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Foreword

This book is one outcome of the new field of econophysics, and explains a
wide range of recent findings relating to the dynamics of companies. While
economics and physics have a long history of their own, and their methods
and purposes are obvious, econophysics, which has only a twenty year track
record, is still unfamiliar to many. Indeed, an emerging interdisciplinary ap-
proach in which the economy is studied with the tools of physics may provoke
doubts as to whether the methods of a hard science can tell us anything about
phenomena in which human beings are essential players. However, economics
has in fact mimicked physics since the nineteenth century. This is particularly
true of those who developed modern economics, the “neoclassical” economists.
The old masters such as Alfred Marshall and Léon Walras all drew inspira-
tion from Newtonian mechanics. The fundamental concept of “equilibrium”,
known to all students of the subject, is, of course, borrowed from physical
science.

Thus, a moment’s reflection shows us that the relation between physics and
economics is long-standing and far closer than is commonly realised. Never-
theless, the recent development of econophysics represents a significant devel-
opment. While traditional economics learned from classical mechanics, which
analyzes behaviours such as that of a ball thrown in the air or the motion of
a weight at the end of spring, econophysics looks to the statistical methods
of the modern physicist.

Obviously, economic phenomena are comprised of the actions of very large
numbers of people and companies. In Japan alone there are over a hundred
million people and several million companies, or, in the language of physics,
the human population is of order 108 and that of companies 106. Although
these are small numbers in comparison with the everyday quantities of the
natural sciences, the Avogadro constant, ∼ 6.02 × 1023 for example, it is
already impossible to track the movements of all people and companies with
any high degree of accuracy. Fortunately for economics, this is not a problem,
for while, as individuals, we may be interested in a particular person or a
particular firm, economics as a discipline deals with macro phenomena, such
as the economy of Japan, or that of Europe as a whole.

In its approach to these macro problems, traditional economics attempts
first to analyse the microscopic and then to understand the macroeconomy
by a process of scaling up. In other words, standard economics regards the
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macroeconomy as a homothetic enlargement of the representative micro unit.
Faced with similar problems in the natural world, statistical physics takes
a very different route. Recognising that the micro agents are too numerous
to be followed individually, they simply abandon the attempt to capture mi-
cro behavior in detail, and employ statistical methods instead. This is the
fundamental concept advanced by Maxwell, Boltzmann and Gibbs.

Notwithstanding this precedent, some may still wonder whether it can in
principle be meaningful to conduct statistical analysis on social phenomena
arising from the actions of individuals, each with an economic motive and
a will. Are sophisticated human beings with brains, on the one hand, and
inorganic molecules, on the other, really on an equal footing?

More than seventy years ago, when the majority of researchers were op-
posed to bringing physics into biology, Dr. Torahiko Terada, the major force
behind the attempt in Japan, remarked:

When making a statistical analysis of a large number of human

individuals we may properly regard it as a mere conglomeration

of inorganic material, and altogether neglect individual free will.

Indeed, it is now clear that pure physical problems, such as the

density of particles in a colloidal matter, may with propriety be

compared to statistics of a purely physical nature, such as the

“density” or “average speed” of persons walking along street. . . .

It is sheer folly to dismiss such insights as heresy simply because

they are incompatible with the dogma that “living creatures can-

not be understood by Physics”. Such absurdities remind us that

no ignorant amateur poses so serious a threat to progress as a

scientist unaware of the nature and goal of their discipline.

Torahiko Terada, “Groups of animals as inorganic groups”,

Journal of Science, Iwanami Shoten (1933)

The application of physics to biology is now an established discipline,
biophysics, and the controversies of the past are quite forgotten. We can con-
fidently expect, not least because of trail-blazing studies such as the current
volume, that econophysics will soon seem an equally natural development.

April 2009
Hiroshi Yoshikawa

Professor of Economics, University of Tokyo, Japan



Preface

Between their first explorations in econophysics and the writing of this book
the authors have travelled a long and sometimes winding road. One of our ear-
liest results was the landmark study of personal income distributions in 2000
(Aoyama et al., 2000), which convinced us that thorough empirical study, or
”phenomenology” as it is called in physics, was essential for an understanding
of society and economics.

