally different. Understanding the effect of this
coupling on the system dynamics is necessary if we are to accurately develop risk
models for the different infrastructure systems individually or collectively.

We have already investigated [4, 5] some of the effects of the coupling between
systems by using a dynamical model of coupled complex systems, the Demon model.
This model is an extension of the Complex System Models used to study forest fires
[6, 7]. Here, we will focus on some particular aspects of this model, for which the
coupling introduces some fundamental changes on the properties of the system.

This type of model is characterized by the existence of a bifurcated equilibrium.
Here one equilibrium solution is such that all components of the system are working.
The second type of equilibrium has a fraction of the components failed. As the load
on the system increases (or the probability of failure propagation) there is a transition
from the first type of equilibrium to the second, at a critical loading [8, 9]. In a single
system, this transition point is also the threshold for cascading events of all sizes, that
is, transitioning between “normally distributed events” [10] and large-scale failures.

The coupling between the systems can modify the system’s behavior and therefore
importantly, conditions for safe operation. In this model we introduce a possibility
of failure propagation from one system to another not only when a component fails
but also when a component is out of working order. This has two different effects.
One is a tendency to keep some components failed while still in normal operation.
How many depends on the ratio between the strength of the coupling and the repair
rate. As we see later in this chapter, the “critical loading” bifurcation point of the
equilibrium is reduced by a function of this ratio.

The second effect of the coupling is it allows propagation of failures from one
system to the other during a cascading event. Therefore the cascading threshold is also
lowered by an amount proportional to this coupling. Since the parameter controlling
this effect is not the same as the one controlling the equilibrium bifurcation, the
equilibrium bifurcation point and the cascading threshold are now different.

Because of these changes, the often used metrics [11–13] for determining the
threshold for large scale cascading events in the system will be re-examined and we
will study the effect of the coupling of the systems on these measures.
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The rest of the chapter will be organized as follows: Sect. 5.2 gives a description
of the coupled infrastructure model, Demon, and a summary of some of the results
from that model. Section 5.3 introduces a mean field version of the model and uses it
to study the possible steady state solutions. The dynamics from the perspective of the
mean field theory is described in Sect. 5.4 and in Sect. 5.5 the results of this analysis
is compared with the numerical solutions of the mean field model. Then in Sect. 5.6,
the results of the mean field theory are compared with the results of the dynamical
model Demon. Finally, in Sect. 5.7, a discussion of the implications of these results
and conclusions are presented.

5.2 The Demon Model

The infrastructure model discussed here, the Demon model, is based on the forest
fire model of Bak et al. [7] with modifications by Drossel and Schwabl [6].

For a single system, the model is defined on a user defined 2-D network. An
example of such network is shown in Fig.5.1. Nodes represent components of the
infrastructure system and lines represent the coupling between components. These
components can be operating, failed or failing. The rules of the model for each time
step are:

(1) A failed component is repaired with probability Pr.
(2) A failing component becomes a failed one.
(3) An operating component fails with a probability Pn if at least one of the nearest

components is failing.
(4) There is a probability Pf that any operating component fails.

The Demon model [4] considers a coupled system by taking two of these 2-D net-
works and adding another rule:

(5) A component in System 1 can fail with a coupling parameter c, if the associated
component in System 2 is failed or failing. The same applies for a component
in system 2.

The ordering of the four parameters in the model is very important as discussed
in [6]. Here, for the particular infrastructure problem, the different probabilities
can be directly related to the characteristic times of repair, failure, and propaga-
tion of failure. It is worth noting that the propagation of failure parameter, Pn, is
closely related to the loading of the system in a real infrastructure or a more real-
istic infrastructure model such as those described in [8, 14, 15]. This means that
in the real infrastructures and more realistic models, there is an additional feed-
back that moves the system to near its critical point. We will use data from the
power transmission system as guidance for those values. A more difficult parameter
to characterize is the parameter that measures the coupling between the systems.
The ability to explore the couplings between systems is an important flexibility in
Demon as real world systems can have a wide variety of couplings that can im-
pact their dynamics. For example they can be coupled mono-directionally (often,
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Fig. 5.1 A pair of tree networks used for the modeling as an example

Fig. 5.2 A cartoon of the coupled networks, note that the number of nodes coupled between systems
can be varied as can the strength, sign and directionality of the coupling

though not always, for pipeline-communications systems) or bi-directionally (most
other systems, i.e. power transmission-communications systems), fully symmetric
or asymmetric coupling strengths (failure in power transmission system has stronger
impact on communications system then the other way around), homogeneously or
heterogeneously (general spatial or course grained in one direction), negative rein-
forcement (power transmission-communications) or positive (perhaps infrastructure
systems—decision making “system”). A cartoon of this type of coupled system is
shown in Fig. 5.2. For most of the work described here we will use the simplest types
of couplings, namely symmetric, homogeneous and with negative reinforcement.

Using these rules, numerical calculations can be carried out, the dynamics and
critical behavior investigated and impacts of system structure explored.

This model is an extension of a previous model [4] based on square grid networks
to consider arbitrary network structures. Therefore, the basic coupling was from
each node to four neighbors. The model in [4] was in turn a simple extension of the
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Table 5.1 Network properties

Type K Number of nodes

Open 3-branch tree 2 3070
Closed 3-branch tree 3 3070
Open 5-branch tree 4 190
Square 3.96 10000
Hexagon 5.9 4681

Drossel model [6] for forest fires with the added rule number 5 that leads to nontrivial
differences between those models. In the forest fire model, the propagation velocity
of a disturbance is Pn f where Pn is the probability of a disturbance to propagate from
a node to another node and f the number of available nodes to propagate to, from a
given node. In this model f is an important parameter to understand the propagation
of the disturbances and it is not well determined. If K is the averaged number of
nodes coupled to a single node in a given network, a first guess for f is f = K − 1,
because the disturbance is already coming from one of the nodes that the failing node
is coupled. In the case of the square network it was found [6] that f = 2.66 is a better
value than 3. Therefore, we vary K in order to understand what the possible values
are for f. In Table 5.1 we have summarized some of the properties of the different
networks that we have considered in this chapter.

We will briefly look first at some of the results from this model, then we will
investigate the mean field theory for this model and finally in Sect. 5.6 we will discuss
the comparison between the mean field theory and the Demon model results.

When the control parameter, Pn, exceeds a critical (percolation) value the coupled
system exhibits characteristics of a critical complex system. This critical value for
an uncoupled system is given approximately by Pn f = 1, which is when the failures
have a non-zero probability of propagating across the entire system. For the full-
coupled system, the coupling between the two systems modifies this value. If the
cross system coupling were the same as the coupling between nodes in each system,
this would be the same as a larger system whose average node degree (effectively
K) is increased by one. When the two systems being coupled are identical, but with
a coupling strength different, typically much smaller, then Pn, the size distribution
of failures obeys a power law which is close to −1 for all of the network structures
examined. Below this critical value, the systems display an exponential distribution
of failure size. An instructive exercise can be carried out by having the probability
of random failures, Pf, non-zero in only one of the coupled systems. In this case it
is found that if Pn is above the critical value and the coupling between the systems
is also non-zero, the system in which there are no random failures also exhibits the
characteristic power law size distribution (Fig. 5.3). This means that systems that look
robust can actually be vulnerable when coupled making analysis of the entire coupled
system critical. This cross system propagation is of course due to the coupling and
can be seen in the synchronization of the failures in the two systems.

Using a measure developed by Gann et al. [16] for synchronization, which is
basically an average normalized difference between events in the two systems, we
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Fig. 5.3 The probability
distribution functions of the
failure sizes for a coupled
system in which only system
1 has random failures but
system 2 still has a power
law PDF and the combined
system has a heavier tail then
an uncoupled system would
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Fig. 5.4 The synchronization
function as a function of size
for a coupled system and three
values of the coupling coef-
ficient. Since 0 is fully syn-
chronized and 1 is completely
unsynchronized, it can be seen
that the synchronization is
stronger for larger failures
and increases then saturates
for larger values of coupling
strength
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investigate this effect. For this measure, a value of 1 means the difference is effectively
100 % or no synchronization, while a value of 0 means all events are the same in the
two systems, or they are synchronized. For the Demon model it is found that large
failures are more likely to be “synchronized” across the two dynamical systems,
Fig. 5.4, as seen by the decrease in the synchronization function (which is an increase
in the actual synchronization) as a function of size. This means that in the coupled
systems there is a greater probability of large failures and lesser probability of smaller
failures. This in turn causes the power law found in the probability of failure with
size to be less steep, Fig. 5.5, with the coupling (i.e. the risk of larger failures is
even higher in the coupled system). Above a certain value of the coupling, this effect
saturates as the largest events are fully synchronized. The value of slope of the power
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Fig. 5.5 PDF tail gets heavier as the coupling strength increases and then, as with the synchroniza-
tion, saturates and stops changing

law for the coupled square grid with parameters given earlier approaches ∼−0.8 in
contrast to ∼−1.0 for the uncoupled system.

The other major impact of the coupling on the system characteristics is the reduc-
tion of the critical point. As the coupling increases, the critical value of Pn, and by
extension the loading, rapidly decreases (Fig.5.6). This means that in an infrastruc-
ture system which by itself is nominally subcritical, the coupling, even weakly, to
another infrastructure can make the entire system critical. This reduction will be
further discussed in the next section on mean field theory of the coupled systems.

5.3 Mean Field Theory: Steady State

Let us consider first the mean field theory for two coupled systems. This is a gen-
eralization of the calculation as done in [6]. Let O(i)(t) be the number of operating
components in system i at time t normalized to the total number of components N (i).
In the same way, we can define the normalized number of failed components, F (i)(t),
and the failing ones, B(i)(t). The mean field equations for this coupled system are:

B(1)(t + 1) = P(1)
f O(1)(t)+ P(1)

n f (1)O(1)(t)B(1)(t)+ c(1)

K
g2 O(1)(t)

(
B(2)(t)+ F (2)(t)

)

(5.1)

F (1)(t + 1) =
(

1 − P(1)
r

)
F (1) + B(1)(t) (5.2)

O(1)(t + 1) =
(

1 − P(1)
f

)
O(1)(t)+ P(1)

r F (1)(t) − P(1)
n f (1)O(1)(t)B(1)(t)



102 B. A. Carreras et al.

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.0005 0.001 0.0015 0.002 0.0025

Critical Pn from density

C
ri

tic
al

 P
n

coupling strength

Fig. 5.6 The critical point decreases rapidly as the coupling strength increases. Even the maximum
coupling strength is much less then the propagation coefficient within one system but the critical
parameter has fallen by more than a factor of three

− c(1)

K
g2 O(1)(t)

(
B(2)(t)+ F (2)(t)

)
(5.3)

B(2)(t + 1) = P(2)
f O(2)(t)+ P(2)

n f (2)O(2)(t)B(2)(t)+Kc(2)g1 O(2)(t)
(

B(1)(t)+ F (1)(t)
)

(5.4)

F (2)(t + 1) =
(

1 − P(2)
r

)
F (2)(t)+ B(2)(t) (5.5)

O(2)(t + 1) =
(

1 − P(2)
f

)
O(2)(t)+ P(2)

r F (2)(t) − P(2)
n f (2)O(1)(t)B(2)(t)

− Kc(2)g1 O(2)(t)
(

B(1)(t)+ F (1)(t)
)
. (5.6)

Here K = N (1)/N (2), g1 is the fraction of nodes in system 1 coupled to system two,
and g2 is the fraction of nodes in system 2 coupled to system 1. Of course, these
equations are consistent with the conditions:

O(i)(t)+ B(i)(t)+ F (i)(t) = 1 (5.7)

In the limit with no failure triggers, P(i)
f = 0, and for a steady state solution, the

system of equations can be reduced to two coupled equations,

[
1 − P(1)

n f (1)O(1)](1 − O(1)) = a(1)

K
g2

(
1 − O(2))O(1) (5.8)
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[
1 − P(2)

n f (2)O(2)](1 − O(2)) = Ka(2)g1
(
1 − O(2))O(2) (5.9)

where

a(i) = c(i)
(
1 + P(i)

r
)

P(i)
r

. (5.10)

It is important to note that the relevant parameter involves the ratio of the coupling
between the systems to the repair rate. The reason for that is the particular form of rule
(5) that assumes that a failure can be triggered by both failed and failing components
in the other system. If only failing components had been considered, the relevant
parameter would be the coupling. For real systems, a realistic rule should probably
be in between these two.

If a(i) #= 0 and κ = 1, then O(1) = 1 implies O(2) = 1, that is, the systems
are decoupled. Therefore, to have truly coupled systems, system 1 must be in a
supercritical state. Such case with a(i) #= 0 is more complicated to solve.

First, we assume identical systems symmetrically coupled. That is, all parameters
are the same for the two systems, f (1) = f (2), a(1) = a(2), κ = 1 and P(1)

(n) = P(2)
(n) .

This leads to identical solutions for the two systems in steady state. Therefore, we
have the following solutions:

O
(i)
1eq = 1, F

(i)

1eq = 0, B
(i)

1eq = 0 (5.11)

and

O
(i)

2eq = 1
ĝ
, F

(i)

2eq = ĝ − 1
ĝ (1 + Pr )

, B
(i)

2eq = ĝ − 1
ĝ (1 + Pr )

Pr (5.12)

The second solution is only valid for ĝ > 1. Here, ĝ is the control parameter and is
given by

ĝ = Pn f + c
(
1 + Pr

)

Pr
(5.13)

In Eqs. (5.11) and (5.12) the subindex eq indicate that is an equilibrium solution.
The bifurcation point of the fixed point, ĝ = 1 , has been decreased from the

decoupled case, Pn f = 1 , by a term proportional to c/Pr . Therefore, in general this
reduction is considerably larger than the magnitude of the coupling itself.

We have tested the results from the mean field theory by comparing them with
numerical results from some of the two-coupled identical systems networks listed in
Table 5.1. The results for the averaged number of operating components are shown in
Fig. 5.7. Results have been obtained for fixed Pr = 0.001, c = 0.0005, Pf = 0.00001
(for system 1) and Pf = 0 (system 2), and we have varied the propagation parameter
Pn. The numerical results show very good agreement with the mean field theory
results as K increases. For K = 2, the systems are practically one-dimensional and
the mean field theory is not really applicable.
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Fig. 5.7 The normalized
operating components for
various configurations
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The density of operating components is practically the same in both systems. This
is logical because they are identical systems the only symmetry breaking feature is
the probability of spontaneous failures that is zero in the second system.

5.4 Mean Field Theory: Time Evolution

We will continue to assume the two systems are identical, in this way, we can simplify
the system of Eqs. (5.1)–(5.6) to the following system:

B(t + 1) = Pn fO(t)B(t)+ cO(t)
(
B(t)+ F(t)

)
(5.14)

F(t + 1) =
(
1 − Pr

)
F(t)+ B(t) (5.15)

O (t)+ F (t)+ B (t) = 1. (5.16)

We have eliminated the super-indices indicating the system because we assume
that the two systems are identical at all times. This system of equations has two
fixed points or equilibrium solutions, which are the same as before and given by
Eqs. (5.11) and (5.12). For ĝ < 1, there is a single fixed point, but for ĝ > 1 there are
two steady state solutions. We can study the stability of the solutions by linearizing
Eqs. (5.14)–(5.16):

(
B(t + 1)
F(t + 1)

)
=

(
(Pn f + 2c)O jeq − Pn f Beq − c 2cO

(i)

jeq
− Pn f Bjeq − c

1 1 − Pr

) (
B(t)
F(t)

)
.

At the standard operation equilibrium, no failures fixed point, the linearization be-
comes
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(
B(t + 1)
F(t + 1)

)
=

(
Pn f + c c

1 1 − Pr

) (
B(t)
F(t)

)
(5.17)

and the eigenvalues are

γ1+ = 1
2

(
1 − Pr + Pn f + c +

√
(1 − Pr − Pn f − c)2 + 4c

)
(5.18)

γ1− = 1
2

(
1 − Pr + Pn f + c −

√
(1 − Pr − Pn f − c)2 + 4c

)
. (5.19)

For ĝ = 1 the largest eigenvalue γ1+ goes through 1. This indicates that the
fixed-point solution Eq. (5.11) becomes unstable at this point.

Similar calculation evaluating the linearization at the second fixed point, Eq. (5.12),
shows that this second fixed point is stable for ĝ > 1. The bifurcation is essentially a
transcritical bifurcation and the stability is transferred from the fixed point Eq. (5.11)
to the appearing second fixed point Eq. (5.12) as increases through ĝ = 1.

The left eigenvectors corresponding to the eigenvalues Eqs. (5.18) and (5.19) are

$Vi+ = (γi+ − 1 + Pr, c), $Vi− = (γi− − 1 + Pr, c) (5.20)

We can use these eigenvectors to calculate the eigenvalues from measured quantities,
because by applying them on the left of Eq. (5.17), we obtain

γi+ =
(−1 + Pr + γi+, c) ·

(
B(t + 1)
F(t + 1)

)

(−1 + Pr + γi+, c) ·
(

B(t)
F(t)

) (5.21)

γi− =
(−1 + Pr + γi−, c) ·

(
B(t + 1)
F(t + 1)

)

(−1 + Pr + γi−, c) ·
(

B(t)
F(t)

) (5.22)

From these expressions, we can derive a diagnostic to determine the eigenvalues
from the numerical calculations. The expressions are

[
γi±

]
= 1

2

{
1 − Pr +

B(t + 1)
B(t)

− c
F(t + 1)

B(t)

±
√[

−1 + Pr +
B(t + 1)

B(t)
− c

F(t)
B(t)

]2

− 4
(−1 + Pr )F(t)+ F(t + 1)

B(t)
c






(5.23)
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Here, we use the square brackets around the γ ’s to indicate that these values will be
obtained from numerical results. They are diagnostics and should not be confused
with the analytical value of the eigenvalues. Note that for c = 0, these two eigenvalues
are

[
γ1−

]
= B (t + 1)

B (t)
and

[
γ1+

]
= 1 − Pr . (5.24)

The first one is identical to the standard metric used in determining criticality with
respect to cascading events [11–13]. This metric is defined as

λB (t + 1) = B (t + 1)
B (t)

(5.25)

and measures the propagation of the failures. If λB is greater than 1, the number of
failures increases with time and there is the possibility of a large cascading event.
However, if λB is less than one, the failures will stop propagating and the failure size
remains small. This measure has been introduced [17–19] on the basis of a branching
process [20].

Having diagonalized the matrix in Eq. (5.17), one can solve the linear equations
by iteration and one obtains

(
B (t + 1)
F (t + 1)

)
= B (1)

γi+ − γi−

([
γi+ − 1 + Pr

]
γ t

i+ −
[
γi− − 1 + Pr

]
γ t

i−
γ t

i+−γ t
i−

Oieq

)

.

(5.26)
From this solution, we can calculate the propagation of the failures

λiB (t + 1) = B (t + 1)
B (t)

=
[
γi+ − 1 + Pr

]
γ t

i+ −
[
γi− − 1 + Pr

]
γ t

i−[
γi+ − 1 + Pr

]
γ t−1

i+ −
[
γi− − 1 + Pr

]
γ t−1

i−
. (5.27)

However, this is the solution of the linear problem, it only make sense for t → ∞ in
the initial, linear, phase of the evolution. The asymptotic values for are meaningless.
This ratio of failing components gives a measure of the propagation of the failures.
Here we want to examine the relation between the cascading point, λib = 1, and the
equilibrium bifurcation point, ĝ = 1, which for c = 0 were the same. The important
question is what is the proper diagnostic to measure the cascading threshold.

From Eq. (5.27) the first two values for the rate of propagation of failures are

λ1B(2) = Pn f + c (5.28)

λ1B(3) = Pn f + c + c
Pn f + c

. (5.29)

As one can see in the case of coupled systems, Eq. (5.27) gives λ1B as an increasing
function of t. If the first value of λ1B is greater than 1, the cascade will go on. This
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is a sufficient condition for the cascade threshold. It is however not a necessary
condition, because in a few initial steps the number of failures may first decrease till
λ1B becomes greater than one and increase again. How many steps can λ1B be less
than 1 without extinguishing the cascade is not clear, it will depend on the size of the
initial perturbation. If we assume that three steps are sufficient, we can use Eq. (5.29)
as a typical parameter controlling the cascade, then the cascading threshold is

Pn f = 1
2

(
1 +

√
1 − 4c

)
− c. (5.30)

Since c << 1 in the relevant cases, we can write this threshold in a more general
way

Pn f = 1 − µc (5.31)

where µ is a number of order 1 to be determined by numerical calculations.
Here, we see that the effect of the coupling is to reduce the cascading threshold by
a factor of the order of c, while the equilibrium bifurcation point was reduced by a
larger term of the order c/Pr .

5.5 Mean Field Theory: Numerical Solution

The mean field theory system of equations, Eqs. (5.14)–(5.16), can be solved numer-
ically without any further assumptions. The nonlinear solutions of these equations
will allow us to evaluate better the meaning of the analytical results described in the
previous section and the validity of the linear approximations. Here, we consider
systems with 104 components and the values of the couplings are c = 0.0005 and
Pr = 0.001. For these parameters, the equilibrium bifurcation point, ĝ = 1, is at
Pn f = 0.4995.

In Fig. 5.8, we have plotted the fraction of failing components as a function of
the iteration for different values of Pn f . This plot gives a good description of the
propagation of the failures. For all cases we have the used the same initial condition:

Oinit = 1, Binit =
1
N
, and Finit = 0 (5.32)

where N is the total number of components. In this case, if B goes below 10−4

the cascade has effectively extinguished because the system has 104 components.
However, for an initial condition with n failures, the cascade is extinguished for
B = n/N .

In looking at the Fig. 5.9, it is clear that the cascading threshold is close to Pn f = 1.
We have repeated the calculation for c = 0.05 and Pr = 0.1. These parameters are
unrealistically large, and the steady state value of B is considerably larger than the
initial value. In this case, below the cascading threshold the number of failures dips
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Fig. 5.8 The fraction of
failing components as a
function of the iteration for
different values of Pn f . In
this case the parameters are
c = 0.0005 and Pr = 0.001
and the critical value of Pn f
is about 1

Fig. 5.9 The fraction of
failing components as a func-
tion of the iteration for differ-
ent values of Pn f . In this case
the parameters are c = 0.05
and Pr = 0.1 and the critical
value of Pn f is about 0.9

down well below 10−4 before rising again to the steady state value. The results are
shown in Fig. 5.9. Because the equilibrium bifurcation point depends mostly on the
ratio c/Pr, this change of parameters hardly changes the equilibrium bifurcation
point. However, the cascading threshold depends on the value of c, therefore and as
expected, the threshold for cascading is now close to Pn f = 0.9.

From the previous analytical calculations and these numerical results we can draw
two conclusions:

(1) The cascading threshold at which failures initially grow is not at the equilibrium
bifurcation point. From the numerical calculations we can see that this threshold
is consistent with Eq. (5.31). Therefore, the initial cascade propagation does not
seem to be linked to the largest eigenvalue of the linear approximation to the
mean field equations as it was for the decoupled systems.
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Fig. 5.10 The analytic and
computed γ1+ eigenvalues for
two values of Pn f

(2) In the cases above the cascading threshold, the cascade starting near the unstable
fixed point (11) proceeds up to a certain size, and then decreases as the transient
converges to the stable fixed point (12). This is a transient and nonlinear system
effect, which is not taken into account in the linearization that is valid only near
the fixed point (11).

The next step is comparing the calculated eigenvalues Eq. (5.23) with the an-
alytical ones, Eqs. (5.16)–(5.19). We compare the measured eigenvalues from the
numerical solution to the eigenvalues for the first fixed point because of the initial
conditions taken here. For γ1+ and Pn f < 1, the analytical and numerical values are
very close to 1 and any difference would be small. Therefore, we limit the numerical
comparison to Pn f > 1.

In Fig. 5.10, we have plotted the γ1+ eigenvalue and the measured one, [γ1+] from
the mean field numerical calculations for two values of Pn f . There the agreement
is good. In Fig. 5.11, we have the same comparison for γ1−. Again the agreement
is very good. In particular, the agreement is expected to be better for the very low
number of iterations, because no finite size effects are present. Note that γ1− is the
eigenvalue associated with the transition of the fixed point 1 to a fixed point 2.

The next step is to compare the propagation of failures from the linear calculation
with the solution of the mean field theory. In Fig. 5.12, we compare λB, as calculated
numerically from the nonlinear mean field theory in Eq. (5.25), with the value in
Eq. (5.27) obtained from the linear approximation Eq. (5.26).

We see that the mean field theory gives a value for λB that increases with time.
It is not constant as obtained from a branching process. Therefore this confirms the
previous assumption that the cascade threshold can be calculated by Eq. (5.30).
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Fig. 5.11 The analytic and
computed γ1− eigenvalues for
a number of values of Pn f

Fig. 5.12 Comparison of
λB , as calculated numerically
from the nonlinear mean field
theory in Eq. (5.25), with the
value in Eq. (5.27) obtained
from the linear approximation

5.6 Application and Comparison to the Demon Model

Now that we have an understanding from the mean field theory of what should be
measured, we can apply these measurements to the full dynamical model, Demon.
In this case, the measurements will by necessity have a statistical character.

The equilibrium bifurcation is linked to the γ1− eigenvalue. Therefore to get
a sense of the equilibrium bifurcation point, we can apply the [γ1−] diagnostic,
Eq. (5.23), to the Demon numerical calculations. The comparison between the an-
alytical eigenvalue and the measured [γ1−] in Demon is shown in Fig. 5.13. The
agreement is relatively good for a low number of iterations. As the number of itera-
tions increases, finite size effects become important and the analytical and numerical
results diverge, as we should expect. If instead of the linear analytical result we used
the mean field theory result the agreement would be better.
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Fig. 5.13 The analytic and
Demon γ1− eigenvalues for a
number of values of Pn f

Fig. 5.14 Comparison
between Demon and non-
linear mean field (Eq. (5.30))
λB for a number of values of
Pn f

The other relevant parameter is the rate of propagation of the cascades. We can
compare λB in the Demon model with the one calculated from the mean field theory,
Eq. (5.30). The result of this comparison is shown in Fig. 5.14. We can see that there
is a basic agreement.

Both comparisons are poorer for low values of γ1− and λB, because in this para-
meter region the data from Demon are scattered. The reason for that is that there is
a very small number of cascading events and the statistical evaluation is poor.

5.7 Conclusions

The critical infrastructure systems upon which modern society relies often exhibit
characteristics of complex dynamical systems operating near their critical point
including heavy, power law, tails in the failure size distribution and long time cor-
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relations. We as a matter of course take their smooth operation for granted and are
typically shocked when one of these systems fails despite the fact that these failures
are a completely inevitable result of the complex dynamical nature of the system.
Though failures are inevitable, one can design and operate the systems to reduce the
risk or at least be aware of what the risk is, making understanding these systems
a high priority for ensuring security and social wellbeing. While modeling these
individual systems themselves is a challenging and worthwhile exercise, in the real
world they usually do not exist in a vacuum, instead being coupled, sometimes very
tightly, to one or more other complex infrastructure systems. This coupling can lead
to new behavior including modifications of the critical points and the weight of the
tails. Realistically modeling these coupled infrastructure systems in a dynamic man-
ner is a daunting task outside out current capabilities. For example, only recently
has a simplified model of the electric power grid alone with cascading overloads
and complex dynamics been validated with observed data [21]. Therefore simpler
models that can capture some of the important characteristics have a significant role
to play in understanding the risks associated with the structure and growth of these
critical systems. Even the simple modeling of these coupled system leads to a very
large parameter space that must be explored with different regions of parameter space
having relevance to different coupled infrastructure systems. Within each of these
parameter regimes there is a rich variety of dynamics to be characterized.

This chapter has attempted to look at a simple model, Demon, of coupled
infrastructure systems that can both be simulated and attacked analytically using
mean field theory. We have found that in the region of parameter space we have ex-
plored, the coupling between the systems reduces the critical point (the propagation
parameter in this model which is related to the system loading in the real world)
and makes the tail heavier. The reduction in the critical point is found both in the
mean field theory and the Demon model. This reduction has serious implications for
the real world as we load the systems more heavily and as the coupling becomes
ever tighter, suggesting that the probability of large failures is likely to become more
probable. The mean field theory does a better job of matching the numerical results
when taken to higher order and is even able to capture the general time behavior
of the propagation metric λ. This metric is one which can in principle be measured
in the real world [22] as a state estimator. Using this it may be possible to give a
statistical estimate of the risk of failure of various sizes, a needed function given the
non-normal nature of these distribution functions. In addition, it has been found that
the PDF of the failure sizes gains a heavier tail, with the slope going from ∼−1.0
to ∼−0.8. While this may not seem like a major change, because this is a power
law it implies a significantly higher relative risk of the larger failures which are the
failures that dominate the “cost” to society. These models find that even with weak
interaction one cannot always safely ignore coupling.

Characterizing the dynamics in the different regimes is more than an academic
exercise since as we engineer higher tolerances in individual systems and make
the interdependencies between systems stronger we will be exploring these new
parameter regimes the hard way, by trial and error. Unfortunately error in this case
has the potential to lead to global system failure. By investigating these systems from
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this high level, regimes to be avoided can be identified and mechanisms for avoiding
them can be explored. These general relationships are then available to be verified
either with more physically based models or with real data.
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Part II
Applications

One the most exciting challenges is to reduce the complexity of real infrastructures
to a simpler and insightful model. In this part of the book we present some
applications to real infrastructures, like transport, the electric grid and even the
human body.

Chapter 6 builds up an abstract model to predict epidemic-like fault propagation
and cascades, thus allowing a statistical description of the real system.

In Chap. 7 the most classical problem of traffic routing and congestion is
analysed taking into account the interaction between public and private trans-
portation. At the theoretical level, this corresponds to the interaction between two
or more ‘quasi-planar’ graphs (spatial networks).

Chapter 8 represents a very broad and general introduction to the electrical
power system and concentrates on the blackout mitigation strategies based on
‘islanding’, i.e. the intentional partition of the electric grid into smaller full
operating sub-networks.

Chapter 9 highlights how the complexity of the power system does not reduce to
the interaction among its physical components. In fact, all real infrastructures
require human intervention at different levels, like governance (decision making)
or planning (policies), that nowadays have to take into account also the inter-
mingling of economic and social networks influencing the whole system.

Finally, Chap. 10 is not directly related to critical infrastructures; however, it
provides a novel paradigm for one of the most complex ‘system of systems’, i.e.
the human body. The results of the chapter are strictly related to one of the most
stringent problems in critical infrastructures, i.e. the analysis of the interdepen-
dencies among systems through historical data.



Chapter 6
Characterizing Relevant Network Structure
with Reliability Polynomials

Stephen Eubank, Mina Youssef and Yasamin Khorramzadeh

6.1 Introduction

Coupled socio-technical infrastructure networks are most usefully represented as
complex, irregular graphs with directed, weighted edges that link vertices associated
with states. Cascading failures in such systems are an example of a reaction-diffusion
process over the graph. Reaction-diffusion have systems, of course, been studied from
many perspectives over the past century. It is well known that many kinds of failures
(such as illnesses or power outages) that propagate from vertex to vertex along the
edges correspond to bond percolation [8]. Our understanding of Ising models and
their generalizations thus provides insight into cascading failures. However, applying
this insight to existing real-world infrastructure networks presents a problem: how
does the structure of a finite, complex network affect phenomena that we have studied,
for the most part, on highly regular (e.g. lattices, trees) or essentially unstructured
(e.g. random) networks?

Here we re-introduce an approach that was developed to study the reliability of
specific networks, making no assumptions about regularities and symmetries. We
define and provide algorithms for calculating the reliability, discuss its interpretation
in terms of statistical physics, provide illustrative examples on several networks, and
show how it can be used to understand complicated phenomena. We illustrate how
to compare two graphs and identify the structural differences between them that are
most relevant for a given dynamical process. We also indicate how reliability can be
used to infer structure, in the sense of network tomography.
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The novelty in this discussion is not the concept of reliability itself—the IEEE
Transactions on Reliability is now in its 61st year; nor is it in the statistical physics
of reliability. It is in our suggestions that

1. coefficients of the reliability polynomial are the best way to characterize graph
structure and

2. network analysis in terms of reliability emphasizes global structure, providing
insights that elude other approaches.

Reliability refocuses the question of structural effects from the individual inter-
actions between elements to global structural properties, suggesting new methods
of analysis. By design, a set of reliability coefficients encodes all the structure of a
graph that is relevant to a dynamical phenomenon of interest. Hence it is a structural
measure that is immediately connected with dynamics. In contrast to static measures
like degree, modularity and measures of centrality, no intervening theory is needed
to make the connection to dynamical phenomena. Moreover, the reliability can be
further decomposed into the product of a purely combinatorial factor and a structure-
dependent factor. The latter forms the basis for categorizing graphs in a way that folds
together static properties into precisely the combinations that are most relevant to
the dynamics.

6.2 Reliability

We have previously defined the concepts of vulnerability and criticality e.g. [3].
The vulnerability of a set V of vertices is essentially the probability that all of
the vertices’ states change, while criticality is the difference between the expected
number of state changes in graphs with and without V . These notions distinguish
graphs in a way that is immediately relevant to, for example, designing interventions
to mitigate an outbreak of infectious disease. Vulnerability is just one example of a
class of reliability measures, which encode all—and only—the structure of a graph
that is relevant for a particular dynamical process. Criticality can be calculated as
the difference in reliability between graphs with and without a collection of edges,
as in the example in Sect. 6.5 below.

Consider a graph (directed or undirected) G(V, E) with N vertices and M
weighted edges. For now, assume the edges are weighted homogeneously with weight
x ∈ [0, 1]. The extension to heterogenous weights is possible, but more complicated,
as discussed in Sect. 6.2.5. Let the set S be the set of all subgraphs of G generated
by including each edge independently with probability x . There are 2M elements
of this set, and a subgraph s with k edges has a probability of occurrence given by
ps(x) = xk(1 − x)M−k .

Now consider a binary function r : S → [0, 1]. If r(s) = 1, we say that subgraph
s is accepted by the rule r , or that s is reliable. We define the reliability R(G, r, x) of
a graph G with respect to the acceptance criterion r for a probability of edge failure
1 − x as the probability of choosing a subgraph s that will be accepted. Denoting the
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set of all subgraphs accepted under r as R(G, r) ⊆ S , we have:

R(G, r, x) ≡
∑

s∈S
r(s)ps(x) =

∑

s∈R
ps(x). (6.1)

We will generally include the dependence on the graph G and the rule r in notation
such as R(G, r, x) explicitly only when we wish to distinguish the reliability of two
different graphs or two different rules.

6.2.1 Reliability Criteria

Following [4], we describe a few different rules that capture properties important to
diffusion dynamics. They overlap with, but are not the same as, the rules he describes.

1. two terminal reliability: a subgraph is accepted if it contains at least one directed
path from a distinguished vertex S (the source) to another distinguished vertex
T (the terminus);

2. component size: a subgraph is accepted if the number of vertices connected to
the source is greater than or equal to a specified value;

3. percolating: a subgraph is accepted if it contains a path from a source to at least
one of the vertices at maximum distance from that source, i.e. the “other side”
of the network;

4. multi-source: any of the above problems with multiple source vertices;
5. time dependent: any of the above rules in which only paths no longer than a

given time t are considered in evaluating the rule.

We will make the reasonable assumption that the rule is coherent: that if s ⊆ t and
r(s) = 1, then r(t) = 1. In other words, for a coherent rule, adding edges to a reliable
graph does not make it unreliable. Other than this assumption, none of what follows
is specific to the rule.

6.2.2 The Reliability Polynomial(s)

It is simple to write down a polynomial form for the reliability as a function of x .
Partition the set of subgraphs S into subsets Sk in which each subgraph has exactly
k ≤ M edges. There are

(M
k

)
subgraphs in Sk and each subgraph appears with

probability p = xk(1 − x)M−k . Suppose Rk ≡ |R ∩ Sk | of them are accepted by
rule r . Then the total contribution of subgraphs in Sk to R(x) is Rk xk(1 − x)M−k .
Summing these contributions over all k gives the reliability polynomial (for rule r
and graph G):
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R(x) =
M∑

k=0

Rk xk(1 − x)M−k . (6.2)

It is often convenient to express the k-dependence of R more compactly as a function
of y ≡ x/(1 − x), in the form

R(y) = (1 + y)−M
M∑

k=0

Rk yk . (6.3)

Note that the coefficients Rk , being counts, are non-negative integers.
A great deal is known about reliability polynomials. They are related to the Tutte

polynomial and the partition function of a Potts model. Colbourn [4] provides a won-
derful introduction to reliability with an emphasis on the computational complexity
of evaluating the coefficients Rk and bounding their values. The well-known Max-
Flow/Min-Cut theorems discovered by Ford and Fulkerson [6, 7] relate certain of the
coefficients. While individual coefficients may be efficiently determined for some
classes of graphs, Colbourn notes that the problem of determining all the coefficients
of the reliability polynomial for a general graph is #P-complete for many commonly
used rules. Page and Perry [10] developed methods to assess the relative importance
of edges in a graph, beginning with the differences in reliability illustrated here.

6.2.3 Reliability as a Polynomial Transform

It is instructive to think of the reliability polynomial as a generating function for the
coefficients Rk , i.e.

Rk = dk

dyk (1 + y)M R(y)|y=0. (6.4)

Alternatively, the coefficients Rk distill the information in R(x) that depends on the
graph G and not x . As with other transformations, e.g. Fourier transformation, we
can speak of the k-space and x-space representations of R. It may be the case that
information that is spread over many values of x is concentrated in values of Rk for
only a few k, and vice versa.

At first glance, nothing is accomplished by rewriting R(x) as Rk . The amount of
work required to determine R(x) for all x is the same as the amount of work required
to evaluate all the coefficients Rk . Furthermore, because of the strong envelope cre-
ated by the binomial function, R(x) is determined to a large extent by RMx . However,
as we illustrate below, thinking in k-space rather than x-space suggests new proof
strategies and styles of argumentation. Whereas perturbative analysis emphasizing
local structures and links between vertices is natural for R(x), non-perturbative analy-
sis emphasizing global structures and large-scale features of subgraphs is natural for
Rk .
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6.2.4 Interpreting Reliability Coefficients

Individual coefficients Rk have direct interpretations in terms of graph structures.
For two-terminal reliability, Rk = 0 for all k less than the shortest path length d
between the source and terminus, and the value of Rd is the number of distinct
shortest paths. For k larger than the minimum cut size, all graphs will be accepted,
and thus Rk′ =

(M
k′

)
for k′ ≥ c. For all-terminal reliability, the minimum k for which

Rk > 0 is the size of the minimal spanning tree, and its value is the number of such
trees.

In general, we expect that a reliability analysis of any problem will draw attention
to certain values of k, i.e. to structures in subgraphs of certain specific sizes k′. Exam-
ples in Sect. 6.5 illustrate analyses that do this. The focus on k-space leads to useful
explanations of otherwise nearly incomprehensible dynamical phenomena. For
example, consider two graphs whose reliability polynomials cross. Crossing means
that the relative reliability of the two graphs depends on the likelihood of an edge
failure. This has immediate and important implications for designing failure-resistant
networks. In the context of epidemiology, for example, a public health intervention
can be represented as a change in contact network weights and/or structure. If the
reliability polynomials for the two contact networks cross, an intervention that is
better than doing nothing for some values of transmissibility will be worse than do-
ing nothing for others. In x-space, crossing behavior has been noted and discussed
in studies of network diffusion e.g. [9]. In k-space, it has an immediate analogue:
Rk values that cross at a particular value k′. The interpretation is that a certain graph
structure of size k′ that appears in one graph but not the other contributes in an
important way to the overall reliability of the graph. A deeper analysis can identify
the nature of that structure and design new interventions that take advantage of this
knowledge. Thus, reliability analysis can be thought of as a tool to identify these
structural motifs (possibly extremely large ones) that are most relevant to particular
dynamical processes.

6.2.5 Inhomogeneous Weights: A Useful Special Case

The simple polynomial expression for reliability in Eq. 6.2 results from the assump-
tion of homogeneous weights. Relaxing this assumption leads to some interesting
possibilities. Suppose there is a small number q of different classes of edges with
different failure probabilities. For example, a structured population model of epi-
demiology might distinguish transmission rates between people in q = 4 different
age groups or susceptibility classes; likewise, a model of coupled infrastructures
might consist of interactions among a few different kinds of infrastructure, such as
electrical transformers, water pumps, etc. The reliability polynomial in this case will
become a multinomial in x1, . . . , xq , and the coefficients will be functions of the
number of edges of each type, k1, . . . , kq .

In Sect. 6.5 we explore the difference in reliability between two graphs g1(V, E1)

and g2(V, E2) by distinguishing q = 3 classes of edges. Applications include study-
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ing graphs whose reliability polynomials cross, as discussed in Sect. 6.2.4, or ana-
lyzing the effect of popular edge-swapping techniques e.g. [5].

If g2 ⊂ g1, we proceed by partitioning the edges E1 that appear in g1 into two
parts: E2, the ones that appear in g2; and E ′ = E1 − E2, the ones that don’t. As
usual, M1 is the number of edges in g1, and M2 the number in g2. We assign all
edges in E ′ the weight x as before, but edges in E2 are assigned the weight εx .
This turns an inherently discrete change from one graph to another into a continuous
deformation, and introduces the possibility of local stability/sensitivity analysis. The
resulting reliability multinomial can be written as

R(x, ε) =
M∑

k=0

xk(1 − x)M−k
min(k,M2)∑

k′=0

Rk,k′εk′
(1 − ε)k−k′

. (6.5)

When g2 is not a subgraph of g1, we form a convex combination of the two graphs
instead. In this case, we partition the set of all edges E1 ∪ E2 into three parts:

1. the common edges E ′ ≡ E1 ∩ E2;
2. E ′

1 ≡ E1 − (E1 ∩ E2), the complement of E2 in E1, or the edges that appear in
g1 but not in g2;

3. E ′
2 defined analogously for g2.

As before, we assign all edges in E ′ the weight x and all edges in E ′
1 the weight εx ,

but now there is a third class of edge, those in E ′
2. We assign these edges the weight

(1 − ε)x . The parameter ε allows us to continuously deform the graph from g1 for
ε = 1 to g2 for ε = 0. This trick also works for graphs with heterogenous weights.
The resulting reliability multinomial can be written as

R(x, ε) =
M∑

k=0

min(k,M1+M2)∑

k′=0

Rk,k′ xk(1 − x)M1−kεk′
(1 − ε)−k′

. (6.6)

In this expression, k′ represents the number of edges from E ′
1 that are in the subgraph

and the number of edges from E ′
2 that are not in the subgraph.

In principle, we could study the reliability of this convex combination of graphs
directly. However, for a given value of ε, subgraphs of the convex combination
contain a confusing mixture of edges from g1 and edges from g2. In practice, it
is easier to understand the difference between reliabilities for two related graphs
A and B: in both of the two graphs, the common edges E ′ have weight x , but A
gives the edges E ′

1 weight εx while B gives the edges E ′
2 weight εx . Derivatives of

R A(x, ε) − RB(x, ε) with respect to x and ε are valuable for understanding trade-
offs between increasing component reliability and restructuring the network—for
epidemiology, between pharmaceutical prophylaxis and social distancing. Analysis
of R A

k,k′ − RB
k,k′ can be used to identify graph structures that significantly influence

dynamical phenomena.
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6.3 Statistical Physics of Reliability

A graph’s reliability polynomial is related to a Potts model’s partition function defined
on the graph. This connection provides another important perspective on character-
izing graph structure. We show the connection explicitly here.

6.3.1 Relation to Ising Model

Equation 6.1 defines reliability as a sum over possible system configurations weighted
by the probability of occurrence for each state. Equations 6.2 and 6.3 group system
configurations into equi-probability subsets. Thus the reliability function itself is a
partition function, the relative probability yk is related to the energy of a system
configuration in a canonical ensemble, and the coefficients Rk are the density of
states1:

Z(y) ≡
∑

k

Rk yk = R(y). (6.7)

To make contact with the usual partition function for an Ising model, we re-interpret
subgraphs with k edges in terms of vertex “states”, failed or not. The presence of
an edge represents the conditional propagation of failure, conditioned on one of its
endpoints having failed. On this view, vertices have two states (the state, si , of vertex
i is defined to be 1 if it has not failed and −1 if it has), and there is an edge between
any pair of vertices in the same state. Finally, we consider the complement of the
graph. It will have edges only between vertices that are in different states, and occurs
with probability given by replacing x with 1 − x or, equivalently, y with y−1. Then
emphasizing the vertex states instead of the edges, we can rewrite the factor yk in
Eq. 6.7 in terms of an energy for each configuration which is the sum over the number
of frustrated spins (neighboring vertices with different states) of J ≡ − 1

4 ln y:

yk = ek ln y ∝ exp −J
N∑

i=1

∑

ν j ∈N (νi )

si s j . (6.8)

The constant of proportionality can be absorbed into the overall normalization factor,
leaving (not surprisingly) an Ising model.

1 The overall factor (1 + y)−M in Eq. 6.3: is a normalization that will be ignored in the partition
function, where only relative probabilities are needed.
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6.3.2 The Density of States

What of the density of states, Rk? We can further decompose it into two factors,
taking

Rk = Pk

(
M
k

)
(6.9)

as a definition of Pk . This decomposition splits Rk into what we might call an entropic
or combinatorial factor

(M
k

)
and a structural factor Pk . The entropic factor simply

makes explicit the sharp peak in the number of possible subgraphs with k edges, i.e.
the size of the space from which equi-probable system configurations can be drawn. It
creates an envelope that windows the effects of xk(1− x)k to a small region centered
at k = Mx . The factor Pk is structural in the sense that it encodes all the information
about the specific graph G that is needed to determine its reliability. This is obvious
because the probability yk and the entropic factor

(M
k

)
are the same for any graph with

M edges. The meaning of Pk is also clear—it is the fraction of possible subgraphs
with given k that are accepted by the reliability criterion. We can think of this as the
probability that a random subgraph with k independently selected edges is reliable.
Re-introducing independent edge selection in this way makes analysis easier without
sacrificing correctness.

We have shown that all the structural information needed to characterize G is
contained in Pk . We claim further that Pk is not only sufficient but necessary. If
any of the Pk are unknown, the reliability can only be approximated. Of course,
the approximation may be very good for probabilities x far outside the entropic
envelope, but the reliability will not be uniformly approximable on the interval [0, 1].
Finally, the structural properties encoded in Pk are, by the design of the reliability
criterion, exactly those relevant to the dynamical phenomena under study. This is in
stark contrast to characterizing a graph by static, statistical properties such as degree
distribution, clustering, etc.

It cannot be denied that the coefficients Rk carry identical information to the Pk .
Which is the “better” representation is thus largely a matter of taste. We argue here
that giving primacy to Pk is a useful perspective because it strips out all the features
common to all graphs, leaving only structural information about the specific graph
G that is relevant to the rule r .

6.3.3 Partition Functions and Ensembles

A system’s partition function serves to normalize the relative probabilities of different
system configurations (here, subgraphs g). The expectation value of any function of
the configurations< f >—e.g. the average size of the largest connected components
in reliable subgraphs, or the number of triangles in the graph, or the reliability itself—
can be computed with respect to the resulting normalized probability:
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< f >=
∑

k

∑

gk

f (gk)r(gk)xk(1 − x)M−k (6.10)

There is a great deal of latitude in decomposing R(x) into the product of a density-of-
states factor and a probability-of-state factor. This latitude in specifying the proba-
bility factor is usually referred to as choosing the ensemble of system configurations.