Since then, we have carried out research with an emphasis on the real
economy, that is, people (workers), corporations (companies), banks, indus-
trial sectors, and countries. We have also studied the various markets that
play a vital role in the activity and prosperity of actual businesses. As a result
we began to think of writing a book focused on the real economy and based
on the analysis of very large quantities of empirical data. Such work has been
largely ignored by economists because that discipline does not, unfortunately,
value the empirical search for regularities. Yet, it is this observation-based
approach that lies at the root of the success so evident in physics. Kepler’s
laws of planetary movement, for example, were extracted from the vast quan-
tity of astronomical data collected by Tycho Brahe and others. There is every
reason to expect laborious but ingenious analysis of economic data to lead to
progress, perhaps not as dramatic as that of Kepler, but progress nonetheless.

We hope that this book will serve as a source-book for people like ourselves
who want to move the field of econophysics over to the study of practical
economics and companies, rather than the current focus on the application of
statistical physics to financial risk.

We shall let our three Tuscans discuss the whole subject in Prologue and
Epilogue, after our sincere acknowledgements: Needless to say, many people
assisted in research behind this book. High-accuracy, high-frequency data are
a must for detailed study of various economic agents, and we would like to
thank the Credit Risk Database (CRD) association and its chairman Shigeru
Hikuma for general help and advice on the nature of their database, the Orga-
nization for Small and Medium Enterprises and Regional Innovation (SMRJ)
for help in relation to bankruptcy data, and Tokyo Shoko Research, Ltd. for
assistance relating to chain-bankruptcy.

Many other collaborators have contributed to this book in direct and in-
direct ways at various stages of our research. Our thanks to all, particularly
to the following: Masanao Aoki (Los Angeles), Mauro Gallegati (Ancona),
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Corrado Di Guilmi (Ancona), Yasuyuki Kuratsu (Tokyo), Hiroyasu Inoue
(Osaka), Taisei Kaizoji (Tokyo), Makoto Nirei (Tokyo), Hideaki Takayasu
(Tokyo), Misako Takayasu (Tokyo), Schumpeter Tamada (Hyogo), and Hi-
roshi Yoshikawa (Tokyo).

We are also grateful to the Yukawa Institute for Theoretical Physics at
Kyoto University for allowing us to use the computing facility for part of our
numerical computation.

Thanks also to Nao-san for the illustrations, and to John Constable who
has not only read the text in its entirety and brushed up and polished the
English of our text, but also made many helpful comments.

Finally, we wish to thank Hitachi, Ltd. and Hitachi Research Institute,
which have provided us with research funding for this project. The authors of
a work on economics are perhaps more aware than most of just how important
such support can be to labourers in the intellectual vineyard.
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Prologue

I have for many years been a partisan of the Copernican view because it reveals to
me the causes of many natural phenomena that are entirely incomprehensible in

the light of the generally accepted hypothesis.

— Galileo Galilei in a letter to Johannes Kepler

Salv.: Greetings, Sagredo, Simplicio, my good friends. I can hardly believe
that it was only yesterday that we resolved to meet and talk about this
book. How the time drags when I am not in pleasant company such as
yours.

Simp.: Greetings to you, most courteous Salviati, and well met, well met I
say. My mind is already racing in anticipation. I have not forgotten,
and could not forget, our wonderful discussions with Professor Galileo in
Tuscany, and I am convinced that on this occasion too you have found
something worth the labour of a Dialogue (Galilei, 1632).

Sagr.: For my part I am also delighted to see you both again. In the company
of two such philosophers as yourselves I never fail to find inspiration and
illumination. Now, would you care to tell me the nature of the subject,
Salviati?

Salv.: Certainly, certainly, shall I come to the point: I feel that a change is
happening, just as it was when we met with Professor Galileo.

Simp.: Change! Ha!

Sagr.: Now, now, Simplicio... Let’s hear this out. The book is about a
change, is it? But I don’t understand even the title. What is this
Econophysics?

Salv.: You have gone right to the heart of the matter; econophysics is the
name of an academic discipline, a name coined in 1995 by that most
learned Professor of Boston, Eugene Stanley. He means the word to
describe the study of economy or economics as seen through the eyes or
analysed with the tools of exact science.

Sagr.: Well that helps me a little, but I am still puzzled by the appearance
of the word ‘physics’ in this new name. Can you explain that, Salviati?
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xii

Salv.: Well that is simple indeed. The main driving force behind this new
discipline is the natural science of physics. For, as you will shortly
see, statistical physics has many concepts and principles that can be
readily applied to phenomena in economics. That is to say, just as
economic systems are made of many inhomogeneous agents, like people,
companies, and financial institutions, so the natural world studied so
successfully by physicists consists of atoms and molecules in gases and
condensed matter. The similarity is obvious, is it not?

Simp.: Well so you say, but I need hardly remind you that there is already
a long established and well respected discipline studying these matters,
namely Economics. You should show a little more respect for that au-
thority, for has not Economics constructed an intellectual context in
which economic observations can be placed; namely, the optimization of
utility by individual economic agents, the specification of the concept
of equilibrium, and the detailed delineation of the implications of the
equilibrium model? Who needs this so-called Econophysics?

Salv.: Alas, Simplicio, I fear you have erred in two ways.

Sagr.: Only two? Simplicio’s errors are legion and notorious, for example....

Salv.: Piano, piano, Sagredo. Firstly, Simplicio, my dear fellow, undue or
unconsidered respect for authority is a prison with invisible walls. Sec-
ondly, the context to which you refer is, as it turns out, not entirely suit-
able for the analysis of economic phenomena. Let me put it in this way,
the grounding principle of Econophysics, and this is much more impor-
tant than the mere import of certain concepts from physical science, is
the scientific approach itself, where hypotheses and possible theories are
discussed freely in an open manner, tested against determinable facts,
and used to make predictions, though not necessarily in that order. And
science is really about changing ourselves, our mind, our dearest views,
even when we are comfortable and don’t wish to be changed, or find
alternative views almost impossible to hold in our minds. For example,
the quantum theories, or relativistic theories, all of which are beyond
our everyday realm, is that not so Simplicio!

Simp.: I am sure you mean no offence, but there is no need to raise your
voice, Sagredo, I am listening carefully, though I am not sure yet that I
understand your point.

Salv.: Forgive me my dear Simplicio, the subject is of very great importance
to me. For you see, the most remarkable thing is that if physicists and
economists clear their minds of constraints they can work together in
this discipline, and very fruitfully.

Sagr.: So, you say that this book is about the scientific study of companies,
companies, firms?



xiii

Salv.: Yes, yes, the study of the real economy, as it is made up of people,
companies, financial institutions, and all this through the lense of exact
science. An acquaintance of mine, some sort of poet really, but we need
not hold that against him, once said that:

‘Science, .... is the north-west passage
between cynicism and credulity.’

Perhaps it is a little difficult to understand (Poets!), but I think on
reflection the matter is clear enough. The challenge before us is to
find a way between, one the one hand, a credulous belief in the views
of the establishment, whether that is the Church or in this case the
academy, on the one hand, and, on the other, a bitter nihilism that tells
us to abandon our endeavours because knowledge is impossible and the
establishment does no more than reflect the structures of political power
prevailing in its time. However, and wonderfully, the methods of science
can and do break down the endless circular movement of constrained
institutional thought, and, in spite of all the difficulties, these methods
also build up a body of facts and understanding on which two or more
minds can agree.

Sagr.: Ah yes, I think I can accept this; the method yields understanding
without the need to invoke any divine or ultimate foundations to knowl-
edge.

Salv.: Precisely, but as yet in Economics there is a lack of progress academi-
cally..

Simp.: Well! I’m not sure everyone would agree with that.