In a grand canonical ensemble, we might consider the probability factor to be(N (N−1)/2
k

)
, the probability of choosing any graph on N vertices with k edges. The

partition function for this case would be:

Zgrand ≡
∑

k

∑

gk⊂N×N

xk(1 − x)(
N
2)−k . (6.11)

Calculating < f > over reliable graphs correctly in a grand canonical ensemble
requires adding two filters to the density of states: one that excludes graphs that
are not subgraphs of G and another that excludes graphs rejected by the reliability
criterion: f (g) → f (g)δ(g ⊂ G)δ(r(g)). In textbook derivations, e.g. [11] these
delta function filters are approximated by exponentials and included in the system
Hamiltonian. This approach woks well for constraints involving things like energy
that can be represented in closed form as functions of the system’s configuration, but
it is not well-suited for the reliability filter δ(r(g)) or the subgraph filter because the
constraints they represent cannot be written in closed form.

We could include the constraint that a graph must be a subgraph of G in the
probability factor, as we have done in this chapter, generating a canonical ensemble
whose partition function is:

Zcanon ≡
∑

k

∑

gk⊂G

xk(1 − x)M−k . (6.12)

Calculating < f (g) > over reliable graphs in a canonical ensemble would require
including only the reliability filter in f : f (g) → f (g)δ(r(g)).

Finally, a micro canonical ensemble includes only those subgraphs of G that are
reliable. Its partition function is

Zmicro ≡
∑

k

∑

gk⊂G

r(gk)xk(1 − x)M−k . (6.13)

No adjustments to f are needed to evaluate its expectation over reliable graphs in
this ensemble. Clearly the partition function for the micro canonical ensemble is the
reliability polynomial itself.

However, there is no free lunch—the progression from grand to canonical to
micro-canonical ensembles simply shifts where the effort must be applied, from eval-
uating the reliability or subgraph filters to generating the ensemble. The canonical
ensemble is more tractable analytically, being nothing more than a binomial dis-
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tribution. Computationally, the micro-canonical ensemble is generally much more
efficient, since no time is “wasted” computing f on system configurations that do
not contribute to the expectation value.2 The reliability polynomial provides an
analytically tractable way to handle the micro-canonical ensemble by pretending
that we know the coefficients Rk . The potential value of this approach is two-fold:

1. analysis may show that only a few coefficients are needed to find an approximate
solution to a given problem;

2. the coefficients may well be approximated by functions with only a few para-
meters.

6.3.4 Phase Transitions

As usual, we can define the location of a phase transition as the point at which
d2 ln Z/dx2 vanishes. Since all of the x-dependence is contained in the binomial
factor Bk(x) ≡

(m
k

)
xk(1 − x)k , we can apply the derivatives to that factor using

the useful identity Eq. 6.25 and recover an expression for the location of the phase
transition in reliability as zeroes of the polynomial J (x) ≡ ∑M

k=0 Jk Bk(x), where

Jk−1 ≡ (M − k)(M − k − 1)(Pk+2 − 2Pk+1 + Pk). (6.14)

Note that Jk vanishes when Pk = Pk+1 = Pk+2, that is, when Rk ∝
(M

k

)
, or when

the second finite difference of P vanishes, i.e. Pk is changing at a constant rate. The
coefficients that remain are the ones where global innovations to the set of reliable
subgraphs become important. The exact location of the zeroes is an interplay between
the strong enveloping effect of the binomial distribution centered at k = Mx and
sudden changes in the fraction of reliable subgraphs as k varies.

If we make an ansatz for values of Pk , we can write down an analytical expression
for the critical point. Coherence implies that the Pk increase monotonically. Suppose
the rate of increase peaks at kc. A procedure to generate a parameterized family
of sigmoidal functions that reproduce this behavior is given in Appendix 2. This
particular family has a parameter, kc that determines the center of the sigmoid, and
another, N , determines the width of the sigmoid.

Combining this ansatz with the identity (see Appendix 1)

m∑

k=0

kq Bk(x) =
q−1∑

l=0

m!
(m − l)! x

q−l (6.15)

yields a polynomial in x with one root in the interval (0, 1) that is the critical point.
Figure 6.1 displays the envelope d2 Bk(x)/dx2 as a function of k for two values of
x , and R′′(x) for two choices of kc and three choices of N . Figure 6.2 exhibits the

2 This rule of thumb may depend on the computational complexity of the reliability criterion.
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Fig. 6.1 Top The envelope
determined by the second
derivative of the binomial
distribution for two different
values of x . Note that for small
values of x , the envelope is
distinctly asymmetric; bottom
The second derivative of the
reliability polynomial, R′′(x),
for each of the models for Pk
generated by the sigmoidal
functions described in Appen-
dix 2, for M=20 edges. These
values of Pk are not derived
from a specific graph, but
show the effect of varying the
sigmoid’s center, controlled
by kc, and width, controlled by
N . A phase transition occurs
at the zero of this function.
The zero is given by kc/M to
a first approximation, but is
affected by the width of the
sigmoid
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details of R′′(x) around its zeroes. Clearly, we could derive a functional form relating
the critical point and critical exponents with kc and N . Refinements and extensions
of this procedure can easily be imagined, including a more general ansatz for Pk ,
approximating the binomials with Poisson distributions, and expanding around the
approximate solution xc ≈ kc/M .

6.4 Reliability-Based Methods for Analyzing Graph Structure

We will outline here two related approaches to evaluating the effects of graph structure
on reliability. The first is a bottom-up approach that analyzes the number of new,
distinct subgraphs generated by adding an edge to an acceptable subgraph; the second
is a top-down approach that analyzes the impact of reliable motifs. They both seem
to be complementary to—and distinct from—common approaches like mean-field
theory, low- and high-temperature expansions, etc. They permit the introduction of
new principled expansions in a small parameter that is not the coupling constant.
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Fig. 6.2 Detailed view of the
zeroes of R′′(x) as shown in
the previous figure. top kc =
0.41M ; bottom kc = 0.59M

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4  0.42  0.44

R
''(

x)

x

Pk ansatz: N=[0, 1, 2]; 
kc/M = [0.41, 0.59]

N=0
N=1
N=2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.56  0.58  0.6

R
''(

x)

x

Pk ansatz: N=[0, 1, 2]; 
kc/M = [0.41, 0.59]

N=0

N=1

N=2

First, we formalize the intuitive notion of distance between two graphs on the
same vertex set g1(V, E1) and g2(V, E2):

d(g1, g2) = |E1 ∪ E2| − |E1 ∩ E2|, (6.16)

i.e. the number of edges in either g1 or g2 that are not common to both. Note that if
g1 and g2 have the same number of edges, then d(g1, g2) is an even number, and if
we construct the sets of edges Fi ⊆ Ei that are in one graph gi but not in the other,
then |F1| = |F2|, i.e. the distance is evenly split between the graphs.

Let the set of accepted subgraphs with exactly k edges be denoted Rk . In the
bottom-up approach, we partition the set of pairs of reliable subgraphs Rk ×Rk into
non-overlapping subsets that structure relationships among the coefficients Rk for
different values of k. Our partition is based on distances between graphs:

D (k)
n ≡ {(g1, g2) ∈ Rk × Rk |d(g1, g2) = n} . (6.17)
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We denote the cardinality of D by d, that is, d(k)
n ≡ |D (k)

n |. Since every pair falls
into one of the sets D , we know that

∑2M
n=2 d(k)

n =
(Rk

2

)
.

How are d(k)
n and d(k+1)

n related? Consider a pair of subgraphs (g1, g2) ∈ D (k)
n . If

we add the same edge to both, the distance between the new graphs will be the same as
between the old pair. There are M−k−1 ways this can be done. If we add to g1 an edge
that was only present in g2 and vice versa, the distance between them will decrease by
two. There are n2

4 ways this can be done. All other (M−k)2−(M−k−1)− n2

4 choices
increase the distance between the graphs by two. Since not all graphs generated in
this process will be distinct, this provides only upper bounds on the contributions of
individual graphs to d(k+1)

n .
Now consider the overall contribution of subgraphs in Rk to Rk+1. Adding a

single one of each of the M −k possible new edges to a graph in Rk generates M −k
subgraphs that, by the principle of coherence, will be elements of Rk+1. However,
some of these new subgraphs will be generated by more than one of the graphs in
Rk . How many? Suppose we add an edge to g1, creating g′

1, and similarly for g2.
It is easy to see that g′

1 and g′
2 can be identical if and only if d(g1, g2) = 2. In that

case, there is exactly one choice of edge to add to g1 and one choice to add to g2 so
that g′

1 = g′
2. Hence the number of new subgraphs in Rk+1 generated by a single

graph g ∈ Rk is M − k less the number of times g appears in D (k)
2 . Summing over

all R̃k subgraphs in Rk gives (M − k)Rk − d(k)
2 .

We can define a set of R̃k subgraphs R̃k as those generated by adding a single
edge to graphs in Rk−1. R̃k+1 provides a lower bound on Rk+1. It is combinatorial,
in the sense that no new (i.e. not counting d(k)

2 ) structural information is included in
the estimate. Thus the new structural information is all to be found in two places:

1. the difference between the bounds on d(k+1)
n generated above and the actual

partition of graphs generated from Rk ;
2. what we call the innovation Rk − R̃k .

The first of these is related to local structure around existing reliable paths, such as
clustering; the second involves global structure. Subgraphs in the innovation will
appear in sets D (k+1)

n only for n ≥ 4. As we increase k, we can track the appearance
of innovations and watch as they inexorably coalesce with other subgraphs—the
reliability polynomial keeps track of how their contribution overlaps with that of
other structures at every step of the process.

In the top-down approach, we count the number of times a particular motif will
appear among all subgraphs of size k. The motif is a subgraph whose presence is
sufficient to make any graph containing it reliable. For example, for two-terminal
reliability, the motif of interest might be a shortest path between the source and
terminus; for all-terminal reliability, it might be a spanning tree. Denote the number
of edges in the motif by k′. Then for subgraphs of size k < k′, the motif cannot
appear. However, the motif is guaranteed to appear in some of the subgraphs of size
k ≥ k′. How many? Consider coloring all k′ edges in the motif red and placing them
in a bag with all the rest of G’s edges, which are colored black. We reach into the bag
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and select k edges in all possible ways. This is the enumeration over subgraphs of
G with k edges. How many times will the k edges we select include all k′ of the red
edges? The answer is given by the multinomial coefficient M !/(M −k)!(M −k−k′)!.
Once k is large enough that Rk > 0, we know that a reliable motif exists, and this
argument provides a lower bound on Rk for higher order coefficients.

This argument can be extended to the case of multiple motifs. If the reliable motifs
are entirely edge distinct, the probability that a random subgraph includes one of them
is independent of the probability that it includes the other, so we can count the number
that include one or the other or both. Similarly, if the distance between the motifs is
d, we can also easily adjust the over-counting incurred by summing their individual
contributions to the reliability. The bottom-up and top-down approaches are linked
together by the knowledge of the innovation and how distant its elements are from
existing reliable subgraphs.

These approaches provide new tools to understand the effect of structural changes
on reliability. Consider, for example, swapping edges to change the number of tri-
angles in a graph while holding the degree distribution and assortativity-by-degree
fixed. For two-terminal reliability, the increased number of triangles reduces the
number of innovations (which are due to subgraphs with at least four edges that are
“new”) and increases the number of distance-two subgraphs.

For most of this discussion, we have assumed the graphs are known, and we are
attempting to characterize their structure. Reversing these arguments, we can infer
from values of Rk for a range of k’s how many reliable motifs with sizes in that range
are present. This can form the basis of network tomography, in which we infer the
existence of hidden graph structure (e.g. the existence and number of shortest paths)
from information about reliability at a few vertices whose states are accessible to
observation.

6.5 Examples

We illustrate the discussions above with evaluations and interpretations of the re-
liability polynomial, the difference in reliability between graphs, and the effect of
assortativity-by-degree and number of triangles on several networks.

6.5.1 Toy Network

A networked SIR process is a Markov process over system configurations. If p(c, t)
denotes the probability of finding the system in configuration c at time t , then we
have p(c′, t + 1) = ∑

c p(c′|c)p(c, t). We will assume uniform edge weights x—
that is, each infectious vertex has the same probability of transmitting infection to
each of its neighbors. We use the usual rules for transmission: an infectious vertex
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Table 6.1 The probabilities of several configurations for the graph in Fig. 6.1 as a function of time.
Only configurations that eventually contribute to the two-terminal reliability are shown

Time s1 s2 s3 s4 sT Probability

1 I I S S S x2

1 I S S S S x(1 − x)
1 S I S S S x(1 − x)
2 R R I I S x4(2 − x)
2 R R I S S x3(1 − x)(2 − x)
2 R R S I S x3(1 − x)2

2 R S I I S x3(1 − x)
2 R S I S S x2(1 − x)2

2 R S S I S x2(1 − x)2

2 S R I S S x2(1 − x)
3 R R R R I x5(2 − x)2

3 10 more combinations ...
5 R R R R I x5(1 − x)2

transmits independently to each of its neighbors, and a susceptible vertex is infected
independently by each of its infectious neighbors. That is:

1. the probability of a transition from one configuration to another is the product
of the probabilities for each vertex to be in the given state, because the event of
infecting a vertex is independent of the event of infecting a different vertex.

2. the probability that a vertex is not infected depends only on the number of its
infectious neighbors, as (1 − x)n .

Given these transmission rules, we can evaluate the transition matrix p(c′|c).
Table 6.1 lists probabilities for example configurations as a function of time for the

toy network shown in the left panel of Fig. 6.3. The two terminal reliability expressed
as the cumulative sum of these probabilities is

R(x) = x5(2−x)2+x4(1−x)(5−3x)+2x3(1−x)2+x3(1−x)+x5(1−x)2. (6.18)

There is no particular interpretation for any of these coefficients, nor any obvious
way to simplify the expression.

By contrast, we determine the reliability coefficients for the same two-terminal
reliability by counting accepted subgraphs, as shown in Fig. 6.4. We can write down
the reliability polynomial by inspection as

R(x) = x3
{

3(1 − x)4 + 12x(1 − x)3 + 17x2(1 − x)2 + 7x3(1 − x)+ x4
}
.

(6.19)
The result in Eq. 6.18 can indeed be reduced to this form through some tedious alge-
bra. In this form, we can immediately read off structural information. For example,
the coefficient of the first term in braces, 3, is the number of distinct shortest paths
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Fig. 6.3 Example vertex-centric calculation of two-terminal reliability in a toy network between
the source S and terminus T vertices. Each panel shows the possible configurations at a different
time step, ignoring those configurations that will not contribute to the reliability. The vertex color
corresponds to its state: white for Susceptible, black for Infectious, and gray for Recovered. The
single diagram at the bottom right contributes to a length-five path from S to T that is not shown
here. Probabilities for each of these configurations are given in Table 6.1

Fig. 6.4 (left) Example edge-centric calculation of two-terminal reliability in the toy network of
Fig. 6.3. Each panel shows the accepted subgraphs with specific numbers of edges, except the panel
on the right, which shows the subgraphs that are not accepted

from S to T ; the coefficients of x3(1 − x) and x4 are
(7

6

)
and

(7
7

)
, because the mini-

mum cut size is 2; the coefficient of x2(1 − x)2 is
(7

5

)
− 4, because there are 4 cuts

with cut size 2. The three reliable subgraphs for k = 3 form three possible pairs;
of these, two pairs of graphs are at distance d(3) = 4 from each other and one (the
center and bottom graphs in the panel) is at distance 6.

Now let us compare the reliability of two graphs obtained by removing either (1)
the center edge (1, 3) for G1 or (2) the lower left edge (1, 4) for G2 from the toy
network. Using the approach described in Sect. 6.2.5, we construct two interpolating
graphs by weighting the selected edge with a factor ε. The non-trivial reliability
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Table 6.2 Two terminal reliability coefficients for two networks formed by weighting an edge of
the toy network by ε, as discussed in Sect. 6.2.5. Coefficients not shown here are either 0, for k < 3
or

( 7
k+k′

)
, for k > 4

k k′ Rk,k′ (G1) Rk,k′ (G2)

3 0 2 2
3 1 6 6
4 0 6 6
4 1 16 17

coefficients for both these interpolating graphs are shown in Table 6.2. By inspection,
the difference in reliability of the two graphs is

RG2(x) − RG1(x) =
M−1∑

k=0

1∑

k′=0

Rk,k′ xk(1 − x)M−k−1εk′
(1 − ε)(1−k′) (6.20)

= x4(1 − x)2ε (6.21)

Repeating the analysis above for other edges, we can determine the partial deriv-
atives of R(x) with respect to any single edge weight or any set of edge weights.
We consider, as before, the two terminal reliability from S to T , but only include
subgraphs with paths of length at most three. As mentioned in the discussion of
example criteria, this corresponds to a time-dependent reliability function. (That is
why the partials for edges (1, 3) and (1, 4) below differ from those that would be
found using Table 6.2.) These partials are:

∂ R(x)/∂xS1 = x2(2 − 2x2 − x3 + x4)

∂ R(x)/∂xS2 = x2(1 − x2 − x3 + x4)

∂ R(x)/∂x13 = x2(1 − 2x2 + x4)

∂ R(x)/∂x14 = x2(1 − x2 − x3 + x4) (6.22)

∂ R(x)/∂x23 = x2(1 − x2 − x3 + x4)

∂ R(x)/∂x3T = x2(2 − 2x2 − x3 + x4)

∂ R(x)/∂x4T = x2(1 − x2 − x3 + x4)

In this case, we see that the partials for edges (S, 1) and (3, T ) are the same, as are
the partials for (S, 2), (1, 4), (2, 3), and (4, T ). Inspection of the graph shows that
these groupings make sense. We also see that there is a partial order on the partials:
∂ R(x)/∂xS1 > ∂ R(x)/∂xS2 = ∂ R(x)/∂x14, etc. This induces a partial ordering on
the edges:

(S, 1) > (S, 2) = (1, 4) = (2, 3) = (4, T ) > (1, 3) > (3T ). (6.23)
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It also allows us to define the gradient direction (1,α,β,α,α, 1,α), where α ≡
1 − 1−x2

2−2x2−x3+x4 and β ≡ 1 − 1−x3

2−2x2−x3+x4 , and the basis elements are the edges in
order as they appear in Eq. 6.22.

The immediate interpretation of the gradient is that small changes to the weights
distributed in the proportions given by the gradient will produce the largest change
in R(x), the vulnerability of T at time t = 3, of any possible distribution. In other
words, this is the locally optimal combination of edges to change. Of course, it is
not necessarily a global optimum, since the gradient will change as the weights
change—this is just a linear analysis. Given the full expression of the gradient for
inhomogeneous weights, we could follow the integral curve defined by the gradient
at any point to a local optimum.

6.5.2 Estimation

Simulation provides approximate values for the probability of any configuration as a
function of time. It is particularly well-suited for estimating reliability coefficients.
We can view N simulations for a given edge weight x as N samples of a Bernoulli
process with parameter R(x). Thus we can place confidence bounds on the estimated
R̂(x). Sweeping across x ∈ [0, 1] provides data to which we can fit a polynomial,
thus obtaining all the coefficients of the reliability polynomial. In principle, since
we know the polynomial coefficients must be integer, we can determine a priori
the number of samples that will be required to generate the exact result with high
probability. Unfortunately, since the integers involved are combinatorially large, this
provides little benefit in practice.

Any single coefficient Pk can be estimated more directly by a simulation that
selects a subgraph with k edges and evaluates the reliability criterion. The com-
putational complexity of this is proportional to k (not M), the number of samples
selected, and the complexity of evaluating the criterion.3 What became of the hard-
ness results? Once again, there is no free lunch—they are implicit here in the number
of samples needed to determine Pk with sufficient precision. However, note that
this procedure is embarrassingly parallel, so one would expect linear speedups on
distributed computers.

6.5.3 Edge Swapping

We have constructed a collection of graphs with the same mean degree, but differ-
ent degree distributions, assortativity-by-degree, and clustering coefficients. Some
examples of these graphs are shown in Fig.6.5. We started with two base graphs:

3 The complexity of the criterion itself must not be overlooked. In many cases, its evaluation
requires partitioning the selected subgraph into connected components.
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Fig. 6.5 Example graphs used in this edge swapping study. Vertices are colored by degree, and
edges are colored by the degrees of the nodes at either end. Each row exhibits, from left to right,
the initial graph, the lowest assortativity graph with the fewest triangles, and the highest assorta-
tivity graph with the most triangles. Top row, an Erdős-Rényi random graph, (GNM); bottom row,
scale-free-like graphs (SFL)

1. one we call “scale-free-like” because the number of vertices with degree d is
proportional to 2−d , for d ∈ {4, 8, 16, 32, 64}, giving a total of 992 edges and
341 vertices;

2. an Erdős-Rényi random graph with 341 vertices and 992 edges (and therefore
the same mean degree, ∼5.82, as the scale-free-like graph).

For each of these base graphs, we constructed other graphs by swapping edges
in such a way as to preserve the degree distribution. Thus, in particular, the mod-
ified scale-free-like graphs all have a power-law degree distribution with exponent
−2. Two different kinds of swaps were used: one kind ensures that the number of
triangles in the graph changes monotonically (either increasing or decreasing); the
other ensures that the assortativity-by-degree changes monotonically (again, either
increasing or decreasing). These were both run in both directions for the scale-free-
like and G(N , M) base graphs. The resulting collection provides a laboratory for
studying the effect of assortativity and clustering on graphs with different structures.
It is similar to examining exponential family random graphs satisfying constraints
on mean degree, degree distribution, clustering, and assortativity-by-degree, but we
expect in addition to see traces of the initial structure in the graphs, a constraint
that is hard to formalize mathematically. That is, instead of starting with a random
graph and constraining various properties to have the values we want, we start with
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Fig. 6.6 Top The percolating reliability coefficients for a set of graphs derived from an Erdős-
Rényi random graph by swapping edges to change assortativity and clustering while maintaining
the degree distribution invariant. bottom The same, for scale-free-like graphs described in the text.
In both panels, data are plotted for the most assortative and least assortative graphs as well as a
neutrally assortative graph, for graphs with the largest and smallest numbers of triangles consistent
with the assortativity and degree distribution. Lines are drawn between points to guide the eye

carefully structured graphs and randomize them while maintaining the same proper-
ties invariant. We intend to make this graph library readily available to researchers
through the cyberinfrastructure for network science (CINET) web service at http://
ndssl.vbi.vt.edu/cinet/cinetproject/ [1].

Figure 6.6 shows reliability coefficients for six matched pairs of graphs. In each
pair the two graphs have the same assortativity-by-degree A and the same original
structure, SFL or GNM, but extreme values of the number of triangles, T . Note that
the magnitude of the effect of increasing the number of triangles depends strongly
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Fig. 6.7 The difference in
percolating reliability coeffi-
cients for two pairs of graphs
whose individual coefficients
are shown in Fig. 6.6. Each
curve displays results for co-
efficients for subgraphs that
include a different number
of common edges k. Unlike
other figures above, the total
number of edges in the sub-
graph, k + k′, varies along
each curve. Thus the reliabil-
ity of each graph separately
increases monotonically from
top to bottom, but the differ-
ence between the two graphs
does not
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on the assortativity-by-degree: the more assortative the graph, the more pronounced
the effect of triangles. Furthermore, the sign of the effect can vary: for five out of the
six pairs shown here, the graph with more triangles generally has larger reliability
coefficients. The exception is the neutrally assortative (A = 0) GNM graph. This is
in mixed agreement with theoretical results e.g. [2, 9]

Furthermore, T ’s effect is noticeable at smaller k for neutrally assortative graphs
than for either diassortative or assortative graphs. Also note that the curves for the
scale-free-like graphs A = 0; T = 550 and A = 0.25; T = 900—i.e. the graphs
with the largest (respectively, smallest) number of triangles for the neutrally (respec-
tively, highly) assortative cases—cross at least twice, suggesting that their relation-
ship in x-space is very complicated.

As discussed above, these results indicate the existence of a motif with about
200 edges that is not present in the highly assortative Erdős-Rényi-based graphs. In
contrast, for the scale-free-like graphs, there is a motif with fewer than 100 edges
that is present in the highly assortative graphs, but not the others. Its influence is
overcome in the other graphs by other reliable motifs with sizes in the range 150–
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225, depending on the assortativity and number of triangles. Likewise, for the highly
assortative graphs, one or more motifs (with size approximately 400 edges for Erdős-
Rényi and 225 edges for scale-free-like) distinguish the reliability for graphs with
high and low numbers of triangles. The motif(s) appear in the graphs with many
triangles for Erdős-Rényi-based graphs, but vice versa for scale-free-like graphs.

Figure 6.7 shows the difference in reliability for the most highly assortative pair of
GNM graphs and the most highly assortative pair of SFL graphs. Note the appearance
and growth of a peak in the reliability differences in the curves with k > 230–240.
Also note that the location of the peak when it appears is where about 280 edges
from one of the two GNM graphs are included. Our interpretation is that there is a
structure or motif of about 240 common edges in the GNM graphs that combines
with a motif of about 280 edges that appear in only one of the two GNM graphs to
create a reliable subgraph; similarly, a motif of about 300 common edges in the SFL
graphs combines with a complementary motif of about 300 edges in one of the two
SFL graphs to create a reliable subgraph.

In principle, we could identify the motifs by considering intersections of the edge
sets of reliable subgraphs with the correct number of edges. The k-space analysis
helps us hunt for the needle in this haystack by removing large parts of the haystack
that don’t hide the needle. Note also that a sample of these subgraphs was already
generated and tested against the reliability criterion in order to evaluate the difference
in reliabilities. Hence, the additional work required to identify the motifs is not large.
As these are preliminary results, we have not yet carried out this analysis.

6.6 Conclusion

We have argued that the set of coefficients Pk of a reliability polynomial character-
ize an arbitrary graph’s structure in ways that are immediately relevant to specific
dynamical processes. Moreover, we speculate that the coefficients themselves can
be well approximated by a small set of parameters that define a sigmoidal function,
e.g. its center and width. We have placed the reliability polynomial in a statistical
physics context, as the system’s partition function. Consequently, we showed how
to derive an analytical expression for the location of the percolation phase transi-
tion in reaction-diffusion processes over complex networks. This and other examples
presented here strongly suggest that a small set of parameters indeed play the most
significant role in shaping dynamical phenomena on the network.

We argue that, although identical statements could be made about the reliability
in x-space, the k-space perspective—where k represents subgraph size—suggests
fruitful new approaches to analyzing graph structure. We explored the mechanisms
by which both local and global structural information are separately incorporated
into the coefficients. These mechanisms can relate the value of the small set of
parameters to local or global statistics about the graph such as degree distribution,
clustering coefficients, modularity, etc. In contrast with these statistics, however, the
reliability parameters inherently factor in the complex relationships among the multi-
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scale structures they represent and the eventual dynamical phenomena. As examples,
we presented comparisons between several pairs of graphs that identify the structural
differences which are most relevant to specific dynamical processes. We also showed
how to study the effects of assortativity-by-degree, number of triangles, and edge-
swapping on dynamics. We indicated how reliability coefficients could be used to
identify critical structural motifs with hundreds of edges that dramatically influence
diffusion processes.

This work is just the tip of an iceberg. We have not attempted a review of the
literature, nor have we followed many tantalizing leads to their conclusion. We hope
that the brief overview and summary presented here will persuade the reader to delve
deeper into the subject.

Appendix 1: Useful Binomial Identities

We note that the derivative of a binomial can be expressed simply:

Bk(x) ≡ B(M, k, x) ≡
(

m
k

)
xk(1 − x)k (6.24)

d
dx

Bk(x) = x−1(1 − x)−1(k − Mx)Bk(x) (6.25)

Furthermore, we note that, since
∑M

k=0 Bk(x) = 1, all derivatives of the sum must
vanish:

M∑

k=0

dq

dxq Bk(x) = δ(q) (6.26)

It is clear from Eq. 6.25 that we can write the qth derivative of Bk(x) in the form

dq

dxq Bk(x) = x−q(1 − x)−q [kq − gq,k(x)]Bk(x) (6.27)

where gq,k(x) has no terms in k that are higher order than kq−1. Then, by Eq. 6.26

Sq(x) ≡
M∑

k=0

kq Bk(x) =
M∑

k=0

gq,k(x)Bk(x) q > 0 (6.28)

We can develop a recurrence equation for gq,k(x):
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gq,k(x) = kq − 1
Bk(x)

xq (1 − x)q
dq

dxq Bk(x)

= kq − 1
Bk(x)

xq (1 − x)q
d

dx

[
x−(q−1)(1 − x)−(q−1)(kq−1 − gq−1,k(x))Bk(x)

]

= (kq−1 − gq−1,k(x)) [(q − 1)(1 − 2x)+ Mx]

+kgq−1,k(x)+ x(1 − x)
d

dx
gq−1,k(x). (6.29)

In the sum over k, Sq(x), the first term above drops out, leaving

Sq(x) =
M∑

k=0

gq,k(x)Bk(x) =
M∑

k=0

{x(1 − x)
d

dx
gq−1,k(x)+ kgq−1,k(x)}Bk(x)

(6.30)
Thus we have a recurrence relation for a set of related functions g̃q,k(x):

g̃q,k = kg̃q−1,k + x(1 − x)
d

dx
g̃q−1,k, k > 1 (6.31)

with the first functions in the series

g̃0,k(x) = 0; g̃1,k(x) = Mx; g̃2,k(x) = Mx(k + 1 − x) (6.32)

and the summations

S0(x) = 1; S1(x) = Mx; S2(x) = M(M − 1)x2 + Mx;
S3(x) = M(M − 1)(M − 2)x3 + M(M − 1)x2 + Mx(6.33)

or, in general,
M∑

k=0

kq Bk(x) =
q−1∑

l=0

M !
(M − l)! x

q−l . (6.34)

Appendix 2: Sigmoidal Polynomials

We make the ansatz that Pk = f (k/M), where f is a sigmoidal polynomial which
satisfies the following constraints:

1. f ′(0) = 0;
2. f ′(1) = 0;
3. f (0) = 0;
4. f (1) = 1;
5. x0 = arg max f ′(x) on [0, 1]; and
6. f (x) is monotonic non-decreasing on [0, 1].
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Fig. 6.8 Examples of a two-
parameter family of sigmoidal
polynomials. Top The “bump”
functions that generate the
sigmoids. kc/M is the location
of the peak and N controls the
shape of the peak. Bottom The
sigmoidal polynomials for
n = 0, 1 or 2 and x0 = 0.41
or 0.59
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There are many such polynomials, which can be thought of as the cumulative dis-
tribution function for unimodal probability distributions. Here we consider one very
simple two-parameter family.

We start with a “bump” function gn(x) ≡ [x(1− x)]n(x − cn). Note that gn(0) =
gn(1) = 0. Construct f̃ (x) =

∫ x
0 gn(y)dy. Then define fn(x) ≡ f̃ (x)/ f̃ (1). Clearly,

fn(x) satisfies constraints 1–4 above. Constraint 5 is also satisfied if we choose a
value for cn to make g′(x0) = 0:

g′(x0) = [x(1 − x)]n−1[−n(1 − 2x)cn + (n + 1 − (2n + 1)x)x] (6.35)

So x0 is a zero of f ′′
n (x) if

cn = x0

n
n + 1 − (2n + 1)x0

(1 − 2x0)
(6.36)
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There are no free parameters left to adjust in fn . To ensure that constraint 6 is satisfied,
we require that cn < 0 or cn > 1, i.e. (n + 1)/(2n + 1) > x0 > n/(2n + 1). This is
not a general constraint on x0, just a constraint for the particular family of sigmoidal
polynomials we are using. For this family, as n increases, fn(x) is smoother at x = 0
and 1, and rises more rapidly around x0, but x0 is confined to a smaller and smaller
interval around 1

2 .
Explicit forms for f1 and f2 are given below and, along with f0, plotted in Fig. 6.8:

f1(x) = x2 3x2(2x0 − 1) − 4x
(
3x2

0 − 1
)
+ 6x0(3x0 − 2)

6x2
0 − 6x0 + 1

, for
1
3
< x0 <

2
3

(6.37)

f2(x) = x3(5x2
0 − 5x0 + 1)−1

{
−10x3(2x0 − 1)+ 6x2

(
5x2

0 + 5x0 − 4
)
+

15x
(
−5x2

0 + x0 + 1
)
+ 10x0(5x0 − 3)

}
, for

3
5
> x0 >

2
5
. (6.38)
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Chapter 7
Spatial Effects: Transport on Interdependent
Networks

Richard G. Morris and Marc Barthelemy

Abstract Space plays an important role in the behaviour of both individual
infrastructures, and the interdependencies between them. In this Chapter, we first
review spatial effects, their relevance in the study of networks, and their characteri-
zation. The impact of spatial embedding in interdependent networks is then described
in detail via the important example of efficient transport (or routing) with multiple
sources and sinks. In this case, there is an optimal interdependence which relies on
a subtle interplay between spatial structure and patterns of traffic flow. Although
simplified, this type of model highlights emergent behaviour and brings new under-
standing to the study of coupled spatial infrastructures.

7.1 The Importance of Spatial Effects

Catastrophic failures in real world infrastructures are typically a result of consecutive
improbable events. However, the chain of these events can often traverse more than
one type of system, therefore it is important to understand the role of interdependency.
For example, Fig. 7.1 shows a simplified schematic of interdependencies between
various systems, and demonstrates how easily failures can propagate from one system
to another.

Such interdependencies can be loosely classified into different categories [1]. For
example, interdependencies can be ‘physical’, where the state of each system relies
on the physical output of the other. In this case, one can imagine a coal-fired power
station might generate the power for a rail network that, in turn, is used to deliver
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Fig. 7.1 Types of interdependencies between different critical infrastructures—adapted from
Ref. [1]. Failure in the water distribution network might cause disruption at a power station, due to
lack of cooling. This, in turn, could affect control networks employed to monitor water distribution
in the first place, exacerbating the initial failure

coal to that same power station. We may also characterize ‘cyber’ dependencies,
which is the case for example in supervisory control networks. Here, the state of
one system relies on information about the state of the other system. The final type
of interdependency can be described as ‘spatial’. That is, different systems can be
affected by a localized disturbance due to spatial proximity. This simplest case relates
to scenarios such as seismic failures, explosions, or fires, where an external event
directly affects different infrastructures in the same location—and could be the trigger
for a chain of failures. However, as we describe in later Sections, localized failure in
one infrastructure may also be the cause of localized failure in another. For example,
local traffic congestion on a road network can cause train overcrowding in the same
region due to more people choosing the train.

This Chapter focusses on the last of these three classes, where transportation
systems such as the road network, rail, subway, etc., are an important example. Such
urban systems are, by construction, embedded in space and interdependent. However,
an assessment of their resilience is very difficult [2], and therefore understanding the
effect of interdependence on the stability of such systems is an important task [3]. One
of the main problems is that human-mediated interdependency can be the source of
counter-intuitive phenomena, such as flash congestion [4]. As a result, many detailed
systems-engineering approaches have floundered, whilst the simplified models used
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by physicists have proved helpful to identify the mechanisms underlying certain
important characteristics. The aim of this Chapter is therefore to describe interesting
effects that arise—at the aggregate level—for transportation systems that are both
spatial and interdependent. To achieve this, the Chapter is organized as follows. In
the next Section, spatial networks will be defined and their key properties reviewed.
In Sect. 7.3, we describe, via two examples, how these properties affect systems of
coupled networks. The final Section then concludes with a short recap and discussion
of the main characteristics of such systems, whilst also highlighting open questions
in the field.

7.2 Spatial Networks

Generally speaking, spatial networks are networks for which the nodes are located
in a metric space—that is, one that permits the notion of a distance between any
two points. Transportation and mobility networks, Internet, mobile phone networks,
power grids, social and contact networks, neural networks, are all examples where
space is relevant and where topology alone does not contain all the information [5].
For most practical applications though, it suffices to embed nodes in a straightforward
two-dimensional euclidean space.

To give an idea of the role played by spatial effects, consider the following simple
example. Imagine that a set of nodes are placed at random in the plane, and an edge
is created between any pair of nodes according to some probabilistic rule. For spatial
networks, this probability might decrease with the euclidean distance between the
two nodes, for example. In this case, there is an implicit ‘cost’ associated with size
of each edge, and therefore the connections between nodes are predominantly local.
More broadly, the spatial constraints have had a dramatic effect on the resulting
topological structure of the network.

Notice that the above definition does not imply that a spatial network is planar.
Indeed, the airline passenger network, for example, is a network connecting direct
flights through the airports in the world, and is not a planar network. Further to this, it
is not even necessary that the embedded space of the network corresponds with a real
space: social networks for example connect individuals through a friendship relations.
The probability that two individuals are friends however generally decreases with
the euclidean distance between them, showing that in social networks, there is an
important spatial component (see for example [6]).

Whilst the above exceptions can be both important and interesting, in most systems
of interest, both planarity and a real space embedding are natural choices. For exam-
ple, electricity and gas distribution, roads, rail, and other transportation networks are
all, to a very good approximation, spatial and planar networks. Due to the number
of relevant examples and the intuitive ease with which they can be understood, we
choose to focus primarily on such spatial-planar systems.

In the rest of this Section, therefore, we first review the main types of spatial
networks and how they can be characterized. Then, with this in place, we describe
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two important classes of problems that commonly feature spatial networks—failure
cascade prevention and routing/transportation—and how they can be analyzed.

7.2.1 Types of Spatial Networks

There are, of course, many different types of spatial network. Indeed, as we describe
in Sect. 7.2.2.1, choosing appropriate measures to classify different types of spatial
networks is still an open area of research. However, for the purposes of this Chapter,
it will suffice to look at only the broadest classes of spatial networks.

7.2.1.1 Regular Lattices

The simplest and most commonly used spatial network is the regular lattice—
constructed by repeatedly copying a so-called ‘unit cell’. Whether a simple square
lattice or one comprising more complicated polyhedra, the general properties are:
uniform density, periodic structure and high degree of symmetry. In almost all cases,
the unit cell is planar and very straightforward, where all nodes of the network have
the same degree (although it is possible to use repeating units that are either non-
planar or do not have uniform degree). Regular lattices are prevalent for two reasons,
primarily due to their simplicity, but also due to the fact that many man-made systems
have very regular structures such as the road network in many cities (e.g., Manhattan).

7.2.1.2 Delaunay Triangulations (and Voronoi Tessellations)

If the underlying system of study is planar, but a regular lattice has too much sym-
metry, one option is to use less regular types planar subdivisions. By far the most
well-know of these are the Delaunay triangulation, and its dual, the Voronoi tessel-
lation.

A Delaunay triangulation can be defined for any set of points positioned in the
plane, the result being an almost1 unique triangulation that maximises the smallest
angle of all the triangles. That is, it tends to avoid very thin triangles. Given a particular
Delaunay triangulation, one may construct the Voronoi diagram—a more general
subdivision of the plane that associates a polygon with each node (see Fig. 7.2). There
is a great deal of work that concerns the properties of such subdivisions and how to
efficiently generate them, primarily due to their importance in problems of finding a
so-called ‘convex hull’ for a discrete set of points. We refer the interested reader to
the important work [7] which forms the cornerstone of most modern techniques for
generating either Delaunay or Vornoi diagrams.

1 If, in the exceptional circumstances that more than three nodes lie on the same circumcircle (see
Fig. 7.2), then the neither the Delaunay or Vornoi diagrams are unique.
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Fig. 7.2 A Delaunay triangulation is a triangulation of points (black dots) in the plane where the
circumcircle of each triangle does not contain any other points. If the centres of circumcircles (red
dots) belonging to neighbouring triangles are joined together, the Voronoi diagram is produced (red
lines)

The benefit of such irregular planar subdivisions to the modeller is that one may
specify a non-homogeneous distribution of nodes. For example, when representing
a water distribution network, one might expect the result to be planar subdivision,
but with greater density around towns and cities.

7.2.1.3 Probabilistic Networks

In order to incorporate more disorder, it is necessary to adopt a fully probabilistic
approach to network generation. Here, one typically starts with a set of nodes po-
sitioned in the plane, and then, for each pair of nodes, creates an edge according
to some probabilistic rule. The example discussed earlier considered a probability
decreasing with the distance between two nodes, but this might equally involve more
complicated spatio-topological indicators, such as clustering coefficients or average
shortest paths (for more details on probabilistic models of spatial networks, we refer
the interested reader to the review [5]).

7.2.2 Characterization of Spatial Networks

Whilst the first attempts to characterize spatial networks were made in the area of
quantitative geography in the 1960s [8–11], more recently other measures have been
popularized by the study of complex networks [12, 13]. Most of the currently used
measures—often called indicators—are relatively simple, but still give important
information about the spatial structure of the network. Here, we will briefly review
the most useful quantities which allow for a good characterization of spatial networks.
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7.2.2.1 Spatial and Topological Indicators

The most common quantities used to describe networks typically characterize only
topological aspects and are not of particular interest for spatial networks. For exam-
ple, the degree distribution is usually peaked which results from the fact that physical
constraints imply a small cut-off, and the clustering and assortativity are usually flat,
a consequence of the fact that connections are predominantly made to neighbors
irrespective of their degrees.

A first useful quantity for spatial networks is the average shortest path ! which
for most random networks scales as ! ∼ log N (where N is the number of nodes),
signalling a small-world type behavior. In contrast, spatial networks are large-world
and usually display a lattice-like behavior of the form

! ∼ N 1/d , (7.1)

where d is the dimension of the embedded space which, for most applications, is
two.

Another helpful quantity used to characterize spatial systems, is the total length

L tot =
∑

e∈E

!(e), (7.2)

where E is the set of edges and !(e) is the Euclidean length of the edge e. Under
the assumption of a peaked distribution of !(e), the scaling for most networks is of
the form

L tot ∼ L
√

N , (7.3)

where L is the typical size of the area under consideration. One can then easily
construct the minimum spanning tree on the same set of nodes and obtain its length
L tot(M ST ). The ratio of these lengths

C = L tot

L tot(M ST )
, (7.4)

is always larger than 1 and is a good measure of how costly a network is.
For some irregular planar subdivisions, like roads and railway lines, the polygons

that make up the faces can correspond to important information about the structure
of the network. We can characterize the faces by two main quantities, their area A
and their shape factor

φ = 4A
π D2 , (7.5)

where D is the largest diameter of the polygon. This quantity φ thus indicates how
anisotropic the face is: for φ ≈ 0 the face is a very elongated rectangle and for φ ≈ 1
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the face is essentially a disk. We observe for most road networks [5] the following
behavior

P(A) ∼ A−γ , (7.6)

where γ ≈ 2, a value which probably finds its origin in the node density fluctua-
tions [5].

The shape factor distribution usually displays a peak around φ ≈ 0.6 and its time
evolution displays some interesting behavior which is so far unexplained [14].

We end this section by noting that the classic quantity, the betweeness centrality
(BC) which quantifies the importance of a node (or an edge) in the network behaves
very differently in spatial networks. In complex, scale-free networks, the BC scales
as a power of the degree. In other words, the larger the degree the larger the BC,
indicating that the hubs are the most important nodes in the network. In spatial
networks, there is an interplay between the degree and the distance to the barycenter
of nodes, leading to the appearance of ‘anomalies’, nodes with a small degree and a
large BC.

7.3 The Effects of Interdependence in Spatial Networks

Studies that incorporate the features of coupled networks with those of spatial net-
works are small but growing in number. So far, such research has focussed on either
failure cascades or transport and routing processes.

For failure cascades, the idea is that either the nodes or edges in the underlying sys-
tem have an intrinsic carrying capacity which, if exceeded, causes a ‘failure’. Once an
edge or node has failed, it is removed from the network and then redistributed. This
may then cause the overloading and failure of further power lines, and so on. Such
cascading failures are important because, under certain circumstances, small isolated
failures can result in large system-wide outages. Recent work [15–21] has extended
this idea to a system of interdependent networks—that is, the failure of a node in
one network causes the immediate failure of the nodes to which it is connected in
the second network. By measuring the size of the largest connected component that
remains following a cascade, it can be shown that the extent of cascades increases as
the number of inter-network connections is increased. In Refs. [23, 24], the authors
apply this model of interdependent cascades to a system comprising two interdepen-
dent square lattice networks. Here, it is argued that since the model uses percolation
techniques, the results—measured in terms of giant connected components—should
not depend on the particular realization of the network. That is, it is known that the
percolation transition has universal scaling behavior which does not depend on the
coordination number and is the same for lattice and off-lattice models, as long as
the links have a finite characteristic length [25]. The key aspect of the model is that
dependency links between two networks are randomly chosen within a certain dis-
tance r . One can then show that percolation for small r is a second-order transition,
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and for larger r is a first-order transition. Moreover, the results suggest that systems of
this type become most vulnerable when the distance between interdependent nodes
is in the intermediate range: greater than zero but much smaller than the size of the
system.

As mentioned above, another class of systems that are both interdependent and
spatial are general transport processes, or flows [22]. Whether flows of people, fluids,
or electrical currents, these systems can be characterized by specifying the topology
of the underlying network, a source-sink distribution, and a dynamic. To avoid confu-
sion, we only imagine dynamical processes that converge to a steady state—resulting
in a stationary distribution of flows over the network. Unfortunately, the methods of
analysis mentioned above do not capture many of the typical features one might
expect here. For example, it is easy to imagine a simple source-sink distribution that
allows the network to be split into two distinct components such that the flows are
unaffected. In this case, the size of the giant component may decrease but the network
is still operating well.

Since the percolation techniques used to analyze cascading failures are well docu-
mented, the rest of this Chapter is devoted to the description of transport and routing
processes.

7.3.1 Transport and Routing

One may ask: how should an interacting, or coupled, set of flow networks be charac-
terized, and what are the interesting features of such systems? From observing real
systems, one expects interesting effects to arise from three main areas:

• Spatial - and localization-effects from network connections.
• Spatial distribution of source and sinks.
• Coupling between the two networks.

Of course, the global behaviour of any real system is intimately linked with the par-
ticular form of dynamical interactions involved. However, some understanding of the
above points can be gained by investigating the properties of simple examples that are
chosen well enough to represent certain classes of systems. In this Section, we recap
the results of examining such a ‘toy model’ [26], where the main idea is intuitively
simple. Consider a transport network where there is a choice between travelling by
train or by car, or perhaps the routing of packets in Information Communication
Technology networks (ICT) where there are two different networks available (a sim-
ple schematic of this type of system is shown in Fig. 7.3). For these types of systems,
the typical choice is between a ‘fast but sparse’ network and ‘slow but dense’ net-
work. It is in this system that interesting effects arise through the interplay of the
three main areas outlined above.
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Fig. 7.3 Flows on two interdependent networks: edges of network 1 are shown in black, edges of
network 2 are shown in red, and nodes in common to both networks are considered to be coupled
(shown by dashed lines). Shown in green, we represent a path between two nodes, the ‘source’ i
and the ‘sink’ j

(a) (b)

Fig. 7.4 a The national road network in England, and b the network of major internet servers across
the UK operated by British Telecom. These networks are consistent with planar subdivisions on a
finite sampling of nodes taken with uniform density

7.3.1.1 Network Structure

Since the motivation here is transport and routing problems, inspiration for the model
can be found by looking at real systems. For example, one can argue that schematics of
national transport networks or internet server networks resemble planar subdivisions
where the nodes have been arranged at random with uniform density (see Fig. 7.4).
Drawing from ideas discussed in Sect. 7.2.1, a good approximation for these systems
is therefore to use Delaunay triangulations.

With the aforementioned examples in mind, one can ask: how should two Delau-
nay triangulations be coupled together? We imagine a road network coupled to a rail
or subway network. Here, all the nodes of the road network are not nodes of the rail
network, but conversely, all stations are located at points which can be considered
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(a) (b) (c)

Fig. 7.5 Each instance of the system is generated according to the following process: a First,
N (1) nodes (here N (1) = 30) are positioned at random within the unit disk and the Delaunay
triangulation is produced; b the second network is then generated by drawing N (2) (here N (2) = 10)
nodes uniformly from the existing ones (N (2) ≤ N (1)) and, once again, computing the Delaunay
triangulation; c the combined system is no longer planar

as nodes in the road network. That is, the nodes of one network are a subset of the
nodes of the other. As will be shown, this setup conveniently provides a simple way
to realize the ‘sparse’ versus ‘dense’ characterization described above.

More mathematically, one can construct two Delaunay triangulations DT (1) and
DT (2). The set of nodes of DT (1) are taken to be N (1) points distributed uniformly
at random within the unit disk. The nodes of DT (2) are then selected at random from
N (1) and we define

β = N (2)

N (1) ≤ 1. (7.7)

That is, the model comprises two individual networks that are each planar Delau-
nay triangulations, forming a combined network that is not necessarily planar (see
Fig. 7.5). For the combined network, N = N (1), and E = E (1) ∪ E (2). Recalling
that Delaunay triangulations are effectively unique for a given set of points, it is then
clear that, for a given value of β, the spatial and topological structure is entirely
defined by N (1) and N (2).

7.3.1.2 Route Assignment

For modelling a transportation system, it is natural to associate a velocity v(n) with
each network n ∈ {1, 2}, and to assign weights to each undirected edge e(n) =
(xi , x j ) according to

w(e(n)) = |xi − x j |
v(n)

. (7.8)

Here, w is the time taken to traverse the edge, and will provide the building block
for all other useful system indicators.
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To allocate flows on the network, rather than considering a dynamical system
which acts to minimize a global quantity—such as electrical networks, where the
dissipated power is minimized—a straightforward choice is to once again follow
a transportation analogy. This means that the source-sink distribution of a general
system of flows, can be replaced by an origin-destination (OD) matrix Ti j . Indeed,
as before, this approach is also representative of the Internet, i.e., it is necessary to
not only receive a packet of information, but it must be a particular packet sent from
a particular server. Since each entry in the OD matrix specifies the proportion of the
total flow that goes from node i to node j , this type of representation has the benefit
that flows are completely specified by combining an OD matrix and a method of
route choice.

The most obvious candidate for a method route choice, is to take the journey that
minimizes the travel time. That is, the weighted shortest path, where the weights are
given by Eq. (7.8). Here, the idea is that the ratio

α = v(1)

v(2)
(7.9)

is a single parameter that controls the relative speed of travel on the two networks.
Indeed, in order to simplify further, we impose the constraint that α ≤ 1. Since
β < 1, this has the effect of enforcing the ‘fast but sparse’ versus ‘slow but dense’
scenario.

In terms of the OD matrix, it is impractical to consider the interplay between
all possible forms for Ti j . Therefore it helps to choose a method that interpolates
between two extremes, the monocentric case and a form of Erdős-Réyni random
graph. We start with a monocentric OD matrix—i.e., all nodes travel to the origin—
and then add noise by rewiring in the following way. For each node, with probability
p, choose a random destination, and with probability 1 − p, choose the origin (see
Fig. 7.6).

7.3.1.3 Interdependence

Previous studies of interacting networks use the term coupling to describe how well
two networks are linked. Typically, this is a purely topological definition i.e., the
fraction of nodes from one network which link to another [15], or the probability
that a particular node has an edge which connects both networks [20]. For transport
processes, a better measure of interaction must include details of how the flows are
distributed. For the system outlined above, we then specify a new quantity which we
coin interdependence and is defined in a similar vein to the betweenness centrality

λ ≡
∑

i )= j

Ti j
σ

coupled
i j

σi j
, (7.10)
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(a) (b)

Fig. 7.6 Representations of OD matrices where each arrow corresponds to an entry in Ti j and
which relates to the underlying geometry of Fig. 7.5. a A monocentric OD matrix. b A monocentric
OD matrix randomly rewired with probability p = 0.5

where σ
coupled
i j is the number of weighted shortest paths between nodes i and j , which

include edges from both networks. In the transportation analogy, the interdependence
is a way to quantify the importance of different transportation modes in order to
achieve a fast journey. Here, the entries of the origin-destination matrix Ti j are
normalized i.e.,

∑
i j Ti j = 1, and it is clear from Eq. (7.10) that λ ∈ [0, 1] is

dependent on the method by which the flows are allocated and not just the system
topology. The larger λ, the more one network is relying on the other to ensure efficient
shortest paths (note that there is usually a maximum value of λ strictly less than
one, since not all shortest paths can be multimodal). It is also clear that, by virtue of
influencing the shortest paths, the number α can control the interdependence between
the two networks.

With Eq. (7.10) in mind, instead of investigating the likelihood of catastrophic
cascade failures, we consider more general measures of how well the system is
operating. For example, one such measure is the average travel time

τ =
∑

i )= j

Ti jwi j , (7.11)

where wi j is defined from Eq. (7.8) as follows: wp = ∑
e∈p w(e) is the cumula-

tive weight of path p, and wi j = minp∈P wp is the minimum weight of all paths P
between nodes i and j . For most practical transport processes, a well designed system
reduces the average time travelled (i.e., water/food supply, the Internet, transporta-
tion, etc.).

Another important quantity, which can be used as a simple proxy for traffic flow,
is the edge betweenness centrality (BC). For the system at hand, the definition of the
edge BC is

b(e) =
∑

i )= j

Ti j
σi j (e)
σi j

, (7.12)
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(a) (b)

Fig. 7.7 Simulation results for the average shortest path and the Gini coefficient (N (1) = 100,
N (2) = 20, and p values: 0 (purple), 0.2 (blue), 0.4 (green), 0.6 (orange), and 0.8 (red)). When the
interdependence increases, the average shortest path decreases and the Gini coefficient can increase
for large enough disorder (lines are polynomial fits)

where the sum is weighted by the proportion of trips Ti j , and σi j (e) is the number of
weighted shortest paths between nodes i and j , which use edge e. The betweenness
centrality allows the introduction of a second measure, the Gini coefficient G. A
number between zero and one, G is typically used in economics for the purpose of
describing the concentration of wealth within a nation. Here it is used to characterize
the disparity in the assignment of flows to the edges of a network, something that has
been done before for transportation systems such as the air traffic network [27]. For
example, if all flows were concentrated onto one edge, G would be one, whilst if the
flows were spread evenly across all edges, G would be zero. We use the definition
according to Ref. [28]

G ≡ 1

2|E |2b̄

∑

p,q∈E

|b(p) − b(q)|, (7.13)

where subscripts p and q label edges, E is the total number of edges, and b =∑
p∈E b(p)/|E | is the average ‘flow’ on the system. In this picture, the Gini coef-

ficient can now be thought of as a measure of road use. A low value indicates that
the system uses all roads to a similar extent, whilst a high value indicates that only
a handful of roads carry all the traffic.

7.3.1.4 Existence of Optimal Interdependence

The set of numbers p, β and α, now define an ensemble of systems that are statistically
equivalent (with respect to λ, τ , and G). Therefore one may calculate the quantities
〈λ〉, 〈τ 〉, and 〈G〉 for different values of p and α, where angle brackets 〈. . . 〉 represent
an ensemble average.

Simulation results are shown in Fig. 7.7, where each data point corresponds to
an average over fifty instances of the OD matrix for each of fifty instances of the
coupled network geometry. As the interdependence λ increases, the average journey
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(a) (b) (c) (d)

Fig. 7.8 Colormaps showing normalized edge flows—plotted at the midpoint of each edge—over
many instances of the system. Colors are assigned starting from white (for zero flow) and moving
through yellow, orange and red for higher values of flow, until reaching black (maximum flow).
Each Subfigure corresponds to the following parameter values: a p = 0.2, α = 0.9; b p = 0.2,
α = 0.1; c p = 0.8, α = 0.9; d p = 0.8, α = 0.1

time decreases (Fig. 7.7a). This is straightforward to understand since the increased
interdependence is simply a result of reducing the velocity ratio α. Furthermore it
is clear that increasing randomness in the origin destination matrix increases the
length of the average shortest path by an almost constant value, irrespective of the
interdependence. By contrast, the behaviour of the Gini coefficient at different in-
terdependencies (Fig. 7.7b) is less easily explained. Consider instead Fig. 7.8. Here,
each colormap shows the distribution of flows resulting from many instances of the
system.

The first two plots, Figs. 7.8a and 7.8b, were generated from OD matrices rewired
with low probability (p = 0.2) i.e., almost monocentric. The ratios of edge weights
per unit distance between the two networks are α = 0.9 and α = 0.1 respectively.
Therefore each diagram corresponds to a point on the blue line in Fig. 7.7b. For α =
0.9, there is minimal independence between the networks and a high concentration
of flows are seen around the origin. Since the flows are disproportionately clustered,
this configuration is described by a high Gini coefficient. By contrast, for α = 0.1,
the difference in the edge weights means that it can be beneficial to first move away
from the origin in order to switch to the ‘fast’ (low α) network. We therefore see a
broader distribution of flows with small areas of high concentration around coupled
nodes. The emergence of these hotspots away from the center also corresponds to
a high Gini coefficient—and therefore the blue line in Fig. 7.7b is relatively flat.
Figs. 7.8c and 7.8d correspond to the red line of Fig. 7.7b: generated from OD
matrices rewired with high probability (p = 0.8). We observe that even for α close
to one, the distribution of flows is broader than for p = 0.2—resulting in a lower
Gini coefficient. As α is decreased, the second network becomes more favourable and
interdependence hotspots can be seen once again—resulting in a high Gini coefficient
and a positive gradient for the red line of Fig. 7.7b. This result points to the general
idea that randomness in the source-sink distribution leads to local congestion and
more generally to a higher sensitivity to interdependence.

At this stage, it is natural to combine the effects observed above into a single
measure. We assert that it is likely a designer or administrator of a real system would
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(a) (b)

Fig. 7.9 Existence of an optimal interdependence: a Simulation results for µ = 10, N (1) = 100,
N (2) = 20, and p values: 0 (purple), 0.4 (green), and 0.8 (red) (three values only of p are shown to
ensure the lines of best-fit can be seen clearly). b Minima of quadratic best-fit curves for different
values of p. We obtain λ = λ∗ for p∗ - 0.34 (The error bars shown are those of the closest data
point to the minimum of the best-fit curve)

wish to simultaneously reduce the average travel time and minimize the disparity in
road utilization. To serve this purpose, a ‘utility’ function

F = 〈τ 〉 + µ〈G〉 (7.14)

can be defined, where it is immediately apparent from Fig. 7.7 that, for certain values
of µ, the function F will have a minimum. That is, a non-trivial (i.e., non-maximal)
optimum λ will emerge. Figure 7.9a shows that, whether a non-trivial optimum
interdependence exists depends on the origin-destination matrix. For OD matrices
rewired with a high probability, increasing the speed of the rail network reduces
the road utilization as flows become concentrated around nodes where it is possible
to change modes. Dependent on the value of µ, the effect of reduced utilization
can outweigh the increased journey time, leading to a minimum in F . Monocentric
OD matrices, by contrast, have inherently inefficient road utilization when applied
to planar triangulations, regardless of the speed of the rail network. Therefore no
minimum is observed, and hence no (non-trivial) optimum λ. More systematically,
one may plot the minima λ∗ of best-fit curves corresponding to different values of
p (Fig. 7.9b). Defining p∗, the value of p for which λ∗ = 1, it is then possible to
categorize the system into one of two regimes. We observe that: if p < p∗, then the
optimal interdependence is trivially the maximum; otherwise if p ≥ p∗, a non-trivial
optimal interdependence exists.

7.4 Discussion and Perspectives

In this Chapter, we have highlighted the importance of spatial effects in coupled
networks by focussing on problems of transportation and routing. In contrast to
studies of failure mitigation—that often use either percolation or cascading-sandpile
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techniques—models of transport are better described by measures of utility and
efficiency. By using such quantities, it is possible to identify an optimal interdepen-
dence between the two networks. Below the optimum, the system is inefficient and
travel times can be large, whilst above the optimum, system utilization is poor due to
congestion arising around ‘link nodes’ that connect the two networks. The existence
and behavior of this optimal value turns out to be very sensitive to the randomness
of the individual trajectories that make up the system.

Even though the model is very simplified, it possesses the advantage of highlight-
ing dominant mechanisms, and can serve as a basis for more sophisticated modeling
such as the ones used and developed by civil engineers. The broader interpretation
being that systems that rely on routing like transportation networks, or the Internet,
may be inherently fragile to certain changes in supply and demand. Furthermore, if
such observations can be generalized, this could have serious ramifications in other
areas, such as the transition from centralized to de-centralized power generation [29].

Finally, we note that most studies have so far considered that the dynamical
processes on the different interacting networks were the same. In many cases, this
is not a realistic assumption, and it seems to us that an important future direction of
research is understanding and classifying coupled systems where the dynamics are
different. An example of this type of system are so-called supervisory control sys-
tems. Here, an underlying network such as the electrical distribution grid is coupled
to an Information Communications Technology (ICT) network for the purposes of
monitoring and control. For this case, failure spreading rules are different in each
layer, and therefore the stability of the system is very difficult to predict [30].
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Chapter 8
Electrical Networks: An Introduction

S. Pahwa, M. Youssef and C. Scoglio

8.1 Introduction to Electrical Networks

A world without electricity is beyond our imagination. Starting from the prehistoric
times, man has made much progress in every walk of life. We have become accus-
tomed to getting everything at the flick of a switch, touch of a button, or turn of a
knob. While we have become so used to enjoying the benefits of electricity, it is not
easy to imagine how electricity travels from its source to our homes and offices. It
sometimes has to cover large distances through a complex network of transmission
lines and power substations to provide us the facilities and entertainment that we take
for granted. This network which transports electricity from the source to the con-
sumers is called the electrical network. The electrical network is a collective term for
different components such as transformers, transmission lines, substations, and dif-
ferent stages and sub-networks devoted to generation, transmission, and distribution.
Sometimes, there may be sub-transmission and secondary distribution networks too.
A simple schematic of an electric network is shown in Fig. 8.1. In the past decade,
analysis of the electrical power system as a complex network has been an evolving
and challenging topic of research.
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Fig. 8.1 A block schematic of an electrical network. The transmission system operates at the
highest voltage. The sub-transmission operates on medium voltage levels, while the distribution
system operates on low voltage

8.1.1 Overview

As mentioned, a general electrical network consists of three main parts: Generation,
Transmission, and Distribution. The aim of the electrical network is to transport
electricity from the source to the consumers. The transmission sub-system is the
backbone of the complete electrical network and connects all the main load centers
in the system to the main generating plants, while operating at the highest voltage
level. Sometimes, there is no clear distinction between the transmission and sub-
transmission networks and sometimes they are distinctly separated from each other.
The generation and transmission sub-systems together constitute the bulk power
system. The distribution sub-system consists of the final stage of power transfer to
the individual consumers [1].

The transmission sub-system has been the most studied of the sub-networks of
the electrical network. The mesh structure of the transmission network makes it par-
ticularly interesting to study different problems on this network. The distribution
sub-network usually has simple topologies such as a tree or a ring. Most radial net-
works are meshed networks initially. However, for a better analysis of their protection
schemes and losses, they are always represented and analyzed as an equivalent radial
or ring network [2].

All real systems can be modeled into graphs with the individual entities of the
system as the nodes and the connections between these entities as the links. The types
of connections help us to classify these graphs as random, scale-free, hybrid, or some
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other kind of topology. When dynamics are considered on these graphs, either on
nodes or links, they are referred to as networks. It is the particular dynamic and the
models considered for the analysis of these dynamics which distinguish different
networks from each other.

The study of power grid as a complex network started a little before the beginning
of the last decade, and gained more importance and momentum after the North
American blackout of 2003 [3] and other European blackouts that followed in the
same year [4–6]. A basic electrical network can be regarded as a connection of buses
through transmission lines, where every bus carries a load or demand that must be
satisfied by the power flowing through these lines. Every electrical network must
follow the basic laws of Physics called the Kirchoff’s equations. These are equalities
that deal with the conservation of charge and energy in electrical circuits.

Most of the complex network analysis has been carried out on high voltage trans-
mission grids because their structure is mesh-like and it projects a complexity that
is very interesting in the study of different characteristics of electrical networks. In
general, power grid networks tend to be sparse networks, as indicated by the real
IEEE power grid data available at [7]. The distribution grid tends to be a ring or
radial structure but the average node degree of the high-voltage grid is also small.
There is a common agreement among the researchers that the average degree of the
transmission grid is between 2.5 and 5 (for both, American and European grids),
even though the node degree distribution has been a topic of discussion. It seems
intuitive to note from a security point of view that a power grid should not have
topological hubs. There are some nodes which are “critical” since they carry a very
high load, yet their degree does not seem to be too large relative to the size of the
grid.

Every node in the electrical network is characterized by a finite capacity, described
by the maximum load that the node can carry. Similarly, every link is characterized
by a capacity which indicates the maximum amount of power flow that the link can
carry, without overheating, melting or discharging. The capacity of the link is not
the only factor governing the flow of power on the link. It is important to incorporate
the flow dynamics into the topological model of the electrical network through some
power flow models. A simple approximation of the complete AC power flow model is
the linearized DC model [8]. The set of equations of this model not only incorporate
the Kirchoff’s laws but also give a rule for the flow of power through each link based
on its reactance and the phase angles of the nodes at the two ends of the link. The
model is discussed in more details in Sect. 8.2.

This field has constantly evolved and continues to evolve. There are many more
challenges that the electrical network of the future offers and the answers are hidden,
at least partly, in the structure and design of the networks. The field of complex
networks has a huge responsibility of understanding these challenges and bringing
forth the answers.
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8.1.2 Vulnerability Analysis

Major work has been done in the area of robustness studies of electrical networks,
considering the increasing occurrences of power grid blackouts all over the world,
in the last decade. Cascading failures used to be a rare phenomenon, but with the
unprecedented dependence on the electricity infrastructure, bad practices, and the
lack of restructuring of the system, it is now becoming an occurrence which can be
heard of several times a year [3, 9–20]. Several times, these cascading failures are
triggered by small local disturbances which spread throughout the network due to
the complex flow dynamics of the electrical system.

At the very beginning, a study of the cascade spread models, as adapted to power
grids was emerging. One of the first studies in this area was presented in [21] in
which a very simple model for spread of disturbances in power transmission grid
was proposed. This model considered a network of nodes, each representing a power
generation or transmission element and the connections between these nodes were
not transmission lines, but coupling between the nodes, which was a way to simulate
the circuit equations in a real power network. Every node was characterized by a load
and a threshold of the load that it could handle. Whenever a node reached its load
threshold, load was randomly transferred to the neighboring nodes. The power grid
networks considered for evaluation were either well-defined simple ring networks
or ring-like structures with some randomness to add a paradigm of complexity as
compared to the simple ring structures. The ring-type random power grid networks
considered in this work were characterized by their path lengths and clustering co-
efficient.
Another model, known as the “capacity” model, was proposed in [22] and was
supposedly the first “dynamic” model suggested for the power grid. This model
considered the flow of a quantity between two nodes through a shortest path and
the load on a node was the total number of shortest paths through that node, or in
other words, the betweenness of the node, as mentioned in [23]. The capacity of the
node was the maximum load it could handle and it was assigned to each node in
proportion to the initial load carried by the node. If there was an overload failure in
a node, there was a load redistribution among the neighboring nodes of the failed
node, or in other words, the redistribution of the shortest paths in the neighboring
nodes. The results indicated that this redistribution can lead to a cascade of overload
failures in networks with a heterogeneous distribution of loads.

In the “efficiency” model for dynamic complex networks, presented in [24], the
focus was also on cascades caused by overloading of nodes and the subsequent
redistribution of the flow on the network but this model was different from the
other models because it did not remove the overloaded nodes from the network but
simply reduced the efficiency of the flow through this node. As a result, it caused a
redistribution of flows through other nodes, indirectly redistributing the shortest paths
and the damage to the network was quantified as the decrease in global efficiency, as
described in [25]. This work mentioned that the degree distribution of an electrical
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power grid is exponential but it is heterogeneous in the distribution of loads in the
network.

The same model has also been used, specifically for the Italian electric power grid
in [26] with the result that the grid is very vulnerable to those failures that occur
on the nodes with the highest betweenness. This model distinguished between the
nodes as generators and distribution stations, similar to [27] in which the structural
vulnerabilities of the North American power grid were evaluated. The authors of
this work also agree with [28] in noting that the degree distribution of the North
American grid, similar to the Western power grid, is exponential. It is a single-scale
network and there is a cost involved with addition of each edge. They also showed
the vulnerability of the North American grid based on the edge range approach,
discussed in [29], which was one of the first few works to consider attacks on links.
They further go on to discuss a connectivity loss measure to find the number of
generator nodes that are connected to any given substation node. The authors of [30]
formulate a bi-level mixed integer nonlinear programming problem to identify the
small groups of lines, which if removed, can cause a severe blackout.

In [31], two real power grid networks, the Nordic grid and the Western States US
grid have been studied, their topological characteristics with respect to cascading
failures have been compared and these results are further compared with networks
from two theoretical models, the Erdos-Renyi random network model [32] and the
Barabasi-Albert scale-free network model [33]. These comparisons show clearly the
similarities and differences of the two real power grids with respect to the theoretical
models, as well as with respect to each other. Some important topological charac-
teristics of the two real grids are highlighted in this study. The robustness of the
European power grids under intentional attack has been tested in [34] by selective
node removal process. A mean field analysis of the fragility is also presented.

In [35], the authors have presented an initial evidence of the electrical network
possessing a self-organized criticality and have studied the global dynamics related
to the cascading failures using time-series correlation data of power system blackout
sizes. Two types of transitions in the cascading failure blackouts were suggested
in [36]. They show that the probability distribution of the blackout size of the North
American blackout data has a power tail. This work was followed up in [37], where
it was established that the power system is indeed a self-organized critical system.
The total number of transmission lines tripped and the total amount of load shed
were the measures used to quantify the size of the cascade in [38]. Load shed is
the amount of load intentionally removed from the system to bring the system back
to a stable state from the disturbed state. When there are failures, especially those
which lead to the loss of the system elements causing a large redistribution of load,
load shedding becomes necessary to curtail the excess load in the disturbed system,
which can be restored after system stability is achieved. Load shedding, although a
last resort measure, can be useful to prevent a total blackout of the system. In the
above work, the authors use a Galton–Watson branching process to approximate the
cascading process of load shed in blackouts.
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8.1.3 Mitigation Strategies

Proposing mitigation strategies for preventing the spread of cascades has become the
need of the hour and is a way to suggest solutions to the problem at hand. The work
in [39] discusses a method to reduce the size of a cascade in complex networks with a
heterogeneous degree distribution, after the initial failure has taken place, but before
it begins to spread throughout the network. This method has been applied to the
electric power network and involves making costless modifications to the network in
a time less than that would take the initial failure to spread. It talks about strategies
for intentional removal of nodes or links that would significantly reduce the size of
cascades.

The probabilistic hidden failure model, which throws light on the protective sys-
tem failures, was proposed in [40]. Hidden failures in the elements of protection
systems were considered to be one of the leading causes of cascading failures in elec-
trical power grids, after the 1996 blackout of the Western grid of the United States.
More work on such reliability study was undertaken soon after, as seen in [41–43].
This hidden failure model was further adopted in blackout propagation and mitiga-
tion studies in [44–46]. These works included the linearized DC power flow model,
to account for the underlying dynamics.

In [47], three mitigation strategies have been discussed for mitigating cascading
failures in power grids. Two of the proposed strategies are load shedding strategies
while the third one is intentional islanding using distributed sources. Intentional
islanding is the intentional splitting of the power grid into sub-parts with their own
generation so that these sub-parts can sustain on their own when separated from the
remaining network. In this work, islanding is performed using modularity. If all the
islands do not have a generator after the first step of islanding, a second step called
super-islanding is performed. A polynomial time optimal load shedding algorithm is
presented in [48] to control cascading failures occurring due to deterministic failures.
The author also proposes another algorithm for stochastic failures. All these models
justify the use of DC power flows for the reason that during emergency situations,
a faster and always converging solution is needed, especially if the network size is
large.

8.1.4 Vulnerability Indices or Robustness Metrics

Several metrics and vulnerability indices have been suggested as a way to identify
nodes and links which play an important role in the spread of the cascade. A vulner-
ability index based on identification of vulnerable links by weighted betweenness of
the links is proposed in [49]. The weights on the links are represented by the reac-
tances of the links and the shortest electric distance is represented as the sum of the
weights along the shortest electric path, where the shortest electric path between two
nodes is the path whose sum of the weights is the smallest among all possible paths
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between the two nodes. They also do time domain simulations which verify that their
vulnerability metric can not only identify the most critical lines in the system but also
those lines which may be vulnerable due to their position in the system, even though
they are lightly loaded. They tested their results on the IEEE 39-bus test system and
the Huazhong–Chuanyu power grid.

The concept of random-walk betweenness was introduced in [50] where an exam-
ple of an electric circuit was used to show the effectiveness of the method. It is based
on random walks, counting how often a node is traversed by a random walk between
two other nodes. It is a generalized technique that may be used for the analysis of
power grid networks.

Attention shifted towards the use of power flow model along with the topological
models since it was being realized that all the information about power grids was
not being captured by purely topological models, although they provided useful
information about the structure of the system. The work in [51] talks about the
electrical centrality measure for power networks considering the electrical topology
rather than the physical topology. They mention the use of the standard AC power
flow model for this work [8], without going into the details of the model. The flow
propagates through the path of least resistance, and this flow distribution is governed
by the relative complex impedance of each path. Also, there can be several paths
through which power can flow between two nodes. They use the bus impedance
matrix or the inverse of the admittance matrix to define electrical distance between
nodes and use this information to represent an electrical topology. They present a
conclusion that electrically, the power grid is a scale-free network, although a lot of
topological studies indicate a single-scale structure [27, 28, 52–54], while a few show
a scale-free structure [33, 55]. Similar work has been done in [56], without the use of
any power flow model. Other centrality measures, based on not only the topology but
also the electrical parameters of the grid are investigated in [57]. “Efficiency” of the
network, as mentioned in previous works was replaced by “net-ability” in [58]. The
results obtained using efficiency and net-ability were compared with the reference
DC power flow model and net-ability emerged to be a better metric than efficiency.
Another metric called “entropic degree” was presented in [59], along with net-ability.
These findings were further strengthened by the work presented in [60], in which
the authors use the DC power flow model with the IEEE 300-bus system [7]. The
results of this work indicate that although topological models can provide the general
vulnerability trend, they may not be realistic to suggest any risk mitigation resources
without the help of physics-based models.

A metric, η, to measure the robustness of a power grid network with respect to
cascading failures was discussed in [61], based on probability of link survival as
well as the average rank of the link. Probability of link survival is calculated as
the ratio of the number of times a particular link failed due to the removal of an
initial link to the total number of links in the network, while the average link rank
is calculated depending on the stage of cascade that the link fails at, considering
different initial failures. The average depth of cascade is then the product of the link
survival probability and the average link rank and it is used to determine η.
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The long-term reliability effects for an electric transmission grid, evolving over
time, are explored in [62]. The authors take into account policies such as N-1 criterion
as well as direct response policy to quantify the reliability of the evolving transmission
grid with respect to cascading line overloads and outages as well as slow load growth.
The N-1 policy is the standard policy which ensures the upgrade of the transmission
lines to satisfy the requirement that a single outage does not lead to overloading of
the other transmission lines. The direct response policy leads to an upgrade of the
transmission lines involved in the cascading outage that led to some load-shedding.
The authors have compared the long-term effect of these policies on the probability
distribution of outage size with different number of contingencies.

An electrical power system can be considered as robust only if it can operate in
a state of equilibrium, not just in normal but also in perturbed conditions. This was
a possibility until a few years ago, but in the current state of affairs, an upgrade in
the electrical infrastructure is definitely called for. The stability study of electrical
networks, in general, is a multi-disciplinary piece of work, involving fields like elec-
trical and computer engineering, physics, networks, controls, and others. It depends
on many natural and human factors which lead to one or more of the events such as
load or generation change, short circuit of transmission lines, which is regarded as a
link failure in network theory, and other behavioral changes.

8.1.5 Network Generation Models

The real power grid structure does not exactly fit any of the existing network models.
Also, a power grid being critical infrastructure, very limited information and data of
the real grids are available easily for analysis. With this motivation, a few researchers
presented new models such as those mentioned in [47, 63, 64] for generation of syn-
thetic power grid networks. Most of these models considered some of the important
characteristics of the real power grids as a part of their network generation algorithm
so that the synthetic grids are not completely unrealistic. In [47], the authors designed
a first approximation network generator to produce networks having characteristics
similar to the real power networks. They have developed a variation of the Gener-
alized Random Graph model to generate power grid networks with realistic degree
distributions. The original Generalized Random Graph model [65, 66], which is also
known as the Configuration model [67], produces graphs with random connections
but with predefined degree sequences. The network generation model in [47] does
not impose a degree distribution but imposes certain constraints on the distribution
such as the maximum possible degree of a node and the average node degree. The
degree distribution of the generated networks using the variation of the General-
ized Random Graph model follows the degree distributions of the real power grid
networks closely. The impedance and load data is generated from the distributions
obtained from the real power grid networks available at [7].

The random topology generation model discussed in [57] uses a variation of
the Small World network model, named as the RT-nested-SmallWorld model. It
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functions in three steps—(i) creating connected sub-networks, (ii) introducing lattice
connections to connect these sub-networks, and (iii) generating line impedances from
a specific distribution to assign to the links in the network. The first step varies from
the Small World model in the way the links are selected and rewired. A number of
links k are randomly selected from a local neighborhood and then a Markov transition
is used to rewire a group of links to form sub-networks. The second step is executed
by randomly selecting lattice connections to connect the sub-networks into a single
large network, with the number of lattice connections roughly around < k >. The
third step uses a heavy-tailed distribution, to generate line impedances for each link in
the network and depending on whether the link is a local link or a lattice connection,
a low or high value of impedance is assigned.

Finally, in [64], the authors propose a minimum distance graph generation model
to generate synthetic power grid topologies. According to this method, the links
are connected such that the Euclidean distance between the two nodes is minimum.
This is incorporated in this model from the fact that the link costs increase with
an increase in geographical distance in a power grid. A variation of the minimum
distance graph model, known as the minimum distance graph with bisection is also
proposed to allow for addition of new nodes in the network. This model introduces a
new cost called the “bisection cost”; if the cost for creation of a new link is lower, the
algorithm creates a new link, else the new node bisects an existing link. The power
grid topologies created by this model had many properties similar to the real power
grids such as fairly high clustering co-efficient, exponential degree distribution, and
characteristic path lengths scaling linearly with number of nodes, n. These graphs
had positive assortativity which is the only characteristic different from real grids.

8.1.6 Interconnected Networks and Grid of the Future

Restructuring the electrical network would be an important step in the planning and
design of the future electrical network. However, implementation and operation also
need to be changed and this realization has driven us towards the Smart Grid. The
Smart Grid would lead to many changes in the current infrastructure of the electrical
power system, including heavy incorporation of decentralized distributed generators
(DGs), renewable energy resources, energy storage, bidirectional flows, improved
communications, higher security, climate change mitigation, an increased degree of
interconnections [68] and above all, the need for systemic governance.

Interconnections are an inherent part of electrical systems, whether it is the inter-
connection of several electrical grids or the interconnection of electrical grids with
other complex systems such as communication networks. A recent report by the
World Energy Council discusses the importance of interconnecting different grids,
even across the borders, to fulfill the increasing energy demands of the world [69].
At the same time, it also talks about the challenges that would be faced for such inter-
connections. Several approaches to model the interdependence between the telecom-
munication network and the electrical network are discussed in [70], including the
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use of Bayesian networks and “precedence graphs”. A simulative approach has been
used to evaluate the interdependence between the communication and power grid
networks in [71] using MPLS [see Chap. 11 in this book]. The results show how a
fault in the communication network may propagate to the connected power grid and
lead to failures in the latter.

As studied in [72], interconnected networks behave very differently with respect
to failures in comparison to single networks. When there is a failure in one network,
the dependent nodes in the other network also fail and this may result in a cascade
of failures in the interdependent networks. They study the percolation threshold for
interconnected networks which is much larger than that of a single network. This
study is continued in [73, 74]. In order to understand how interdependence among
systems affect the cascading behaviors, the authors in [75] study a sandpile model on
modular random graphs as well as graphs based on interdependent power grids. They
show both, the advantages and disadvantages of interdependent systems and conclude
that some interdependence is beneficial but too much interdependence opens up new
possibilities of cascading failures.

In general, electrical networks usually do not operate in isolation. There is usually
some kind of loose tie between the electrical systems owned by different utilities,
within a region, a country or even between neighboring countries. Whenever failures
take place, there is always a risk that the initial failure that occurred in one part of the
interconnected power grid might spread to the other parts. This is what happened in
the very recent blackout in India, where the Northern, Eastern, and the North Eastern
grids were affected due to the failure that occurred in one location [20]. Power
grid intentional islanding is gaining a lot of importance as a mitigation strategy for
cascading failures in interconnected power grids. However, it is also necessary that the
island creation does not lead to further failures in the system and cause excessive load-
shedding. Multiple approaches to intentional islanding have been suggested to find
the optimal set of lines to be disconnected, including modularity, mixed-integer non-
linear programming, spectral matrix methods, simulated annealing, slow-coherency
based methods and many others [47, 76–83].

Some of the basic quantities that are usually monitored in case of an electrical
network using an AC model are voltages, currents, power, and phase angles. In case
of a DC model, the number of quantities to be monitored reduces to real power and
phase angles, which are closely related to each other. Some of these basics, along
with the two power flow models are explained in Appendix.

8.2 Concluding Remarks

Electrical power grids as critical infrastructures continue to evolve and pose newer
challenges. While topological models give important information about the structure
of the grids, the electrical models add information about the complex flow dynamics.
It is very important that the topological and electrical models are incorporated into
each other and work hand in hand for the planning and restructuring of the grid, and
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for the implementation of proper measures to make it robust to all kinds of failures.
Also, further investigation into the design of interconnected networks, such that the
pros are higher than the cons, is essential. In the present times when the demand for
electricity is ever increasing, a proper restructuring could be the key to more robust
and stable interconnected electrical grids.

Appendix: Electrical Network Terminology and Models
for Analysis

Phasor Representation

The voltage and current in electrical power systems are sinusoidal quantities that
vary with time at the same frequency. A sinusoidal voltage v(t) and a sinusoidal
current i(t) are expressed as follows:

v(t) = Vmcos(ωt + δ) (8.1)

i(t) = Imcos(ωt + β) (8.2)

where Vm and Im are the maximum voltage and current, ω is the angular speed, and
δ and β are the phase shift of the voltage and current, respectively.
The voltage is expressed in Volt. However, power systems operate on voltages that
range from several 1,000s to 100,000s of Volt. Consequently, it is more convenient
to express the voltage in KiloVolt (KV). Electrical current is measured in Ampere
(A), the angular speed in radian per second (rad/sec), and the phase shift in radian
(rad). The angular speed is proportional to the electrical frequency f , which is the
number of cycles per second, expressed in Hertz (Hz). The relationship between the
angular speed and the frequency is

ω = 2π f. (8.3)

As the voltage and current have the sinusoidal form at steady state, it is convenient
to express the magnitude and phase angle of the voltage in a complex number form
called a phasor. A phasor is developed using the Euler’s identity as follows:

e± jφ = cosφ ± jsinφ. (8.4)

The terms cosφ and sinφ are the real and imaginary parts and they are denoted by
Re{e jφ} and I m{e jφ}, respectively. Therefore, the voltage and current can be written
in the phasor form as follows

v(t) = Re{Vme j (ωt+δ)} = Re{Vme jωt e jδ} (8.5)

i(t) = Re{Ime j (ωt+β)} = Re{Ime jωt e jβ}. (8.6)
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Since both the voltage and current have the same frequency, the component e jωt

becomes less important, and for convenience it is enough to express the voltage and
current in terms of their magnitude and phase shift using the following form

V = Vme jδ = Vm∠δ (8.7)

I = Ime jβ = Im∠β. (8.8)

The voltage and current are usually represented through their effective values, called
the root-mean-square (rms) values. The effective phasor representations of the volt-
age and current are

V = Vm√
2

e jβ = |V |e jβ (8.9)

I = Im√
2

e jδ = |I |e jδ (8.10)

where |V | = Vm√
2

and |I | = Im√
2

are the rms values for the sinusoidal form of the
voltage and current. The rms voltage phasor and rms current phasor can be written
in the rectangular form as follows

V = |V |(cosδ + jsinδ) (8.11)

I = |I |(cosβ + jsinβ). (8.12)

Instantaneous Power

The electrical power is the work done by the electrical system in unit time. It is
a function of both the voltage and current. The unit of electrical power is Watt,
however it is convenient to use MegaWatt (MW) when dealing with large amounts
of power generation and loads. In a closed circuit with a voltage source and a load,
the instantaneous power p(t) that is absorbed by the load is the product of the
instantaneous voltage difference across the load and the instantaneous current passing
through the load. Mathematically, the instantaneous power is evaluated as follows

p(t) = v(t)i(t) (8.13)

= Vmcos(ωt + δ)Imcos(ωt + β)

= Vm Im

2
[cos(δ − β)+ cos(2(ωt + δ) − (δ − β))]

= Vm Im

2
cos(δ − β)[1 + cos(2(ωt + δ))]

+ Vm Im

2
sin(δ − β)[sin(2(ωt + δ))]
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The instantaneous power is composed of two components as shown in Eq. (8.13).
Assume that the phase angle difference δ − β is constant. The first component is
sinusoidal function with a frequency that is twice the frequency of the voltage and
current. The maximum value equals Vm Imcos(δ −β) and the minimum value equals
zero. The constant term Vm Im

2 cos(δ − β) represents the average power, while the
time-varying sinusoidal function has zero average. We refer to the first component
as the instantaneous active power. The second component is time-varying sinusoidal
function with zero mean value, twice the frequency of the voltage and current, and
maximum value of Vm Im

2 sin(δ − β). This component is called the reactive power,
which represents the power that oscillates with twice the frequency of the voltage
and current between the reactive components in the power systems that stores the
electrical energy and the power generation. In other words, the component of complex
power, that averaged over a complete cycle of the AC waveform, causes a net transfer
of energy in one direction is known as real power. The component of complex power
due to stored energy, which returns to the source in each cycle, is known as reactive
power.
Using the rms values for the voltage and current, the active power P and the reactive
power Q are as follows

P = |V ||I |cos(δ − β) (8.14)

Q = |V ||I |sin(δ − β). (8.15)

The cosine of the phase angle difference cos(δ − β) is called the power factor. The
unit of the active power is Watt, while the unit of the reactive power is Volt-Ampere
Reactive (VAR). Let us assume that there are three cases for loads:

• Resistive load: There is no phase angle difference between the voltage and current.
Therefore, the power factor is 1, and the active power is |V ||I |, while the reactive
power equals zero because there is no reactive load elements that can store the
electrical energy.

• Inductive load: The voltage phase angle leads the current phase angle by 90 ◦ i.e.
δ − β = π

2 . The reactive power is |V ||I |, while the active power is zero because
there is not resistive load elements that can consume the active power.

• Capacitive load: The voltage phase angle lags the current phase angle by 90 ◦ i.e.
δ − β = −π

2 . The reactive power −|V ||I |, while the active power is zero.

The complex power is defined as a complex number with a real part representing the
active power and an imaginary part representing the reactive power as follows

S = P + j Q (8.16)

S = VI∗ (8.17)

where I ∗ is the complex conjugate of the current I. The apparent power S is the
magnitude of the complex power
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S =
√

P2 + Q2 (8.18)

= |V ||I |(cos2(δ − β)+ sin2(δ − β)) (8.19)

= |V ||I |. (8.20)

The complex power and the apparent power are related through the following equa-
tion

S = S(cos(δ − β)+ sin(δ − β)) (8.21)

The unit of both the complex power and the apparent power is Volt-Ampere (VA).

Per Unit System

Any power grid is composed of 100s of electrical elements such as transmission
lines, transformers, circuit breakers and shunt impedances. Every element can be
represented using the ideal form in which it is lossless; however, the ideal form hides
many details that influence the performance of a power system. On the other hand,
a detailed representation of each element will account for the amount of electrical
power loss. Computationally, analysis of detailed representation of power grids is
not trivial. Therefore, voltage, current, and power are normalized with respect to
their base values, and they become “per unit values”. The “per unit” method is a
very powerful method for analyzing the power grid because (1) it can be applied
to a detailed representation of a power grid, thus reducing the error, and (2) it can
be systematically applied to different circuits throughout the power grid, and each
circuit has its voltage value close to the normal value. The per unit value is defined
as follows

Per unit value = Actual value
Base value

. (8.22)

Both the actual value and the base value have the same dimension, while the per
unit value is dimensionless. Traditionally, the base value of the complex power is
arbitrarily chosen, and the per unit value becomes as follows

S
Sbase

= VI∗

Sbase
(8.23)

S∠θ

Sbase
= V ∠δ I∠ − β

Sbase
. (8.24)

The base complex power is defined as

Sbase = Vbase Ibase. (8.25)
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In addition to the base complex power, either the base voltage or the base current
is arbitrarily chosen. Because a power grid is composed of multiple circuits, each
has a voltage level, the base voltage is usually proposed, and the based current is
evaluated using Eq. (8.25). Using the base values for the complex power, voltage,
and current, Eq. (8.24) becomes as follows

Spu = VpuI∗
pu. (8.26)

We notice that the phase angles do not change using the per unit system, showing
that the per unit system is only applied to the magnitude values. The base impedance
becomes as follows

Zbase = Vbase

Ibase
(8.27)

= V 2
base

Sbase
. (8.28)

We further obtain the per unit impedance as follows

Z = V
I

(8.29)

Z
Zbase

= V/Vbase

I/Ibase
(8.30)

Zpu = Vpu

Ipu
(8.31)

Zpu = R + j X
Zbase

(8.32)

Zpu = Rpu + j X pu . (8.33)

We notice that the resistance and the reactance have the same base value, which is
base impedance

Zbase = Rbase = Xbase. (8.34)

Similarly, the active power and the reactive power have the same base value as
follows

Pbase = Qbase = Sbase. (8.35)

The base complex power is usually expressed in MVA, while the base voltage is
expressed in KV. Therefore, it is worth noticing that the base current is in KA, and
the base impedance is in Ohm.
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Transformers and Transmission Lines

Electrical power is generated at low voltage level leading to increase in the power
loss which is proportional to I 2 in the transmission systems. On the other hand,
loads do not require high voltages for operation. Transformers are used to step up
the voltage from the generation side to the transmission side. Similarly, transformers
step down the voltage from the transmission side to the distribution side. Below, we
discuss the operation and the representation of the transformers and the transmission
lines in more details.

Transformers

A transformer is composed of a primary side and a secondary side. Each side is con-
nected with a winding coil that generates magnetic field, which in turn creates electric
current and voltage across the secondary coil. The equivalent circuit of a practical
transformer is composed of winding resistance and leakage reactance on each side in
which the reactance is added in series with the resistance. In addition, there is power
loss in the magnetizing equivalent circuit due to hysteresis current losses. In an ideal
transformer, the internal resistances, reactances, and the magnetization circuits are
neglected, and the transformer becomes lossless. A practical representation of the
transformer is to neglect the magnetization circuit because the magnetizing current
is very small compared to the rated current, and to consider the resistances and the
reactances of the primary and secondary sides. For transformers that handle large
power, the internal resistances become very small compared to the reactance. Thus
the internal resistance can be neglected.

Denote the voltages across the primary and secondary coils as E1 and E2, respec-
tively. In addition, denote the currents in the primary and secondary sides as I1 and
I2, respectively. Let the ratio between number of turns in the primary side to number
of turns in the secondary side be n. The fact that the complex power at each side of
the transformer is preserved, the voltages and currents at both sides are related as
follows

E1

E2
= I2

I1
= n. (8.36)

The reactance of the secondary side x2 seen from the primary side is n2x2. There-
fore, the equivalent reactance of the transformer seen at the primary side is the sum
of the reactance at the primary side and n2x2. The transformer can be represented in
terms of per unit as follows

Vbase1

Vbase2
= n (8.37)

E1pu = E1

Vbase1
(8.38)



8 Electrical Networks: An Introduction 179

E2pu = E2

Vbase2
(8.39)

E2pu = E1/n
Vbase1/n

(8.40)

E2pu = E1pu. (8.41)

Similarly, the per unit currents at each side of the transformers are equal. To study
the per unit representation of the reactance in the primary side, we have

x2 = x1

n2 (8.42)

x1pu = x1

Zbase1
(8.43)

x1pu = x1

V 2
base1/Sbase

(8.44)

x1pu = x2n2

V 2
base1/Sbase

(8.45)

x1pu = x2

Zbase2
= x2pu . (8.46)

Therefore, the per unit value of the reactance on one side of the transformer is
used when studying the integration of the transformer in the single phase diagram.

Transmission lines

Transmission lines are responsible for transferring the generated power from the
generation side to the loads. Depending on the length of the transmission line, the
operating voltage is set to reduce the amount of power loss in the lines. Transmission
lines with short length require lower voltages than long transmission lines. Trans-
mission lines are classified to short-length, medium-length and long transmission
line. A transmission line has an equivalent resistance, inductance, and capacitance.
The equivalent π -model is used to represent the transmission lines in the grid. In π -
model, the resistance and the inductance are connected in series, and the equivalent
capacitance is connected in parallel at the sending and receiving ends of the lines.
In short-length transmission lines, the capacitance is neglected, and the transmission
line is represented using the series connection of the resistance and reactance. In
medium-length transmission lines, half of the total equivalent capacitance is repre-
sented at each end of the line, while the series resistance and reactance connection
exists between the two ends of the line.

The analysis of the electrical power grid has to be done through a power flow
model which can solve the optimal load flow problem considering all the elements
described above. In the next two subsections, we discuss two such models for solving
the power flow problem.
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AC Power Flow Model

To study the power flow in the power grid, assume that the generators, transmission
lines and loads locations are given. First we would like to classify the buses into three
groups:

• Slack bus: A slack bus produces enough active and reactive power to match the sys-
tem needs. The voltage and angle at the slack bus are 1 p.u. and zero, respectively,
while the generated power P and Q are unknown.

• Load bus: Load bus connects load(s) with the grid. There is no generator connected
with the load bus. The amount of active and reactive power needed at the loads
are given.

• Voltage controlled bus: Bus that connects a generator with the power grid. Load
can be connected on the same bus. The bus voltage and generated active power are
known, while the voltage phase shift angle and the reactive power are unknown.