Salv.: Perhaps not, but you have to admit that Economics is not a powerfully
predictive or technological science yet.

Sagr.: That would be difficult to dispute, sadly.

Salv.: But we need not despair, this book argues that there is a way through.

Sagr.: That is most encouraging. I’ll make a start straight away; I hope it
isn’t too difficult.

Salv.: Certainly not. The authors told me that their aim is to speak clearly to
a very wide range of readers, not just students of physics or economics,
but of other fields too. Indeed they hope for many readers outside the
world of universities, people in financial institutions and companies and
businesses of all kinds and sizes. Everybody in fact who is interested in
or practises economics, and that is, I hazard the guess, almost every-
body.

Sagr.: Is there much mathematics? It seems unavoidable.



xiv

Salv.: Well you are right that there must be some, but the authors have
designed their argument to make it accessible to those with only a basic
mathematical training. Complicated mathematical formula are placed
in a Mathematical side box, to one side of the main text, and those are
indicated with a sign: icons.

Sagr.: Ah, that will be useful for me; very considerate.

Simp.: I also notice that there are ‘Coffee Break’ columns marked with
and seeming to tempting digressions from the main subject of the book.
That looked very interesting, though I still have my doubts about the
main thesis of this work.

Salv.: Well that is forgivable since you have yet to read it, and when you do I
have no doubt that your mind will throw up many questions as you get
to grips with the work. You may find that dedicated support web site for
the book answers some of these “http://www.econophysics.jp/books/ec”.
There is a great deal of additional information there, and of course you
can contact the authors too.

Sagr.: Splendid, then let us meet again when we have read the book, and
formed our opinions of it. Salviati, Simplicio.

Salv.: But first, shall we remind ourselves of the ubiquity of economic activ-
ities in our daily lives by dropping in to this pleasant looking inn and
purchasing some refreshment before you return to your studies.

Simp.: For once, Salviati, you have said something with which I can whole-
heartedly and completely agree. I do believe it is my turn, and fortu-
nately I have my wallet with me.



Chapter 1

New Insights

This book argues that the phenomena discussed within traditional economics
can be approached fruitfully, arguably more fruitfully, by employing the con-
cepts and methodologies of the natural sciences. In the present chapter we will
describe the background to this claim, and some aspects of the contemporary
situation in economics.

1.1 A Scientific Approach

What is the natural scientific approach, and why is it so powerful?
Descartes, of course, characterised science as the process of making our-

selves free from any prejudice and dogma when seeking truth. Certainly, our
capacity for thought is limited or distorted by the influence of religion, politics
or, indeed, the received wisdom of established academic disciplines.

However, the fundamental principles of natural science warn us against
these traps and require us to face natural phenomena without bias, and to
resist the temptation to prematurely truncate our inquiries. Instead, we must
ceaselessly root out error and improve our understanding. It was this attitude
that enabled Galileo and his predecessors to overturn the prevailing Ptolemaic
theory, and to provide a vastly improved model of the truth. Centuries of
cumulative endeavour later we have a set of scientific views stretching from
the imperceptible world of elementary particles right through to cosmology,
the science of the universe as a whole. In between there is chemistry, biology
and much else besides. The increasingly technological society we see around
us is an outcome of the application of science and scientific method, and of
ceaseless improvement in our conceptions of the world. But suppose that
mankind had rejected the scientific viewpoint and approach and adhered to
less disturbing ideas, to the comfortable traditional thought, for example, of
those such as Galileo’s contemporary Cremonini,1 who had refused to make

1Cesare Cremonini (1550-1631) was a conservative philosopher, and provided Galileo
with the model for Simplicio in his Dialogue Concerning the Two Chief World Systems.
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2 CHAPTER 1. NEW INSIGHTS

observations through a telescope. Man would still be living in comparative
intellectual darkness, with much of the potential of our minds, themselves the
products of a long evolutionary process, unexploited.

Of course there is more to the history of science and scientific thought than
Galileo, but his case is particularly instructive, and further comparison with
the present situation in economics is, we think, helpful. Part of Galileo’s revo-
lution came about through the use of novel instruments, telescopes, to record
previously unrecorded phenomena and aspects of phenomena. Similarly, stu-
dents of economic behaviour may now use enormously powerful computing
resources, and complex software embodying sophisticated mathematics, to
collect, observe and analyse large quantities of economic data. It must be em-
phasised at this point that natural science is more than mathematics, though
it is a wonderfully powerful language with which to describe nature. We do
not doubt that mathematics will continue to play a hugely important, per-
haps growing, role, but mathematics is just a means, not an end. To study
natural or economical phenomena in order to exercise our mathematics is to
fatally confuse task and tool. Just as it is in the other sciences, our objec-
tive in economics is to construct networks of true propositions that model the
phenomena under consideration and extend our understanding of the causal
processes at work.

Two goddesses are engraved on the re-
verse side of the Nobel prise medal for physics
and chemistry. Nature is represented by the
goddess “NATURA” emerging from clouds
and holding a cornucopia in her arms. The
veil covering her face is held and being with-
drawn by the goddess “SCIENTIA”, the spirit
or genius of Science. This allegorical de-
scription of the process of science rings true
for us. The sciences, the collective intel-
lectual activity of many human generations,
are gradually unveiling more and more of the
natural world, and of all these research pro-
grams physics is the most rigorous and in
some sense the most successful. Bearing in
mind the features of economic phenomena,
for example their fine-grained and intensely
complex character, with micro-causes yield-
ing macro effects, it is not
unreasonable to suppose that the methods of physics may give insight in this
field too.

However, individuals are the minimum agents in economic and social phe-
nomena, as consumers and workers, and since our behaviour is controlled by
our emotions and thoughts, there is a possibility that we can find no funda-
mental laws describing these processes. Some may believe that it is impossible
in principle to find any law at all. We may recall that Durkheim claimed that
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social facts can only be explained by other social facts. But science should
not, through fear of failure, arbitrarily limit its scope, and in fact, physicists
have already produced sufficiently valuable findings in economics to justify the
expectation of more, and of more general insights. As a consequence there
is an emerging and coherent inter-discipline, econophysics, which while not
constituting independent academic departments is embodied in prominent in-
ternational conferences and workshops.

1.1.1 Science of Complex Systems

Many readers may have heard of the “science of complex systems” and have
some intuitive understanding of its work (Waldrop, 1992; Holland, 1996; Gell-
Mann, 1995; Holland, 1998). But what does it really mean in practice, and
how does it relate to the subject of this book, the study of economic phe-
nomena. Unsurprisingly, the science of complex systems is difficult to explain
briefly, but one way to understand it is to take for a moment a different men-
tal perspective from that of the principal philosophy behind natural science,
namely the quest for fundamental laws and simpler and simpler explanations.

That is to say we can now see that many complex phenomena in nature
are chaotic. Although the behaviour of such a system is derived from a simple
law, it is unpredictable. A living thing, for example, should be regarded as
a complex object, not simply as an assemblage of parts constituting atoms.
That is, we cannot obtain a full picture of such a system by giving a detailed
analysis of the individual system constituents. This concept began to gain
ground amongst scientists in the 1980’s, and is responsible for the emergence
of the discipline now known as the science of complex systems.

This point of view is far from incompatible with that of traditional physics
and its search for fundamental laws. These are complementary methodologies,
a pair of wheels sharing the same axle, and both are necessary if we are to
gain understanding of as broad a swathe of the natural world as we can at
this time. This is as true for the investigation of economic phenomena as it
is for any other aspect of the world. By combining a microscopic study of
individuals and companies, one end of the axle, and a macroscopic study of
outcomes of complex interactions among individual agents on the other end,
we obtain a viable methodology with which we can make progress.