To find the power flow in each transmission line, we first apply Kirchhoff’s current
law (KCL) at each bus by assuming that the algebraic sum of the currents at any bus is
equal to zero. We obtain a group of equations representing the relationship between
the voltages and currents, which can be written in a matrix form as follows





Y11 Y12 . . . Y1N
Y21 Y22 . . . Y2N
. . . . . . . . . . . .

. . . . . . . . . . . .

YN1 . . . YN(N−1) YNN









V1
V2
.

.
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=





I1
I2
.

.
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(8.47)

Where Ik is the current that enters the bus from the generator/load side. The first
matrix is called the admittance matrix or the Ybus matrix. Each diagonal element
Ykk equals the sum of the admittances of all branches connected to bus k. Every
off-diagonal element Yjk where j %= k is the sum of admittances of all branches
between bus j and bus k multiplied by −1. Using Eq. (8.47), we obtain the following
equation at bus k

V1Yk1 + V2Yk2 + · · · + VkYkk + · · · + VNYkN = Ik = Pk − j Qk

V∗
k

. (8.48)

To find all unknown active power, reactive power, voltages, voltage angles, a
famous method called Gauss-Seidel iterative approach is used by assuming flat initial
solutions for all voltages and voltage angles equal 1 p.u. and zero, respectively. For
bus k at iteration i + 1, the following iterative equation is used to find the solution
of the unknown variables
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Vi+1
k = 1

Ykk

[
Ii

k −
k−1∑

n=1

Vi+1
n Ykn −

N∑

n=k+1

Vi
nYkn

]
(8.49)

DC power flow model

A power grid can be considered as a complex network with N nodes and L links.
Nodes represent the generation and transmission substations, and links represents
the transmission lines. To simplify the power flow analysis in the power grids, the
DC Power Flow model has been originally introduced as DC Power Flow in the DC
network analyzer [84] as suggested by [85]. In the original work, the network branch
is represented by a resistance and the resistance value is proportional to the reactance
that is connected in series with the resistance and each DC current is proportional
to the power flow. The DC power flow model represents a linearization of the full
AC model. In the AC model, let Vi and Vj represent the voltage at the buses i and
j , respectively. In addition, let Yi j represent the admittance of the transmission line
between buses i and j . The relation between real power, complex voltages and line
impedance is expressed through the following equation which describes the amount
of real power flowing through a transmission line

Pi j = |Vi ||Vj ||Yi j |cos(δi − δ j + θi j ) (8.50)

where θi j is the phasor angle of the admittance Yi j . To obtain the DC power flow
model, the following assumptions are applied to Eq. (8.50) as follows

• Voltage angle differences are small, i.e. sin(δi j ) ≈ δi j .
• Flat Voltage profile: All voltages are considered 1 p.u.
• Line resistance is negligible i.e. R << X .

Applying Taylor expansion on Eq. (8.50) around the operating voltage, and neglect
the coupling between the power flow and the voltage, we obtain

Pi j =
δi j

xi j
(8.51)

where δi j is the difference in phase shift angle between the voltages at the sending
and receiving buses, and xi j is the reactance of the transmission line. The DC power
flow Eq. (8.51) can be written in matrix form where P is the N × N matrix of power
flows between each node i and j in the network, δ is the N ×1 vector of phase angles
and X is the N × N weighted adjacency matrix, each element of which represents
the reactance of a transmission line. It is a real number if a line is present between
two nodes, and zero otherwise. In matrix form,

[P] = [b][δ] (8.52)
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The matrix [b] represents the imaginary part of the Ybus matrix of the power grid,
where bi j = − 1

xi j
and bii = ∑

i∈N −bi j for i %= j . We usually assume that there
is a reference node with voltage angle equals 0. The power handled by each node is
the net sum of all the ingoing and outgoing power flows at that node as follows:

Pi =
N∑

j=1

Pi j =
N∑

j=1

(−bi jδi j ) (8.53)

The total load at each node is given, while the phase angles are computed using
the following equation:

[δ] = [b]−1[P]. (8.54)
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Chapter 9
Smart Grid as Multi-layer Interacting System
for Complex Decision Makings

Ettore Bompard, Bei Han, Marcelo Masera and Enrico Pons

Abstract This chapter presents an approach to the analysis of Smart Grids based
on a multi-layer representation of their technical, cyber, social and decision-making
aspects, as well as the related environmental constraints. In the Smart Grid par-
adigm, self-interested active customers (prosumers), system operators and market
players interact among themselves making use of an extensive cyber infrastructure.
In addition, policy decision makers define regulations, incentives and constraints to
drive the behavior of the competing operators and prosumers, with the objective of
ensuring the global desired performance (e.g. system stability, fair prices). For these
reasons, the policy decision making is more complicated than in traditional power
systems, and needs proper modeling and simulation tools for assessing “in vitro”
and ex-ante the possible impacts of the decisions assumed. In this chapter, we con-
sider the smart grids as multi-layered interacting complex systems. The intricacy of
the framework, characterized by several interacting layers, cannot be captured by
closed-form mathematical models. Therefore, a new approach using Multi Agent
Simulation is described. With case studies we provide some indications about how
to develop agent-based simulation tools presenting some preliminary examples.
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9.1 Introduction

Environmental issues and electricity supply security concerns are aggravating the
pressure towards a smarter electricity system. The integration of distributed gener-
ation and storage, both at the local and regional levels, is most promising. Never-
theless, it presents challenging problems regarding the design and implementation
of the systems and the related markets. Promising effects (such as the mitigation
of environmental problems and more reliable electricity supply) are expected from
these developments.

On the other hand, complexities deriving from the use of devices based on new
technologies (and mainly those intensely based on information processing and com-
munications), the multiplicity of players and the interactions among them, can hinder
the implementation of smart grids. Such complexities have to be considered by deci-
sion makers at all regulatory levels. Thus, regulatory decision-making becomes a
most complex issue that has to be analyzed ex-ante, so as to ensure the system
performance and anticipate any situation that can impair the system.

The general goals from the regulator’s point of view are related to the various
social, technical, economic and ecological aspects of the system. Those goals target
specific issues such as economic efficiency, social welfare (education, health, and
security), satisfaction of energy needs, and reduction of environmental impacts.

This chapter represents and studies these emerging complexities of smart grids in
a multilayer framework (Sect. 9.2); proposes a MAS (Multi-Agent Simulation) tool
that can implement various smart grid scenarios (Sect. 9.3), and finally assesses a
simple scenario under different regulatory regimes (Sect. 9.4).

9.2 The Framework of Complex Power System

The essence of the smart grid paradigm is an upgraded efficient, clean, secured and
flexible electrical system, satisfying the following seven principles:

• enabling the active participation of consumers in demand response;
• operating resiliently against physical and cyber attacks and hazards;
• providing power quality, security and adequacy;
• accommodating all generation and storage options;
• enabling new products, services, and markets;
• optimizing assets and operating efficiently;
• self-healing from power disturbance events.

Realizing these Smart Grid principles will affect all components of the electricity
generation, transmission, distribution and consumption, while also enabling new
types of autonomous behavior in all system and market players. A key element
will be the active participation of the large population of consumers and prosumers.
Traditional optimization of power systems, using mathematical functions, may only
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serve for taking into account the technical level of the system. The social and decision-
making aspects require a complementary approach.

A multi-layer framework of complex power system is proposed in this section
to integrate all the elements of the Smart Grids. The intention is to consider all
relevant fields (technical, social, economic and political), for studying the system
performance in an aggregated way.

9.2.1 Multi-layer Platform

Our multi-layer platform model includes the power, cyber, social and environment
layers, along with threats and factors that may affect the system and lead to unwanted
situations. It is shown in Fig. 9.1.

The physical layer contains all the hardware components. It is the container of
electricity flows where physical variables and indices are computed, monitored, or
optimized by the system operators. Here we concentrate on MV / LV distribution
networks, while including data and constraints from the upper transmission level.
The arbitrary plug and play connection of distributed generation is enforced by low
or zero connection charging policies.

In addition, we consider some capabilities normally proposed in Smart Grids: the
network structure can be adjusted according to the real-time demand and generation;
the local network can serve local demands under emergence conditions, isolated from
the upper grid; the local network can assist in black starts as well as provide security
reserve to the upper grid.

In contrast with the physical layer, the cyber layer is the container of information
flows, where all the operations and market-related data sets are managed: prosumer
generation and consumption values, market prices, physical conditions; operational
commands, and so on. Also various technical innovations are required in this layer,
such as smart meters, optical and power-line communications, home area commu-
nications, wide area measurement system, and so on.

The social layer aggregates the actors of the power system, i.e. users, prosumers
and marketers. This layer has been identified as the main source of complexities
that lead to the unpredictable performance of the overall system. The value sense of
each prosumer is initially decided by factors related to their psychology, education,
profession and so on, and then evolving through the interactions within their social
network. Also the social network itself is evolving through random relationships and
the establishment of new or interruption of existing social links.

The environment layer stands for the natural phenomena, and influence all the
other layers. Most obviously, weather conditions, geographical conditions, and pri-
mary and secondary resource conditions, directly affect consumption and generation.
Above than, society typically imposes sustainability goals that require the respect
of several environmental targets (emission, energy efficiency, and so on), with a key
role for regulators.
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Fig. 9.1 Multi-layer platform of complex power system

Except for the environmental indices mentioned above, the overall performance
of the system should include all the other dimensions: physical performance in terms
of power security, power quality, reaction under emergency; technical performance
in terms of technology penetration, technical reliability and efficiency; social per-
formance in terms of satisfaction of the objectives set by regulations, individuals,
and social groups; and market performance in terms of market power allocation,
competitiveness, etc.

Of great importance are the interconnections between the different layers, as these
connects are at the basis of the arising complexity. For example the weather conditions
impact on the social layer (people behavior) and on the physical layer (e.g. distributed
generation); the physical layer exchanges data with the cyber layer, which performs
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measurements and provides commands, but influences also the environment layer
(e.g. with pollutant emissions); the cyber layer is the mean for prosumers (social
layer) to interact with the grid (physical layer).

The decision-making processes interact with the other four layers. For example
people (social layer) can exercise pressure on politicians for changes in the perfor-
mance objectives; on the other hand, decision makers can obtain information from
the cyber layer and provide commands to it, or can act directly on the physical layer
(e.g. the system operators).

9.2.2 Simulating the Social Layer: The Actors and the Stage

The actors having decision-making capabilities in their domain, according to specific
roles, are divided into two classes.

The major population under study is composed of the “players”, simulated and
observed by the other class called “directors”, who set the rules, monitor trends,
and coordinate the layers. In our model, the players are the Prosumers, Distribution
System Operators (DSO) and Retailers; while directors are the Regulators in charge
of issuing the rules and exerting the control over the electricity (and more generally
energy) markets, and Policy Decision Makers who represent the public institutions,
such as parliament, governments, ministries, that fix the general goals and decide the
policies.

We call ESTS (which stands for Environmental Social Technical System) the stage
over which the players interact according to the rules set by the “directors”. We can
see an example of the stage in Sect. 3.2. The ESTS name derives from its elements:
environmental (weather, emissions), social (relationships, value senses, and so on),
and technical (consumption units, distributed generation units, storage units, and so
on). The ESTS stage provides inputs to players, defines the possibility of interactions
and gets the feedbacks from the evolving system.

9.2.3 Simulating the Interactions

For simulating the system, the interactions among the prosumers and other actors,
and the interactions of all layers with the ESTS, are predefined in a common schedule.

We consider that the actions by the prosumers only refer to the next 24-h, and
regard their own generation, consumption, and storage—and that these decisions are
inputs to ESTS. These decisions are constrained by the available technical options
and depend upon the utility choice of each player. As a result, the set of all these
options, choices and interactions with the external ESTS, constitutes a complicated
decision making space.

The prosumers update their decision-making strategies according to the feed-
back of the system in terms of the overall performance and the resulting benefits for
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themselves. On their hand, with the evolving of the system conditions, the system
operators or regulators (and other macro players) update their rules, justify pricing
methods, add constraints, provide other technical choices for enabling fully compet-
itive markets and physical connections of DG at the prosumers’ sites.

Two approaches can be applied when designing a simulation. The first refers
to the ex-ante studies of prosumer behaviors and of regulation strategies for large
distributed generation capacities. For example, one can study 24-h periods. The
second is a validation process, using real 24-h dispatch and strategic reactions from
different market and system players, with the objective of carrying out an ex-post
analysis of the interactions among the players and the system performance.

9.3 Design of MAS Models

Multi-Agent Simulation (MAS) can be employed for prototyping, implementing
and simulating complex power system and their actors. Agents instantiate the various
elements concerned according to the different system or market status and behaviors.
Following predefined social, economic or technical rules, the agents, embedded with
either simple or sophisticated decision making approaches, communicate among
themselves and update information about the ESTS. As the simulation runs, system
dynamics induced by the autonomous agent behaviors can be observed.

In this section, we present solutions to design issues identified as problematic in
the development of MAS for smart grid simulations.

9.3.1 Issues of Implementation

When implementing a model, the following issues have to be solved:

• Which is the behavior of the individual agents (prosumers)? How will they react
to changes in the ESTS and to inputs from their own neighborhood? How many
different types of behaviors have to be categorized? What is the typical decision
making process for each of them?

• Which are the strategies to be taken by the coordination agents (DSO or marketer)
to ensure the attainment of the desired performance, at both objective levels (local,
for each particular operator; global, for the overall system)? What are the best
strategies for market agents to maximize their profits or other objectives?

• Which system attributes should concern the regulators or policy makers? This
includes the norms and rules limiting the actions of the agents to ensure good
performance of the system and to ensure meeting system-level objectives. How
can they design those norms and rules and how can they study them ex-ante?

• How can one model the ESTS? Which are the interactions between the ESTS
and the prosumer models? How to model the influence of the prosumers on the



9 Smart Grid as Multi-layer Interacting System for Complex Decision Makings 193

ESTS environment? Conversely, how does the ESTS environment constrain the
prosumers? Are the general ESTS laws fixed or are they part of the design?

• Which are the key-metrics to be used for assessing the performance of the overall
system (energetic, environmental, economic, social…)?

• How to reproduce the agents’ decision-making? What are the mechanisms behind
their decision-making? How to consider individual and local specificities, such as
personal constraints, objectives, preferences, reasoning, perception, etc.? At what
level of aggregation should the agents be modeled? Is it at all possible or relevant
to model the agents’ decisions?

• Given a real system to model (like a real distribution system with practical or real
data and GIS information as well as information of the citizens, the regulators,
the marketers…), how to model agents’ interactions according to the established
coordination procedures? How to model the organization of agents, including the
norms constraining the agents’ actions and interactions? How to model the ESTS?

9.3.2 Modeling of the Prosumer Structure

One key issue is the modeling of the prosumers, including their structure and the
interactions among themselves and with the environment.

Figure 9.2 shows a typical prosumer in the ESTS environment (other elements
omitted), highlighting the internal blocks and variables of an individual prosumer.

We propose to characterize individual prosumers according to four elements:
action set, communication, intelligence, and performance. The action set is deter-
mined by the technical options available to the prosumers and to their social status.
It is composed of a finite dimension of action choices. Communication refers to
the exchange of information with other agents or the environment; with each new
set of data, prosumers can modify their actions for fulfilling their objective. Intelli-
gence denotes processes of learning in the search for objectives (e.g. in efficiency
or economic terms); zero intelligence prosumers behave as random or static action
choosing agents. The actions taken by the prosumers feed back into ESTS, and the
performance of the system can be evaluated.

Considering the same set of internal blocks for a population of prosumers, with
different value added parameters representing the different properties of each one, the
resulting actions of the prosumers will be thoroughly disparate. With an increasing
number of prosumers, the cooperation and competition among them will interact
with the other links deriving from their social lives. Thus a proper decision making
for intelligent prosumers cannot be embodied by a simple optimization problem.
This also applies to the other actors.
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Fig. 9.2 Prosumers in ESTS

9.4 Explicative Example

In the following we describe a simulation example using MAS to implement multi-
layer model of a smart grid.

This simulation is intended to capture the interactions between the prosumers,
and the MV/LV distribution system operator and the regulator, taking into account
the social characteristics of prosumers, the physical properties of the network, and
the regulation methods of the operator. The goal is to link the social behavior to the
impacts on the power network.

9.4.1 Modeling of the Prosumers

As already discussed in Sect. 9.3.2, the modeling of a large number of prosumers
requires to represent the attributes of the prosumers and the relationships inside the
prosumer society in a measurable way.

The social factors of the prosumer agents are typified in terms of psychological
and economic attitudes regarding consumption and generation patterns. Two dimen-
sional attitude spaces, respectively for consumption and generation, are designed
as shown in Fig. 9.3. Prosumers are allocated in these coordinates, with different
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Fig. 9.3 Attitude spaces of prosumers

colors standing for different types of prosumers. According to their locations in the
attitude spaces, decisions about generation and consumption at each time step are
determined.

On the consumption side, considering the needs at each specific moment (appli-
ances, devices, air conditioning, heating...), the power use is driven by two factors:

• α → Comfort expectation (affecting the amount of available capacity the prosumer
will effectively exploit)

• β → Demand price elasticity (responsiveness to price variation).

For generation, depending on the available sources (distributed generation sources,
PV, Wind, FC, and so on) the power injection is driven by two factors:

• γ → Predisposition to technical management and attitude toward green energy
(affects the amount of generation capacity effectively exploited)

• δ → Generation price elasticity (responsiveness to price variation).

9.4.1.1 Prosumer Decision Making

The consumption capability and the generation capacity of the prosumers are deter-
mined as the basis for then computing the real time consumption and generation
decisions.

The total capability of consumption is defined as ci, standing for the available
level of comfort for prosumer I, and can be measured as the sum of the power of all
electric appliances and devices installed (kW). ci is fixed in the short time but can
change in the mid-term (i.e. the quantity and quality of the appliances and devices
can change).



196 E. Bompard et al.

The total installed capacity is defined as ei , standing for the available level of
generation for prosumer I, and can be measured as the sum of the power of all
generation devices installed (kW). ei is also fixed in the short time but can change
in the mid term (i.e. the generators can change).

Thus demand di (t) and generation gi (t) by prosumer i in time t can be respectively
expressed as:

di (t) = |αi (t)|∗ci − |βi (t)|∗ρ(t)

gi (t) = |γi (t)|∗ei − |δi (t)|∗υ(t)

where, αi (t), βi (t), γi (t), δi (t) are derived from the attitude spaces of prosumer i in
time t; ρ(t) and υ(t) are the prices for respectively withdrawing and injecting power
at time t.

9.4.1.2 Social Dynamics and Attitude Update

The individual behavior of each prosumer can be affected by the behavior of oth-
ers. This influence of one prosumer over another takes place the social network of
relationships of each consumer.

In our simulation, two social networks (Neighborhood Circle and Social Circle)
are defined for each prosumer. The Neighborhood Circle is “spatial” and is related
to the living place of the prosumers. The Social Circle is “relational” and is related
to social links of the prosumers.

At time step, prosumers will evaluate the rewards (in the form of comfort and
cost savings) obtained by the other prosumers within their social networks. Those
prosumers with best rewards from both neighborhood circle and social circles will
be followed as role models, copying their choices.

When prosumers want to improve their rewards (comfort or savings), they will
shift their behaviors towards that of their role models. In our simulation this adapta-
tion process occurs by fixed values at each time step.

9.4.1.3 Quadrant Sensitivity

For studying the adaptation towards more comfort and less cost, we separate the atti-
tude space in four quadrants. In Fig. 9.3, the preferable directions of adaptation are
shown in blue arrows of each prosumer. Generally speaking, positive signs denote
the interest of improving the savings or comfort; while negative signs indicate indif-
ference. The sensitivities of the four quadrants are classified in Table9.1.

As in the real world, if it were possible, all prosumers would like the maxi-
mum comfort together with the most cost efficient choices. But because the optimal
behavior is unknown, and there is randomness in the behavior of prosumers and the
system, there are boundaries for maximum price and comfort sensitivities (shown as
red dashed lines in the attitude spaces in Fig. 9.3).
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Table 9.1 Quadrant sensitivities

Quadrant Signs (x, y) Rules

First (+, +) Sensitive to both attitudes of x/y axis to improve through interactions
Second (−, +) Only care to improve the attitude of y axis
Third (−, −) Not influenced by others in their attitudes to consume and generate
Fourth (+, −) Only care to improve the attitude of x axis

9.4.1.4 Prosumer Intelligence

One can guess that most prosumers will value more reliable power consumptions and
appropriate energy bills than steady earnings from their DGs. On the other hand, some
large prosumers could offer reliable generation units, bidding in the local market or
getting supply contracts.

9.4.2 Basic Case

To evaluate the impact of the autonomous prosumer behavior onto the physical grid,
Fig. 9.4 shows two important layers of the multi-layer platform: the social layer and
the physical layer.

The social layer in this example is composed of 1,000 prosumers. Their social
status is marked with different colors, and the attitude values assigned to those status.
The physical layer is a Medium and Low Voltage distribution system based on the
benchmark of CIGRE task force C6.04.02, with LV (0.4 kV) and MV (20 kV) with
bilateral power flow (reverse flow marked as red line). On each node, the consump-
tion and generation values are marked as variable green arrows and orange arrows
respectively. Thus consumption and generation decisions from prosumers at each
time step determine the power flow in the physical layer.

As the simulation evolves, the prosumers apply their decision-making rules and
adapt to the changing situation. As a result, they converge, as we can see in Fig. 9.5.
Certain degree of social convergence driven by interactions among prosumer may
initially help in improving the system performance; while an over convergence among
the prosumers could damage the stability of the system.

Social convergence is not an unexpected outcome, similarly to what can be
observed in retail markets. But power networks can be negatively affected by this
extreme convergence of consumption or generation. In Fig.9.5, almost all nodes are
injecting power into the grid, as shown by the orange arrows. The opposite situation
of all prosumers withdrawing power can also exist. Both situations are not what one
would look for when developing Smart Grids with large penetration of distributed
generations.
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Fig. 9.4 Initial states of layers

Theferore, certain regulation rules should be introduced to guide the behaviors of
prosumers for the sake of ensuring a healthy Smart Grid. Ideally the result will be
an optimized system with satisfied prosumers.
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Fig. 9.5 Final states of layers
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Fig. 9.6 Comparison of system performance

Outrange Voltage rate: preferred voltage range are set 0.9 to 1.1; this index 
measured the percentage of nodes with an voltage out of this range;

Power loss: losses in this MV/LV network are added and unified to compare;

DG rate: presents the ratio of power consumption that comes from local generatio;

Reverse line flow rate: this index measures the rate of lines with reverse line 
flows;
Time : marks the number of simulation run steps;

*.1 with fewer running steps show curves before first gathering of prosumers; 
*.2 and *.3 with more running steps show curves under fullconvergence of 

prosumers.
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9.4.3 Case Comparison

An effective guiding policy by the DSO that respects the freedom of the prosumers
could be regulation based on alternative network charging. Here we consider two
types of network charging. One policy will be unique network charging based on the
global behavior of consumption and generation. The other will be location based
charging, meaning that network charges are calculated based on the aggregated
behavior of the prosumers connected to the same node; thus prices for consump-
tion and generation are computed for every node in this distribution network.

Results of the simulations are shown in Fig. 9.6: though influenced by dynamic
social behaviors and the convergence among prosumers, the system performance in
both charging strategies is stabilized.

While delivering higher standards of system performance, the unique charging
strategy fails to reduce outrange voltages and power loss with compared to the loca-
tion based charging strategy, which minimizes both indices in all conditions.

Location based charging shows a characteristic efficient reaction through the con-
vergence process of prosumers. In summary, based on these preliminary simulations,
it appears that location based charging strategies can be more efficient in the man-
agement of prosumer behaviors.

9.5 Conclusion

The development of the Smart Grid paradigm will require analytic capabilities for
evaluating the different aspects concerned, technical, economic, political and social.
The multi-layer model introduced in this paper incorporates those various elements.
The paper shows how Multi-Agent Simulation (MAS) applied to that multi-layer
model can be used for studying Smart Grid, taking into consideration the complexities
deriving from autonomous agents and their interactions.

The paper presents a formal approach to the representation and analysis of
autonomous prosumer behaviors. Though examples, it was shown the use of simu-
lations, with possible solutions to the problem at issue. Similarly, many other cases
can be considered in this framework, with more complex interventions, regulatory
settings and social structures.
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Abstract The human organism is an integrated network of interconnected and inter-
acting organ systems, each representing a separate regulatory network. The behavior
of one physiological system (network) may affect the dynamics of all other systems
in the network of physiologic networks. Due to these interactions, failure of one sys-
tem can trigger a cascade of failures throughout the entire network. We introduce a
systematic method to identify a network of interactions between diverse physiologic
organ systems, to quantify the hierarchical structure and dynamics of this network,
and to track its evolution under different physiologic states. We find a robust rela-
tion between network structure and physiologic states: every state is characterized by
specific network topology, node connectivity and links strength. Further, we find that
transitions from one physiologic state to another trigger a markedly fast reorganiza-
tion in the network of physiologic interactions on time scales of just a few minutes,
indicating high network flexibility in response to perturbations. This reorganization
in network topology occurs simultaneously and globally in the entire network as well
as at the level of individual physiological systems, while preserving a hierarchical
order in the strength of network links. Our findings highlight the need of an inte-
grated network approach to understand physiologic function, since the framework
we develop provides new information which can not be obtained by studying indi-
vidual systems. The proposed system-wide integrative approach may facilitate the
development of a new field, Network Physiology.
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10.1 Introduction

In contrast to the unorthodox diagnostic approaches of the fictional character Dr.
Gregory House from the acclaimed US TV-series “House” who, in a detective-like
manner, considers a variety of interactions between multiple physiologic systems
and variables to understand origins of symptoms in order to reach the right diag-
nosis, health care specialists traditionally focus on a single physiological system.
Cardiologists mainly examine the heart and consider ECG signals; pulmonologists
check lung structure and function and probe respiratory patterns; and brain neu-
rologists study EEG. However, the human organism is an integrated network of
interconnected and interacting physiologic organ systems, where each system is a
multi-component structural and regulatory network. The complex behavior of one
physiological system may be affected by changes in the dynamics of other systems
in the physiologic network of organ networks. Due to these interactions, failure of
one system may trigger a breakdown of the entire physiologic network.

Multiple organ failure is often the reason for fatal outcome in critical clinical care
[1, 2]. In fact, multiple organ dysfunction remains a leading cause of death in most
intensive care units. Clinical medicine offers support for specific organ systems that
has proven necessary but often insufficient to promote recovery. If the links between
physiological organ systems remain substantially altered, recovery is unlikely even
when the structure and function of a specific failed system is restored after treatment.
Indeed, autopsy findings in patients who succumb to multiple organ failure usually
show that tissue architecture is preserved, cells do not appear abnormal and there is
no widespread thrombosis. Nor does organ function appear to be irretrievably lost for
patients who survived multiple organ failure [3]. This underscores the importance of
identifying and quantifying the interactions between physiological organ systems,
and how these interactions change under different physiologic states, pathologic
conditions and with medical treatment. Further, medications developed to treat one
physiological system often influence the function and have side effects on other
systems. While some of the interactions between organ systems are partially known
at the qualitative level, more precise quantitative estimates are important especially
in the context of evaluating the proper medication dosage. Thus, the framework we
propose to investigate a network of physiologic interactions between organ networks
may help (i) to uncover new hitherto unknown links between organ systems, and
(ii) to quantify the degree and strength of physiologic coupling and interactions, and
how they change under various physiologic states and pathologic conditions.

A defining feature of physiological organ systems is their complexity. Decod-
ing the remarkable range of behaviors of living systems in health and disease has
emerged as a major focus of contemporary medicine. Physiological systems under
neural regulation exhibit nonstationary, intermittent, scale-invariant and nonlinear
behaviors [4, 5]. Moreover, physiologic dynamics transiently change in time with
different physiologic states and under pathologic conditions [6–8], in response to
changes in the underlying control mechanisms. The structural and neuronal control
networks that underlie each physiologic organ system lead to the the high degree of
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complexity in the output signals of physiological systems. This complexity is fur-
ther compounded by various coupling [9] and feedback interactions [10–12] among
different systems, the nature of which is not well-understood. Quantifying these
physiologic interactions is a challenge as one system may exhibit multiple simulta-
neous interactions with other systems where the strength of the couplings may vary
in time.

Therefore, to understand physiologic function it is critical to identify the net-
work of physiologic interactions, and to track its evolution under different phys-
iologic states and pathological conditions. This enterprise requires collaboration
among scientists with different backgrounds, and the need to foster multidisciplinary
approaches to problems at the interface of physics and physiology. Modern methods
of statistical physics and recent advances in the theory of complex networks have
great potential to uncover and quantify the structural and dynamical characteristics of
the physiologic network of organ networks. Here, we introduce a method to identify
interactions between physiologic systems, and we propose an integrative approach
to study the dynamical evolution of an entire network of physiologic interactions in
relation to changes under different physiologic states.

The central task of statistical physics is to understand macroscopic phenomena
that result from microscopic interactions among many individual components often
driven by competing forces and nonlinear feedback mechanisms. This problem is
akin to many investigations undertaken in physiology. In particular, physiological
systems under neural regulation and their complex nonlinear interactions among each
other are good candidates for a statistical physics approach, since (i) physiological
systems include many individual components (nodes) connected through a network
of nonlinear feedback interactions, as observed in certain physical systems, and (ii)
each physiologic system has multiple simultaneous interactions with other systems,
thus forming a network of physiologic networks.

Complex networks have attracted enormous attention in the past decade in various
fields of application. However, despite the importance to physiology and medicine,
the network of interactions between diverse vertically- and horizontally-integrated
organ systems is not known. Dynamical networks of physiologic interactions are
particularly challenging because most physiological systems are multiple component
complex systems with their own regulatory mechanism, and their function is affected
by various interactions with other systems and by their integration in the human
organism. Furthermore, physiologic dynamics and interactions continuously change
in time due to changes in physiologic conditions. Thus, most of the complexities
encountered in many of the networks studied so far are simultaneously present in
physiological networks.

The interdisciplinary field of Network Physiology bridges two active fields of
modern science: (A) the physics of complex networks, and (B) the organization
and control of integrated physiologic organ systems. There are several fundamental
questions that are critical for the development of both fields:

(A) In the field of complex networks: (A.1) it remains an unsolved problem how
to identify and quantify networks comprised of diverse systems with very different
types of interactions; (A.2) the relation between network topology and function is
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hypothesized but has not been demonstrated yet on real systems; (A.3) there are no
studies on real networks evolving in time and undergoing topological phase transi-
tions from one state to another, and (A.4) the relation of network topology to network
robustness and to the propagation of cascades of failure. These questions are even
more challenging for networks of networks, where each subnetwork is characterized
by different topology and dynamics of interactions with other subnetworks.

(B) In the field of integrated physiology: (B.1) it is not known how different phys-
iologic organ systems simultaneously interact as a network in the human body; (B.2)
whether different physiologic states are characterized by distinct networks of phys-
iologic interactions; (B.3) how transitions across physiologic and pathologic states
lead to transitions in the strength of physiologic interactions and in physiologic net-
work topology, and (B.4) quantitative knowledge of the critical zone of physiologic
coupling between multiple organ systems is essential to predict disintegration of the
physiologic network leading to multiple organ failure and other pathologies.

10.2 Complex Networks Approach to Physiologic Interactions

Research in statistical physics of networks has identified networks with complex
topologies [13, 14], and has focused on the role of topology for network function
and robustness [15–17], on the evolution of network topology under varied con-
ditions [18], emergence of self-organization and complex network behavior out of
simple interactions [19], and more recently on critical transitions due to failure in the
coupling of interdependent networks [20]. Recent advances in complex networks
theory are of relevance to a broad range of real systems including industrial [20,
21], transportation [22, 23] and communication networks [24], food and ecological
webs [19], financial systems and social interactions [21, 25–29] as well as biological
systems at the microscopic level such as genetic and protein-interaction networks
[30], biochemical [31], metabolic [32] and cell signaling networks [33]. However,
understanding the relation between topology and dynamics of complex networks
remains a challenge, especially when (i) the network evolves with links created or
lost in time, (ii) links between different nodes have different functional form and
strength/weight which change over time and (iii) network nodes are of different
kind with different dynamical properties and types of links [34, 35]. A further chal-
lenge to the contemporary theoretical framework of complex networks is posed by
real-world systems where each network node represents a multicomponent complex
system, a network on its own, with its own topology and regulatory mechanism that
can vary in time, and where the transient output dynamics of individual networks
affect the entire “network of networks” by reinforcing (or weakening) the coupling
between individual networks and changing network topology. A prime example of
a network of networks is the human organism, where integrated physiologic sys-
tems, each representing a complex network, form a network of interactions that in
turn affect physiologic function of individual systems or of the entire organism, and
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where breakdown in the interaction between physiological systems under certain
conditions may lead to a cascade of system failures [1, 2].

Physiological systems exhibit remarkable dynamic complexity where transient
changes in the underlying control mechanisms associated with different physiologic
states and conditions lead both to changes in their individual output characteristics as
well as in their interactions [6, 36–46]. Here, we introduce a framework to study the
network of interactions between physiological systems, and we focus on the topol-
ogy and dynamics of this network and their relevance to physiologic function. We
hypothesize that during a given physiologic state the physiologic network of organ
networks may be characterized by a specific topology. Further, we hypothesize that
even for networks with relatively stable topology associated with specific physiologic
states, the coupling strength between physiologic systems may change in time due to
the inherent variability in the regulation and output of these systems. Moreover, cou-
pling strength and physiologic network topology may change with transition from
one physiologic state to another, where physiologic interactions (network links) are
established or lost leading to a completely new network configuration. Such transi-
tions may also be associated with changes in the connectivity of specific network
nodes, i.e., the number of systems to which a given physiologic system is connected
can change, forming sub-networks of physiologic interactions. Thus, probing phys-
iologic network connectivity and the stability of physiologic coupling may provide
new insights on integrated physiologic function.

10.3 Time Delay Stability and Network of Physiologic
Interactions

We introduce the concept of time delay stability (TDS) to identify and quantify
dynamic links among physiological systems. The framework we propose allows
(i) to quantify the topology and global dynamics of physiologic networks, taking
into account the output of individual physiologic systems as well as the interactions
among them, and (ii) to track the dynamical evolution of multiple interconnected
systems undergoing transitions from one physiologic state to another (Fig. 10.1). We
construct a network of interactions for an ensemble of key integrated physiologic
systems (cerebral, cardiac, respiratory, ocular and muscle activity). We consider
different sleep stages (deep, light, REM sleep and quiet wake) as examples of physi-
ologic states. We demonstrate that sleep stages are associated with markedly different
networks of physiologic interactions (Fig. 10.2) characterized by different number
and strength of links (Fig. 10.3), and by specific node connectivity (Fig. 10.6). In
particular, during deep sleep we find a much lower number of links in the physio-
logic network compared to light sleep (Figs. 10.2 and 10.3)—individual physiologic
systems, such as the cardiac, are highly connected to other systems during light sleep
while there are practically no TDS links during deep sleep (Fig. 10.6). Furthermore,
the network links are much weaker during deep compared to light sleep (Figs. 10.3d
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(a) (b)

(c)

(d)

Fig. 10.1 Transitions in the network of physiologic interactions. a Dynamical network of interac-
tions between physiological systems where ten network nodes represent six physiologic systems—
brain activity (EEG waves: δ, θ , α, σ , β), cardiac (HR), respiratory (Resp), chin muscle tone, leg
and eye movements. b Transition in the interactions between physiological systems across sleep
stages. The time delay between two pairs of signals, (top) α-brain waves and chin muscle tone, and
(bottom) HR and eye movement, quantifies their physiologic interaction: highly irregular behavior
(blue dots) during deep sleep is followed by a period of time delay stability during light sleep
indicating a stable physiologic interaction (red dots for the HR-eye and orange dots for the α-chin
interaction). c Transitions between physiologic states are associated with changes in network topol-
ogy: snapshots over 30 s windows during a transition from deep sleep (dark gray) to light sleep
(light gray). During deep sleep the network consists mainly of brain-brain links. With transition
to light sleep links between other physiologic systems (network nodes) emerge and the network
becomes highly connected. The stable α-chin and HR-eye interactions during light sleep in (b) are
shown by an orange and a red network link respectively. d Physiologic network connectivity for one
subject during night sleep calculated in 30 s windows as the fraction (%) of present links out of all
possible links. Red line marks sleep stages as independently scored in a sleep lab. Low connectivity
is consistently observed during deep sleep (0:30–1:15 and 1:50–2:20 h) and REM sleep (1:30–1:45
and 2:50–3:10 h), while transitions to light sleep and wake are associated with a significant increase
in connectivity [47]
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Fig. 10.2 Network connectivity across sleep stages. Group-averaged time delay stability (TDS)
matrices and related networks of physiologic interactions during different sleep stages. Matrix ele-
ments are obtained by quantifying the TDS for each pair of physiologic systems after obtaining
the weighted average of all subjects in the group. Color code represents the average strength of
interaction between systems quantified as the fraction of time (out of the total duration of a given
sleep-stage throughout the night) when TDS is observed. The physiologic network exhibits transi-
tions across sleep stages—lowest number of links during deep sleep, higher during REM and highest
during light sleep and quiet wake—a behavior observed in the group-averaged network as well as
for each subject. Network topology also changes with sleep-stage transitions: from predominantly
brain-brain links during deep sleep to a high number of brain-periphery and periphery-periphery
links during light sleep and wake

and 10.5a). Traditionally, differences between sleep stages are attributed to modula-
tion in the sympatho-vagal balance with dominant sympathetic tone during wake and
REM [48]: spectral, scale-invariant and nonlinear characteristics of the dynamics of
individual physiologic systems indicate higher degree of temporal correlations and
nonlinearity during wake and REM compared to NREM (light and deep sleep) where
physiologic dynamics during exhibit weaker correlations and loss of nonlinearity
[6, 45]. In contrast, the network of physiologic interactions shows a completely dif-
ferent picture: the network characteristics during light sleep are much closer to those
during wake and very different from deep sleep (Figs. 10.2 and 10.3). Specifically,
network connectivity and overall strength of physiologic interactions are significantly
higher during wake and light sleep, intermediate during REM and much lower during
deep sleep. Thus, our empirical observations indicate that while sleep-stage related
modulation in sympatho-vagal balance plays a key role in regulating individual phys-
iologic systems, it does not fully account for the physiologic network topology and
dynamics across sleep stages, showing that the proposed framework captures prin-
cipally new information.
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Fig. 10.3 Sleep-stage stratification pattern in network connectivity and network link strength.
Group-averaged number of links (a) and averaged link strength (b) are significantly higher during
wake and light sleep compared to REM and deep sleep. There is no significant difference between
wake and light sleep. This pattern is even more pronounced for the subnetwork formed by the
brain-periphery and periphery-periphery links shown in (c) and (d). In contrast, the number of
brain-brain links remains practically unchanged with sleep-stage transitions (e), and the average
brain-brain link is ≈5 times stronger in all sleep stages compared to the other network links (f).
The group-averaged patterns in the number of network links and in the average link strength across
sleep stages (black bars) are consistent with the behavior observed for individual subjects (red bars
in all panels represent the same subject). The average link strength represents the average strength
of all links in a network obtained from a given subject during a specific sleep stage which then is
averaged over all subjects. Error bars indicate standard deviation

To quantify the interaction between physiologic systems and to probe how this
interaction changes in time under different physiologic conditions we study the time
delay with which modulations in the output dynamics of a given physiologic sys-
tem are consistently followed by corresponding modulations in the signal output of
another system. Periods of time with approximately constant time delay indicate a
stable physiologic interaction, and stronger coupling between physiologic systems
results in longer periods of time delay stability (TDS). The TDS method is general,
and can be applied to diverse systems. It is more reliable in identifying physio-
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logic coupling compared to traditional cross-correlation and cross-coherence analy-
ses (Fig. 10.7) which are not suitable for heterogeneous and nonstationary signals,
and are affected by the degree of auto-correlations in these signals [49]. Utilizing
the TDS method we build a dynamical network of physiologic interactions, where
network links between physiological systems (considered as network nodes) are
established when the time delay stability representing the coupling of these systems
exceeds a significance threshold level, and where the strength of the links is propor-
tional to the percentage of time when time delay stability is observed. This dynamic
network approach provides an integrated view of the simultaneous interactions of
multiple physiologic systems, where transient changes in physiologic conditions of
the human organism are reflected in continuous fluctuations in the strength of network
links, variations in the connectivity of individual network nodes, and emergence or
loss of specific links in response to changes in physiologic function—all leading to
transitions in network topology.

10.4 Transitions in Network Topology with Physiologic Function

We apply this new approach to a group of young subjects with continuously recorded
multi-channel physiologic data during sleep which allows us to track the dynamics
and evolution of the network of physiologic interactions during different sleep stages
and sleep-stage transitions (Fig. 10.1). We focus on physiologic dynamics during
sleep since sleep stages are well-defined physiological states, and external influences
due to physical activity or sensory inputs are reduced during sleep. While earlier
studies have identified how sleep regulation influences aspects of the specific control
mechanism of individual physiologic systems (e.g., cardiac or respiratory [6, 7, 45,
48]), the dynamics and topology of an entire physiologic network have not been
studied so far. Utilizing sleep data as an example we demonstrate that a network
approach to physiologic interactions is necessary to understand how modulations
in the regulatory mechanism of individual systems translate into reorganization of
physiologic interactions across the human organism.

We find that the network of interactions between physiologic systems is very
sensitive to sleep-stage transitions. In a short time window of just a few minutes the
network topology can dramatically change—from only a few links to a multitude
of links (Fig. 10.1c)—indicating transitions in the global interconnectivity between
physiological systems. These network transitions are not associated with random
occurrence or loss of links but are characterized by certain organization in network
topology where given links between physiological systems remain stable during the
transition while others do not—e.g., brain-brain links persist during the transition
from deep to light sleep while brain-periphery links significantly change (Fig. 10.1c).
Further, we find that sleep-stage transitions are paralleled by abrupt jumps in the
total number of links leading to higher or lower network connectivity (Fig. 10.1c, d).
However, even during stable physiologic conditions within a specific sleep stage, the
network of physiologic interactions does not remain static and undergoes continuous
dynamical changes with small fluctuations in the number of network links. These
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Fig. 10.4 Network connectivity and link strength of the brain-brain subnetwork for different sleep
stages. While the topology of the brain subnetwork does not change, the strength of network links
significantly changes with strongest links during light sleep and deep sleep (brown and dark red
color), intermediate during wake (red and orange color) and weakest links during REM sleep
(yellow color)

network dynamics are observed for each subject in the database, where consecutive
episodes of sleep stages (scored from standard polysomnographic recordings) are
paralleled by a level of connectivity specific for each sleep stage, and where sleep-
stage transitions are consistently followed by transitions in network connectivity
throughout the course of the night. Indeed, the network of physiologic interactions
exhibits a remarkable responsiveness as network connectivity changes even for short
sleep-stage episodes (Fig. 10.1d).

To identify the characteristic network topology for each sleep stage we obtain
group-averaged time delay stability matrices, where each matrix element represents
the percentage of time with stable time delay between two physiological systems,
estimated over all episodes of a given sleep stage throughout the night. Matrix ele-
ments with values above a threshold of statistical significance determined by surro-
gate analysis, indicate stable interactions between physiologic systems represented
by network links (Fig. 10.2). We find that matrix elements greatly vary for differ-
ent sleep stages with much higher values for wake and light sleep, lower values for
REM and lowest for deep sleep. This is correspondingly reflected in higher net-
work connectivity for wake and light sleep, lower connectivity for REM and signifi-
cantly reduced number of links during deep sleep (Fig. 10.3a). Further, the time delay
stability matrices indicate separate subgroups of interactions between physiologic
systems—brain-periphery, periphery-periphery and brain-brain interactions—which
are affected differently during sleep stages and form different sub-networks. Specifi-
cally, matrix elements representing interactions between peripheral systems (cardiac,
respiratory, chin, eye, leg) and the brain as well as interactions among the peripheral
systems are very sensitive to sleep-stage transitions, leading to networks of very
different topology for different sleep stages (Fig. 10.2). We find sub-networks with
high number of brain-periphery and periphery-periphery links during wake and light
sleep, lower number of links during REM and a significant reduction of links at
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deep sleep (Fig. 10.3c). In contrast, matrix elements representing brain-brain inter-
actions form a subnetwork with the same number of brain-brain links (Fig. 10.3e),
and stable topology consistently present in the physiologic network during all sleep
stages (Fig. 10.2). These sleep-stage related transitions in network connectivity and
topology are not only present in the group-averaged data but also in the physiologic
networks of individual subjects, suggesting universal behavior (Fig. 10.2). Notably,
we find a higher number of brain-periphery links during REM compared to deep
sleep despite inhibition of motoneurons in the brain leading to muscle atonia during
REM [50]. Further, the empirical observations of significant difference in network
connectivity and topology during light sleep compared to deep sleep are surprising,
given the similarity in the output dynamics of physiologic systems during light and
deep sleep [6, 7, 45, 48] (both stages traditionally classified as NREM), and indi-
cate that previously unrecognized aspects of sleep regulation may be involved in the
control of physiologic network interactions.

10.4.1 Physiologic States and Network Link Strength Stratification

Networks with identical connectivity and topology can exhibit very different strength
of their links. We find that not only network connectivity but also the average strength
of network links changes with sleep-stage transitions: network links are significantly
stronger during wake and light sleep compared to REM and deep sleep—a pattern
similar to the behavior of the network connectivity across sleep stages (Fig. 10.3a, b).
Further, subgroups of physiologic interactions exhibit different relationship between
their respective subnetwork connectivity and the average link strength. Specifically,
the subnetwork of brain-periphery and periphery-periphery interactions is charac-
terized by significantly stronger links (and also higher connectivity) during wake
and light sleep, and much weaker links (with lower network connectivity) during
deep sleep and REM (Fig. 10.3c, d). In contrast, the subnetwork of brain-brain inter-
actions exhibits very different patterns for the connectivity and the average link
strength—while the group average subnetwork connectivity remains constant across
sleep stages, the average link strength varies with highest values during light and deep
sleep and a dramatic ≈40 % decline during REM. The observation of significantly
stronger links in the brain-brain subnetwork during NREM compared to REM sleep
is consistent with the characteristic of NREM as EEG-synchronized sleep and REM
as EEG-desynchronized sleep [50]. During NREM sleep adjacent cortical neurons
fire synchronously with a relatively low frequency rhythm [51] leading to coherence
between frequency bands in the EEG signal, and thus to stable time delays and strong
network links (Fig. 10.3f and 10.4). In contrast, during REM sleep cortical neurons
are highly active but fire asynchronously [51] resulting in weaker links (Fig. 10.3f
and 10.4). Our findings of stronger links in the brain-brain subnetwork during NREM
indicate that bursts in the spectral power of one EEG-frequency band are consistently
synchronized in time with bursts in a different EEG-frequency band, thus leading to
periods of longer time delay stability. This can explain some seemingly surprising
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network links—for example, we find a strong link between α and δ brain activ-
ity during NREM sleep (Fig. 10.2) although α waves are greatly diminished and δ

waves are dominant [50]. Since the spectral densities of both waves are normalized
before the TDS analysis, the presence of a stable α–δ link indicates that a relative
increase in the spectral density in one wave is followed with a stable time delay by a
corresponding increase in the density of the other wave—an intriguing physiologic
interaction which persists not only during deep sleep but is also present in light sleep,
REM and quiet wake (Fig. 10.2). Notably, the average link strength of the brain-brain
subnetwork is by a factor of 5 higher compared to all other links in the physiologic
network (Fig. 10.3d, f).

Our finding that after averaging over all links in the physiologic network the
resulting average link strength exhibits a specific stratification pattern across sleep
stages, with strongest links during light sleep and wake, and weaker links during deep
sleep and REM (Fig. 10.3), raises the question whether the underlying distribution
of the network links strength is also sleep-stage dependent. To this end and to probe
the relative strength of individual links we obtain the rank distribution of the strength
of the brain-periphery and periphery-periphery network links for each sleep stage
averaged over all subjects in the group (Fig. 10.5a). The link strength shown in the
rank plots in Fig. 10.5a is determined by the degree of time delay stability, quantified
as the fraction of time when TDS is observed. We find that the rank distribution
corresponding to deep sleep is vertically shifted to much lower values for the strength
of the network links, while the rank distribution for light sleep and wake is for
all links consistently higher than the distribution for REM. Thus, the sleep-stage
stratification pattern we find for the average strength of the network links (Fig. 10.3d)
originates from the systematic change in the strength of individual network links with
sleep-stage transitions as demonstrated by the rank analysis. Notably, although the
strength of individual network links changes significantly with sleep stages, the rank
order of the links does not significantly change. Remarkably, after rescaling the rank
distributions for all sleep stages, we find that they collapse to two distinct functional
forms: (i) a slow and smoothly decaying rank distribution for REM and wake, and
(ii) a much faster decaying rank distribution for deep sleep and light sleep with a
characteristic plateau in the mid rank range indicating a cluster of links with similar
strength (Fig. 10.5b). Despite the similarity in the functional form of the distributions
and in the rank order in the strength of individual network links, our analyses show
a significant difference in the average strength of network links during deep sleep
compared to light sleep and REM compared to wake (Fig. 10.3d).

10.4.2 Local Topology and Connectivity of the Physiologic Network

Our observations that physiologic networks undergo dynamic transitions where key
global properties such as network connectivity and average link strength significantly
change with sleep-stage transitions following a robust stratification pattern, raise the
question whether local topology and connectivity of individual network nodes also
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Fig. 10.5 Rank distributions of the strength of network links. Group-averaged strength of individual
physiologic network links for different sleep stages. Rank 1 corresponds to the strongest link in
the network, i.e., highest degree of time delay stability (TDS) (shown are all periphery-periphery
and brain-periphery links). a The rank distributions for different sleep stages are characterized by
different strength of the network links—consistently lower values for most links during deep sleep,
higher values during REM and highest during light sleep and wake, indicating that the stratification
pattern in Fig. 10.3d is present not only for the average link strength (when averaging over different
types of links in the network) but also for the strength of individual links. Indeed, links from all
ranks are consistently stronger in light sleep compared to deep sleep and REM: such rank-by-rank
comparison of links across sleep stages is possible because the rank order of the links does not change
significantly from one sleep stage to another. A surrogate test based on TDS analysis of signals paired
from different subjects, which eliminates endogenous physiologic coupling, leads to significantly
reduced link strength (p < 10−3) and close to uniform rank distributions with no difference between
sleep stages (open symbols), indicating that the TDS method uncovers physiologically-relevant
information. Error bars indicate standard error. b Rescaling the plots reveals two distinct forms of
rank distributions: a slow decaying distribution for wake and REM, and a fast decaying distribution
for light sleep and deep sleep with a pronounced plateau in the middle rank range corresponding to
a cluster of links with similar strength, most of which related to the cardiac system

change during these transitions. Considering each physiologic system (network node)
separately, we examine the number and strength of all links connecting the system
with the rest of the network. For example, we find that the cardiac system is highly
connected to other physiologic systems in the network during wake and light sleep
(Fig. 10.6). In contrast, during deep sleep we do not find statistically significant time
delay stability in the interactions of the cardiac system, which is reflected by absence
of cardiac links (Fig. 10.6). Further, we find that the average strength of the links
connected to the cardiac system also changes with sleep stages: stronger interactions
(high % TDS) during wake and light sleep and significantly weaker interactions
below the significance threshold during deep sleep (Fig. 10.6). Such ‘isolation’ of
the cardiac node from the rest of the network indicates a more autonomous cardiac
function during deep sleep—also supported by earlier observations of breakdown
of long-range correlations and close to random and more linear behavior in heart-
beat intervals in this sleep stage [6]. With transition to light sleep, REM and wake
where the average link strength and connectivity of the cardiac system is significantly
higher, indicating increased interactions with the rest of the network that lead to cor-
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Fig. 10.6 Transitions in connectivity and link strength of individual network nodes across sleep
stages. The number of links to specific physiologic systems (network nodes) significantly changes,
with practically no links during deep sleep, a few links during REM and much higher connectivity
during light sleep and wake. Notably, the average strength of the links connecting a given network
node is also lowest during deep sleep and highest during light sleep and wake. Shown are connectivity
and average link strength for two network nodes, heart and chin. This sleep-stage stratification
pattern in individual physiologic system (node) connectivity and in the average strength of the
links connecting a specific network node is consistent with the transitions of the entire network
across sleep stages shown in Fig. 10.3. Networks for heart and chin are obtained by averaging the
corresponding networks for all subjects. During deep sleep no links to the heart are shown since
the strength of each link averaged over all subjects is below the significance threshold. Right bars
in the panels represent for different sleep stages the group mean of the average strength of network
links connecting heart and chin respectively, and error bars show the standard deviation. Left bars
represent an individual subject

respondingly higher degree of correlations and nonlinearity in cardiac dynamics [6].
Similarly, respiratory dynamics also exhibit high degree of correlations during REM
and wake, lower during light sleep and close to random behavior during deep sleep
[45]. Such transitions in the number and strength of links across sleep stages we also
find for other network nodes (for example chin, Fig. 10.6). Moreover, the sleep-stage
stratification pattern in connectivity and average link strength for individual network
nodes (Fig. 10.6) is consistent with the pattern we observe for the entire network
(Fig. 10.3). Our findings of significant reduction in the number and strength of brain-
periphery and periphery-periphery links in the corresponding sub-networks during
deep sleep indicate that breakdown of cortical interactions, previously reported dur-
ing deep sleep [52], may also extend to other physiologic systems under neural
regulation. Indeed, the low connectivity in the physiologic network we find in deep
sleep may explain why people awakened during deep sleep do not adjust immediately
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Fig. 10.7 Cross-correlation and surrogate analysis. Rank plots obtained from cross-correlation
analysis show no statistically significant differences between real and surrogate data, indicating
that cross-correlation is not a reliable measure to identify physiologic interactions

and often feel groggy and disoriented for a few minutes. This effect is not observed
if subjects are awakened from light sleep when we find the physiologic network to
be highly connected (Fig. 10.2). Further, the fact that deep sleep in primates domi-
nates at the beginning of the night and not close to dawn, when many large predators
preferably hunt, may have been evolutionarily advantageous.

Introducing a framework based on the concept of TDS we identify a robust network
of interactions between physiologic systems, which remains stable across subjects
during a given physiologic state. Further, changes in the physiologic state lead to com-
plex network transitions associated with a remarkably structured reorganization of
network connectivity and topology that simultaneously occurs in the entire network
as well as at the level of individual network nodes, while preserving the hierarchical
order in the strength of individual network links. Such network transitions lead to
the formation of sub-networks of physiologic interactions with different topology
and dynamical characteristics. In the context of sleep stages, network transitions
are characterized by a specific stratification pattern where network connectivity and
link strength are significantly higher during light compared to deep sleep and during
wake compared to REM. This can not be explained by the dynamical characteristics
of the output signals from individual physiologic systems which are similar during
light and deep sleep as well as during wake and REM. The observed stability in
network topology and rank order of links strength during sleep stages, and the tran-
sitions in network organization across sleep stages provide new insight into the role
which individual physiologic systems as well as their interactions play during spe-
cific physiologic states. We note that traditional methods based on cross-correlation
or cross-coherence analysis lead to spurious detection of interrelations and coupling
in signals of different origin and with different autocorrelations, and fail to iden-
tify and quantify a the network of physiologic interactions (Fig. 10.7). While we
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demonstrate one specific application, the framework we develop can be applied to
a broad range of complex systems where the TDS method can serve as a tool to
characterize and understand the dynamics and function of real-world heterogeneous
and interdependent networks.

10.5 Summary

We introduce a new framework to investigate a network of interactions between
complex physiological systems, each representing a separate regulatory network.
This proves useful to uncover key aspects of physiologic dynamics and coupling
in the context of the integrated function of diverse physiological systems in the
human organism, and may facilitate novel theoretical approaches to study dynamical
processes on networks of networks. These investigations constitute a first step in the
development of a new field we call Network Physiology.

Specifically:

1. This is the first study of a network comprised of diverse complex systems.
Earlier studies have focused on networks where (i) all nodes are of the same
type, and (ii) network links are static and do not change in time. This is not the
case in many real networks. Further, such “idealized” networks can not exhibit
transitions in topology, and thus do not allow investigation of key questions such
as the relation between network topology and function.
Quantifying networks comprised of different types of nodes, where the nodes are
not identical and simple units, but represent complex multi-component dynamical
systems with their own regulatory mechanisms, is a major challenge which has
not been addressed so far. The reason that network interactions between such
complex systems have not been studied is that different types of systems have
output signals with very different characteristics, which can also change in time.
Thus, current methods tailored to probe the interaction/coupling between two
similar systems do not work for a pair of different systems. This is a strong
limitation when studying real-world networks.
To overcome this limitation we developed a framework, based on a novel concept
of time delay stability (TDS), to probe interactions among diverse systems by
quantifying interrelations between their transient signal outputs. Utilizing this
new approach we identify a dynamic network that represents the global behavior
of a group of complex systems (networks) even when the links between these
systems are not a-priori known. Our approach is general, and can be applied to
many real dynamical systems and networks.

2. We present the first physiologic network. Specifically, we identify and quantify
a network of interactions between key integrated physiologic systems: cerebral,
cardiac, respiratory, ocular and motor system. These are diverse and complex
systems, with their own regulatory neuronal networks, and with very different
types of output signals.
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This discovery provides a first dynamical map of the human organism as an inte-
grated network of interacting physiological systems. Utilizing the physiologic
network we can track how the behavior of one organ system can be affected
by changes in the dynamics of other systems. Further, this approach allows to
estimate whether, under certain conditions, failure of one system may trigger a
breakdown of the entire network of physiologic systems. This network informa-
tion is critical to understand physiologic function and uncovers new aspects of
the mechanisms of physiologic regulation, and cannot be obtained by traditional
studies focusing on individual systems.
The new physiologic information we obtain is relevant and may be utilized for
clinical applications in critical care units, in situations of multiple organ failure,
or in assessing side effects of pharmacological treatment when targeting a specific
system may also affect other systems via the network of physiologic interactions.

3. Of importance to complex networks, we show that there is a robust interplay
between network topology and function. In network theory it is hypothesized that
network function is influenced by network structure, however, examples on real
networks did not exist prior to these investigations.
We demonstrate that each physiologic state is associated with a specific network
of physiologic interactions that is characterized by a given topology, node con-
nectivity, number and strength of network links. A similar network topology and
strength of network links is consistently observed for individual subjects in the
same physiologic state, indicating universal behavior.
In particular, relating physiologic function to network topology we show that
during deep sleep several integrated systems (e.g., cardiac, respiratory and brain)
act as if disconnected from each other. This is a principally new information,
which can explain (i) why earlier studies have found that correlations and scaling
properties in heartbeat intervals break down and exhibit close to random behavior
during deep sleep (as it would be the case of a denervated heart), and (ii) why
people awakened during deep sleep do not adjust immediately and often feel
groggy and disoriented for a few minutes.
Since specific mechanisms regulate physiologic function during each physiologic
state, our observations provide a first empirical evidence on a real network of a
robust relation between network structure and function.

4. We identify phase transitions in network topology. There is no precedent of such
behavior. We quantify the process of transition by tracking the network evolution
in time.
We find that with transition from one physiologic state to another (for example
across sleep stages), network topology dramatically changes within a short time
window of 2–3 min—from only a few links to a multitude of links—indicating a
remarkable flexibility in the interaction between physiologic systems in response
to change in physiologic regulation. Such change in network structure in response
to change in the mechanisms of control during different physiologic states indi-
cates that our findings reflect intrinsic features of physiologic interaction.
Further, we find that transitions from one physiologic state to another trig-
ger a remarkably-structured reorganization of physiologic interactions. This
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reorganization occurs simultaneously and globally in the entire network as well as
at the level of individual network nodes (physiologic systems), while preserving
a hierarchical order in the strength of network links.
Although our study is limited to a data-driven approach the empirical findings
may facilitate future efforts on developing and testing network models of physio-
logic interactions. In relation to critical clinical care, where multiple organ failure
is often the reason for fatal outcome [1, 2], our framework may have practical util-
ity in assessing whether dynamical links between physiological systems remain
substantially altered even when the function of specific systems is restored after
treatment [3]. While we demonstrate one specific application, the framework we
developed can be applied to a broad range of complex systems where the TDS
method can serve as a tool to characterize and understand the dynamics and func-
tion of real-world heterogeneous and interdependent networks. The established
relation between dynamical network topology and network function has not only
significant medical and clinical implications, but is also of relevance for the gen-
eral theory of complex networks, including the emerging field of networks of
networks.
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Part III
Phenomenological Models

Under the definition of ‘phenomenological models’ we have included different
attempts to reproduce the real behaviour of the critical infrastructure. These
models are able to provide detailed—and realistic—information on the behaviour
of critical infrastructures and the fault-propagation mechanisms at different levels
of abstraction. The higher is the accuracy of the model, the larger is the amount of
data and time required for the calculation. Moreover, an extremely detailed output
can represent a challenge in order to understand the emergent behaviour of the
whole system.

Chapter 11 presents the state of the art for the so-called federated simulations.
Such approach consists in merging in a common software the simulation tools
normally employed by the asset owners of the single critical infrastructures. By
this means it provides extremely detailed predictions.

Chapter 12 represents a compromise between the need of details and the urge of
including the effects of the behaviour of the human actors (both decision-makers
and users). To this purpose, agent-based models are widely employed.

Chapter 13 compares the different approaches under the perspective of the
evaluation of the systemic risk.

Chapter 14 specialises the systemic analysis to the interdependent components
of the financial system. This allows the definition and implementations of metrics
and tools that are currently applied by financial institutions to assess the systemic
part of the risk.

Chapter 6 focuses on the spatial and temporal structure of the inter-depen-
dencies among infrastructural networks. Such approach enables an adaptive
optimization of countermeasures both to contain ongoing damage and to speed-up
the recovery process.



Chapter 11
Federated Modelling and Simulation
for Critical Infrastructure Protection

Erich Rome, Peter Langeslag and Andrij Usov

Abstract Modelling and simulation is an important tool for Critical Infrastructure
(CI) dependency analysis, for testing methods for risk reduction, and as well for the
evaluation of past failures. Moreover, interaction of such simulations with external
threat models, e.g., a river flood model, or economic models enable consequence
analysis and thus may assist in what-if decision-making processes. The simulation
of complex scenarios involving several different CI sectors requires the usage of het-
erogeneous federated simulations of CIs. However, common standards for modelling
and interoperability of such federated CI simulations are missing. Also, creating the
required abstract models from CIs and other data, setting up the individual feder-
ate simulators and integrating all subsystems is a time-consuming and complicated
task that requires substantial know-how and resources. In this chapter, we outline
applications and benefit of federated modelling, simulation and analysis (MS&A) for
Critical Infrastructure Protection (CIP). We review the state of the art in federated
MS&A for CIP and categorise common approaches and interoperability concepts
like central and lateral coupling of simulators. As examples for the latter two con-
cepts, we will present in more detail an interoperability standard from the military
domain, HLA, and an approach developed in the DIESIS project. Special emphasis
will also be put on describing the problem of synchronising systems with different
time models. Also, we will briefly assess the state of transferring MS&A for CIP
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research results to practical application by comparing the situations in the USA and
in Europe.

Keywords Federated simulation ·Modelling ·Analysis · Interoperability ·Critical
infrastructures · HAL · DIESIS · OpenMI · XMSF · IDSim · I2Sim · Simulation ·
Time synchronisation

11.1 Introduction

Infrastructures operate globally and are increasingly dependent and interdependent:
a breakdown or disruption of functions may have serious national or even multi-
national consequences [1]. The disruptions of the power grids in 11 European states
and Morocco on November 4, 2007 affecting 15 million people are a case in point.
It is for this reason that such infrastructures can be called Critical Infrastructures
(CI). A CI is defined by [2] as an asset, system or part thereof that is essential
for the maintenance of vital societal functions, health, safety, security, economy or
social well-being of people, and the disruption or destruction of which would have a
significant impact as a result of the failure to maintain those functions. Clearly, it is
mandatory to protect these assets. In this respect, modelling, federated simulation,
and analysis are of vital importance [3]. They are required for the investigation of CI
and their dependencies, for training CI operators and crisis managers, as well as for
the development of methods for Critical Infrastructure Protection (CIP).

Simulation is particularly well-suited for capturing dynamic effects within the
complex system of interconnected critical infrastructure systems, like cascading
effects. A failure or loss of service in one infrastructure, like power transmission, may
cause a loss in a dependent infrastructure, like railway transport. The simulation and
investigation of large scenarios with cascading CI failures affecting critical services
in multiple CI requires the use of federated simulations consisting of simulators
and suitable models1 for each of the involved CI [3, 4]. In addition, models that may
generate threats to the CI and models that analyse the consequences (e.g., economic
loss, number of casualties, affected area), and visualisation as well as other real-time
tools may need to take part in the federation. These simulators and components need
to be coupled by means of a suitable middleware that allows the synchronisation
of events and simulation times, the exchange of data, and the exertion of control
functions like starting and stopping simulations (Fig. 11.1). That is, components of a
federated simulation need to be interoperable. Different from the situation in most
military simulations, current CI simulators are in general not interoperable and often
lack proper interfaces.

Some federated simulations need to be realised as distributed systems, for vari-
ous reasons. Depending on the computational demands of individual simulators that

1 In this publication, we refer to ‘simulation’ as the dynamic part of a computer model, and we refer
to ‘model’ as the static part of a computer model.
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Fig. 11.1 A generic schema for modelling, federated simulation and analysis for CI. A model
base contains abstract (conceptual) models for each of the CI simulators (federates). Simulation is
started by a control GUI. Federates exchange data with each other and report status to control GUI.
Intermediate states and results of the federates are logged by a data logger. A visualisation module
can be employed for visualising results and simulation states online (while the simulation is running)
or offline (after the simulation terminated). Analysis tools can provide additional information by
evaluating the results online or offline. Sometimes, one of the federate components serves as an
orchestrator or manager that controls the simulation steps of all individual simulators

comprise the federation, it is sometimes not commendable or possible to run the
entire federation on a single computer, e.g. when federates require different oper-
ating systems. And lastly, in a collaborative research project individual simulators
composing a federation may need to run on different partners’ computers for license
or financial reasons. Distributed (federated) simulation includes running a feder-
ation on a local computer grid or in a locally distributed fashion via the Internet or
other communication infrastructure.

After the above brief characterisation of federated simulation systems, we will
describe applications, technologies, state of the art, challenges, and standardisa-
tion of federated modelling, simulation and analysis (MS&A) in more detail in the
remainder of this chapter. It is organised as follows. First, we describe application
areas of federated MS&A. Then we take a look at the basic technical properties of
federated simulations and describe current interoperability approaches and the syn-
chronisation problem. Then we review the state of the art in federated MS&A for
Critical Infrastructure Protection and describe in detail two different interoperability
approaches, HLA and DIESIS. We conclude with summarising the main insights.
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11.2 Applications of Federated Modelling, Simulation and
Analysis

Federated modelling, simulation and analysis has a wide range of applications, with
two foci, research—as aid for and subject of—on one hand and applications in secu-
rity on the other hand. Both foci are closely related. The US American facility NISAC
employs federated MS&A for homeland security. It emerged from a cooperation
between two research institutes, the Sandia and Los Alamos National Laboratories
in the year 2000 and is now part of the Department of Homeland Security. The
research institutes successfully managed transferring their CIP expertise and feder-
ated MS&A technology to practical applications. In Europe, federated MS&A for
CIP is still rather a subject of research, but there is a small community working
towards a European facility, comparable to NISAC, that shall provide expertise and
technology to offices, institutions, and people responsible for Critical Infrastructure
Protection and Civil Security.

In this section, we will present both typical applications of federated MS&A and
outline emerging applications. It should be noted here that developments of federated
MS&A were and are strongly driven from applications in the military domain, for
instance, the HLA middleware standard. That is, some of the state of the art presented
here stems from the military domain, but is relevant also for CIP.

11.2.1 Investigating Dependencies Between Critical Infrastructures

For this chapter, we adopt the definition of dependent and interdependent CI given
by Luiijf et al. [5, p. 304], “A CI dependency is the relationship between two CI
products or services in which one product or service is required for the generation
of the other product or service; a CI interdependency is a mutual CI dependency.” A
loss of service or reduction of quality of a service in one infrastructure may lead to
loss of service in a dependent second infrastructure, this again may lead to loss of
service in a dependent third infrastructure, and so on. This is called a cascading effect.
Since CI form a very complex system of dependent systems at various scales (local,
regional, national, continental, global), it is difficult to understand the nature and
effects of these dependencies. A prerequisite of developing methods and measures
for protecting CI or making them more resilient was an improved understanding of the
dependencies. Consequently, this type of investigation was a major focus in the CIP
research area over the last 10 years. While some dependencies are of static nature
(by construction or local neighbourhood of CI elements), the more difficult cases
are dynamic dependencies, occurring while CI are operating. Since it is prohibitive
to use real CI for investigation, researchers started using conceptual models and
computer simulation of CI for investigating dependencies and interdependencies of
CI (Examples: [3, 4, 6–17]). An example of a dynamic effect is a delayed cascading
effect, like a loss of power supply for a hospital that has a diesel generator as a backup
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power supply, which fails several hours later after it runs out of fuel. Depending on
the duration of the power outage, this cascading effect may or may not happen.

11.2.2 Soft Exercises and Training

One of the essential elements for protecting Critical Infrastructures is maintaining or
achieving a high level of preparedness of staff responsible for security, like crisis and
emergency managers. This requires practice in real emergencies and crises as well
as training of simulated emergencies and crises in exercises. Typically, national or
regional exercises take place once a year, while some enterprises do monthly exer-
cises. Such exercises are necessary and useful. However, given the wide range of
potential scenarios, annual practical exercises seem not sufficient for being prepared
for even the most likely scenarios in an ever-changing world. Computer simulation
would be suited as an additional means for exercising mitigation of crises and emer-
gencies, and raising awareness of the role of CI in crises and emergency situation
[18]. Similarly, federated M&S of CI could be used to train operators of CI for miti-
gating crisis and emergency situations. Here, scenarios and scripts of the simulations
could be altered to cover a wide range of possible situations.

11.2.3 Decision Support

In cases of crises, crisis and emergency managers may encounter situations in which
different courses of action are possible. Decision Support Systems (DSS) provide
methods for assessing the consequences of certain decisions and thus may aid crisis
and emergency managers in taking the right decisions. By using simulations, DSS can
be enhanced to perform ‘what if’ analyses, that is, dynamically explore the different
courses of action and their different consequences. In this way, these end users are
enabled to plan the most effective use of resources in an emergency and to explore
a variety of scenarios, for example:

• which region to evacuate first, which infrastructures to reinforce best/first,
• which transport or traffic infrastructures required for a mitigation plan will be

affected by a disaster and what contingency planning is required,
• which infrastructures outside a region affected by a disaster need to be operational

in order to supply that region and thus need to be protected too.

Examples of this type of application are I2Sim [19], described later in this chapter,
and the work of Tolone et al. [15].

11.2.4 Environment for Testing and Benchmarking New Methods

The IRRIIS project ([20], cf. also below) developed a federated simulation of
the interdependent power distribution and telecommunication networks of two
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infrastructures operators. The simulation was orchestrated by means of an agent-
based simulator called SimCIP [21]. During the simulation, early indicators for re-
ductions of quality of service or loss of service were computed independently for each
of the four simulated infrastructure topologies. The project investigated whether a risk
reduction could be achieved by communicating the early risk indicators between the
two infrastructure operators [22]. A potential future extension of this type of applica-
tion, proposed in [23], is using federated MS&A for benchmarking competing new
methods for risk reduction in or protection of CI.

11.3 Basic Technical Aspects of Federated Simulation

11.3.1 Interoperability Approaches

The assessment of simulator interoperability provided by Usov et al. still holds today:
“In recent years, a large number of projects have investigated and tested methods for
coupling simulators. As a general result it can be stated that the technological task of
coupling simulators is highly demanding and that there are no ideal general purpose
solutions for the coupling task, but the applied methods are strongly determined by
the general requirements and the application task at hand” [24]. In this section, we
will review some basic interoperability approaches.

A connection creates a communication link between two or more systems.
Interoperability between these systems could be considered from a double point
of view [25]: technical connectivity and semantic connectivity.

Technical connectivity considers in which way systems are able to solve the
problem of sharing and exchanging data across multiple platforms. It is strongly
related to the capability of systems to implement a common data structure and syntax
in order to achieve a connection among them. This aspect of interoperability implies
that the exchanged information is understandable by any other system not initially
developed for the cooperation. So a common language is an essential requirement.
It enables the description of the structure and syntax of the underlying data.

To achieve a meaningful connection among systems it is necessary to establish
how they can exchange information or in which way they combine other information
about resources and subsequently the way to process them, in a significant manner.
Thus, semantic connectivity requires agreement on a wide variety of issues relating
to the context within information is created and used. The aim is not only to allow
information resources to be linked up, but also to give context to information in a
scenario in which different systems have their own perspective on that. Only in this
way information can be automatically understandable and, consequently, reusable
by systems that were not involved in its creation. Thus, the semantic connectivity
concerns the need to agree on common definitions and to understand information
that is necessary to exchange.
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Fig. 11.2 Central coupling: Connected systems exchange information via a common logical bridge,
using a standardised exchange format

Fig. 11.3 Lateral coupling: Connected systems exchange information bi- or multi-laterally.
Exchange formats may vary

For connecting simulations, two technologies can be considered: central cou-
pling and lateral coupling. The central coupling topology is of a typical architecture
oriented to the distribution of services, where the applications communicate each
other through a logical channel or bridge (Fig. 11.2). From an architectural point of
view, such logical channel is based on a software layer centralising functionalities.
It supports synchronous and asynchronous communication based on messages and
intelligent routing as well as data transformation and connectivity towards hetero-
geneous applications. Typically, such a logical channel is implemented by means of
middleware, usually based on standards. It supplies the fundamental services for more
complex architectures through event-driven and message passing mechanisms. Cen-
tral coupling approaches with standardised exchange formats, such as HLA [26–29]
or OpenMI [30, 31], are particularly suited when all federates support the exchange
format standard. If this is the case, the integration of a new simulator is relatively
easy and is limited to the implementation of an interface between this simulator
and interoperability middleware which already contains ready-made solutions for
communication, time management, etc.

Despite of its convenience, central coupling approaches are generally not applica-
ble if federation members do not use one and the same interoperability standard.
Especially the time management is often a challenging problem that has only one-
off solutions for particular federations but is unsolvable in general, for arbitrary
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combinations of models and technologies (see Sect. 11.3.2). Other than simulators
in the military area, federations of CI simulations are often quite heterogeneous
in terms of interfaces, modelling approaches and even time scales. For realisation
of such a federation, a lateral coupling topology [24] is recommended. This ar-
chitecture foresees the development of dedicated links between pairs of federates,
according to their logical interconnections (Fig. 11.3). Besides of pairwise couplings,
the resulting federation may also contain centrally coupled clusters of simulators that
all support a certain interoperability standard. A drawback of the lateral coupling ap-
proach is obviously the large number of links that has to be developed for creating a
federation as well as for adding a new member to an existing one. Creating poten-
tially reusable links and storing them in a kind of repository is a possible solution
for this problem. Application of lateral coupling architecture for federations of CI
simulators and corresponding strategies are discussed in Sect. 11.4.5

11.3.2 Time Models and Synchronisation

The semantic connectivity described in the previous section has two essential
aspects: regulation of data exchange between federates and correct interpretation
of the exchanged data. Here, we will discuss the former aspect, and the latter one
will be handled in Sect. 11.3.3. Regulation of data exchange means, in the first line,
the preservation of causality. In other words, it is necessary to ensure that particular
events (i.e., discrete messages that usually represent state changes) are processed
by all federates in a logically correct order. This is an essential requirement for the
reproducibility of simulation results for the same scenario, which is required for
many evaluation techniques. For training applications, minor deviations from the
correct event order can often be tolerated as long as perceived realism of simulation
results is not violated [32].

The problem of time management for federated simulations is as old as the idea of
federated simulation itself. First formulations of this problem and corresponding first
solutions were published in the late 1970s (e.g., by Chandy and Misra [33]). How-
ever, since then, many new approaches or variations of already existing approaches
have been developed and published. The reason for this continuing interest in the
time management problem is that there is no universal optimal solution for all pos-
sible simulators with their different time and execution models. Irrespective of their
internal time representations, the simulators may offer interaction capabilities and
provide simulation results according to the following schemes:

• Steady state: a simulation runs until a steady state of the internal model (or some
state where reasonable simulation results can be produced) is reached. This kind
of computation is often employed for relatively fast processes and sometimes they
even have no notion of time in their models (e.g., switching actions in a power
distribution network).
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• Discrete events: simulation results are produced after variable simulation time
intervals that are determined by occurrence of some internal event or by reaching
some state in which the simulator assumes that interaction with its environment is
required.

• Constant time steps: simulators of this type are clocked and offer interaction after
every constant simulation time period. Simulation steps are usually configurable:
shorter steps increase the accuracy of results, longer steps improve the simulation
performance.

• Real time: those simulations are usually employed for training with human in the
loop. They often work with small constant time steps that are synchronised with
the real time. Hence, their capability to wait for simulation results produced by
other federates is very limited. Interaction with real time simulators places high
demands on performance of other federates and of the middleware.

The choice of an appropriate time management approach depends on the combi-
nation of different time models within a federation. Another factor that determines
the synchronisation strategy is the desired usage of simulation results: for exact
results evaluation the synchronisation algorithm has to work exactly too. Finally,
the ability of simulators to return to a time point in the past by rolling back recent
state changes allows to employ advanced synchronisation techniques. Most time
management implementations are based either on conservative or on optimistic syn-
chronisation approaches. In this section, we will provide only a brief introduction
into the core ideas of these techniques. More detailed description and an overview
over related algorithms can be found, for example, in works by Fujimoto [32] and
Riley et al. [34].

Conservative time management algorithms prevent causality violations by re-
stricting event processing to “safe” events. An event can be safely processed by a
particular federate only if it is absolutely certain that no other events assigned to
an earlier simulation time point will be received by this simulator afterwards. An
essential prerequisite for the application of this approach is the ability to compute a
lookahead (i.e., remaining simulation time until the next “public” event) for all feder-
ates. Several solutions were developed in order to detect and avoid deadlocks as well
as to minimise the communication overhead [35, 36] of conservative synchronisation
algorithms.

Optimistic synchronisation approaches use another strategy for keeping the event
order correct. Federates are explicitly allowed to process potentially “unsafe” events.
However, if an event with smaller simulation time stamps arrives later, simulators
must be prepared to roll back all effects of recently processed events and to reprocess
events in a correct order. Optimistic synchronisation provides a higher degree of par-
allelism and potentially better simulation performance. However, its major drawback
is a high demand on memory that is required for storing checkpoints for possible
rollbacks. Furthermore, simulations may be significantly slowed down by an increas-
ing number of rollbacks which is highly scenario-dependent. This problem is even
exacerbated by the fact that processing an event may produce new events that have to
be sent to other simulators. In this case, the rollback process includes the cancellation
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of sent events and, hence, it initiates rollbacks at other federates. A “too optimistic”
event processing strategy may unleash extremely time-consuming rollback cascades.

Unlike conservative approaches, the optimistic ones do not rely on the computa-
tion of lookaheads. On the other hand, the ability of federates to maintain checkpoints
and to perform rollbacks is required. The Time Warp algorithm published by Jef-
ferson in 1985 [37] was probably the first optimistic synchronisation approach. It
foresees “anti-messages” for cancelling already sent events in case of a non-local
rollback. In the early 90s, several modifications of the Time Warp algorithm as well as
completely new ideas were developed in order to decrease memory consumption [38]
and to avoid costly distributed rollbacks [39, 40].

Neither conservative nor optimistic time management algorithms can provide a
universally optimal solution for arbitrary federations due to the fact that the efficiency
in both approaches highly depends on scenarios (global event order), on federation
topology (logical links among simulators) as well as on specific features supported by
particular simulators (lookahead computation and rollback functionality). In the area
of CIP, it is often required to simulate interactions of different infrastructures that are
described by quite different physical and logical laws. The resulting federation can
be extremely heterogeneous and may contain simulators that internally work with
completely different time scales. Typical temporal intervals between events are mil-
liseconds for power network and communication domains, seconds for urban traffic,
minutes for evacuation and smoke propagation and hours for flooding simulations.
Some simulators may not support rollbacks, since others may be unable to forecast
their lookaheads. Hence, the choice of an appropriate time management solution for
a federation of CI simulators is determined by the composition of this federation.
Furthermore, there is no guarantee that a globally applicable solution exists. In this
case, according to the idea of lateral interoperability, different time management ap-
proaches have to be employed for particular pairs or clusters of simulators within
the federation (see Sect. 11.3.1).

11.3.3 Modelling for Federated Simulation

As stated in the previous section, the correct interpretation of the exchanged data is
of utmost importance for a federation to become more than the sum of its federates.
Also, this data has to be interpreted in the right manner. Another issue that rises is that
the federates are created and validated for a special purpose. Using them as part of a
federation may cause the validation to become insufficient and thus it may become
necessary to redo the validation of the federates. In addition, the overall validation
needs to be regarded. This chapter will handle both cases.

The easiest way to guarantee the information exchange to contain the correct data
is to anchor this in the data exchange protocol, as it is done with DIS [41]. This can
easily be accomplished with simulators in the same domain where linking simulators
is common knowledge (DIS was developed for the defence domain). For the world of
CI where multiple domains are involved and linking of simulators is not common, it
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is unlikely that simulator developers will adapt to a common data exchange protocol.
Also, a disadvantage of DIS is the use of broadcast for data exchange. All information
is sent to every federate, which can result in a big bandwidth consumption.

A more flexible approach is used in HLA with the use of Object Models (OM) [42].
HLA object models are composed of a group of interrelated components specifying
information about classes of objects, their attributes, and their interactions. Every
federate has its own federate object model (FOM), but it has to be compliant with
the object model of the federation, the simulation object model (SOM). HLA uses a
publish and subscribe mechanism for data exchange. Therefore, network bandwidth
can be adapted to actual needs.

Although the HLA method gives a much more flexible approach for linking sim-
ulators compared to DIS, it is still based on a common data model, which must be
implemented by all federates. Also, it is a purely syntactic model which works well
for use within one domain, but it does not provide the semantic information about
the modelled domains needed in a multi domain environment. Masucci et al. [43]
describe several modelling and simulation approaches to analyse critical infrastruc-
ture interdependencies and conclude with an ontology based modelling and simula-
tion solution called the DIESIS KBS architecture. The DIESIS KBS design incor-
porates a meta knowledge “world” infrastructure ontology (WONT), infrastructure
ontologies (IONTs), a federation ontology (FONT) and gateway components (see
Sect. 11.4.5).

As Masucci et al. [43] describe, the DIESIS KBS is designed for creating abstrac-
tions of critical infrastructure domains and to represent and formalize their parameters
and dependencies. The KBS is intended to be used in a federated simulation environ-
ment to study the behaviour of infrastructures and their components under different
conditions and constraints. The resulting federated environment will support com-
plex simulation scenarios involving multiple infrastructures with different semantics
and granularities (or fidelities).

Making all the federates in the federation understand each other’s data solves only
half the problem. Also, the way they use the data and the level to which extend the
model describes the real world domain should be taken in account because these end
up in defining the credibility or the final outcome of the federation. For this reason,
verification and validation (V&V) of the federation should be performed from the
early begin of the process up to the end. SISO [44] provides a generic methodol-
ogy for verification and validation to support acceptance of models, simulations and
data. The objective of the V&V effort is to develop an acceptance recommendation
that convincingly shows why a federate or federation is acceptable or not acceptable
for the intended use. This V&V objective is articulated as an acceptance goal. This
high-level goal should be translated into a set of concrete and assessable acceptabil-
ity criteria for the federate or federation. Relevant and convincing evidence should
then be collected or generated to assess the satisfaction of these criteria. When it
is convincingly demonstrated to what extent the federate or federation does or does
not satisfy all these acceptability criteria, a claim can be made on whether or not the
federate or federation is acceptable for its intended use (i.e., acceptance claim).
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11.4 State of the Art in Federated MS&A for CIP

In the last decade, the awareness has grown that Critical Infrastructures are in a greater
or lesser extent dependent on each other. Investigating, exercising and training of CI
behaviour in case of an event can not be done by one system alone. Therefore the need
for combining the interdependent systems in a simulation environment has grown.
In these past few years, several initiatives have been taken to combine (parts of) the
different simulations for critical infrastructures in or across different domains. This
chapter describes many of these efforts. The characterised works within this section
can be divided roughly into three—not entirely disjunct—categories:

1. Special purpose federated simulation systems, consisting of a number of simula-
tors (CI and others), additional system components, and a dedicated middleware
for communication and synchronisation (IRRIIS, EPOCHS, ...),

2. Frameworks for modelling, simulation and analysis of CI using dedicated—for
instance, agent-based—simulations (I2Sim, AIMS, IME, ...),

3. More general frameworks for setting up distributed federations and more general
middleware for communication and synchronisation within federations (IDSim,
ASimJava, ...), including (quasi-)standards (OpenMI, HLA, ...), and sometimes
accompanied by proofs-of-concept (DIESIS, XMSF, WSIM, ...).

More elaborate presentations will be given for one example of a framework for central
coupling (HLA, the High Level Architecture standard) and for one example of lateral
coupling (the DIESIS approach). Older publications that include overviews on the
state of the art in MS&A for CIP are [6, 45].

11.4.1 Special Purpose Federated Simulation Systems

With its SimCIP [21] modelling and simulation environment, the IRRIIS [20] project
used an agent-based environment where components, subsystems and systems are
represented by autonomous agents and the simulation is synchronised through a
centralistic RTI-like simulation engine, LAMPS. Within the IRRIIS demonstrator,
SimCIP orchestrates a federation of the SINCAL power transmission simulator and
the NS2 network communication simulator, modelling the dependencies between
power distribution and communication networks in a large European capital. The
target application of IRRIIS was twofold, namely investigating dependencies and
interdependencies, and risk reduction by communicating early risk indicators
between operators of the two infrastructures [22]. The limitation of SimCIP though
is that no standardised definition or workflow is proposed for the extension of the
environment through new simulators.

The EPOCHS approach [46] was driven by the need to better understand the
effects of integrating network communication systems into electric power con-
trol systems on the stability of the electric power systems. The task required the
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Fig. 11.4 Federation architecture of EPOCHS (after [46])

combination of three different high-fidelity simulation systems: A simulator for
electromagnetic transient simulation (PSCAD/EMTDC), a simulator for electro-
mechanical transient simulation (PSLF), and a network communication simulator
(NS2 [47]). Each of these three simulators was designed as stand-alone simulator,
that is, all three simulators lack built-in interoperability. Hopkinson et al. [46] imple-
mented a specific solution for creating a federation of the three chosen simulators. It
consists of three basic elements: a Run-Time Infrastructure for enabling time man-
agement and communication between the three federate simulators, an agent-based
control interface for the user of the federated simulation, and individual extensions
of the three simulators enabling the compatibility with the EPOCHS RTI in order to
make them interoperable. The resulting architecture is shown in Fig. 11.4.

For enabling the compatibility with the EPOCHS RTI, the designers chose three
different ways, based on the properties of the three different simulators [46, p. 5]. For
the communication network simulator NS2, they used the fact that source code was
available and added a new transport protocol for realising RTI access. The power
simulator PSCAD/EMTDC allows external function calls. The EPOCHS designers
used this feature for creating an external component that gets active at each time step
of the simulator, reading and/or writing equipment values from/to the RTI before the
simulation continues. For the power simulator PSLF, they used a similar solution.
PSLF does not allow calling simulator functions, but allows writing extensions in its
own programming language EPCL. The EPOCHS designers programmed a commu-
nication stub in EPCL that writes or reads simulation values to or from a file upon
request from the RTI. The EPOCHS approach is an example of central coupling with
non-standardised interfaces.

The motivation of Riley et al. [34] is the usage of simulation as a tool for analy-
sis of communication network problems and validation of models of communica-
tion networks. For this task, the computer simulation of a communication network
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Fig. 11.5 Architecture for a high fidelity distributed federated communication network simulation,
self-federating two instances of the Network Simulator ns (after [34])

requires a high degree of fidelity, which leads to high computational demand: “It
would take several days to simulate just one minute of operation of this network”
[34, p. 118]. Riley et al. propose a twofold solution that is suited to reduce the high ra-
tio of simulation time versus real time. For the first part, they propose to distribute the
simulation across multiple networked processors, which results in faster simulation.
For the second part, they propose to setup the distributed simulation as a federation
of several simulators, which allows simulating larger networks. In this case, the fed-
erates could also be several instances of the same simulator system (self-federated).
Figure 11.5 shows the architecture concept that Riley et al. used for realising their
distributed federated communication network simulation. It fits the generic scheme
presented earlier in this chapter.

The Run-Time Infrastructure performs synchronisation and data distribution and
uses a library called the Federated Simulations Development Kit (FDK library). A
Dynamic Simulation Backplane ensures syntactic compatibility for data exchange
between federates where possible, enables the exchange of meaningful event mes-
sages, checks for incompatibilities and provides more functions for communication
between federates.

As an interesting experimental result, Riley et al. [34, p. 146] report that for two
network simulators, PDNS and GTNets, they were able to show that self-federating
each of these simulators enabled simulation of large network topologies (almost
2 million nodes) with “linear efficiency” up to 128 federates.



11 Federated Modelling and Simulation 239

Fig. 11.6 AIMS modelling and simulation framework (after [49]). The agent-based CI simulation
is executed in JADE (Java Agent Development Framework)

11.4.2 Frameworks for Modelling and Simulation of CI Using
Dedicated Simulations

Bagheri, Ghorbani et al. developed the Agent-based Interdependency Modelling and
Simulation (AIMS) suite [48, 49] especially for investigating (inter)dependencies
between CI. Instead of employing off-the-shelf simulators, the authors used their own
agent-based simulation, the AIMS simulator. Figure 11.6 shows the modules of the
AIMS suite. They form a federation in the sense of our Fig. 11.1, but with only one
dedicated agent-based simulator. For Bagheri et al., the analysis and visualisation
part of MS&A were of particular importance, both on-line and off-line. They created
a special middleware, the VMA (Visualisation, Manipulation and Analysis) entity
protocol that allows integrating external entities, that is, analysis software modules,
advanced visualisation tools, and scenario editors. In the on-line case, the latter
entities enable users of the AIMS suite changing the models or scenarios while
the simulation is running. All external entities need to conform to the VMA entity
protocol in order to be integrated into the federation.

In [49], the authors describe their approach in detail. Also, they report the results
of a case study of an electronic service provider that is dependent on two electricity
suppliers and an Internet service provider (ISP). They use four scenarios in which they
dynamically change the quality or availability of services of the electricity suppliers
and the ISP in order to find out about the economical impact upon the electronic
service provider. Finally, it is worth mentioning that Bagheri et al. are one of the few
author teams that describe the workflow for setting up a federation (an instance of
the AIMS suite, in this case). Since setting up federations requires considerable time
and special know-how, this is valuable information.

I2Sim [19] provides a framework for discrete abstract modelling of dependent
infrastructures from scratch. The I2Sim modelling ontology consists of ‘cells’, ‘chan-
nels’, ‘tokens’ and ‘controls’. A cell is a functional or production unit, like a hos-
pital, a power station etc, that requires some input and produces some output. The
behaviour of an infrastructure is described as human readable table (HRT), created
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by experts (typically, the operators of the infrastructure). For an electrical power
infrastructure, such a HRT specifies the available output power for a certain number
of infrastructure operating states. Each operating state of the infrastructure—or the
cell representing it—is described by a number of input-output relations.

Channels connect outputs of one (source) cell to inputs of other (consumption)
cells and transport tokens from the source to the production cell. A channel may
have a loss coefficient that characterises the percentage of tokens that get lost during
transport (like loss of voltage due to resistance of a power line). After specifying
all cells and their input-output relations, all channels and their loss coefficients,
I2Sim sets up a mathematical model of the entire system. For the simulation part,
I2Sim performs time-driven discrete event simulation [50]. Events occur at each time
step and trigger the recalculation of the coefficients describing all cells’ operating
status. At each time step, the simulated system is described by a set discrete time
equations [50], represented by a ‘system transportation matrix’. This representation
allows identifying strong dependencies or critical vulnerabilities. As a test case study,
the I2Sim team modelled and simulated the campus of the University of British
Columbia at Vancouver, which has the size of a small city. The model took into
account buildings and water, gas, power and road networks of the campus. The
test case system performed damage assessment in case of disaster, expressed in the
number of casualties, economical losses and loss of campus functions. And finally,
the test case system provided advanced decision support capabilities, including what-
if analyses for first responders.

The I2Sim approach has at least three advantages: It allows modelling at different
levels of abstraction, it preserves the privacy of the contributing infrastructures by
not requiring revealing lots of technical detail, and it simultaneously reduces the
required infrastructure domain expertise of the modelling experts. Small drawbacks
are that the fidelity of the modelling is limited and that the infrastructure behaviour
description cannot be validated by the modelling experts: They need to trust the
domain experts.

To conclude this section, we want to mention that Tolone et al. [15, 51, 52]
used their Integrated Modeling Environment (IME) framework for creating mixed
federations of their own special purpose simulations and external simulators. IME
allows both that developers of federated simulations do the entire modelling and
simulation from scratch and that they use existing simulators for the federation.

11.4.3 More General Frameworks and Middleware for Modelling
and Federated Simulation

OpenMI [30, 31], the Open Modelling Interface, is a context based request-reply
architecture that defines an interface allowing time-dependent models to exchange
data at runtime. A recent application example is described in [53]. Data exchange
between models to be linked only takes place if the models are OpenMI-compliant.
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The quantities that are to be exchanged must be identified and matched. The models
can then be linked at runtime. The very generic character of OpenMI leads to similar
restrictions (complexity overhead) as in the case of HLA (cf. below). The develop-
ment of OpenMI originated from the field of water related research and is promoted
by the OpenMI association [31].