1.1.2 The Emergence of Econophysics

Only a decade has passed since the term “econophysics” was first used, and it
is developing rapidly (Mantegna and Stanley, 2000; Aoki, 2002; Takayasu, ed,
2002; Bouchaud and Potters, 2003; Takayasu, ed, 2004; Aoki and Yoshikawa,
2007; Takayasu, ed, 2006; Aoyama et al., 2009). The pleasures of being in-
volved in such a challenging and creative phase is extraordinary, but for those
meeting the field for the first time it can be disorientating. Some reassur-
ance can be gained from a glance back at the history of the relations between
economics and physics, which is in fact long and close.
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For example, no less a figure than Léon Walras established the general
equilibrium theory on the basis of the mechanical outlook of the world preva-
lent in 1860. The theory explains the balance between the demand and supply
of goods that determines price by comparing this balance with a mechanical
system consisting of a weight suspended from a spring. The forces of demand
and supply correspond, respectively, to the gravitational force working on the
weight and the restoring force induced on the spring, and the price so deter-
mined corresponds to the length of the spring in equilibrium. The agents in
this theory thus represent consumers and producers of goods.2

However, the effectiveness of such an analogical approach is limited by the
lack of both breadth and fine graining in its analytic texture. This matters
because actual economic phenomena include such macro matters as the busi-
ness cycle, and consequently we need to bear in mind the causal significance of
the heterogeneity of economic agents, on the one hand, and economic fluctua-
tions on the other. General equilibrium theory, which for instance describes a
number of consumers via a single representative agent, is not able to account
for dynamic effects in economic activity.

The discipline of statistical mechanics in physics offers understanding of
macroscopic states of matter by employing microscopic information relating
to atoms and molecules. It is a successful and structurally relevant model for
efforts within econophysics to bridge between micro- and macroeconomics.

1.2 Distributions and Fluctuations

According to statistical data gathered over the last ten years, the Japanese
economy is home to about 2.5 million companies.3 Additionally, Japan has
approximately 67 million workers4 and more than one thousand financial in-
stitutions including city banks, local banks, credit associations, and govern-
mental organisations. It is possible in principle to:

(a) list all of these economic agents,

(b) gain some grasp of the relationships among them,

(c) observe the financial and employment conditions of these companies,

2In economics, an agent is a constituent in a model used to solve an optimisation prob-
lem. Economic agents include, amongst others, households, companies, central banks, and
governments.

3The total number of companies is based on a census taken by the National Tax Admin-
istration Agency. Other censuses by the Ministry of Internal Affairs and Communications,
and the Ministry of Justice give different numbers. Accurate estimation of the number is
said to be very difficult. For example, it may be overestimated by an over-thorough count
which includes inactive companies or underestimated because the research is too cursory.

4This number is based on a census by the Ministry of Internal Affairs and Communica-
tions. The database covers workers over 15 years old and also includes persons without any
employment at all.
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(d) monitor money flow between companies and banks and between banks
themselves,

(e) store the entire data in real time.

This is a daunting task, but we have now well-developed computers equipped
with superb CPU’s, enormous amount of memory, and virtually unlimited
data storage space. But would it be worth the effort? Such a database would
certainly give us a perfect description of whole economy, but it would not
make sense for us as outside observers because even a careful reading of the
recorded data would tell us nothing about the rise and fall of companies, the
main theme in this book. Clearly, some other approach is needed.

Let us move towards an alternative by reminding ourselves how compa-
nies are active in the production process. Each company buys materials and
services from producers, adds value, perhaps by transforming them into other
materials, services or products, and sells them on to other consumers, which
can, of course, be other companies. In this process of earning money, the
company employs its capital and labour along with its own creative ideas.
We can see, therefore, that if we can trace the chain of money flows we will
have described a very important aspect of the behaviour of companies.

To this end we can conduct statistical manipulations on the microscopic
data relating to the 2.5 million Japanese companies and so extract coarse-
grained representations. For instance, we might focus on the number of com-
panies falling in the capital ranges of 1 million - 10 million yen, and more
than 10 million yen. This kind of macroscopic view of the data in terms of
statistical distributions will play a primary role in approaching the rise and
fall dynamics of companies.