IDSim [54], the Interoperable Distributed Simulation framework, is a middleware
for federated simulation that has been designed for distributed federated simulation.
Following one of its initial design requirements, IDSim uses standard open technolo-
gies. IDSim’s communication middleware is built on the open standard OGSI, the
Open Grid Service Infrastructure, and abstract simulation models are represented
in XMSF-based documents (XMSF: Extensible Modelling and Simulation Frame-
work, [55, 56]). IDSim has been employed by the US-American facility NISAC
(National Infrastructures Simulation and Analysis Center [57]) for demonstrating
that it is feasible to integrate a federation of distributed simulation and a federation
of distributed collaboration in the homeland security domain [58]. Within this feder-
ation of two federations, IDSim employs the HLA approach to federate the BioDAC
simulation environment with the agent-based N-ABLE environment into a single
simulation platform [58]. The IDSim software architecture is depicted in Fig. 11.7.
In this architecture, IDSim clients enable the federate simulations communicating
via OGSI. All communication between federates is routed through a central ID-
Sim server that functions as orchestrator of the federation. The IDSim server holds
status information of the federation and provides also the services for distributed
simulation [54]. Data that needs to be recorded while the distributed simulation is
running is logged by a storage service, while simulation models and configuration
parameters are kept in XML repositories using XMSF-based syntax. Once again,
this architecture matches the generic federation scheme that we depicted earlier in
Fig. 11.1.

The Extensible Modeling and Simulation Framework (XMSF) [55, 56] has been
developed with the goal of running HLA compliant simulators in a distributed fashion
over the Internet and make them interoperable with other components needed for a
federation (see Fig. 11.1). For this purpose, XMSF allows adding web services to
HLA compliant simulators.

Besides IDSim, the WSIM (Web Services Internet Management) architecture
[59] is another example that makes use of XMSF. The authors address the need for
a sophisticated interest management [60], a concept that has been developed for
reducing the amount of data that has to be transmitted between federates in order
to optimise performance. The basic idea is to transmit only the data needed by a
certain federate and only at certain points in time. WSIM extends that concept by
using aggregated information and role based access control to clients within the
federation. Figure 11.8 shows the scheme of the top-level architecture of a federation
using WSIM. The development of XMSF and WSIM has been driven by the military
domain, while IDSim has been developed for homeland security.

Other frameworks include ASimJava [61, 62], a Java based framework for feder-
ated and distributed simulation of large-scale physical systems as well as the afore-
mentioned IME of Tolone et al. [15, 51, 52].
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Fig. 11.7 Federation architecture of IDSim, using an IDSim server as orchestrator of the federation
(after [54])

Fig. 11.8 Scheme of the distributed federation architecture WSIM using the XMSF framework
(after [59])
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11.4.4 The HLA Standard

In the Defence industry, coupling of simulators has been done over a long time and
for various reasons. This paragraph describes the evolvement of this need and how
it grew into its current standard called HLA [26]. It gives in short the benefits of the
HLA approach, how it works and how the Critical Infrastructure Protection (CIP)
community can benefit from these lessons.

In the early 1980s, training and education with the use of interactive simulators
in virtual environments was very expensive. At the United States Defense Advance
Research Projects Agency (DARPA) they realised that there was a need for multi-
user simulation for real-time combat training. In order to achieve this in the most
cost effective way, they came up with the idea to link single-user simulators in a
multi-user environment. To prove this idea they developed the Simulator Network
(SIMNET) as a wide area network of vehicle simulators like tanks, airplanes and
helicopters together with computer generated forces (CGF). Based on the successes
of SIMNET, a standard was derived for linking interactive simulators. This standard,
called Distributed Interactive Simulation (DIS) is defined under IEEE standard 1278
in 1993 [41] and has had several revisions since. It is still used and a new version
(version 7) is currently (2013) produced.

The DIS protocol is based on the principle that all participating simulators can act
as a stand-alone simulator. Therefore all simulators keep all information necessary
to create the (static part of the) virtual world. In order for the simulators to be
able to interact with each other, every simulator sends the absolute truth about the
(externally observable) state of the object it represents to all participants (broadcast).
Every receiver has to decide for itself whether it is affected by these transmissions.
For example, an airplane broadcasts its location. A radar receives this location and the
internal algorithms determine whether this airplane is visible to the radar. The same
holds for interactions like fire and detonations. The DIS standard contains information
about update rates and dead reckoning algorithms. This allows simulators to join
and resign the exercise without interrupting the others, and to lower the bandwidth
consumption.

The the big advantage of the DIS standard is that the link is defined in a network
protocol. This makes it easy to link simulators that comply to the standard. The
downfall is that it is rigid: only the information contained in the standard is exchanged.
Also it is limited to real time simulation and its broadcasting technique makes it
network intensive. To overcome this, the United States Department of Defence (DoD)
started the development of the High Level Architecture (HLA) in the late 1990s.
HLA is defined under IEEE Standard 1516 in 2000 [26] and in 2010 revised as HLA
evolved. HLA enables computer simulations to interact (that is, to communicate
data, and to synchronise actions) with other computer simulations. The interaction
between simulations is managed by a Run-Time Infrastructure (RTI) (Fig. 11.9).

Simulations used in HLA can be mathematical, rule-based, etc. and can be with
or without human in the loop. If a simulator implementation is HLA-compliant, it
is called a federate. HLA simulations, made up of federates, are called federations.
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Fig. 11.9 Federation of simulators and Run-Time Infrastructure (RTI) middleware

Objects and interactions that are exchanged between federates in a federation need to
be defined in a document. In HLA this is called the Object Model Template (OMT).

In the next paragraphs, we will present the HLA components: HLA Rules, Interface
Specification, and Object Model Template.

11.4.4.1 The Rules of HLA

The core of HLA consists of a set of ten HLA rules which a federate or a federation
must observe to be HLA-compliant [27]. The HLA rules are divided into two groups,
five rules for HLA federations and five rules for HLA federates. The federation rules
are aimed to create a federation, they include the following concepts:

• Documentation requirements: federations shall have a Federation Object Model
FOM, documented in accordance with the HLA OMT.

• Object representation: all representation of objects in the FOM shall be in the
federates, not in the RTI (Run Time Interface).

• Data interchange: during a federation execution, all exchange of FOM data among
federates shall occur via the RTI.

• Interfacing requirements: during a federation execution, federates shall interact
with the RTI in accordance with the HLA interface specification.

• Attribute ownership: during a federation execution, an instance attribute shall be
owned by at most one federate at any given time.

The federate rules deal with the individual federates, they cover:

• Documentation: federates shall have a SOM (Simulation Object Model), docu-
mented in accordance with the HLA OMT.

• Control of object attributes: federates shall be able to update and/or reflect any
in-stance attributes asw well as to send and/or receive interactions, as specified in
their SOMs.

• Owner of object attributes: federates shall be able to transfer and/or accept owner-
ship of attributes dynamically during a federation execution, as specified in their
SOMs.
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• Transfer of object attributes: federates shall be able to vary the conditions under
which they provide updates of instance attributes, as specified in their SOMs.

• Time-management: federates shall be able to manage local time in a way that will
allow them to coordinate data exchange with other members of a federation.

11.4.4.2 The Runtime Interface

The functional interfaces between federates and the runtime infrastructure (RTI)
are defined by the interface specification. It has been adopted as IEEE standard
(P1516.1). The RTI is not a part of the specification, but it is a software that matches
the specification. In fact RTI provides the software services necessary for supporting
an HLA-compliant simulation. There are different versions of RTI. The interface
specification identifies not only the way federates will interoperate with the federation
but also one with each other. The Run Time Infrastructure includes:

• Software providing common services to simulation systems
• Implementation of the federate initiated services in accordance with the HLA

Interface Specification
• An architectural foundation encouraging portability and interoperability.

11.4.4.3 The Object Model Template

To achieve reusability and interoperability it is required that all objects and inter-
actions, managed by a federate, are specified in detail with a common format. For
this reason the Object Model Template (OMT) provides a standard to document the
HLA Object Model information. In OMT three Object Models are defined:

• The Federation Object Model (FOM): Every federation has only one FOM that
introduces all shared information (e.g., objects, interactions). The FOM contem-
plates inter-federate issues (e.g., data encoding schemes).

• The Simulation (or Federate) Object Model (SOM): Every federate has one
SOM, hence a federation can have several. A SOM describes salient characteristics
of a federate and presents objects and interactions that can be used externally. The
SOM focuses on the federate’s internal operation.

• The Management Object Model (MOM): The MOM identifies objects and
interactions used to manage a federation.

Although the HLA standard originally was developed by the defence organisa-
tions, it gives a general approach to connecting simulators of different fidelity and
function. Therefore it’s use can be much broader. The CIP community can have ben-
efit from HLA as it is an open standard which provides all ingredients for linking
simulators from different domains. Several commercial and non-commercial RTIs
are available.
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11.4.5 The DIESIS Approach to Semantic Interoperability

The EU funded project DIESIS (Design of an Interoperable European Federated
Simulation network for Critical InfrastructureS) was a design study that assessed the
technological, economical and organisational feasibility for European Infrastructures
Simulation and Analysis Centre (EISAC) [16]. The distributed facility shall later be
used by researchers, national security agencies and CI stakeholders in order to per-
form modelling, simulation and analysis for investigating a wide range of aspects of
national and European CIs [24]. A prerequisite for establishing such a facility is the
existence of flexible concepts for coupling heterogeneous simulation systems and
their models. The DIESIS approach consists of an ICT architecture, a middleware
layer for federating simulators and tools, a communication middleware for connect-
ing distributed simulators and an ontology-based approach for achieving semantic
interoperability (for detailed description of particular aspects see [24, 63, 64]).

Unlike HLA, the interoperability approach in DIESIS has been developed to fulfil
specific requirements stated by the concept of EISAC: the ability to execute feder-
ated simulations of arbitrary (often large and complex) interconnected CIs in order
to analyse their interplay, to identify dangerous situations and to assess risks un-
der consideration of cross-domain dependencies. The proposed approach had to be
able to get along with different time models and incompatible interface technolo-
gies provided by commercial closed-source simulators. Despite of its technological
heterogeneity, the approach had to define a common superior modelling perspective
that would allow to describe relations beyond the “world” of a single infrastructure.
These requirements led to two basic concepts of DIESIS: lateral coupling of federates
and separation of technical and semantic interoperability layers.

There are only few off-the-shelf CI simulators that support established interop-
erability standards like HLA. Experience shows that an attempt to find a common
practicable interoperability solution for a set of CI simulators is often doomed to fail
for several reasons. Firstly, the development of some specific features may require
an enormous effort. Secondly, some particular couplings may be inefficient and sig-
nificantly slow down the federated simulation. Finally, a desired global solution may
not exist at all. Obviously, the increasing complexity of cross-domain dependencies
and the growing number of different federates make the existence of a practicable
solution even less probable. For this reason, DIESIS proposes a new interoperability
approach that abandons the idea of a generic homogeneous architecture that uses a
single RTI like HLA (see Sect. 11.4.4).

The proposed concept of lateral simulator coupling stands for the development
of dedicated coupling links if and only if data exchange between the corresponding
federates is required for the current analysis task (see Fig. 11.3). In such federation,
pairwise couplings may coexist with clusters of centrally coupled simulators. The
systematic development of coupling links implies a scenario-oriented federation
design. This means that the specification of links is based on the knowledge about
the involved domains and their interdependencies, about the runtime behaviour of
particular federates as well as about the intended simulation output. In other words,
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for realisation of coupling links, the connectivity of the federation has to be described
both at technical and at semantic levels (see Sect. 11.3.1) by means of appropriate
formalisms.

On the semantic level, the DIESIS approach employs an ontology-based repre-
sentation to describe infrastructures, general dependencies, infrastructure elements
and their relations [63]. DIESIS Knowledge Base System (KBS) uses Ontology Web
Language (OWL) and Semantic Web Rule Language (SWRL) to define a scenario
at three semantic layers [24]:

• World Ontology (WONT) is a template that provides basic logical concepts
for describing infrastructures as well as their possible behaviours and interde-
pendencies.

• Infrastructure Ontology (IONT) is based on the WONT template and
describes one particular CI with its domain-specific properties and concrete el-
ements (individuals). The KBS contains one IONT for each infrastructure repre-
sented in the federation. A IONT does not necessarily completely duplicate the
underlying simulator model with all its facets. It is sufficient to model elements
and relations that are involved in cross-domain activities.

• Federation Ontology (FONT) is dedicated to the modelling of dependencies
among particular CIs. The FONT includes all IONTs and supports dependency
modelling at general level (e.g., “a base station receives electric power from a
power node”) as well as in relation to concrete instances. The FONT rules (written
in SWRL) express the dependency semantics (for example, “a base station is off
if it gets no electric power”) for particular relations.

The ontology-based model captures all facets of interplay among the infrastructures
independently from the implementation of simulators and coupling links. However,
its role is not limited to providing a guideline for link realisation. Data from KBS can
be also used by the links at runtime for routing (i.e., sending internal state changes to
the right federates according to dependency relations) as well as for automatic data
transformation and filtering.

As already mentioned in Sect. 11.3.1, a problem of lateral coupling approach is the
potentially large number of links that has to be developed for creating a federation as
well as for adding a new member to an existing one. A possible solution is to imple-
ment similar links only once and to reuse them if possible. Creating lightweight links
for particular tasks instead of complex “all-in-one” couplings significantly increases
the probability that a resulting link can be reused for another pair of federates. The
DIESIS architectural approach recommends the following four links types:

• Time links allow simulators to synchronise their internal clocks and to ensure the
correct ordering of processed and sent events. A central synchronisation mecha-
nism is possible but not required. Theoretically, a federation may contain clusters
that internally use both conservative and optimistic synchronisation algorithms
(see Sect. 11.3.2).

• Data links are used by simulators for exchanging their state changes and sim-
ulation results. Besides of individual implementations, it is possible to develop
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Fig. 11.10 DIESIS approach: simulator interoperability on semantic (white blocks) and on technical
levels (federation adapters and communication middleware)

a common data routing, transformation and filtering algorithm that uses the
dependency information from the KBS. Figure 11.10 shows the structure of such
an “intelligent” data link (as it was created for the DIESIS demonstrator) that
transforms data acquired from the simulator API according to KBS relations and
rules before sending it to another federate.

• Function links serve the purpose of mutual invocation of function calls among
federates. This may be used by a simulator, for example, to exploit the computa-
tional procedures of other simulators.

• Control links are employed to manage the runtime behaviour of federates, like
starting, stopping or reconfiguring the simulators.

The realisation of links is considered as three-step process and follows the idea
of clear separation of technical and semantic interoperability. In the first step,
basic logical relationships among CIs have to be defined. In parallel to the formal
ontology-based representation, this information can be visualised by means of ser-
vice networks. A service network consists of agents that are connected by labelled
directed service links (for more detailed definition and examples see [65]). In the
second step, the required technological extensions (both agents and service links)
have to be identified and added to the service network. Possible examples for such
extensions are: central simulation control panel with corresponding control links,
time management agents with their time links, visualisation and analysis modules,
etc. In the final realisation step, the missing service network links and agents have
to be implemented and deployed.

The realisation of a sufficiently complex demonstrator (four domains represented
by simulators that do not support any common standards) showed the effectiveness
and flexibility of the DIESIS approach. It turned out that the usage of a KBS in
combination with a lateral coupling approach is a general advantage that significantly
reduces the implementation effort.
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11.5 Conclusion

Federated modelling, simulation and analysis is an invaluable method with vari-
ous applications in the defence and civil security domains. It is a premier means
of research and development of methods that aid in improving the resilience and
protection of Critical Infrastructures, and, at the same time, a research subject of its
own. Federated MS&A can be employed as exercise and training environment for
crisis and emergency managers, and may serve as part of a decision support system
for exploring different courses of action in case of a crisis or emergency. And finally,
it can be used for testing and benchmarking new methods for CIP. The case studies
and demonstrators reported in the state of the art literature expose impressive new
capabilities that have a clear benefit for civil security and thus for society as a whole.
The role model is the United States’ NISAC that operates under congress mandate
for ten years now. In Europe, capabilities like NISAC’s are still missing.

A key enabling feature for federated MS&A is the interoperability of federates.
They need to exchange data in a syntactically and semantically correct way, and at
the correct points in simulation time. The latter requirement cannot be fulfilled for
all possible combinations of possible different time models. Our review of the state
of the art exposed that independent groups developed similar technical solutions for
making federates interoperable, despite the existence of the interoperability standard
HLA. As a matter of fact, HLA imposes strong requirements on HLA-compliant
federate simulators, and the implementation of the Run-Time Infrastructure, a key
interoperability technology, is not part of the standard. We conclude that these
obstacles slow down the adoption of HLA in its original domain, defence. OpenMI
is a well established M&S standard in domains related to water.

The situation is worse when it comes to interoperability of simulators for CIP.
There are numerous simulators for several different infrastructures: railway simu-
lators, electrical power network simulators, telecommunication network simulators
and so on. However, almost all of these simulators have been designed for their
domains only, not for becoming part of a federation. Some of them even do not
have APIs. Although interoperability standards are desirable also for applications of
federated MS&A for CIP, it is not likely that the makers of commercial simulators
make investments into making their products compliant with some interoperability
standard, as long as a convincing business model or a significant market for such an
enhanced product is missing. As one solution to this problem, the DIESIS project
suggests that the CIP research community joins resources and creates a repository
of reusable interoperability solutions for CI simulators. Other groups avoided the
problem by creating integrated simulators that cover several infrastructure domains.
However, this approach is limited to a certain level of modelling abstraction. When-
ever high-fidelity simulations are required, special purpose simulators are superior.
Their integration into a federation then requires suitable interoperability middleware.

A second obstacle for a more wide-spread usage of federated MS&A is the fact
that setting up federations is a time-consuming task that requires multi-disciplinary
expertise. We appreciate that a few researchers have documented their expertise in
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setting up federations and have created descriptions of the workflow for this task
[49, 66]. However, standardising such workflows and training researchers in mod-
elling and setting up federations adhering to such workflows should be considered as
an aid to capacity building in European CIP research. This would be a first step to fill
a security gap, as pointed out in [67]: Given the complexity of European CI systems,
Europe would urgently need MS&A capabilities comparable to those in the USA.
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Chapter 12
Multisystem Simulation: Analysis of Critical
Infrastructures for Disaster Response

José R. Martí

Abstract National critical infrastructures (e.g., electricity, water, transportation,
etc.) form large complex systems that sustain essential living functions. During large
emergencies (earthquakes, tsunamis, floods, etc.) multiple critical systems suffer
damage and the normal recovery processes of individual infrastructures are not suf-
ficient to bring back the combined system of systems. Coordinated action among
infrastructures is needed to make the combined system operational and save as many
human lives as possible. The complexity of the combined system of systems and
the uncertainties of the available data require an approach that limits the number
of possible operational states and leads to robust real-time solutions. An optimum
coordinated response needs to consider the interactions among the multiple layers of
an effective disaster response: the physical layer of buildings, lifelines, and critical
resources, the information and control layer, and the decision layer where choices
are made as to the best responses. The solution framework discussed in this chapter
provides a structure to capture these interactions.

Keywords Complex large scale systems · Interdependent critical infrastructures ·
System of dissimilar systems · Hierarchies of decisions · Virtual distributed simu-
lation · Disaster response.

12.1 Disaster Response

Due to climatic and other geological changes in the planet, the occurrence of large
disasters has been on the rise in recent years [1]. The recent Japan triple disaster
(earthquake, tsunami, and nuclear plant meltdown) [2] dramatically illustrated that
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Fig. 12.1 System of systems

despite the advanced technologies available for early warning and monitoring of nat-
ural disasters, multiple critical infrastructures were severely affected and the response
to the situation was far from optimal. Even though much can be done in deploying
sensor systems and in preparing the population on what to do when a disaster strikes,
the problem remains of understanding how multiple critical infrastructures can best
coordinate the allocation of the available resources for an optimum overall response.

The problem of an effective coordination of the system response to minimize
the consequences of a disaster is complex problem because of the size of the in-
frastructure networks that provide the vital survival resources (electricity, water,
transportation, etc.) and the many interdependencies that exist among the objects
and actors in the scenario. There are interdependencies at the level of the physical
system (Fig. 12.1) (electricity is needed to operate water pumps, electricity and wa-
ter, together with medicines, doctors, nurses are needed to operate a hospital, etc.),
but also the system resources have multiple ownerships and multiple hierarchical
levels (e.g., private versus government, municipal versus provincial versus federal,
responders and operators versus managers, etc.). Simulation of this complex system
of systems needs to include these multiple layers (Fig. 12.2).

In Canada we define ten national critical infrastructures: energy, water, food, man-
ufacturing, finance, information and communication systems, transportation, health,
safety and order, government and defence. Many of these systems have an essential
role in saving human lives after a disaster occurs, and all of them play a role in the
recovery of the system after the disaster.

The first minutes and hours after a disaster are critical for the overall manage-
ment of the situation: injured victims have to treated within minutes or hours, the
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Fig. 12.2 Simulation layers

populations needs to be evacuated and a minimum level of critical services need to
be restored within hours to avoid confusion and panic among the population.

There is a hierarchy and timing of needs. Critical survival needs correspond to
basic human needs (e.g., Maslow’s Hierarchy of Needs [3]) and the resources to
provide these needs have to be available immediately after the disaster. Some of
these needs include: physiological body needs (e.g., breathing, food, water, shelter)
but also philia needs (e.g., whereabouts of your children, spouse, etc.). Other needs
(e.g., property, financing, jobs, schools, etc.) can be restored in larger time frames.

Figure 12.3 illustrates the disaster timeline and its correlation with human needs.
Even though the coordination of critical infrastructures is vital during the Response
period, the Preparation period is equally or more critical. Time frames during the
real time response are very short and the analysis of a large number of scenarios
in Preparation time will discover system criticalities and best response strategies. A
library of scenarios developed during peace time can be used as base-case scenarios
for response optimization during the actual situation.

12.2 The Resources Allocation Problem

Consider the simple example illustrated in Fig. 12.4. Here we have an electric power
substation supplying power to a hospital, water pumping station, and a residential
area. During normal times, the 200 MW of the substation are distributed according to
the needs of the served units. Assume now, that due to damage caused by a disaster
on the transmission lines feeding the substation or a one o the transformers in the
substation, only 100 MW are available. A decision has to be made on how to best
allocate the available power. A “trivial” solution is to say that since the hospital is the
most critical unit to save lives; all available power should be served to the hospital.
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Fig. 12.3 Disaster timeline

Now the hospital will have all the power it needs. However, it ability to treat patients
will be zero due to the lack of water! (This is a simplified example in which we
assume that backup electricity and water reserves are not available, or have failed).
The optimum solution will provide some electricity to the water station, which will
depend on the level of operability (need) of the hospital.

A system of systems problem, which includes the capability of each system to
produce resources under the damage caused by the disaster, and allocates these
resources in an optimum manner, needs to be formulated. This is the motivation of
the i2Sim solution framework discussed next.

12.3 The i2Sim Simulation Framework

As indicated in the example of Fig. 12.4, resources are produced by units operated by
different infrastructures (e.g., electricity, water) and distributed by links that go from
these infrastructures (electrical wires, pipes) to the units (hospital, water station) that
require these resources for their operation. Figure 12.4 is a local view of distribution
of resources that require extensive networks for their production and delivery. For
example, the power system network can comprise tens of thousands of stations and
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Fig. 12.4 Resources allocation problem

transmission lines to carry electricity produced in a hydroelectric dam located hun-
dreds of kilometers away to the local substation that feeds the hospital. To simulate
these large complex systems at the level of their local interactions requires a number
of abstractions.

12.4 i2Sim Solution Strategy

To cope with the complexity of representing large infrastructure networks at the level
of their interdependencies, the i2Sim framework [4] is designed around the following
solution strategy:

1. Solve the individual infrastructure (for example the power grid) with specialized
domain simulators that can represent the details of that infrastructure.

2. Find an equivalent of the infrastructure at the point where the local resource
interactions are to be determined (Thévenin equivalent concept in electrical net-
works).

3. Find the best local allocation of resources in the area of interest (for example
downtown Vancouver).

4. Notify the infrastructure of the optimum allocation of its available resources
from the point of view of the local subsystem.

5. i2Sim integrates the solution of dissimilar resource networks by providing a
common ontological framework and a level of granularity that matches the char-
acteristics of the situation.
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Fig. 12.5 Four-cell example

12.4.1 i2Sim Ontology

To combine multiple dissimilar subsystems, i2Sim defines a common ontology that
captures the interactions among subsystems at a description level that can be under-
stood by the different players (infrastructure owners, decision makers, and operators)
and that has sufficient information to perform a mathematical optimization of best
resources allocation.

The i2Sim ontology defines Base Types, Exchange Types, and Modifier Types,
as described next. Figure 12.5 shows a simple example illustrating these types.

12.4.1.1 Base i2Sim Types

The base types are the citizens of the i2Sim World. The following base types are
defined:

Tokens (Resources): Tokens are the resources needed in the system, for example,
electricity, water, medicines, doctors, nurses, etc.

Cells (Production Units): A hospital cell takes input tokens: electricity, water,
doctors, medicines, etc. and produces an output token: patients treated.

Channels (Transportation Units): A channel receives an output token from a cell
and carries it to the input of a different cell. The electricity from the substation is
transported by wires to the hospital; the water is transported by pipes, etc.

Distributors (Allocation Units): Given the available electricity output from the
substation, how much of it should go to the hospital? How much should go to the water



12 Multisystem Simulation: Analysis of Critical Infrastructures for Disaster Response 261

pumping station? The Distributor interfaces the decision maker with the physical
allocation of the resource (Fig. 12.2).

Aggregators (Adders): Electricity input to the hospital can come from the utility
or from the backup generator (both tokens are added) (Fig. 12.5).

Reservoirs (Waiting Rooms): Arriving tokens are put into a waiting room until a
request is received to let them out into the production cell.

Distributors and Aggregators constitute Control Units where decisions are made
by external agents as to the best allocation of the output resources to the outgoing
channels.

12.4.1.2 Exchange i2Sim Types

The exchange types communicate the External World with the i2Sim world. They
bring in token from the external world into the i2Sim world. They also provide a
mechanism for tokens to be exported out of the i2Sim world. The following exchange
types are defined:

External Tokens: A Token brought in from the External World into the i2Sim
World is an External Token. Once n the i2Sim world, the external token becomes an
internal token and can be exchanged among internal cells.

Sources (Generators): Sources bring in External Tokens from the External World
into the i2Sim World. For example, the electrical supply from the high-voltage trans-
mission system.

Sinks (Terminators): Sinks move out Internal Tokens from the i2Sim World into
the External World. For example, patients out of the hospital exit the i2Sim world.

12.4.1.3 Modifier i2Sim Types

Modifiers are external Information Tokens that are received as input into Cells,
Channels, Distributors, and Aggregators.

Physical Mode Modifier (Physical Component Affecter): The damage caused by
an earthquake or a terrorist act on a building, a piece of machinery or a lifeline will
decrease the output of a cell or channel. Damage to an ICT component will prevent
a control signal from exerting actions.

Human Mode Modifier (Human Affecter): The tiredness of a physician or the lack
of guidance during a traffic jam will decrease the productivity of the hospital or the
speed of the traffic channel.

Information Modifier (Knowledge Affecter): Lack of information of the state of
the system will prevent the generation of the correct control signal to operate a Cell,
Channel, or Control component. For example, if the RTU in a substation does not
receive the correct control signal, the circuit breakers will not be able to reconfigure
the substation to supply the priority loads.
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Fig. 12.6 Conceptual cell and channel models

The i2Sim world consists of Cells, Channels, Distributors, Aggregators, Tokens,
Sources, Sinks, and Modifiers. The number of inputs and outputs depends on the
component. Any component can have M external modifier tokens.

A Cell has N input tokens, all of different types, but only one output token. A
Distributor has one input token and N output tokens, all of the same type as the input.
An Aggregator has N input tokens, all of the same type, but only one output token,
of the same type as the input. A Channel has one input token and one output token,
both of the same type.

12.5 i2Sim Models

The conceptual models for cells and channels in i2Sim are shown in Fig. 12.6.
The cell model in Fig. 12.6 corresponds to a production unit model. This type of

model was postulated by Leontief [5] to establish the relationship between inputs and
outputs in a production factory. In i2Sim, this concept is extended to represent the
interdependencies among infrastructure networks at the nodes where the resources
produced by one network become inputs to the other networks.

The channel function is described by the main attributes of transportation mecha-
nisms to carry resources from one node to another node which may be geographically
away. These attributes are the time delay and the losses. Transportation of electricity
through transmission lines happens at the speed of light and, therefore, has zero time
delay in the context of the disaster time line. Similarly, water can be assumed to be
available as soon as the water valve is turned on. However, leaks may occur in the
water pipes because of earthquake shaking. In the case of vehicles transportation,
the most important parameter is the time delay, even though losses may also exist
due to accidents under damaged road conditions.

In the i2Sim realization, cells and channels are depicted as shown in Fig. 12.7,
where the possible output values are discretized into five possible levels, which are
colour coded. Green corresponds to the cell working at its maximum design output
(rated value), yellow corresponds to the cell being able to produce only 50 % of
its rated output, and red means that the cell is unable to produce any output. Blue
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Fig. 12.7 i2Sim discretized cell and channel models

Fig. 12.8 Human Readable Table (HRT) for a hospital ER unit

corresponds to 75 % and orange corresponds to 25 %. The reason for the cell not
being able to produce its rated 100 % output can be the physical damage suffered by
the cell during the disaster or the lack of availability of some needed input resource.

The concept of limiting the outputs to a finite number of states is essential to
manage the complexity of the problem. Even though large scale utility networks
such as the power grid or the telecommunications grid are usually scale-free networks
and the number of possible states is statistically of polynomial order, when combined
into a system of systems, the number of possible solution states can be too large for
practical solutions, particularly in real time. Discretizing the number of possible
states of Cells and Channels in i2Sim reduces the problem dimensionality but also it
reduces the sensitivity of the solution to inaccuracies in the value of the data and in
establishing the threshold levels in the HRT functions (Fig. 12.8). Even though five
discrete states are defined in Fig. 12.7, in many situations where the knowledge of
the information is very limited, three states (100, 50, 0 %) will still lead to useful
results.

The colouring of the cell in Fig. 12.7 indicates that the cell is operating at 50 %
of its normal capability while the physical state of the facilities is 75 % operational.
The reason for not being able to operate at the physical capacity of 75 % is the lack
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of some input resource or the effect of some modifier. The channel depicted in the
figure is operating at 75 % of its normal performance even though there is no physical
damage. This is due to the action of some modifier.

A key concept in i2Sim is the Human Readable Table HRT. The HRT provides the
information needed to determine the operability (output level) of a cell or channel
in terms of the physical damage, availability of input resources, and the effect of
possible modifiers.

12.5.1 The Human Readable Table HRT

Figure 12.8 shows a Human Readable Table for the emergency unit of a hospital
facility. This type of table is built from interviews with the hospital manager and
operators.

When there is no physical damage and all input resources are available, the ER
unit can treat 20 patients per hour. Assume now a disaster situation for which all
electricity is available (either from the utility or from the backup generator) and all
doctors are available. There is, however, some physical damage in the equipment that
slows down the operation to 15 patients per hour. Also only six nurses are available.
Under these conditions if all needed water (500 L/h) were available, the unit would
be able to treat 15 patients per hour. However, only 300 L/h of water are available.
This factor limits the output to only 10 patients per hour. As can be seen from this
analysis, the scarcest resource limits the final operability, in this case to 50 % of
the normal capacity. In this scenario, unless the water resource can be improved,
only two doctors and four nurses will be needed to process 10 patients per hour and
the additional doctors and nurses can be assigned to another hospital unit. In terms
of resources, only 30 kW of electricity are needed and, assuming two feeders, the
substation can be notified that only one of the feeders to this unit is needed.

The table of Fig. 12.8 is the “model” for the hospital unit. The inputs are x1 to x4
and m1, and the output is y. Inputs x1 to x4 are tokens that are supplied by other cells
in the i2Sim world or by external sources. Modifier m1 is determined by the damage
caused by the disaster. This information is an input provided by the Damage Layer
(Fig. 12.2).

If the scenario is been run for disaster preparation purposes, the damage is calcu-
lated by some damage assessment software (for example Hazus [6]). If the scenario
corresponds to a real time situation, the damage is being reported by field agents.

The HRT table allows the inclusion of human modifiers and information modifiers.
The table in Fig. 12.9 shows an example of a human modifier (the doctors’ shift
hours).

In the HRT of Fig. 12.9, the available resources would allow operation at the 75 %
level. However, the long shift of the doctors reduces their effectiveness to a lower
level. Notice that an HRT may have more or fewer columns (inputs) depending on
the particular scenario situation. For example, in the simulation performed for the
Vancouver 2010 Winter Olympics [7], it was indicated by the hospital manager that
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Fig. 12.9 Human Modifiers in the HRT

Fig. 12.10 Electrical substation layout

the availability of doctors during an emergency would not be an issue because the
doctors’ residences were located in the neighborhood of the hospital and the doctors
would become available on very short notice.

The same HRT concept illustrated for a hospital is used for the other cells in the
i2Sim model. Figure 12.11 shows the HRT for the power system substation layout
of Fig. 12.10. Figure 12.12 shows the HRT for a water pumping station.

The electrical substation of Fig. 12.10 is being fed by two high voltage transmis-
sion lines of 40 MW each, through two transformers of 40 MW each. The substation
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Fig. 12.11 Electrical substation HRT

Fig. 12.12 Water pumping station HRT

has eight feeders going out and two transfer circuit breakers. Assume, for the sake
of illustration, that we are taking about the main substation in the campus of the
University of British Columbia (UBC). Assume for simplicity of the explanation
that each outgoing feeder is 10 MW and that two feeders go to the hospital, two to
the residences, two to the classrooms, and two to the water pumping station. Suppose
now that one of the two transformers has been damaged by an earthquake.

Since there are eight feeders out, the i2Sim Distributor (switchgear in the substa-
tion) will choose which four circuits will be supplied with 10 MW each and which
four circuits will be shed. The high-voltage utility will be notified that only 40 MW
will be required by UBC’s substation.

Similarly to the case of the electrical substation, the HRT table of Fig. 12.12 for
the water pumping station is established in terms of the number of water pumps
that may be damaged by the disaster and the electricity available from the electrical
substation to operate the pumps.

12.5.2 Channel Abstraction

The concept of Channel (Fig. 12.6) is an abstraction to obtain an equivalent of a
complex system of lifelines. For example, to carry water from the water pumping
station to the hospital, many pipeline segments may be used (Fig. 12.13). What is of
interest for the i2Sim model is the amount of the water resource that arrives in the
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Fig. 12.13 Channel abstraction

Fig. 12.14 Distributor at power system substation

hospital. The total losses in the water channel can be calculated from the combination
of the individual losses in the water pipes. Damage assessment software can be used
to make these estimates.

12.5.3 Decision Agents at Distributors

Figure 12.14 shows an i2Sim Distributor model for a power system substation. The
Distributor decides how the electricity resource at the output of the substation is split
among the cells that will receive the resource. The Distributor table will show what
splits are possible according to the control mechanisms available at the substation
(substation switchgear).
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In the example, it is assumed that the amount of electricity that can be made
available to the feeders is sufficient for only two out of the three feeders. A decision
has to be made as to which feeders will receive electricity and which feeder will
be disconnected (load shedding). This is a high-level decision that will impact the
operability of the other cells in the system and eventually the optimization of the
global output.

Normally, in disaster situations, the global optimization function is to save as many
human lives as possible, and this will depend on the operability of the hospitals, the
availability of ambulances, and the transportation times from the victims’ site to the
hospitals [7]. The decision of which load to shed should not be made at the level of
the substation, or even at the level of the power utility company. Since it is a decision
that will have a global impact, it should be made at the level of the decisions layer
(Fig. 12.2) considering the effect of the decision on all the infrastructures involved
(electrical, water, transportation, etc.) in terms of the global system function (save
human lives).

After the decision is made, it needs to be carried out at the local substation level,
either by site personnel (in the case of a manned substation) or by an automatic
RTU/SCADA system in the case of an unmanned substation. If the communications
system has been damaged during the disaster, the remote command decision might
not be able to be implemented.

In the i2Sim simulation platform (Fig. 12.19), an optimization engine is coupled
with the i2Sim simulator to find the optimum allocation decision in terms of the
global system objective. For real-time decision support, the speed at which decisions
can be optimized becomes critical and methods like genetic algorithms have proven
to be too slow for the application. This is an area of current development, but some
strategies like reinforced learning algorithms seem promising.

Depending on the size and complexity of the simulated system, optimization algo-
rithms may prove to be too slow for real time applications. In these cases, a number of
strategies can be used to produce reasonable solutions in real time. These range from
increasing the computational speed by parallelization of multiple exploratory threads
in multi-CPU environments, to pre-calculation of a large number of scenarios that
can be used for a “good match” of a current situation. The “good match” of the cur-
rent situation to a previous scenario may be available in a database of pre-calculated
scenarios, or as done currently, “in the mind” of expert disaster responders. We hope
that simulation will facilitate the task of these responders.

12.6 Matlab/Simulink Implementation

The solution of the i2Sim world of interdependencies among cells and channels in a
subsystem representing a disaster area can be realized within the MATLAB/Simulink
environment. Figure 12.15 shows the components of the i2Sim toolbox, while
Fig. 12.16 shows a simulation scenario for downtown Vancouver developed for the
2010 Winter Olympics [7]. The downtown Vancouver model includes four power
system substations, two hospitals, the water pumping station, and the BC Place and
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Fig. 12.15 i2Sim Toolbox for MATLAB/Simulink

Fig. 12.16 MATLAB/Simulink model for downtown Vancouver

GM Place event venues. The simulation includes an evacuation model for an event
that required the egress from BC Place, and a traffic model to simulate the traffic
conditions to transport victims to the area hospitals. The egress model considered
a number of Human Modifiers like density, demographics, guidance and rapid re-
sponse. Similarly the traffic model included a number of modifiers, like traffic lights,
guidance, and intersection closures.

Figure 12.17 shows the results of an earthquake scenario for the island of Guade-
loupe.1 The graph shows the number of patients arriving and being treated in the
various hospitals in the island after optimization of the available system resources.

1 MATRIX fp7 EU Project: Multi-Hazard and Multi-Risk Assessment Methods in Europe.
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Fig. 12.17 Guadeloupe island disaster scenario. Patients discharged from hospitals

This is a large case that included the representation of 59 production cells, including
power generation plants and distribution substations, water stations, hospitals, clin-
ics, ambulance stations, and local communities; 349 channel cells, including roads
and water pipes; 100 distributors, including power and water distribution and ambu-
lance dispatchers; and other miscellaneous cells, including sources and reservoirs.
Transportation system optimization, road conditions, and water availability were
major issues in this study.

12.7 External Simulators

The i2Sim internal world resolves the interdependencies among cells and channels
that use each other’s resources. The purpose of i2Sim is to suggest the optimum
allocation of the resources available inside the i2Sim world to maximize the system
objective function (save as many human lives as possible). Damage caused by the
disaster on the operability of cells and channels is a main reason for the scarcity in
the production of resources. When a production cell cannot operate at full capacity
due to physical damage, the resource produced by that cell is diminished and the
other cells that depend on this resource (whether they have suffered physical damage
themselves or not) cannot operate at their maximum capability.

In i2Sim, the external systems supplying resources to the i2Sim world are mod-
elled as sources of that resource. How these sources are fed the resource requires
the solution of the complete external infrastructure system associated to the source,
for example, the power grid. i2Sim does not model the external power grid, but it
assumes that sophisticated simulators are available to take into account all the op-
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Fig. 12.18 External source distributor

erational constraints required for the feasible functioning of the grid. The possibly
highly complex solution of the complete power system network is done by the “power
system domain simulator”.

In the example of Fig. 12.18, the domain simulator will tell i2Sim how much
power will be available at Substation A, Substation B, etc. represented inside i2Sim.
In case the external system cannot provide full power to all these substations, it will
tell i2Sim what the possible allocation choices to supply these substations are. That
is, it will tell i2Sim the settings of the D1 distributor. The optimum setting of D1
will be chosen by the optimization process inside i2Sim. This choice will then be
communicated to the electrical utility.

12.8 Interfacing of Domain Simulators

The i2Sim architecture is designed to allow the interfacing of external simulators as
plug-in modules. Figure 12.19 shows the software architecture design. The Enterprise
Service Bus (ESB) is driven by a controller that keeps the solution time step and
polls the attached modules. All information exchange is done through the common
database. An external domain simulator is connected to the ESB through a software
Adapter that translates the output of the domain simulator into the common i2Sim
ontological language. For example, the power system simulator will indicate the
amount of power that will be available at the various substations represented inside
i2Sim. i2Sim itself is also connected to the ESB through an adapter and will pick up
from the database the information provided by the domain simulator. i2Sim may also
tell back the domain simulator (through the database) that not all the power that is
available for the i2Sim substations can actually be used (example in Fig. 12.8). The
external system might now want to allocate this extra power elsewhere.
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Fig. 12.19 i2Sim simulation platform. Enterprise Service Bus interface concept

Interfacing of external domain simulators can be very useful for planning of
disaster scenarios where extensive areas served by provincial or national networks
are affected. The architecture of i2Sim allows external domain simulators to be off-
the-shelf software packages, that is, they do not need to be specifically written for
the i2Sim environment. The only effort involved is in the writing of the Adapter to
translate the normal input/output files of the simulator into a format and meaning
that is understood by the i2Sim ontology. Figures 12.20 and 12.21 shows examples
of i2Sim ontological translations for a commercial power system simulator PSCAD
and a commercial water system simulator EPANet.

In the case of real-time disaster scenarios, the role of the domain simulator needs
to be played by the utility company that provides the resource. That is, the availability
of electricity has to be determined by the electric power utility, etc. This information
has to be passed to the Disaster Manager of the Emergency Operating Centre (EOC)
to be integrated into the i2Sim simulation. Privacy of information is a major issue
for private utilities because of competitive concerns. However, the i2Sim framework
goes a long way towards alleviating this issue by not requiring internal details from
the domain providers. The only information needed is the availability of the resource
at the points of interface with the i2Sim subsystem. The internal details of how the
external system operates in order to make available a given amount of resources is
of no interest to the i2Sim solution.
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Fig. 12.20 PSCAD ontological mapping

Fig. 12.21 EPANet ontological mapping

12.9 The i2Sim Solution Timeline

Figure 12.22 shows i2Sim’s simulation timeline. A master clock in the ESB controller
(Fig. 12.18) keeps the timing of the simulation process. The Master i2Sim finds a
solution to the resources allocation problem at t = 0,!t, 2!t, 3!t, … A typical
time step for disaster simulations is 5 min for the first 10 h of the disaster.

The domain simulators will present updates when they change the amount of
resources they can provide to the i2Sim sources. The physical damage assessment
tools will present updates when the physical mode of cells and channels changes.
Human and information modifiers will present their values when these values change.
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Fig. 12.22 i2Sim simulation timeline

Fig. 12.23 What-if i2Sim scenarios

After all updates are received, the Master i2Sim simulator will perform the op-
timization of the allocation of available resources. This optimization process will
normally involve the spawning of multiple i2Sim child runs to test different alloca-
tion scenarios (Fig. 12.23).

The i2Sim what-if scenarios allow decision makers to foresee the consequences
of decisions before these decisions are applied to the real system. A software opti-
mization engine can learn from these runs to suggest optimum actions.

For real-time applications, the external simulators need to complete their solution
within the real-time clock interval. If an update is not received before the !t solution
cycle, the update cannot be included in the present cycle and has to wait until the next
cycle. Similarly, if an optimal solution cannot be calculated within the !t interval,
the decision will have to be delayed or a suboptimal decision will have to be made.
Planning scenarios are not constrained by execution speeds since the solution times
do not need to match the simulated time.
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Fig. 12.24 DR-NEP community for disaster response

12.10 Integration Across Geographical Boundaries

The i2Sim solution architecture allows the integration of expertise and solution en-
gines that can be located geographically apart from each other. It is often the case
that an earthquake expertise centre is situated in a different location from a telecom-
munication expertise centre, etc.

CANARIE’s2 DR-NEP (Disaster Response Network Enabled Platform) network
[8], based on the i2Sim simulation platform, interconnects research centres across
Canada and internationally using very high speed (10 Gbps) optical fibre network.
The speed and bandwidth of the connection allows the transfer of large amounts of
data between sites and the interfacing of multiple simulation engines, attached to the
architecture of Fig. 12.19, to work together in a seamless fashion, as if all simulators
were located in the same laboratory (Fig. 12.24).

The DR-NEP network is currently being expanded to include sensor informa-
tion from ground and under the sea monitoring stations. Through software adapters
(Fig. 12.19), relevant data provided by these stations is stored in the ESB database.

2 Canada’s Advanced Research and Innovation Network (CANARIE).
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Specialized software can access these data in real time to predict damage caused
by the evolving disaster and other information relevant to disaster response (e.g.,
weather conditions). i2Sim can then pick up the damage information to update the
physical mode of its cell and channel components, and other information that may
trigger cell and channel modifiers.

12.11 Conclusions

Effective management of large disasters requires going beyond rescuing the victims
and towards achieving a more optimum allocation of survival resources. In is in this
aspect of effective management that large recent disasters (e.g., Japan, 2011, Haiti,
2010, Sichuan, 2008, Katrina, 2005, South Asian Tsunami, 2004) have fallen short
and perhaps more lives could have been saved.

It is very difficult in large complex systems to predict and comprehend, even
by highly skilled experts, the kinds of emergent behaviour that result from the in-
terdependencies among multiple large dissimilar systems. The i2Sim multisystem
simulation framework is an attempt to improve the management of resources dur-
ing large disasters. The framework resolves the interdependencies among critical
resources that can result in deadlock of the production and delivery of these re-
sources if the consequences of these interdependencies are not understood. i2Sim
does not replace domain simulators, which are needed to determine the availability
of resources in a given area served by the domain utility. However, by explicitly
modelling the interdependencies among domains, i2Sim can determine the best way
to allocate the available resources within an area of concern and optimize the global
system function of saving human lives in this area.
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Chapter 13
Addressing Interdependencies of Complex
Technical Networks

Wolfgang Kröger and Cen Nan

13.1 Introduction

This chapter deals with large-scale technical systems, i.e., a wide-area network of
physical-engineered infrastructures that function synergistically to provide a contin-
uous flow of essential goods and services, groups within our societies or societies as
a whole (increasingly) depend on. The most vital ones, such as the electric power and
water supply system, information and communication technology (ICT), transport
systems, are called critical infrastructures. They are subject to rapid technologi-
cal and organizational changes (e.g., from monopoly to open competitive markets)
and face multiple threats (e.g., technical-human, natural, physical, cyber, financial,
contextual; either unintended or malicious); they may pose risk themselves (e.g.,
high-voltage lines or gas pipelines). In general, those systems have become more
tightly integrated as well as more interdependent, also due to cyber-based host tech-
nologies for communication and control (SCADA1 systems) moving from closed
and dedicated to open and commercialized structures (see Sect. 13.2.2). As demon-
strated by experience disruptions may start slowly, accelerate and cascade within
and among infrastructure systems [1]. The “2003 Italian blackout” may serve as an
illustrating example.

Those critical infrastructure systems have always been “complicated” but in recent
years they have witnessed growing interconnectedness and interdependencies, have
turned into complex systems (see Table 13.1 for contrasting juxtaposition).

1 Supervisory Control and Data Acquisition.
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Table 13.1 Contrasting complicated with complex systems (Acc. to [2])

Complicated systems (mechanical watches,
commercial aircraft, nuclear power plants,
etc.)

Complex systems (stock market, power
grids, transport networks, www, social
networks, etc.)

• Large number of highly connected
components; frequency-consequence
curves tend to follow a normal distribution

• Large number of highly connected
components; frequency-consequence
curves tend to show “fat tails” and follow
power law distributions

• Components have well-defined rules and
are governed by prescribed interactions

• Rules of interaction between the
components may change over time and
may not be well understood

• Connectivity of the components may be
quite plastic and roles may be fluid;
interactions are not obvious

• Structure remains closed and stable over
the time; limited range of responses to
changes in their environment

• Systems are more open, respond to
external conditions and evolve; interact
with their environment

• Low dynamic, mostly linear behavior • High dynamic and non-linear behavior;
sudden regime shifts possible

• No adaptation; one key defect may bring
the system to a halt

• Display organization without a central
organizing principle
(self-organization/emergence)

• Inadequate information about the state of
the influencing variables; probabilistic
rather than deterministic behavior

• Decomposing the system and analyzing
sub-parts can give an understanding of the
behavior of the whole, i.e. the whole can
be reassembled from its parts
(“deductionism”)

• The overall behavior cannot be described
simply in terms of their building blocks;
the whole is much more than the sum of
its parts (“systems approach”)

13.2 Understanding Complex Systems by Means of Exemplary
Systems

13.2.1 Electricity Power Supply System

The electric power supply system (EPSS), consisting of power generators, high-
voltage transmission and low-voltage local distribution grids, with transformers/
substations in between, has become one of the most important critical infrastructures
that modern societies and other infrastructures depend on. However, electricity is
seen as common good; security of supply is a key issue but public lacks awareness of
major blackouts. In Europe, while originally designed to serve a region and to allow
for trans-boundary assistance in case of need, the EPSS has turned into an open
system with given energy flux boundary conditions crossing neighboring countries
without centralized control. Regional and vertically integrated monopolies are being
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Fig. 13.1 Initial conditions and failure mechanisms leading to splitting of the ENTSO-E grid on 4
November 2006 (formation of areas at 22:20; re-synchronization of area 1 and 2 at 23:24, of area
3 at 23:57 h) [3]

replaced by an intricate market structure and stressing operation modes, closer to
security margins. The risk of power outages spreading over wide geographic areas
has increased. Furthermore, the integration of large shares of intermittent energy
sources (wind and solar, increasingly at most suitable sites far away from consumer
centers) has also made the power grid more vulnerable, often going along with lack
of awareness and underestimation of complexity. As evidenced by the disruptive
event of 4 November 2006, triggered by a planned, re-scheduled line cutoff (to let a
new built vessel pass), the initial conditions can be manifold and of different types
and the failure and spreading mechanisms are often hard to foresee and control (see
Fig. 13.1). Finally the ENTSO-E2 grid split into three areas of under (two)—and over
(one)—frequency.

Table 13.2 depicts information about most recent major blackouts that happened
in various regions of the world due to different reasons. Root cause analyses of them
have revealed the following patterns:

• Operation of systems beyond original design parameters (high trans-border flows,
integration of wind power, etc.).

• Malfunction of critical equipment and adverse behavior of protective devices;
insufficient system automation in some cases (lack of investment).

• Lack of situational awareness and short-term emergency preparedness.
• Limited real time system monitoring beyond TSO (Transmission System Operator)

control area and weak cross-border coordination in case of preparedness.
• Inadequacy of N-1 security criterion, of its implementation/evaluation.

2 European Network Transmission System Operator-Electricity.
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As “soft” (organizational, human) factors often dominate they cannot be ignored
when analyzing the EPSS.

Due to pervasive use of cyber-based technology, partially unsecured like the inter-
net, the risk of cyber attacks on the EPSS, and on the SCADA system and EMS
(Emergency Management System) in particular, has increased but does not manifest
as a trigger for blackouts yet. Parts of the EPSS spread over wide geographic and
socio-political areas and are easily accessible, making them highly vulnerable to
terrorist attacks; investigations have shown that “brute force attacks” (on more than
single elements) are necessary to imperil the stability of a large-scale grid [4].

The tendency to growing instabilities may also be amplified by future trends within
the EPSS:

• Future power system requires significant changes in the transmission and distribu-
tion system (“smartgrid”/“super grid”) including RES-generation at most suitable
sites and long-distance transport to consumer hubs.

• Means to better balance demand and supply will be given to “households”; the cur-
rent generation of “smart meters” is unsecured introducing the risk of manipulation
and cyber attacks (“worst scenarios” show grid collapse).

• Development of future market-oriented power supply systems are driven by polit-
ical targets and demonstration of feasibility; vulnerability and security issues are
often not sufficiently included.

Given the complexity and complex behaviors following disruptive events of the
systems such as the EPSS it has been argued that reliability and vulnerability analy-
sis have to go beyond the conventional approach of decomposition (e.g., fault tree
analysis) or cause-and-effect/causal chain development (e.g., event tree analysis) to
be able to capture emergent behavior and failure cascades, especially when strong
interdependencies exist (see [5]). The behavior of the whole system can hardly be
understood/described as the sum of the behaviors of its elements. Furthermore, the
operational contexts including organizational factors, safety culture, coexistence of
different technologies, etc, need to be adequately accounted for.

13.2.2 Industrial Control System

The growth of the worldwide interconnectivities of computing devices provides users
new means to share and distribute information and data. In industry, this results
in the adoption of modern ICTs and, subsequently, in an increasing integration of
various facilities, i.e., industrial control system (ICS). In general, ICS is a term
that encompasses several types of control systems, e.g., DCS (Distributed Control
System), PLC (Programmable Logic Controller), SCADA, etc. ICS is typically used
in modern critical infrastructure systems to enable the operators to continuously
monitor and control them for the purpose of ensuring their proper operation [6].
Compared to other ICSs, SCADA system is normally used to monitor and control
very large industrial process facilities such as electricity transmission facilities and oil
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Fig. 13.2 General structure of a SCADA system [8]

and gas production facilities [7]. Its fundamental purpose is to allow a user (operator)
to collect data from one or more remote facilities and send control instructions back
to those facilities. For instance, voltage, frequency and phase angle are all important
parameters in an EPSS and need to be continuously monitored for maintaining a
normal operation environment.

Figure 13.2 shows the general structure of a SCADA system. There are four lev-
els in a standard SCADA system hierarchy mainly based on the functionalities of
devices. Level 1, the lowest level in the standard hierarchy, includes Field Level
Instrumentation and Control Devices (FIDs and FCDs), e.g., sensors and actuators.
Remote Terminal Unit (RTU), the level 2 in the standard hierarchy, is a rugged indus-
trial common system providing intelligence in the field. It is a standard stand-alone
data acquisition and control unit with the capabilities of acquiring data from moni-
tored processes, transferring data back to the control center, and controlling locally
installed equipments. Communication Unit (CU), the level 3 in the standard hierar-
chy, provides a pathway for communications between a control center and RTUs.
Different protocols (e.g., Modbus and Profibus) and mediums are adopted by the CU.
Most devices in the scope of the first three levels of the SCADA system hierarchy
are installed (hardwired) in a substation. Master Terminal Unit (MTU), the level 4
in the standard hierarchy, can be regarded as a “host computer” issuing commands,
collecting data, storing information, and interacting with SCADA operator who can
communicate with substation level devices. Compared to the RTU, the MTU is a
“master machine”, which is able to initiate the communication either automatically
by its installed programs or manually by an operator. Generally, three devices are
included in a MTU: HMII (Human Machine Interface), control server, and engineer-
ing working station. The hardware configuration varies depending on the type and size
of the system, while general functionalities are similar (see [9] for more information).

The trend from proprietary technologies to more standardized and open solutions
together with the increased number of connections among ICSs and LAN/WAN
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Fig. 13.3 Distribution of annual industrial security incident rates [17]

(Local/Wide Area Network) poses a significant threat. Originally, a SCADA system
was designed as a point-to-point system connecting a monitoring or command device
to remotely located sensors or actuators. By now, it has evolved into a complex
network that supports the communication between a central control unit and multiple
remote units using advanced ICT [10]. Having said this, extensive uses of them
introduce new types of security threats to SCADA systems [11, 12]. For example,
Stuxnet, a self-replicating computer worm, has recently challenged the securities
of infrastructure systems for its capability of modifying the control logic of field
level control systems through SCADA systems. This sophisticated “superworm” is
a Windows-specific computer work, specifically written to attack SCADA systems,
and was first discovered in June 2010. It should be noted that the only target of Stuxnet
was Simatic WinCC, a Windows-based SCADA system developed by SIEMENS.
Once inside the system, it uses certain exploits to infect other WinCC computers
within the local network. According to [13], this computer worm infected Iran’s
nuclear enrichment facilities at Natanz, and other sites, and destroyed 30 % of its
centrifuges by a self-destruct mechanism.

Recent surveys show that a number of attacks against ICSs, especially SCADA
systems, have been reported over the years, e.g., the prominent Maroochy Shire
accident in Australia (2000), the Florida power outage in USA (2008), etc [14, 15].
There are also numerous unreported incidents by asset owners and operators related
to security issues in ICSs [16]. As seen from these incidents, threats to ICSs come
from numerous sources, e.g., hostile governments, disgruntled employees, malicious
intruders, human errors, technical failures, natural disasters, etc. Figure 13.3 shows
annual industrial security incident rates from 1985 to 2009 based on records from
RISI (Repository of Industrial Security Incidents).3 As shown in Fig. 13.3, the annual
incident rate gradually increased in the late 90’s and peaked around 2003. It then

3 RISI is a database including a number of technical incidents in which process control, industrial
automation or SCADA systems were affected.
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Fig. 13.4 Comparison of different types of industrial security incidents (1985–2009) [17]

declined sharply in the mid 2000’s (2005–2007) and appeared to rise again in the
late 2000’s; a linear interpolation shows that its trend is increasing at probably 20–
25 % per year over the last decade [17]. These incidents can be also grouped into
direct attacks, indirect attacks (e.g., worms and virus), and human errors (Fig. 13.4). It
should be noted that an incident can be classified into more one category. For example,
an incident might may be caused by direct attacks and human errors. Unintentional
incidents, e.g., equipment failures and malware attacks, also account for a significant
number of incidents.

13.2.3 Railway System

Railway systems provide transportation services for passengers and goods in almost
all countries and across borders. It is a large-scale infrastructure system that, if
degraded, disrupted or destroyed, has serious impacts on the health, safety, security
and well-being of citizens and on the effective function of the society. The 2009
Viareggio incident may serve as an example. On June 29, a freight train from Trecate,
hauled by a locomotive with 14 bogie tank wagons derailed at Viareggio, Italy at
23:48 local time. The first wagon hit the platform of the station and overturned to
the left, the next four wagons also overturned and the two following derailed but
remained upright, the last seven did not derail, remaining intact on the track. The
derailed wagons crashed into houses alongside the railway line causing a massive
explosion that destroyed two blocks of flats, killing 22 people, injuring more than 40
and forcing around 1000 people to evacuate their homes (see [18] for this and other
incidents).

In general, a railway system can be broken down to the following subsystems:

• Infrastructure: tracks, on-track equipment including switches, engineering struc-
tures (tunnels, bridges, etc.), associated station infrastructure (platforms, zones of
access, etc.), safety and protective devices.
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Fig. 13.5 Multilayer representation of the railway system [18]

• Energy: electrification system, including its own power plants, transmission sys-
tems, substations, transformers, overhead contact lines, etc.

• Control, Command and Signaling: all the equipments necessary to ensure safety
and to command and control movements of authorized trains including track-side
equipments such as radio block centers, interlockings, base transmission units.

• Rolling Stock: locomotives and wagons including all the various on-board equip-
ment, named accordingly control equipment, structural components (brakes,
wheels, car body, bogies, axles, etc.) and the power equipment (motors, main
transformer, battery system, pantograph, etc.).

• Operation and Traffic Management: operation and control centers including the
technical equipment and personnel at all levels of organization and operation.

Figure 13.5 shows a multi-layer representation of the railway system with various
interacting hetero-geneous subsystems and associated components: parallel planes
represent different subsystems while nodes represent various elements together with
some of interconnections between them (arrows). The elements of the various layers
depend on each other, depicted by various horizontal (inside a layer) and vertical
(between layers) links. These links introduce direct and indirect (inter) dependencies
and a failure of an element of the lower layers can cause cascading failures up to
the top layers that could affect the function of infrastructure systems. For example,
one plane represents the rolling stock subsystem whereas the parallel lines consist
of the on-board power system (with nodes on this line being for the pantograph and
various other elements), the on-board control system and so on.
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Maintaining daily normal operation of railway systems is a highly challenging
task and involves multi-dimensional, highly complex collections of technologies,
processes and people and as such, the railway system is vulnerable to potentially
catastrophic failures on many levels. In general, railway systems are subject to various
hazards and threats:

• Sudden interruption of services due to loss of energy supply or communication
and control.

• Operation of the system close to its limits (e.g., tight operational schedule).
• Malicious cyber-attacks on control systems.
• Accidents with injuries, fatalities or release of dangerous goods (e.g., derailment

and/or collision) due to technical and/or human failures.
• Natural forces and environmental factors (e.g., landslides, extreme weather con-

ditions) with consequences on operational availability and safety.

13.3 Interdependencies

13.3.1 Illustrating Evidence

Critical infrastructure (CI) systems have been continuously exposed to multiple
threats and hazards. A single failure within any infrastructure system or even loss of
its continuous service may be damaging enough to our society and economy while
cascading failures crossing subsystems and/or even boundaries have the potential for
multi-infrastructural collapses and unprecedented consequences. The importance of
preventing or at least minimizing negative impact of cascading failures due to inter-
dependencies among these systems has been recognized, not only by governments
but also by the public, as a topic of CI Protection (CIP). The purpose of the protection
is not just to identify the cause of failures and prevent them but also to halt ongoing
cascading or escalating events before affecting other infrastructures. Therefore, it is
vital to get a clear understanding of these often hidden interdependency issues and
potential failure cascades, and to tackle them with advanced modeling and simula-
tion techniques. In general, addressing the significance of interdependencies among
infrastructure systems and uncertainties of their interactions is a challenge due to
the complexity and perpetual nature of those systems, the lack of sufficient informa-
tion clearly characterizing failure propagations, and the lack of modelling/simulation
tools, by which system interactions can be comprehensively analyzed.

Nevertheless, it is still possible to find some evidences from many documented
incidents through qualitative analysis of available information, which can help us
to shed some lights on the understanding the characteristics of interdependencies
[19]. The 2001 Baltimore tunnel fire may serve as an example: On July 18, a freight
train with 31 loaded and 29 empty cars passed through the Howard Street Tunnel
in Baltimore, USA. At 3:08 p.m., 11 cars derailed while the lead locomotive was
about 1,850 feet from the east portal. Four of them were tank cars and one contained
tripropylene. The derailment caused the puncturing (2-inch-diameter hole near the
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Fig. 13.6 Interdependency graph of 2001 Baltimore tunnel fire [19]

bottom of the tank) of the car carrying tripropylene and the subsequent ignition of
this flammable liquid. The fire spread the contents of several adjacent cars, creating
the heat, smoke, and fume that blocked the access of the tunnel for five days and
eventually shut down the down-town area. As shown in Fig.13.6, a technical failure
(freight train derailment) occurring in the railway system continued to propagate
into other infrastructure systems due to interdependencies. For instance, the break
of the water mains (a failure within drinking water supply system) due to the tunnel
fire/ explosion flooded the tunnel and damaged power cables and fiber-optic cables.
The radio system was also damaged due to the derailment and therefore, the radio
contact between train crewmembers and corresponding control center could not be
established. About 1,200 Baltimore buildings lost electricity and both internet and
telephone services were interrupted [20].

The 2012 India power blackout, occurred on July 30 and followed by another
power outage on July 31, can serve as another example. The incident is the largest
blackout in history, affecting 620 million people. It started from a tripped transmission
line, which caused the failure of a substation. The cascade then spread further beyond
this substation and led to a massive power outage throughout 22 states of India. Vital
infrastructure systems were affected: railways and airports were shut down; health
services provided by several hospitals were interrupted; drinking water services were
interrupted due to the failure of electric pumps. This incident also demonstrates
that the breakdown of such a complex infrastructure system is often the result of
a relatively slow system degradation escalating into a fast avalanche of component
failures, which finally lead to failures of directly or indirectly coupled systems.

These two incidents, as well as others such as the 2003 North America power
blackout, 2004 Rome telecommunication node failure, 2005 Hurricane Katrina, etc,
are regarded to be rare. It can be argued that the probability of future occurrence of
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similar events could be relatively low. However, negative consequences of events,
triggered by one single event, developing into fast cascades crossing system bound-
aries, can be worsened significantly due to interdependencies among systems. Analy-
sis of those “low frequency, high consequences” disruptive events can help us to
understand what can be expected due to interdependencies, even if in different con-
texts and scales. For example, cascades are directional in both cases, the 2003 North
America and the 2012 India blackout, meaning that most of affected infrastructure
systems have unidirectional relationships (dependencies) with power infrastructure
systems.

13.3.2 Definition and Dimensions

From a technical perspective, the term dependency depicts a linkage between two
systems through which the state of one system influences the state of the other,
whereas interdependency is a bidirectional relationship through which the state of
each system is correlated to the state of the other [21]. Interdependency can be of six
different types: the first of three types can be referred as direct while the last three
can be referred as indirect interdependencies, see below for a brief definition based
on work done by Rinaldi et al. [21] and modified by the authors:

(i) Physical—the state of one system depends on the material output(s)/flows(s)
of the other, e.g., a pipeline network provides gas to fuel a power station while
the electricity generated is used to power compressors and controls of the gas
supply network;

(ii) Geospatial—components of multiple infrastructure systems are in close spa-
tial proximity and a local event is able to affect all these components, e.g.,
earthquake, flooding or a fire;

(iii) Informational—infrastructure systems are interconnected via electronic, infor-
mational links, e.g., a SCADA system monitors and controls elements of the
electric power grid—likewise, it may provide pieces of information or intelli-
gence supporting another infrastructure or a decision making process elsewhere;

(iv) Socio—an infrastructure system affects another one via socio factors such as
public confidence, trusts, culture issues, etc;

(v) Policy/procedure—an infrastructure system affects another one due to factors
such as market structure, organizational change, etc;

(vi) Finance—an infrastructure system affects another one due to factors such as
market condition, finance crisis, etc.

Figure 13.7 shows six dimensions for describing interdependencies including the
six types. The “coupling and response behavior” of interdependent systems deserves
special attention, as it directly influences whether the infrastructures are adaptive or
inflexible when perturbed or stressed. As shown in this figure, the degree of cou-
pling can be tight or loose, which addresses the nature of correlation of a disturbance
in one system to those in another. The coupling order is either directly connected
(first-order-effect) or indirectly through one or more intervening infrastructures
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Fig. 13.7 Six dimensions for describing interdependencies (according to [21], modified by the
authors)

Fig. 13.8 Examples of nth-order interdependencies and effects taking Energy Crisis in California
as a basis [21]



292 W. Kröger and C. Nan

(second-order up to n-order effects, see Fig. 13.8 for illustration). The linearity or
non-linearity/complexity of the interaction, i.e., whether or not systems can inter-
act with others outside the normal scheme or operational sequence, not intended by
design being subtle and difficult to detect, shows unfamiliar feedback loops.

Interconnectedness and interdependencies may have a positive or negative impact
on the complex system behaviors indicating the need to find the right balance. Failures
(negative impact) that arise from strong interdependencies (and coupling) can be
classified as follows:

• Common cause initiating events: one event causing failure or loss of service
of more than one infrastructure, e.g., areal external events such as earthquakes,
floods, or extreme weather conditions, due to spatial proximity.

• Cascade initiating events: failure of one infrastructure causing failure or loss of
service of at least another infrastructure, e.g., ruptures of mains of the water supply
system.

• Cascade resulting events: failure or loss of service resulting from an event in
another infrastructure, e.g., failure of gas lines due to loss of main electricity
supply if compressors are electrically driven.

• Escalating events: failure or loss of service of one infrastructure escalating
because of failure of another affected infrastructure, e.g., failure of the electric
power system leading to failure of the SCADA system and by this affecting restora-
tion of the electric power system.

Events being neither one of these four types maybe called independent. The types of
non-independent events are not mutually exclusive.

13.4 Analyses of Interdependencies

The challenges regarding understanding, characterizing, and investigating interde-
pendencies among infrastructure systems are immense and research in this area is
still at an early stage [22, 23]. In recent years a great deal of effort has been devoted
by researchers and two main directions can be distinguished, i.e., knowledge-based
and model-based approaches.

13.4.1 Knowledge-Based Approaches

Knowledge-based approaches, e.g., empirical investigations or brainstorming, intend
to use data collected by interviewing experts and/or analyzing past events to acquire
information and improve the understanding of the dimensions and types of inter-
dependencies. In order to address the question whether certain combination of
infrastructure failures are more common than others, one of the early empirical
investigation studies built a database using the collected information from a number
of maintenance or operation accidents, reports of the US National Transportation
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Table 13.3 Effect ratios [24]

Type of infrastructure systems No. of times infra-
structure systems
caused failure of
other infrastructure
systems

No. of times infra-
structure systems
was affected by
other infrastructure
failures

Ratio of causing
versus affected by
failure

Water mains 34 10 3.4
Roads 25 18 1.4
Gas lines 19 36 0.5
Electric lines 12 14 0.9
Cyber/fiber/optic/telephone 8 15 0.5
Sewers/Sewage treatment 8 16 1.3

Fig. 13.9 Dependencies between critical infrastructures, according to Ref. [25]

Safety Board and news media searches [24]. The database mainly includes accidents
that occurred from 1990 through 2004 in connection with failures during construc-
tion, maintenance or operation, or due to facility condition related to age of struc-
tures. Table 13.3 depicts the ratio of causing failure of another type of infrastructure
versus being affected by failure of another type of infrastructure according to the
database. As shown, water mains cause failures of other infrastructures more fre-
quently while gas lines and telecommunication lines are more likely to be damaged
by other infrastructures.

A policy brief of the International Risk Governance Council [25] also introduces
an assessment based on brainstorming sessions among experts around the world
and categorizes how dependent each infrastructure is on the others, how dependent
the others are on it, and also how strong the intra-infrastructure dependencies are
(Fig. 13.9). According to this report, among five reference infrastructures, electricity,
railways and ICT are most important ones. Most infrastructures have a major depen-
dency on the electricity infrastructure, while the railway infrastructure has a major
dependency on other infrastructures. The ICT has a major dependency on others, as
well as major dependence for other infrastructures.

The knowledge-based approach is straightforward and easy to understand. It is
capable of providing a qualitative assessment on the severity of interdependencies
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and can be considered as an efficient screening method. However, it is a purely data-
driven approach, meaning that the accuracy of results depends on the quality and the
interpretation of the collected information.

13.4.2 Model-Based Approaches

Model-based approaches aim to analyze interdependent infrastructure systems
comprehensively by using advanced modeling/simulation techniques, capable of
providing both quantitative and qualitative information. Even modeling single
infrastructure systems is a challenging task because of their inherent characteris-
tics such as dynamic/nonlinear behaviors and intricate rules of interaction with their
environment due to their openness and high degree of interconnectedness. This task
could become even more challenging when more than one infrastructure systems
must be considered and interdependencies among them need to be tackled. Tradi-
tional approaches and methods based on decomposition and cause-consequence-
relations such as fault and event trees reach the limit of their capacity [26, 27]. In
recent years, a variety of advanced modeling approaches have been developed and
applied, e.g., Input-output Inoperability Modeling (IIM), Complex Network (CN)
Theory, PetriNet (PN)-based modeling, Agent-based Modeling (ABM), etc.

The IIM approach is an example of capturing interdependencies among infra-
structure systems via the development of mathematical models. This approach is
originally a framework for studying the equilibrium behaviour of an economy by
describing the degree of interconnectedness among various economic sectors [28].
It assumes that each system can be modelled as an atomic entity whose level of
operability depends on other systems and propagation between them can be described
mathematically based on the basic Leontief high order mathematical model [29]. The
IIM approach is capable of analyzing cascading failures and providing a mechanism
for dependency measurement. In [30, 31], Haimes et al. applied this approach to study
impacts of high-altitude electromagnetic pulse on electric power infrastructure. The
great advantage of this type of mathematical model is its preciseness. However,
deriving an appropriate representation of multiple infrastructure systems is not easy
due to their inherent complexities. To overcome this difficulty, the task of analysing
behaviours of interdependent infrastructure systems as a whole can be turned into
the analysis of the aggregate behaviours of many smaller interacting entities.

The PN-based approach is a mathematical modeling language for the description
of distributed systems which has also been used to represent/assess interdependen-
cies among infrastructure systems. In this approach, components (subsystems) of
infrastructure systems and their states are modeled using basic PN elements such as
places, transitions, etc. In [32], the Swiss railway system is modeled using the PN-
based approach for the purpose of vulnerability assessment, illustrated in Fig. 13.10.
Elements of various subsystems such as track lines and transformers are selected and
categorized as root causes potentially leading to single and/or common cause failures
of the track lines. The core of the vulnerability analysis consists of integrating vari-
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Fig. 13.10 The concept of PN-based modeling approach representing Swiss railway system [32]

ous risk factors affecting the system’s operational performance in one “multi-layer”
PN-based model.

This approach alone has difficulties representing infrastructure systems quan-
titatively and often needs to be combined with other methods. For example, in
the Europe-wide project IRRIS (Integrated Risk Reduction of Information-based
Infrastructure Systems), the PN-based approach is combined with the ABM approach
to analyze and manage infrastructure interdependencies [33].

Fundamental elements of the CN theory approach are originally formed by graph
theory [34]. A graph G (V, E) is composed by a set of nodes (vertices) V and the
set of connections E between them. Each node (or vertex) represents an element
of the system, while a link (or edge) represents the relation between corresponding
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Fig. 13.11 Representation of the Swiss transmission grid using CN theory [4]

elements. A graph can then be drawn by plotting nodes as points and edges as lines
between them. In general, a graph can be analyzed by well-developed parameters,
e.g., the order/size of a graph, the weight/strength of a link, the degree/degree dis-
tribution/betweenness of nodes, etc. A complex network can be regarded as a graph
with non-trivial topological features that do not occur in simple networks such as lat-
tices or random graphs but often occur in real graphs. The CN theory is an approach
capturing the coupling phenomenon as a set of nodes connected by a set of links
and by this characterizing their topology. A number of modelling efforts have been
made to adopt this approach for the development of infrastructure system models
and interdependency-related assessments, demonstrating its capability of represent-
ing relationships established through connections among system components [35,
36]. In [4], the Swiss transmission grid is modelled and analyzed using the centrality
analysis of this approach in order to perform heuristic investigations of potential
malicious attacks (Fig. 13.11). In total, 242 nodes are developed to represent substa-
tions, loads, and power generating stations and 310 links to represent transmission
lines.

The CN theory approach is based on the network model mapping physical configu-
ration of the components (elements) of studied infrastructure systems and their (phys-
ical or logical) interconnections. The analysis of the topological properties of the net-
work is able to reveal useful information about the structural properties, topological
vulnerability, and the level of functionality demanded for its components. However,
this approach lacks the ability to capture uncertain and dynamic characteristics of
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Fig. 13.12 Two-layer modeling concept (using application to the electric power supply system as
an example)

infrastructure systems and system properties when dynamical processes, acting on
the network, occur.

Using the ABM approach, each agent is capable of modifying its own inter-
nal data, its behaviours, its environments and even adapting itself to environmental
changes. An agent can be used to model both a technical component (e.g., a transmis-
sion line), and a non-technical component (e.g., a human operator), while different
agents interact with each other directly or indirectly. This approach is able to provide
an integrated environment where a more comprehensive analysis of dynamic sys-
tem behaviours can be performed by “looking-into” the component level of studied
system(s) [37]. In [38], the Swiss transmission grid is modeled/simulated using the
ABM approach for the purpose of system reliability analysis. Instead of only using
nodes and links to represent substations and transmission lines respectively (recall
CN theory modeling approach), agents are created to model various components
of the system such as generators, busbars/substations, transmission lines, operators,
and loads. The rules of behaviors of each agent are represented by using Finite State
Machines (FSMs) and include both deterministic and stochastic time-dependent, dis-
crete events. The model is developed using a two-layer modeling concept, illustrated
by Fig. 13.12. Within this concept, the lower layer represents the separate modeling
of the physical components by means of conventional, deterministic techniques such
as power flow calculations, whereas the upper layer represents the abstraction of the
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whole system (in this case, electric power system) with all its technical and non-
technical components as individual agents. Overall, the ABM approach achieves a
closer representation of system behaviors by integrating the spectrum of different
phenomena that may occur, e.g., generating a multitude of representative stochas-
tic, time-dependent event chains. However, this approach demands a large number
of parameters defined for each agent, requiring thorough knowledge of the studied
system(s).

It should be noted that other model-based approaches, which have also been
applied by researchers but not discussed in this chapter, include System Dynamic
[39], Bayesian Network [40, 41], Dynamic Control System Theory [42–44].

13.4.3 Comparison of Approaches

It is difficult to compare these (knowledge-based and model-based) approaches since
all of these approaches have their own advantages and disadvantages. The knowledge-
based approaches are straightforward and easy to understand, while the model-based
approaches are more comprehensive and promise to gain a deeper understanding
of behaviors of studied system(s). The level of this “deeper understanding” also
varies: Some approaches are only capable of analyzing studied system(s) at the
structure/topology level, which can be considered as appropriate approaches for the
screening analysis, e.g., CN theory and PN-based modeling approaches, while some
approaches are capable of capturing and analyzing dynamic behaviors of studied sys-
tems, e.g., ABM and IIM approach. Among all these, the ABM approach seems more
promising than others, not just due to its capability for representing the complexity
of any infrastructure systems, but also its modeling flexibility and adaptability. For
example, the ABM approach can be integrated with many other modeling/simulation
techniques and even be used to implement other models mentioned above.

13.4.4 Hybrid Modeling/Simulation Approach

13.4.4.1 Challenges and Basic Concept

Some of the model-based approaches which have been introduced and discussed in
the previous section can be used to model interdependencies among infrastructure
systems as well as single systems and interdependencies within, e.g., CN theory, PN-
based and ABM approach. Some of them can only be used to model interdependen-
cies, e.g. IIM. Due to inherent complexity of interdependencies among infrastructure
systems, in practice, there is still no “silver bullet approach”. Instead, it has proven
necessary to integrate different types of modeling approaches into one simulation
tool in order to fully utilize benefits/advantages of each approach and to optimize
the efficiency of the overall simulation. One of the key challenges for developing
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Fig. 13.13 Architecture of the hybrid modeling/simulation approach

such type of simulation tool is the required ability to create multiple-domain models,
e.g., discrete and continuous time models, time-based and frequency-based models,
and to effectively exchange data among them [45]. One solution for meeting these
challenges and handling these technical difficulties is to distribute different simula-
tion components by adopting the concept of modular design. The overall simulation
platform can be divided into different simulation modules at first, which could be
domain-specific or sector-specific simulation components, so as to make the best use
of computational resources, and then distribute them across one simulation platform.

This so-called hybrid modeling/simulation approach, illustrated in Fig. 13.13,
intends to integrate different modeling and simulation techniques, and can be consid-
ered as a successor of the traditional simulation approach in case multiple systems
need to be simulated. It changes the way to design and develop simulation tools:
Instead of building a “heavy weight” simulation component, a number of “light
weight” components are developed interacting with each other over a real-time sim-
ulation platform, which not just potentially improves the efficiency and flexibility of
the developed simulation tool but also decreases its overall complexity. Each distrib-
uted “light weight” simulation component is developed to represent its own system
characteristics using appropriate modeling approaches. The information and control
commands exchanged among simulation components are interpreted and processed
over the network connection, allowing quick assembly of independently developed
components without full knowledge of their peer simulation components.

13.4.4.2 High Level Architecture (HLA)

While several simulation standards do exist for supporting the distribution simu-
lation components, the most widely implemented and applicable one is the HLA
simulation standard [46], which is a general purpose high-level simulation architec-
ture/framework to facilitate the interoperability of multiple-types models and simu-
lations. In 1998, the first complete HLA interface specification was released to the
public [47]. In 2000, HLA was approved as an open standard by the organization of
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the Institute of Electrical and Electronic Engineers: IEEE Standard 1516–2000 [48].
Since then, the HLA standard has been revised and improved; the most current one
is HLA-Evolved.

As an open IEEE standard, HLA has been widely adopted across various fields
of simulation industries during the last decade. The EPOCHS (Electric Power and
Communication Synchronizing Simulator) is an early attempt to distribute several
individual simulators by adopting the HLA standard, which utilizes multiple research
and commercial systems from various domains [49, 50]. Computer experiments show
that “the overall simulations have been sped up after distributing simulation com-
ponents based on the standard of HLA” [51]. Similar results are also observed while
working on an agent-based framework for controlling activity flows between the
ISS (Interactive Simulation Systems) components [52]. Furthermore, HLA has been
applied to other industry fields such as the US border operation study [53], rail traffic
safety system simulation [54], and many others [55–57]. Although, this standard
has been questioned regarding its feasibility in the research field of interdependency
study, it is still the most applicable and feasible one if compared to other similar sim-
ulation standards such as Distributed Interactive Simulation (DIS) and Aggregate
Level Simulation Protocol (ALSP). One distinguished advantage of this standard is
its support of live participants, meaning that the representation of the live world such
as a human being, a real process instrumentation device and a field controller can
be integrated into the simulation world. More details about the HLA standard can
be found in [58]. While HLA is the architecture, a simulation standard, Run Time
Infrastructure (RTI) is the software, the core element of the HLA standard, which
provides common services to all participating federates.

13.4.4.3 Structure of the Experimental Simulation Platform

An experimental simulation platform has been developed to assess interdependency-
related vulnerabilities between SUC (System Under Control) and its SCADA system
by adopting the hybrid modeling/simulation approach (implemented using the HLA
standard). The platform consists of four major components: SUC model, SCADA
model, RTI server, and simulation monitor, all connected over a LAN (see Fig. 13.14).

The SCADA model is a discrete-event and agent-based model, developed by a
failure-oriented modeling approach (Fig. 13.15). In this approach, the “agent state”
is defined as a location of control with a particular set of reactions to conditions
and/or events of its related agent. For example, open and close are two states defined
for an agent representing a circuit break device. The “device mode” including both
operational mode and failure mode is defined as the hardware status of corresponding
simulated hardware devices. For example, failure-to-open and failure-to-close are
two device modes defined for a field control device. The transition of various device
modes can affect corresponding agent states. With the help of this modeling approach,
technical failures of simulated devices of a SCADA system can be easily determined
and corresponding failure propagations can be visualized/studied. The core of the
device mode model is given by the state diagrams illustrated in Fig. 13.16, which
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Fig. 13.14 Architecture of the experimental simulation platform

Fig. 13.15 Failure-oriented modeling approach

reflects a continuous-time, discrete-state Markov model describing failure behaviors
of a studied device with one operation mode (left) and two failure modes (right) (see
[59] for more details).

The SUC model is a continuous-time and agent-based model. The aim of this
model is to investigate various system operating situations which could potentially
result in a blackout of the Swiss electric power transmission network [5]. The SUC
model simulates scenarios in a continuous time by means of conventional techniques
such as power flow calculations. Since it was previously designed as a stand-alone
model, no inputs from external models had been specified. To include this model
in the experimental platform, a Java-based independent HLA-compliant interface is
developed, which is responsible to process all inputs (outputs) to (from) the model
(see [38] for further details).
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Fig. 13.16 State diagram of the device mode model (λ constant failure rate; µ repair rate)

The RTI server acts as the center of the experimental platform and is responsible
for simulation synchronization and communication routing between all components,
through the local RTI interface of each model. Each federate communicates with
this server via its own local RTI interface and starts to follow central federation
management. The simulation monitor system is a real-time tool, through which the
simulation of two models can be observed.

13.4.4.4 Validation the Hybrid Modeling/Simulation Approach

To demonstrate the capabilities of the hybrid modeling/simulation approach, as well
as of the simulation platform, for representing interdependencies among infrastruc-
ture systems, several experiments have been designed including feasibility and failure
propagation experiments.

The purpose of the feasibility experiment is to study whether the HLA-compliant
distributed simulation environment is capable to simulate interdependencies. In order
to visualize the interdependency phenomena between SCADA and SUC, the scenar-
ios that will trigger power line overload alarm are generated manually during the
simulation. Generally, the maximum load each power transmission line can carry
has been previously determined by its operator and is called overload threshold. If
the real power flowing through a transmission line exceeds its overload threshold,
this line is considered to become overloaded. An accidentally overloaded transmis-
sion line could cause a system collapse. Therefore, suitable corrective actions should
be taken in order to alleviate the overloaded transmission lines. Normally, whenever
a monitored transmission line is overloaded, an alarm will be generated and sent
to the operator in the control center by the RTU of the SCADA system. If, after a
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certain period, the operator fails to react to the overload alarm, then the protection
devices such as disconnectors will automatically isolate the overloaded transmission
line to minimize negative consequences. It should be noted that the procedure for
handling a power line overload alarm is complicated and other factors should also be
considered. In order to simplify this problem, it is assumed that the overload alarm
failed to be handled correctly only if the operator fails to react to the alarm in time
and the protection device fails to trigger. Three case study scenarios are developed
by modifying parameters of corresponding agents in order to observe three different
outcomes after the occurrence of the transmission line overload: (1) neither operator
nor protection device react the alarm, (2) operator reacts alarm, (3) protection device
is triggered after operator fails to react.

The observed simulation results from three case studies show that the propagation
of cascading failures between infrastructure systems due to interdependencies can
be simulated and visualized with the help of the experimental platform. Although
the models are distributed, overall simulation performance is not affected and inter-
connections between models can still be efficiently handled (see [58] for more infor-
mation).

To investigate the phenomenon of failure propagation and related issues, another
experiment has been developed and conducted. In this so called failure propagation
experiment, a number of tests are conducted by triggering single or even multiple
technical failures in order to observe and study sequent events due to the failure
propagation. For example, in a single technical failure test, which is mainly related
to the investigation of the physical interdependency, the FID agent4 is developed
to represent a power flow transducer (PTi) measuring power flow (in unit of MW)
transmitted in a selected transmission line that is included in the SUC model. It is
assumed that the PTi is calibrated incorrectly due to the aging. A list of sequential
events after the incorrect modification of the PTi’s calibration value is recorded using
a database during the simulation. As learned by studying these records, at certain
time, the PTi’s calibration value is modified incorrectly. As a consequence, the output
of the PTi is more than its measured variable value should be. According to this wrong
value, the RTU generates a wrong overloading alarm and sends it to the MTU causing
the operator in the control room to make a wrong decision, i.e., to redistribute the
power flow of a transmission line. As the result, the amount of power transmitted in
this line decreases, although it should not. The measured variable from PTi, as part
of the SUC, acts as physical input into the SCADA system. This relationship can
be considered as the physical interdependency, which causes the failure of PTi to
propagate from the SUC to the SCADA system and go back to the SUC (see [27] for
more information).

4 FID agent is an agent representing a field instrumentation device such as a sensor or transducer.
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According to investigation results, analyzed based on both feasibility and failure
propagation experiments, it can be concluded that three types of interdependencies
can be simulated using the current experimental simulation platform: physical, cyber,
and geographical interdependency.5

13.4.4.5 Brief Introduction of “In-Depth” Experiments

In order to investigate and identify interdependency-related (often hidden) vulnera-
bilities between the SCADA system and the SUC, three “in-depth” experiments are
also developed and conducted.

The first experiment is the substation level single failure mode experiment, in
which different failure modes of each substation level component (i.e., FID, FCD,
and RTU) are evaluated by performing a number of tests related to each failure mode.
In total 8 failure modes are defined for these substation level components such as
FID FRH (Failure to Run (too high)), FCD FO (Failure to Open), RTU FRF (Failure
to Run with Field Device), etc (see [59] for more information). One substation from
the reference SCADA system including two transmission lines is randomly selected.
During each test, the scenarios that will trigger power line overload alarm are loaded
at the beginning of the simulation. Each test starts in the operation mode (a device
mode) and one of the agent states. Within a given time period, the device mode of a
respective component will go to one failure mode for which the transition time from
is assumed to be exponentially distributed. After a given time period, the device
mode will go back to operation mode for which the transition time is also assumed
to be exponentially distributed. The transitions between different device modes have
influences on corresponding agent states resulting in the change of behaviors of the
SCADA system and SUC. According to the conclusion of this experiment, among
all the simulated SCADA-related devices, negative effects caused by failures of the
RTU device seem more significant on its interconnected SUC (see [59] for more
information).

The second experiment, the small network single failure mode experiment,
extends the scope of the first experiment to a small network including more com-
ponents from the SCADA system and the SUC (40 substations and 50 transmission
lines). In this experiment, one key substation6 from the SUC model is selected for
triggering the failure modes of substation level components during the simulation.
For each single failure mode, two types of tests are implemented: normal and worse-
case test. The modeling scenarios of normal case test are similar to of the tests in the
first experiment. The worse-case test represents the worse-case situation when the
operator is unable to handle any alarm received by the control center due to natural or
technical failures (hazards), e.g., the failure of the control panel, flooding/fire in the
control center, etc. The purpose of performing experimental tests under this situation

5 Indirect interdependencies are not considered during these experiments.
6 In this experiment, it is assumed that substations connecting more than 6 transmission lines are
considered as key substations.



13 Addressing Interdependencies of Complex Technical Networks 305

is to observe corresponding consequences if the SCADA system fails to monitor and
control the SUC through the MTU. According to the conclusion of this experiment,
on average, negative effects due to interdependencies are aggravated during worse-
case tests, which have been demonstrated during FID FRH worse-case tests (see [60]
for more information).

The third experiment, whole network worse-case failure modes experiment,
extends the scope to the whole network including all simulated components of the
SCADA system and the SUC, by which negative consequences caused by interdepen-
dencies can be observed and analyzed. In this experiment, instead of just considering
single failures, double failures occurring simultaneously at different substations are
also included. The same modeling scenarios defined in the worse-case tests of the
previous experiment are applied, but in addition, two key substations and non-key
substations are selected as exemplary substations. According to the conclusion of
this experiment, failures of FIDs in both single and double failure tests show very
strong degree of impacts. It is also observed in this experiment that the increase of the
number of key substations could also lead to more significant negative consequences
(see [60] for more information).

Based on the results from these experiments, vulnerabilities of the studied SCADA
system due to its interdependencies with the SUC have been identified, which can
hardly be obtained without an appropriate simulation tool due to the complexity
of real systems. Furthermore, suggestions for potential technical improvements are
proposed, which could be useful to minimize the negative effects and improve the
coping capacity of both systems (see [60] for more information).

13.5 Conclusions

Large-scale/wide-area technical networks, such as critical infrastructures, have
become increasingly interdependent going along with operational modes closer
to their limits, thus stressing the systems. These tendencies and interdependen-
cies, in particular, have dramatically increased the overall complexity of related
infrastructure systems, turning them to “system-of-systems” and causing the emer-
gence of unpredictable behaviors and negative impacts. Therefore, these systems
become more vulnerable to cascading failures with widespread consequences. These
interdependency-related issues should not only remain as a subject of theoretical
research. The practical importance has been evidenced and highlighted by numerous
major disruptive events (2001–2012) such as bulk electric blackouts and should not
be underestimated.

These technical networks even continue to become more integrated and their
behaviors may tend to become more complex. Understanding and characterizing
them is a real challenge; research in this area is still at an early stage. It is essential
to get a clearer understanding of their cascading behaviors by applying appropriate
techniques. Consequently, modeling/simulating those systems will remain as a field
of active research. Although progress has been made in advanced modeling and
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simulation, more efforts are needed to further improve the methods/tools, to validate
them and to scale them up to the level of “system-of-systems” and of the systemic
nature of related risks.

In practice, there is still no “silver bullet” solution. Several approaches have been
introduced and discussed in this chapter. Among these approaches, the CN theory is
one of most frequently used techniques for topological analysis, while the ABM can
be combined with other techniques such as the Monte Carlo simulation and offers the
possibilities to include physical laws into the simulation and emulate the behavior of
the infrastructure as it emerges from the behavior of the individual agents and their
interactions. Combining different approaches and utilizing their strengths within one
simulation tool by adopting the technique of distributed simulation using appropriate
standards seem promising. This so called hybrid modelling and simulation approach
has already proved its feasibility and applicability in recent research study and dif-
ferent types of experiments. Hopefully this approach will be adopted by researchers
and practitioners in the field of risk analysis. With the help of this approach, tradi-
tional approaches such as the logic trees with limitations to capture the behaviour
of those systems alone can also be combined with more advanced ones such as the
ABM approach and used for more comprehensive system reliability/vulnerability
analysis.
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Chapter 14
Financial Networks

Stefano Battiston and Guido Caldarelli

14.1 Introduction

The financial system performs vital functions for the world economy. Very often one
of more aspect of this system can be described by means of a complex graph. In this
chapter under the generic name of financial networks we indicate several different
systems all related to the world of finance. Such a coarse graining is justified by the
fact that in all the various situations we always find similar behaviours. We shall
present here a series of examples passing from the study of stock-price correlations
to the study of the web of exposures between different companies, and finally to the
lending of money between banks.

Indeed in every of the abovementioned systems we encounter similar mathematical
structures. Furthermore we are interested in similar basic questions. More particu-
larly we always find a scale-free architecture, a scale-free distribution of centrality
and betweenness. At the same time, in all these cases we want to know which insti-
tutions is more important for the stability of the whole system, what is the global
impact of a local bankruptcy, and finally how we can act on the system in order to
change its properties or to recover the initial stability.

These questions have similar answers, with details changing from one case to
another, but in any case related to the issue of centrality and controllability.

The possibility to provide to regulators a set of simple indicators that can be
used as a thermometer of the financial situation in order to prevent crises is one of
the most challenging perspectives. For this reason more and more often scientists
and research groups involve regulators in the research activity. The recent crisis
has spurred a profound debate about the role of policy and regulations in financial
markets. The debate has drawn the attention of researchers from many areas of
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science as well as of the civil society at large to the needs for new approaches to
policy modelling. Overall, it has emerged as a prominent societal issue the need to
build a sustainable global financial system that serves the global policy goals. In
particular, many observers share the view that the current financial crisis should be
seen as an opportunity to strengthen climate finance and not as an excuse to postpone
the environmental objectives that were previously put forward.

It is well known that in financial markets, while contracts are beneficial to the
parties involved they can also entail unforeseen (negative/positive) externalities to
other parties [21, 36]. In particular, incentives for parties to take excessive risk as
individuals lead to systemic risk for the market as a whole. According to the direct
contacts of our Consortium with regulators (e.g., Bank of England, Bank of Italy,
Deutsche Bundesbank, DG-Markt) [6, 16], the problem that many regulators are fac-
ing today is that (1) it is not clear what externalities could arise from certain contracts
and (2) what could be done to mitigate the negative externalities and strengthen the
positive ones. The problem is even more acute when linkages with the environmental
sphere are introduced via climate finance [28].

The lack of data is the immediate cause of this situation. A first step has been very
recently moved in the direction of collecting systematic information for instance
for OTC derivatives. In December 2012, the European Commission has adopted
new technical standards, the so-called European Market Infrastructure Regulation
(EMIR). However, there are more fundamental causes. The continuous injection of
financial innovations as well as their inherent complexity makes it difficult to keep
track of the possible externalities [28]. In fact, the interactions of market players
across the globe through various instruments such as OTC derivatives, security lend-
ing and repurchase agreements make, today more than ever, the financial market a
complex network [8, 20] with highly non-linear dynamics [6, 15, 22]. Our current
understanding of what undesirable systemic effects may arise and how to cope with
them is very limited. Progress in this direction is vital for the well-being of the econ-
omy and requires combined efforts and competences [35]. This is the topic of the first
section of this chapter that focuses on reconstructing the missing links (Fig. 14.1).