This is an idea akin to the approach adopted by statistical mechanics, but
we are not claiming that the methods of this field are straightforwardly trans-
ferrable to economic phenomena. To gain understanding of any phenomenon,
whether it is natural or socio-economical, we must distinguish between the
topic’s essential and inessential elements. Otherwise, we shall simply list all
the data available, an act which yields little or no insight. Furthermore, we
may encounter phenomena which do not lend themselves to that style of anal-
ysis. In fact, the rise and fall dynamics of companies are not random, and,
as we will demonstrate from real data, certain dynamical patterns can be dis-
cerned, one of these being the distribution of corporate magnitudes. Indeed, it
was Pareto, to whom we shall refer repeatedly in this book, who first pointed
to this curious truth.

The first step in getting to grips with this matter is to recognise that the
distribution of companies’ sizes is not bell shaped, but significantly skewed.
The normal or Gaussian distribution, familiar from general statistics, is a
typical example of the bell-shaped distribution, and if company sizes were
distributed in the normal form, we would find a majority of companies of
average size with a few exceptional companies of very small or very large size.
But study of the data shows that, in fact, companies are classified into two
groups, a small number of giant companies and a large number of small and
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medium-size enterprises. If we remove the giants and examine the remaining
companies we find that they can classified into two groups, the very large
and the rest, a procedure that can be carried out repeatedly. This real-world
distribution is characterised by a self-similar hierarchical structure, an aspect
of the finding with which some readers may already be familiar. However a
nontrivial point is that the distribution obeys a specific form of distribution,
the power-law distribution, details of which are discussed in Chapter 2.

Of course, distributions are just collections of snapshots of living compa-
nies. If we are hoping to shed light on the dynamics behind these distributions,
we need to analyse any fluctuations, such as variations in capitalisation, which
reflect the driving forces of production activity. In a static model where ev-
erything is balanced without fluctuations, there would be no dynamism at all,
and it would be impossible to understand how a particular pattern is brought
about and under what conditions the pattern is destroyed. However, where
there are fluctuations, and they are invariably present in real-world cases, they
are very revealing, and in Chapter 3 we will show that such fluctuations have
a distinctive pattern giving rise to a specific distribution.

As has been remarked, analyses of real data shows that there are clearly-
visible patterns in the distributions and fluctuations relating to companies,
and that these are independent of variables such as country and time. The
existence of such universality in such phenomena is extremely surprising from
the perspective of economics, and encourages the use of the methodologies of
natural science in their analysis. But the difficulty of the problem that faces

Vilfredo Pareto

Vilfredo Pareto (1848–1923) was an Italian economist.
He was born in Paris to an Italian father and a French
mother, and raised in that city before returning to Italy
to study Mathematics, Physics, and Engineering at the
University of Turin. Subsequently he worked as a civil
engineer for the Italian state railway company and then
for an iron works, of which he was for ten years the di-
rector. During this time he became a fierce proponent of
free trade and minimal government regulation. This led
him to intense political activity, and then to a new career
in economic studies.

Under the influence of the neo-classical economist Leon Walras, he became
a professor in economics in the University of Lausanne at the age of 46. His
book Cours d’économie politique (1897) describes the power-law that he
both proposed and fiercely defended against criticism. Pareto’s power-law
is one of the central components of the Econophysical studies of companies
and other agents in the real economy, not to mention many other social and
natural systems where self-similarity is observed. (H.A.)
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us should not be underestimated, for as we try get to grips with the dynamics
of the growth and failure of corporations, we will find that we are seeking an
understanding of the interactions between agents, that is, of an economic net-
work formed by the enormously complicated pattern of relationships between
agents.