Linkages among financial institutions can have ambiguous effects: on the one
hand they increase individual profitability and reduce individual risk, but on the
other hand they propagate contagion and distress, thus increasing systemic risk (see
Fig. 14.2, for an illustration). On this topic a significant body of work has grown in
the recent years. The issue of cascade of failures was initially investigated in simple
four-node graphs [1] and in ring structures. The fact that too many linkages can be
a factor of systemic risk is a result that has emerged in various works, from various
underlying mechanisms. In some models, the balance between positive and negative
effects of the network density depends on the level of market capitalization [31], in
others on the persistence in the dynamics of financial fragility [5], and yet in others
on the level of market liquidity [4]. More links in the network can result also in the
so-called robust-yet-fragile property, namely the network resists well to most of the
shocks but break down entirely in a non-negligible fraction of cases [15]. Moreover,
the tendency towards complexity in the instruments and at the same time towards
homogeneity in the risk models and investment strategies adopted by banks is per se
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Fig. 14.1 The WTW network. The plots from top left represent respectively: a the relative error in
the estimation of average degree of the main core σ k

main /kmain computed with real WTW network
b the same as in (a) but for the relative error in the size of main core, c same as in (a) but for the
density of the links D. In all the 3 plots it is shown that the quality of the reconstruction of the WTW
network increases with the number of nodes used to generate the network ensemble

a source of systemic risk [22]. Finally, indirect linkages can emerge from the fact that
banks invest in overlapping portfolios, resulting in a tension between the incentive
to reduce individual risk and the social cost of having systemic crises.

Following this perspective we present here results that are mostly based on the
activity of the FET Open project “Forecasting Financial Crises” a consortium of sev-
eral European institutions and the European Central Bank whose continuous feedback
proved crucial in order to refine our research.

14.2 Reconstructing the Missing Links

One first issue in the study of financial networks is to deal with partial and/or
incomplete information. While the reconstruction of the original network may be
proven to be very difficult, it has to be noticed though, that in most of the application
we need only the statistical properties of it. Addressing this issue has many concrete
applications. Typically we can consider a system made of financial institutions as
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Fig. 14.2 Illustration of distress propagation across a network of banks connected via liabilities.
Each block is a schematic balance-sheet of a bank

vertices and edges formed by various kinds of financial ties such as loans or deriva-
tive contracts. These ties result in dependencies among institutions and constitute the
ground for the propagation of financial distress across the network. The resilience
of the system to the default or the distress of one or more institutions depends on
the topological structure of the whole network [4]. Unfortunately, the information
that regulators are able to collect on the mutual exposures among institutions is very
limited (since the confidentiality issues).

Various methods have been presented in order to reconstruct the network in the
papers analysing systemic risk. One of the most successful is the so-called Maximum
Entropy (ME) algorithm. This method assumes that the network is fully connected
(for this reason this class of approaches is called “dense reconstruction methods”).
Edges are weighted and these weights are obtained via a maximum homogeneity
principle. This means that each node is assumed to bear a similar level of dependence
from all other nodes. After that, the method proceeds by looking for the matrix that
minimizes the distance from the uniform matrix (where every entry has the same
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value), while satisfying certain constraints (imposed in this case by the budget of the
individual banks). Such a matrix is found by minimizing an objective mathematical
function known as the Kullback-Leibler divergence.

However, the hypothesis of “graph completeness” strongly limits the ME
algorithm, since empirical networks show instead a largely heterogeneous degree
distribution. Moreover, such “dense reconstruction” leads to an underestimation of
the systemic risk [29, 32]. To overcome these limitations a sparse reconstruction"
algorithm has been proposed. The procedure is similar to the one for dense graph.
Again we minimise the Kullback-Leibler divergence and we obtain a matrix with
an arbitrary level of heterogeneity given certain constraints. The latter approach is
more reliable but leaves open the question of what value of heterogeneity would be
appropriate to choose. Finally the density of connections must be specified ex-ante
and it is not recovered by the algorithm.

Recently a third approach wanted to overcome these problems. The new procedure
is called Bootstrapping Method (BM) and it is a new general method to deal with
incomplete information [30]. This method does not aim at reconstructing the original
network but rather to estimate its global properties.

In more detail, among all the possible topological properties, the authors focused
on those that in the literature have been shown to play an important role in contagion
processes and in the propagation of distress, i.e., the network density and the k-
core structure [25]. For the resilience, they focussed on a recently introduced notion,
DebtRank [5], that allows to measure the systemic impact of an initial shock on one or
more nodes, whenever the links in the network represent the financial dependencies
among nodes. It is also possible to determine the accuracy of the estimation upon
the size of the subset of nodes for which the information is available.

In this method, the allocation of the links among nodes is carried out using the
fitness model ([9, 18]). Differently from other network generation models, the fitness
model distinguishes amongst different vertices. In particular it generates a network
structure starting from a non-topological variables (fitness) associated to the nodes.
This approach has been used in the past to reproduce the topological properties of
several empirical economical networks, including the network of equity investments
in the stock market [19], the interbank market [12], and the WTW [18].

The validity of this method has been proved on both synthetic networks as well
as examples of real economic systems. In these few cases, there is full information
on the system. The whole adjacency matrix is available and therefore it is possible
to evaluate the accuracy of the method by using only part of the information. The
two empirical cases of study presented in [30] are

• the World Trade Web (WTW), i.e. the network in which nodes are countries and
links are trade volumes (in US dollars) among them,

• the interbank loan network of the so-called e-mid interbank money market.

The result of this analysis is that information on the degree of a relatively small
fraction of nodes is sufficient to estimate with good approximation the above men-
tioned topological properties, as long as the fitness of all nodes is known.
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For instance, with only about 7 % of the nodes (10 out of 185) we have a relative
error of about: 7 % on the density, 10 % on the average degree of the main core, 7 %
on the size of the main core. Similarly, t with about 7 % of the nodes the resilience
can be estimated with a relative error within 10 %.

14.3 Evaluating the Impact of Linkages Through Centrality
Measures: DebtRank

During the period March 2008–March 2010 many US and international financial
institutions received aid from the US Federal Reserve Bank (FED) through emer-
gency loans programs, including the so-called “FED Discount Window”. Recently
this dataset has been released thereby providing a unique and important opportunity
to study the distribution of debt across institutions and across time.

One of the papers based on the analysis of this dataset wanted to estimate the
impact of a node on the others. This is done by means of a novel measure inspired
by feedback centrality. Such quantity termed DebtRank [5] takes recursively into
account the impact of the distress of an initial node across the whole network. More
particularly DebtRank of vertex i, is a number (i.e. dollars or euros) measuring the
fraction of the total economic value in the network potentially affected by the distress
or the default of node i . This quantity can be used to construct a ranking, but it is not
itself a particular rank of the node considered.

Its computation differs from the methods based on the default cascade dynamics
[4, 11, 29] in which, below the threshold no impact is propagated to the neighbors.
In this respect DebtRank is more similar to other feedback centrality measure that
have found successful applications in many domains ranging from rankings in the
world-wide-web (e.g. PageRank) to corporate control in economic networks.

Feedback centrality can be considered as the in-flow in a non-homogeneous
diffusion process. Exactly in this spirit the presence of a cycle in the network rep-
resent a potential problem. In this case there is an infinite number of reverberations
of the impact of a node to the others and back to itself, which leads to no simple
and measurable economic interpretation. DebtRank overcomes this problem by only
allowing for walks that do not visit the same edge twice.

Consider a directed network where the nodes represent institutions and the links
represent financial dependencies.

• Denote the amount invested by i in the funding of j as Ai j . Thus, A is the weighted
adjacency matrix of the investment network. The total value of the asset invested
by i in funding activities is Ai = " j Ai j.

• Denote by Ei the tier capital of i giving the buffer of i against shocks. If Ei< c
(where c is a positive threshold) the firm defaults.

If the node i defaults, the node j faces a loss of A ji (in the first instance, any
recovery is excluded). Similarly also the node j defaults if A ji> E j . When the loss
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Fig. 14.3 DebtRank-like algorithms allow to monitor over time in a 2-dimensional plot those
players that have at the same time high impact on the others and high vulnerability to other players’
shocks (see [24] for more details on the calculations). As we can see, in the intermediate period
(green) a number of players were at the same time highly vulnerable and systemically important

exceeds the capital the impact is fixed to 1, so that in general the impact of i on j can
be defined as Wi j =min{ 1, A ji /E j }. The total amount of the impact of institution i is
Ii =" j v j Wi j.

The problem is to take into account the impact of i on its indirect successors, that
is, the nodes that can be impacted from i at distance 2 or more.

Authors define an iterative equation of kind

Ii=" jv j Wi j + β" j Wi j I j

where the second term accounts for the indirect impact via the neighbours. The
parameter β is a dampening factor.

In a cycle (Wi j > 0 and W ji > 0), the impact of node i to j hits back on i and
keeps cycling an infinite number of times (although with dampening). A single rever-
beration of the impact of i back to itself is realistic and mathematically acceptable.
Further reverberations lead instead to an inconsistency because the impact could
become larger than one. The reason is that if the impact is repeated several times
through a cycle, then the impact of a node on another one is counted more than once.
The same problem applies also to any cycle not involving i, but located downstream
of i in the network. Removing the cycles altogether from the network and consid-
ering its corresponding acyclic graph would remove entirely the reverberation and
cut many links, thus strongly underestimating the impact. In contrast, DebtRank is
computed on the original network by excluding the walks in which one or more edges
are repeated (Fig. 14.3).
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14.4 Interbank Controllability

As shown above the network theory can provide some suggestions to improve the
stability of financial systmes against crises. Especially in the credit sector, scientists
tried to emphasize the systemic implications of distress in economic systems [1,
14]. Indeed, the fragility in specific countries, markets and financial institutions can
propagate and damage the whole economy [2, 33]. For this reason an increasing
research effort is being invested in the study of economic and financial networks
[3, 4]. Interestingly, many (practically relevant) properties of these networks can be
quantitatively investigated. For example, it has been widely recognized the role of
Too-Big-To-Fail (TBTF) [35] hubs in determining the fragility of the system with
respect to distress propagation or its resilience against link failures. The connectivity
structure plays a fundamental role in it [1]. Against this background, Delpini et al.
[13] investigated which (if any) policy could improve the stability of the network
toward a less risky situation.

The basis of this work is to apply to the interbank money market the notion of
controllability structural [26, 27] based on control theory concepts. The idea is that
the whole network can be controlled by acting on specific drivers. An immediate
application arises when a central bank must give credit to the banking system and
therefore needs to know which actions (amongst many) are likely to affect the whole
structure. The problem of finding the driver vertices of the system is completely
solved by finding a maximum matching of the corresponding oriented graph [27].

Since the matching does not depend on the specific values of the weights (which
are by the way largely unknown or affected by errors for the majority of real net-
works), the results hold in a variety of different situations explored with reference to
the Italian case.

In particular it is possible to assess the controllability of interbank money markets
empirically, focusing on the specific case of the Italian electronic trading system
(e-MID), which is open to European banking players, and for which a time series of
micro data is available [13]. Following the network evolution over time it is possible
to detect the banks that are more relevant from a control perspective. For them, the
authors considered the changes of the relevant topological and financial quantities,
clarifying the role played by drivers in this system. Through this approach it is
also possible to address the resilience of the network drivers, that is the correlation
between driver sets at different times. At every aggregation scale and for every
available network instance, it is possible to identify the set of driver nodes (Fig. 14.4a
shows a daily network instance, with the driver nodes highlighted).

The number of maximum matchings for directed graphs of the size of the Ital-
ian interbank market is rather large. Searching for a maximum matching takes into
account the graph edges only and enumerating all the possible control configurations
is an intensive numerical task. Nevertheless, this can be simplified by assuming that
some configurations may be more significant than others from a control perspec-
tive. Delpini et al. [13] selected the maximum matching with maximum weight (the
weight being given by the sum of edge weights in the matching). The intuition behind
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Fig. 14.4 a A sample snapshot of the daily interbank lending network. External inputs on the yellow
nodes (drivers) allow to control the state of the whole system. b Time evolution of the fraction of
drivers: at the monthly scale less than 40 % of the banks drive the system. c The average fraction
of drivers decays with a neat power law scaling with the aggregation scale $

this choice is that cash flows are proxies for the strength of the influence relationship
between two banks.

The main results are that there is no characteristic time scale for the fraction of
drivers in the system. In other words it is not possible to select an optimal aggregation
time. Rather, different levels of aggregation correspond to networks with different
connectivity, which requires different control strategies. Different scales could serve
different supervision purposes and policy makers could adopt the instruments that
are more effective for the time horizon of interest for the control. The control set of
drivers will change over time. However, inspection of the drivers resilience, shows
also that the system is characterized by long-range memory. The survival function
has a very slow, almost linear decay, and after 6 months nearly 60 % of drivers are still
in the control set. Surprisingly, the level of the curve does not follow a monotonic
trend with $: the control configuration is maximally stable at the monthly scale.
This result supports the proposal of the Basel III Committee to introduce a 30-day
liquidity coverage ratio, and suggests the monthly scale as a reasonable time window
for observing the system.

This is important, since recent financial crisis has been forcing central banks to
implement aggressive and creative policy actions. Radically new strategies have been
proposed to cope with liquidity shocks within interbank markets. Traditionally, poli-
cies have been mainly based on liquidity injection through open market operations,
but it has been proved that targeted intervention on individual banks could be more
effective in guaranteeing and restoring the efficient allocation of credit. The above
findings suggests the need for monitoring the system and keeping track of banks
that are systemically relevant from a control perspective [13]. Since no characteristic
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scale exists in the decay of the fraction of drivers with the time resolution, this implies
that no optimal timing for bank supervision can be selected based only on that. Nev-
ertheless, other network statistics, such as the persistence of control configurations,
indicate the monthly scale as natural for observing the system. Another result of this
analysis is that the more relevant banks to the overall state of the credit network are
neither the most connected nor the top lenders. This strongly suggests the necessity
to rethink the policies based exclusively on the TBTF specification of a systemically
important institution. According to recent regulation proposals, the ECB has recog-
nized that allowing recapitalization interventions directly on individual banks is a
necessary procedure.
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Chapter 15
Spatial-Temporal Quantification
of Interdependencies Across Infrastructure
Networks

Christopher Chan and Leonardo Dueñas-Osorio

Abstract As infrastructure networks become more complex and intertwined, the
relevance of network interdependency research is increasingly evident. Intercon-
nected networks bring about efficiencies during normal operations but also come
with risks of cascading failures with disaster events. An adequate understanding of
network interdependencies and realistic multi-system modeling capabilities enable
the exploration of practical operation strategies and mitigation efforts applicable to
existing or future coupled networked systems. This chapter examines recent efforts in
quantifying infrastructure network interdependencies through spatial and time-series
analyses to reveal the heterogeneity and complexity in their coupling. Furthermore,
a combined spatial-temporal methodology is recommended for the future calibration
and validation of theoretical and computational models of interdependent networks
of networks. An example case study is demonstrated using data derived from the
2010 Chilean Earthquake in the Talcahuano-Concepción region, which highlights
the richness in coupling strengths across infrastructure systems, both as a function of
time and geographical extent. Insights for design and control of coupled networks are
also derivable from joint spatial-temporal analyses of infrastructure interdependence
and its evolution.

15.1 Introduction

From the World Wide Web to the national power grid, networks are an essential
part of the world. Appearing in almost all aspects of modern society, a network
connects individual components, or nodes, with links that join together multiple
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nodes in a systemized network. Common networks include public transporta-
tion systems, electrical power grids, water systems, and intertwined social circles
[14, 18]—examples that are frequently seen in everyday life. Hence, a more com-
plex network can be defined as the coupled interaction of those individual networks
with each other; for example, much of a city’s service infrastructures, like the water
supply network and subway systems, are dependent upon the greater regional power
network, which may be contingent upon functioning telecommunications channels
which govern the operations of a series of other networks and infrastructure systems
[22, 34]. Similarly in fields differing from engineering, biochemically linked neu-
rons in the body work both synchronously and in tandem with the other biological
systems to sustain even greater functions [2, 4]. These interdependencies between
networks create a complex web of networks of networks linked by both connectiv-
ity and dependency [13, 17, 29], which significantly increases efficiency, but also
introduces greater risks in network security and reliability.

Network interdependency has especial relevance within infrastructure systems.
As the world continues to urbanize, essential infrastructures have become increas-
ingly interconnected and mutually dependent with new tech0nological advances
[3, 13, 34]. Any disruption with critical infrastructure can result in what is known
as cascading failures [6, 15, 36, 42] in which one failure causes a chain event result.
On July 30 and 31 of 2012, more than 700 million people, roughly a tenth of the
world’s population, were plunged into darkness in northern India, as the three inter-
dependent state power grids crippled one after the other [20]. The world’s largest
blackout paralyzed the interstate train system, affected local health services, and
trapped 200 miners among other consequences [39]. The magnitude of the incident
lucidly demonstrated the criticality of linked networks and manifested the extent that
interdependent infrastructures can impact the world.

The inherent nature of increasingly connected and interdependent infrastructure
systems implies that there will continue to be even greater risks and vulnerabilities
during operations as well as even more pronounced repercussions in the event of
external threats. Such dangers ranging from natural disasters to terrorist attacks can
put the connected network of networks at risk of a falling domino effect. In fact,
the reliability of critical infrastructure security became such an issue in the United
States that in 1996 President Clinton issued an executive order to establish the Pres-
ident’s Commission on Critical Infrastructure Protection (PCCIP) [8, 21, 30]. The
importance of critical infrastructures means that it is necessary to not only model the
complexities of infrastructure networks, but also quantify the inherent risk associated
with interdependency.

As a result, much of recent research in the past decade has been devoted to exam-
ining and understanding infrastructure network interdependencies [34]. This can be
done through a host of strategies, for example, identifying the mechanisms of interac-
tion (physical, logistical, geographical, etc.), observing the interdependent character-
istics (operational, spatial, temporal, etc.), and quantifying the coupling and response
behaviors [24, 32]. This chapter will look at research and models to quantify the
interdependencies of infrastructure networks and infer their potential effects on
system performance. Models and simulations in the past have employed a variety
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of techniques to measure and capture the complex interactions in interdependent
networks with a mixture of approaches deriving from complexity and network the-
ories, economic methods, probabilistic analyses, and data-driven approaches. For
example, frequency analyses of infrastructure failure propagation incidents after haz-
ards have been studied as a methodology for characterizing and empirically quan-
tifying network interdependencies [7, 26]. From theoretical and simulation-based
approaches, sandpile dynamics have been used with a multi-type branching process
to analyze cascading loads in connected networks of different topologies [5]. With
the increase in computing power, complex adaptive systems (CAS) have also been
used to model interdependent networks as individual intelligent agents which co-
operate and compete in the larger system. The agent-based CAS modeling could
use sensors in the system to prevent cascading failures and is applied frequently
among operational and socioeconomic networks [1]. Borrowing off of financial mar-
kets modeling, the Leontief economic paradigm, when applied to infrastructure net-
works, is an input–output model that uses an interdependence matrix to compute
shared risk of inoperability of infrastructure systems [21]. Restoration of network
services has also been modeled using multilevel interdependencies in a mathematical
network flows model exploiting advances in operations research [25], while compu-
tationally intensive, flow dynamic-based methods that require large data sets have
been applied to models of telecommunications, gas, power, and emergency systems
[28, 33, 35]. In addition, the graph wavelets approach, which uses the wavelet trans-
form to model changes in the network as a whole, has been used in spatial traffic
flow analysis, which has the potential to impact multiple physical and social sys-
tems [10]. Finally, network reliability models that use a probabilistic quantification
of interdependencies among networks provide flexibility to integrate with network
theory and quantify performance correlations between infrastructure systems which
provide unique insights for infrastructure engineering practice [23].

While these and many other approaches to modeling interdependent systems exist,
for any method, the quantification of coupling, calibration of performance assess-
ment models, and verification of predictions in a sundry of scenarios remains vital to
research and practical applications in network interdependency. Recent approaches
have utilized time-based analyses of multi-network performance to calculate cou-
pling strengths by using temporal correlations of post-disruption restoration times
[16]. At the same time, network interdependency can also be approached by looking
at spatial correlation. Studies have taken stochastic external stresses to identify geo-
graphic vulnerabilities [31] or utilized kriging techniques in generating spatial cor-
relation [40]. The methodology presented in this chapter allows for a novel approach
to quantify joint spatial-temporal network correlations and reveals the heterogene-
ity in the interdependencies of infrastructure systems that simultaneously take into
account the time-dependent and geographic relevance of the networks.

The following sections will briefly overview approaches that have been used
to quantify interdependence, specifically with regard to time- and space-dependent
methods and, furthermore, describe the unique spatial-temporal approach recom-
mended by this study. After the methodological discussions, this chapter will focus
on the application of the spatial-temporal approach to representations of data derived
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from post-event analysis of the 2010 moment magnitude (MW) 8.8 Chilean earth-
quake, and finally, the analysis of results and synthesis of insights will be followed
by conclusions and suggestions for future work on interdependent infrastructure
networks research.

15.2 Methodological Approaches to Quantifying Network
Interdependencies

15.2.1 Temporal Methodologies

In order to quantify interdependencies across networks and enable the calibration of
models of networks of networks, recent studies have taken a time-series approach in
analyzing coupling strengths between infrastructure networks. Dueñas-Osorio and
Kwasinski [16] explore such an approach by looking at utility service restoration
responses. Utilizing post-disaster restoration information from the 2010 Chilean
Earthquake, data from individual utility service systems, or lifeline system restora-
tion curves, were collected, showing the gradual restoration of power, water, and
telecommunication services available as a function of time. Auto-covariance and
autocorrelations of the restoration data were calculated to assess temporal depen-
dencies within the same system. To measure the coupling strength between differ-
ent utility networks, the cross-correlation ρ j,k (Eq. 15.2) was calculated using the
cross-covariances γ j,k (Eq. 15.1) for given time lags (or relative times between the
restoration curves) using the following equations:

γ j,k(h) =
1

1 + n j

n j −h∑

t=0

(xt+h, j x̄ j )(xt,k − x̄k), (15.1)

ρ j,k(h) =
γ j,k(h)√

γ j (0)γk(0)
, (15.2)

where xt, j or xt,k is the restoration value at time t of the j th or kth system, n j is
the maximum observation time, and h is the given time lag between the restoration
curves of the systems. The cross-correlations provide a convenient dimensionless
metric for quantifying interdependencies and analyzing the behavior of the systems
across the restoration time series, and in this way, leading or lagging interdepen-
dence properties of the networks can be revealed. In order to achieve stationarity and
make the time-series analysis tools suitable, the time-series data is transformed and
second-differenced before the correlation analysis. The study notes high correlations
between power and telecommunications systems (operational interdependency) as
well as with water delivery (logistical interdependency). For example, correlation
between fixed phone services and the regional power delivery system reaches 0.84
at a lag time of h = 2, highlighting the high level of operational interdependency
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between power and telecommunications with the latter lagging in restoration. Sim-
ilarly, strong correlation between power and water systems reaches 0.79, but at a
negative lag time of h = −13, showing the leading tendency of the power system
restoration on the ability of water system operators to coordinate the logistics of dam-
age repairs. Outcomes are only observed several days later after intensive physical
tasks of digging, welding, and replacing are completed. A mathematical relation-
ship is then formulated as a measure of overall coupling strength S j,k (Eq. 15.3),
reflecting both the time lag and the system correlations and demonstrates a high
level of interdependence among power and telecommunication systems in regions
with moderate level of damage, as well as strong intra-dependence within systems of
the same type. In addition, the study reveals a high degree of infrastructure coupling
between neighboring regions where the leading restoration of power and telecom-
munication systems directly affects closely linked restoration processes of networks
in geographically close regions.

S j,k =
{−ρ j,k(h)/(1 + √|h|) when h #= 0

ρ j,k(h) when h = 0 (15.3)

Using a time-series post-event interdependence quantification technique and ana-
lyzing the autocorrelations and cross-correlations in restoration data across systems,
it is possible to not only capture the holistic operational and logistical coupling
between two networks after a critical failure, but also identify leading and lag-
ging relationships to improve performance and adopt effective mitigation actions for
interdependent systems. The quantification of coupling strengths allows for poten-
tial applications in computational and theoretical predictive models as well as in
disaster mitigation efforts for infrastructure operations and recovery. In the end,
practical applications of quantified coupling strengths can include the exploration of
system decentralization or the uncoupling of systems during emergency operations
to enhance restoration as well as identification of specific physical or organizational
factors affecting restoration rates.

15.2.2 Spatial Methodologies

Another significant dimension in quantifying interdependency, especially for
infrastructure systems, is the geographic correlation between network elements and
their performance. Spatial proximity among networks holds important relevance in
modeling infrastructure interdependencies, most notably in the aftermath of natural
disasters, such as earthquakes as demonstrated by Lee and Kiremidjian [27] and
Rahnamay-Naeini et al. [31]. In modeling spatially-dependent systems, geostatisti-
cal techniques like ordinary point kriging utilize optimal least-squares predictions
and can be employed in a probabilistic analysis of infrastructure networks to quan-
tify their interdependencies as distributed in their service area spaces. Wu et al. [40]
demonstrate the application of kriging surfaces on utility restoration records and
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the calculation of spatial correlations to estimate the spatial distribution of network
interdependencies among the lifeline systems of Sect. 15.2.1.

15.2.2.1 Ordinary Point Kriging

Ordinary point kriging is a geostatistical technique recently embraced by the spatial
interdependence assessment methodology as a tool for spatial interpolation in the
creation of restoration and correlation surfaces. Specific details are further discussed
below as they are central to the formulation of the spatial-temporal approach proposed
in Sect. 15.2.3 of this chapter.

In the analysis of spatial interdependency, a spatial surface of the infrastructure
system parameter (e.g. service restoration) must be created by kriging using the
mesh of original evaluation data points. With ordinary point kriging, interpolation of
restoration records and their spatial variability necessitates an estimator variogram
γE (sometimes refered to as a ‘semi-variogram’ governed by Eq. 15.4). The estimated
variogram enables plotting spatial variation versus distance, and a parametric curve
can then be fitted to model the spatial data [38]. Commonly used parametric models
include the spherical, exponential, and linear models, etc.

γE (d) =
1

2N (d)

N (d)∑

i=1

(zxi − zxi+d)
2 , (15.4)

In defining γE (d), zxi and zxi+d are the restoration values at the evaluation points
xi and xi +d, respectively. N (d) is the cardinality of the set of pairs of points within
a spatial lag or relative distance of d, and the lag interval d is defined as the Euclidian
distance between points xi and xi + d, where the maximum lag is often set as the
mean minimum distance between a given pair in the data set. Using a parametrically
fitted variogram model (exponential, in the Chilean data case), the restoration values
are then interpolated in a mesh grid by ordinary point kriging, which uses a weighted
average of the other neighboring evaluation nodes with weight coefficients λi that
are estimated by minimizing the mean-square error, or kriging variance, and satisfy
the following constraints:

ẑ p =
N∑

i=1

(λi z pi ) (15.5)

N∑

i=1

(λi ) = 1 (15.6)

E(ẑ p − z p) = 0 (15.7)

E((ẑ p − z p)
2) = 2

N∑

i=1

λiγ(xi , x p) −
N∑

i=1

N∑

j=1

λiλ jγ(xi , x j ) (15.8)
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where E(!) is the minimized estimation, N is the number of neighboring evaluation
points, z pi , in the context of infrastructure systems after disruption, is the restoration
level at a particular point of interest xi , while ẑ p and z p are the estimated interpolated
value and true restoration value at the interpolation point of interest p respectively.
The function γ(xi , x p) provides the variogram value between the evaluation point at
xi and the particular point x p, and γ(xi , x j ) is the variogram value associated with
neighboring evaluation points xi and x j . Spatial interdependence between the two
systems is calculated using cross-correlations among the stationary z pi restoration
values at the location of evaluation points xi of a particular network (known as the
reference network) and those of a second network (known as the adjuct network)
while using a neighborhood set of ẑ p values around the evaluation points xi of one
system and the corresponding set of zphat values that are collocated in the other
system to establish local interdependence strengths as a function of geographical
location. Such interdependence strengths are finally used to create a kriging-based
surface of local interdependence across systems, which is heterogeneous in contrast
to typically assumed constant values of coupling strengths for all interdependence
links.

15.2.2.2 Spatial Applications to Chilean Data

An application of spatial kriging techniques is performed on the post-disaster Chilean
data in Wu et al. [40]. Cross-correlation of geographically distributed service restora-
tion times for water and power networks are used first as a proxy for spatial interde-
pendency quantification and mapping of local coupling heterogeneity into correlation
surfaces. Then, correlation values across systems are synthesized as a function of
relative angle and radial distance between restoration surfaces away from one of
the system’s set of evaluation nodes. Specifically, by shifting the adjunct system’s
kriging restoration surface from the surface of the reference system and calculat-
ing the correlation values, the spatial interdependency of the two systems can be
found by the different cross-correlation and autocorrelation values, the latter being
that in which the same network serves as both the reference and adjunct network.
Such synthesized correlations are quantified using Pearson’s coefficient (a measure
of linear correlation) as well as Kendall’s tau coefficient (rank correlation). The re-
sulting data is plotted on polar coordinates to represent spatial interdependencies
from a suite of relative angles and distances across restoration surfaces, forming
global correlation plots. These plots demonstrate certain patterns in the analysis,
specifically in the cross-correlation between power as the reference system and wa-
ter as the adjunct system, where a southwest to northeast spatial directionality of the
interdependence is evident, revealing spatial coincidence in the average restoration
time trends along the noted geographical corridor, partially due to the topology of
the systems and the patterns of damage. (Additional details are provided in Sect. 15.4
regarding directionality trends in spatial interdependencies.) Overall correlation
plots are then created by averaging the global correlations across all angles, re-
sulting in initial cross-correlation values as a function of relative distance between
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restoration surfaces of 0.483 and 0.284 for Pearson’s coefficient and Kendall’s tau
coefficient, respectively. The average correlation plots also reveal certain character-
istics of interdependence, such as the average distance away from evaluation nodes
until correlation values become negligible or reach zero, which can be interpreted as
a measure for spatial coupling strength decay or interdependence length [40]. These
interdependence lengths can readily inform utility operators about optimal system
decoupling schemes as well as requirements for temporary back-up systems, given
that the reach of interdependence is spatially confined to manageable distances.

15.2.3 Spatial-Temporal Methods

Both the time-series model and the spatial methods offer unique insights into the
true nature of interdependent infrastructure networks, but emerging strategies in
estimation and modeling of networks of networks attempt to encompass more realis-
tic constraints, as when having both correlations in a single spatial-temporal model.
By assessing the appropriateness of a series of assumptions regarding the covariance
structure across systems in time and space, including full symmetry, separability and
stationarity, a number of methodologies have been proposed that have wide ranging
practical applications [19].

In order to combine spatial covariances (or variograms) with temporal ones,
a variety of models are available, some of which are suitable for novel applica-
tions in infrastructure interdependency assessment problems. In order to be a valid
covariance function, the combined variogram must satisfy the condition of positive
definiteness, where a matrix remains nonnegative definite for all combinations of
space-time coordinates [11, 19]. The Product Model separates temporal and spatial
considerations and disregards dependence between space and time covariance, but
offers a simple and efficient way to represent a spatial-temporal covariance. The
Linear Model simply separates and sums up the two covariances, resulting in only a
positive semi-definite function [11]. The simplicity of the Product Model and the Lin-
ear Model are often inapplicable to certain real world examples due to their inherent
assumptions on separability and positive definiteness. As a result, Cressie and Huang
derived a new approach to tackle nonseparable stationary covariance functions. By
utilizing Bochner’s Theorem and assuming integrability, positive definiteness can be
proved using the Fourier transform on the spectral density, thereby creating a class
of stationary spatial-temporal covariance functions [9]. However, the complexity of
the Cressie and Huang model motivated the development of a more flexible and gen-
eral Product-Sum Model which combines the simplicity of the product and linear
models with the applicability that satisfies the conditions of a viable covariance func-
tion. The Product-Sum model enables, for the first time, the practical quantification of
interdependencies in time and space and provides a reference for models of networks
of networks to use in terms of their necessary input coupling information.
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15.2.3.1 The Product-Sum Model

De Cesare et al. [11] promotes a Product-Sum model that, as its name suggests, serves
as a simple hybrid between the Linear and Product models in the past. De Iaco [12]
further refines a generalized version of the Product-Sum model and explores in depth
how to fit data to the spatial-temporal variogram. The practical model introduced to
represent spatial-temporal covariances is as follows:

Covst (hs, ht ) = k1Covs(hs)Covt (ht )+ k2Covs(hs)+ k3Covt (ht ), (15.9)

where Covs and Covt represent the separate spatial and temporal covariance models
respectively, h is the generic lag, which is qualified by the subindices s and t for
spatial and temporal, and k1, k2, and k3 are constants determined by the individual
variogram sills, defined as the plateauing γ limit of the variogram approximating the
population variance [38]. The equivalent combined function using variograms is as
follows:

γs,t (hs, ht ) = (k2 + k1Ct (0))γs(hs)+ (k3 + k1Cs(0))γt (ht ) − k1γs(hs)γt (ht ),

(15.10)
where γs,t represents the spatial-temporal variogram and γs and γt are the respective
spatial and temporal variogram models. In addition, Cs , Ct , and Cst are the sills,
estimated from the parametric curve corresponding to each bounded variogram. Each
variogram is found by the following general equation, where γs(hs) = γs,t (hs, ht =
0) and γs(ht ) = γs,t (hs = 0, ht ):

γs,t (hs, ht ) =
V ar(Z(s + hs, t + ht ), Z(s, t))

2
, (15.11)

where Z is a second order stationary spatial-temporal random field of the restoration
levels and s, t are space and time values in the respective domains. By using the
sills to calculate the three coefficients, positive definiteness can be guaranteed when
k1 > 0, k2 ≥ 0 and k3 ≥ 0, and the following expressions are used:

k1 = [Cs(0)+ Ct (0) − Cst (0, 0)]/Cs(0)Ct (0) (15.12)

k2 = [Cst (0, 0) − Ct (0)]/Cs(0) (15.13)

k3 = [Cst (0, 0) − Cs(0)]/Ct (0) . (15.14)

Spatial-temporal methods already have widespread applications across environ-
mental monitoring and modeling, ranging from air pollution to wind speed monitor-
ing, but the concepts can be adopted and customized to infrastructure network models
as well. This chapter demonstrates next the relevance of the Product-Sum method
to representations of both temporal and spatial data derived from utility restoration
processes after the 2010 MW 8.8 Chile Earthquake.
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15.3 Application of the Spatial-Temporal Methodology
to the 2010 Chilean Earthquake

The introduced spatial-temporal methodology is applied onto representations of life-
line systems restoration data throughout time and space derived from field-collected
nodal values after the 2010 Chilean Earthquake [37]. A total of 93 evaluation nodes
covering the service area of two infrastructure networks are used in the study, shown
on the map in Fig. 15.1. The level of restoration at each of the evaluation nodes is
represented as the percent of fully restored services provided by each of the power
and water lifeline networks, which reflects both the level of damage inflicted on the
node as well as the prioritization of the post-event restoration procedure. The tem-
poral data at each node is assumed to follow the shape of restoration curves found
in the local power and water delivery networks in the Talcahuano and Concepción
region [16].

The joint representations of temporal-spatial data allows for the creation of a
spatial-temporal variogram (Fig. 15.2) using the Product-Sum Model, applied to
infrastructure lifeline system restoration in space and time. A given point on the sur-
face of the spatial-temporal variogram can be interpreted as the restoration variance
at a given spatial and temporal lag combination. Using a set of spatially-dependent,
temporally-dependent, and spatial-temporal variograms on the data, the sills corre-
sponding to each variogram are estimated using an exponential model variogram
fit. For example, the spatial-temporal sill Cs,t associated with the variogram shown
in Fig. 15.2 is 0.1484. These values are used in the determination of the constants
k1, k2, and k3 according to Eqs. 15.12–15.14 to guarantee positive definiteness. The
resulting spatial-temporal variogram offers a joint variability for every combination
of lag in space and time.

Kriging is then applied using the spatial-temporal variogram by cutting the vari-
ogram surface such that spatial correlation or local interdependency can be observed
in slices for each time lag. In order to calculate such local interdependencies, a local
mesh of 101 points is constructed by kriging around each node for each system.
Then, a correlation analysis can be performed between the water and power network
local meshes (without relative displacements) for a given time, yielding a measure of
local coupling strength in a particular service area. The Pearson’s correlation values
calculated for each node of the restoration surfaces are then kriged once again to
depict the local distribution of correlation in the region per unit of time (Fig. 15.3).
By translating the kriging restoration surfaces by a certain radial distance and angle
(e.g., a radial mesh of 20 angle increments and 500 m radial increments up to 2,500 m
away from evaluation nodes per restoration surface), the correlation of the restoration
levels between the reference and adjunct networks can also be analyzed. Autocorre-
lation represents the dependency within the same network, while cross-correlation
refers to the interdependency between different networks.

The shifting of one network surface from another reference network surface is
performed not only for distinct lags in space but also time. The translations in time
and space of the adjunct network surface will yield global correlation plots, which
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Fig. 15.1 Map of the evaluation nodes from the Talcahuano and Concepción region during the
2010 Chilean Earthquake along with streamlined transmission level power and water networks
can also be averaged to find overall interdependencies and their lengths of influence

Fig. 15.2 The spatial-temporal variogram surface of the water system as a function of temporal
and spatial lag normalized by the maximum value in each data set
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Fig. 15.3 Evolution of local interdependencies across space and time in the Talcahuano-
Concepción region of Chile

as a function of time, as discussed in the next section. Note for now that Fig. 15.3
is the first depiction of interdependence evolution in time as a function of spatial
location. The local correlation map highlights the richness and heterogeneity of the
interdependencies, which differ from assumptions in early models of networks of
networks that use homogeneous and static coupling strengths.

15.4 Analysis and Discussion of Synthesized Interdependencies

From the temporal evolution of the local correlations or interdependencies in the
region (Fig. 15.3), it is possible to view a generalized summary of the spatial-temporal
coupling between the power and water networks. What appears to be highly localized
negatively or positively correlated regions in the map corresponds to local circum-
stances, demonstrating the spread of correlations across space, dependent upon the
physical location of the networks, their state of damage, and adopted restoration
strategies. The correlations of these areas are still evident through time, but the
heterogeneity decreases as the time lag increases, verifying the intuitive result that
correlation due to location diminishes as restoration levels of nodes reach higher
and higher serviceability, thus reducing variability across them. After about a week
after the earthquake event, there is a notable decrease in negative local correlations
between the power and water systems, but as the majority nodes begin to reach full
restoration, interdependencies are still visible although at reduced strengths.

Global correlation plots (Fig. 15.4) are created by displacing entire restora-
tion surfaces relative to each other in space, so as to show spatial correlations in
polar coordinates across time steps as a function radial distance and angle from
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Fig. 15.4 Global correlation plots (with North taken in the upwards direction) synthesizing restora-
tion surfaces between and across systems as a function of time as well as a function of radial distance
and angle shown in four stacks depicting: (a) the power–power auto-correlation, (b) water-power
cross-correlation (power as the reference network), (c) power-water cross-correlation (water as the
reference network), and (d) the water–water auto-correlation

the shifted surfaces. The resulting polar-coordinate plots measure the global inter-
dependence across translated maps and reveal the distance and direction in which
interdependencies matter. The global correlation plots are presented in four stacks
of adjunct-reference network pairs, depicting from left to right: the power–power
auto-correlation, water-power cross-correlation (power as the reference network),
power-water cross-correlation (water as the reference network), and the water–water
auto-correlation. The auto-correlation plots start from a synthesized correlation of
1.0 at the center, since it intuitively represents the same network data. For all the plots,
there are signs of directionality at earlier time steps, hinting at general correlations
northeast or southwest of evaluation node sets. This may be due to the inherent shape
of the analyzed region and associated networks, as well as the distribution of damage
and the location of their main components [41]. However, traces of directionality are
not evident as time lags increase. The two auto-correlations exhibit unique temporal
trends, where the power auto-correlation moves from a central cluster of positive
correlation to a relatively uncorrelated neighborhood, while the water network has a
much larger neighborhood of high positive correlation that maintains directionality
and a certain level of spatial correlation in all directions within a radial proxim-
ity of less than 500 m as time progresses. The auto-correlation of the water system
(Fig. 15.4, Part d) shows the strongest directionality in recovery as the water system
has a concentration of pumping stations and tanks, along with the main water treat-
ment plant in the southwest to northeast direction. Cross-correlation plots are clearly
anisotropic, particularly for large lag times, but reflect similar initial correlations
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Fig. 15.5 Global interdependence plots of overall Pearson’s correlation averaged over all angles as
a function of radial distance at a time lag of 1 and 7 days. For each time lag, the plots are subdivided
into four subplots depicting in a clockwise direction starting from the top left, the power–power auto-
correlation, the water-power cross-correlation (power as the reference network), the water–water
auto-correlation, and the power-water cross-correlation (water as the reference network)

with a diagonal trend of weak correlations northeast and southwest of the evaluation
nodes, mainly contributed by the water system characteristics and the availability of
electricity. At the same time, the trend is still stronger when the power system is taken
as the reference system, highlighting a greater operational and logistical influence of
the power system on the water system than vice versa. Overall, the global correlation
plots provide an illustrative synthesis of the spatial interdependencies over time and
reveal an inherent directionality in the infrastructure restoration trends which cap-
italize on alternative paths and follow directions perpendicular to the main axis of
networks.

The overall correlation plots or average global interdependence plots (Fig. 15.5)
further consolidate the data by averaging across all angles in Fig. 15.4 to obtain the
average correlation for a given distance relative to the two displaced networks. The
plots are compared at different points in time and include error bars indicating one
standard deviation from the mean. For each time lag, the plots are subdivided into
four interdependence plots depicting in a clockwise direction starting from the top
left, the power–power auto-correlation, the water-power cross-correlation (power as
the reference network), the water–water auto-correlation, and the power-water cross-
correlation (water as the reference network). The off diagonal plots reveal the change
in coupling strength between the power and water networks in the region. While ini-
tial cross correlations begin at under 0.5, it is evident that correlations exist up to
approximately 2,000 m before reducing to almost zero at low time lags. Also, com-
parisons of the relationship between average correlation and distance from a time lag
of 1 day to 7 days show a faster decay in correlation behavior with time. Plotting aver-
age global correlations versus distance over time can lead to the creation of surfaces
that reflect the overall evolution of average coupling strengths between networks.
While the average global interdependence plots allow for a succinct representation
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of overall spatial trends of interdependencies, average plots may obscure trends
that are evident in analyses of global or local interdependency, hence the need to
jointly explore local, global and average global information for practical network
of networks modeling and operation recommendations. Clearly, the geographically
focused reach of interdependence effects offers insights into siting and timing of
back-up resources to handle the propagation of interdependent cascades, as well as
the sizing or capacity requirements of equipment and crews.

The spatial-temporal methodology presented in this chapter is shown to be ap-
plicable within the context of infrastructure network interdependency, and further-
more, takes into consideration factors traditionally unaccounted for such as time and
space. The demonstrated approach highlights the multifaceted and evolving nature of
infrastructure network interdependencies and allows for the depiction of heterogene-
ity of interdependence in space and its evolution in time. Insights from the analyses
include the ability to reveal interdependence directionality as well as to identify and
measure the length in which interdependence remains influential. The application of
graphical and mathematical tools in the quantification of interdependence contributes
to the better understanding of network coupling, and thus enables more comprehen-
sive and accurate network of networks models to inform future design and mitigation
actions. Knowledge of coupling strengths may lead to possibilities in the exploita-
tion of interdependencies for efficient operations or the decoupling or reduction of
network dependence during post-disaster or remediation periods.

At the same time, spatial-temporal analyses remain highly dependent on data
availability as well as the reliable fitting of the space and time variograms. Limita-
tions to the model include the assumptions inherent in the product-sum estimation
model and the accuracy of the sill-dependent coefficients of the covariance function.
While the global and average global correlation plots succinctly summarize general
network dependency behaviors, they may over or underemphasize certain correlation
aspects evident in local analysis, and thus motivate the need to study local interde-
pendence plots as well. In the end, the spatial-temporal methodology can be used
in conjunction with field observations and anecdotal data to support local to global
trend interpretations. By comprehensively quantifying and understanding infrastruc-
ture coupling characteristics as well as informing theoretical and simulation-based
multi-network models about interdependence, it is possible to ultimately capture
inherent geographical and temporal interdependencies between critical infrastructure
networks and exploit such properties to enhance operation, control, and restoration
strategies.

15.5 Conclusions

Spatial-temporal analyses of network interdependencies are uncommon to com-
plex infrastructure systems, thus the approach demonstrated in this chapter takes an
important step towards understanding and quantifying the holistic relationships be-
tween networks of networks. Overall, this chapter serves to outline methodologies
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used in analyzing interdependent networks and quantifying their coupling. Further-
more, a novel spatial-temporal approach is recommended to apply on infrastructure
systems so as to reveal their coupling structure and inform models as well as practical
design or mitigation recommendations. Utilizing previous efforts and developments
in network theory and space-time methods, the approach presented in this chapter
applies the Product-Sum method to quantify variability in interdependence in both
time and space realms. In addition, analyzing through slices in time and space allows
for the depiction of interdependence trends that exist in multiple dimensions so as
to calibrate emerging models of networks of networks and to define future strategies
for the control of interdependencies, including siting and staging of resources as well
as strategies for interface decoupling.

A methodological application was provided with representations of power and
water system restoration curves derived from the 2010 moment magnitude (MW) 8.8
Chilean earthquake in the Talcahuano-Concepción region, resulting in the creation of
a spatial-temporal variogram surface that served as the foundation for incorporating
both time and space lag dependencies. Graphical depictions of interdependencies
represented by Pearson’s correlation coefficients revealed the heterogeneous nature
of local infrastructure interdependencies and uncovered an inherent southwest to
northeast directionality in the global plot of interdependencies when shifting net-
work restoration maps. Finally, analyses from average global interdependency plots
(overall correlations) demonstrated the changing radial extent of restoration correla-
tion influence with time as a measure of coupling between networked systems which
in some cases changed from 2.0 km to less than 0.5 km. These findings, enriched
with global correlation plots and local coupling insights, imply that restoration is
interdependent in the perpendicular direction of the studied systems, which highlights
the need to ensure operation of the systems in their main direction through back-up
systems of pertinent capacities or uncouplings of specific geographical extents related
to the radial distances to which interdependencies matter.

Future research will include the creation of surface or volumetric representations
of local correlation values in time and space to better track their evolution, and
further build upon the understanding of interdependencies given spatial-temporal
lags for different components and systems. At the same time, other spatial-temporal
methodologies such as the graph wavelet-based approach will be studied for further
research. This chapter provides a basic methodology and structure for quantify-
ing spatial-temporal coupling across infrastructure networks and enables validation,
calibration, and expansion of emerging interdependent infrastructure models. By
demonstrating the applicability of spatial-temporal modeling among infrastructure
networks, research and design in future complex network interdependence can yield
more accurate and realistic results for protecting utility networks and their users,
particularly after episodes of abnormal operation.
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