1.3 Are Networks Complex?

The power-law distribution, which is observed ubiquitously in nature, is a
critically important concept in this book, and has in recent years been used
to great effect in network science, a relatively new science dealing with a
wide variety of phenomena, ranging from the microscopic, for instance in
biology where it discusses gene networks, metabolic networks, and the inter-
action network amongst proteins, right through to the macroscopic, where
the internet provides us with typical examples (Watts, 1999, 2003; Barabási,
2003; Buchanan, 2003; Caldarelli, 2007). For instance, researchers are also
interested in communication networks formed by providers and companies,
and the linking structure of web pages, social networking services (SNS), the
trackback network of blogs, and so on. Other examples might include co-
author relations amongst researchers, and friendship networks among football
players.

At first glance it may be difficult to believe that the members of such an
apparently heterogeneous collection of networks have any common features,
but in fact there are several, a fact that points towards the existence of some
universal law behind the formation processes of networks. On the other
hand, it is also true that each network has its own characteristic features, and
one of the challenges confronted by network science is to explain how these
facts co-exist.

The application of network science theory to economic phenomena is de-
scribed and argued for in detail in Chapter 4, but for the time being few
readers will object to the claim, “Economy is a very large network consisting
of economic agents directly and indirectly linked to each other”. Interestingly,
although such a proposition seems unobjectionable, almost commonplace, the
idea of studying economic systems from a point of view of networks is a re-
cent one. For instance, the pioneering book written by economists with this
perspective was published only in 1984 (Piore and Sabel, 1984).

Here we pay our special attention to growth and failure of companies
interacting with each other over various kinds of business networks. Such in-
tercompany networks underlying the dynamics of companies include mutual
shareholding relationship, linkage between companies established by inter-
locking directorates, transaction relationships between sellers and buyers, and
collaborative innovation emerging by means of joint applications for patents.

The authors began their study of business networks around 2000, and at
that time even at international conferences there were very few presentations
on this topic. However, since that time the number of papers on this theme has



8 CHAPTER 1. NEW INSIGHTS

been increasing rapidly, and network science is now one of the most important
key terms at such gatherings. This dramatic change is a clear indication of
the growing understanding that recent developments in network science are
relevant to all fields, with economics being no exception.

Indeed, there are points of very close contact between economics and net-
work science, for example the environment surrounding companies is a rapidly
changing one, and accordingly the relationship between companies undergoes
a dynamic influence. Consequently, it is dangerously misleading to focus our
attention exclusively on a target company while neglecting its relationship to
other companies. Taking a broader view will reveal new aspects to what is
actually happening in the industrial economy, a topic that we will take up in
the next section.

1.4 Change of Environment Surrounding Com-
panies

In recent years industry has made a marked shift from the vertical integra-
tion structures to those characterised by the horizontal division of work.
As a result, managers and analysts have begun to recognise just how important
the formation of networks are for corporate competitiveness. Environmental
changes of this kind occurred in the electric machinery and automobile sectors,
two major industries in Japan, from the late 1980’s onwards.5

1.4.1 Outline of the Japanese Electric Machinery and
Automobile Industries

Before the middle of the 1980’s, conglomerates in the electric machinery sec-
tor, for example Hitachi, Toshiba, Mitsubishi Electric, established their po-
sitions in the Japanese economy. They produced the whole range of electric
machineries. For instance, their product range spans appliances, electronic
components, such as liquid crystal panels and DRAM chips, electric power
equipment, such as power generators and power grid systems, computers and
system integration, such as a bank’s mission-critical systems, to telecommuni-
cation equipments, such as routers. Their business strength came from their
wide product range, because the phase and period of business cycle for one
kind of product is different from those for another kind. They had grown
steadily for a long period without experiencing serious poor performance. It
is well known today that a major origin of high profitability in the 1980’s was
the export of DRAM chips to the United States of America (USA).

On the other hand, the automobile industry established a unique strength
in production systems through continuous effort for decades. The indus-
try consists of several automobile manufacturers, such as Toyota, Nissan

5Business environmental changes in global economy are explained from the viewpoint of
USA in Dertouzos et al. (1989) and Berger (2005).
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and Honda, and a very large number of auto-parts manufacturers, produc-
ing transmission, brakes, electronic engine controllers and other components.
Most of the auto-parts manufacturers are located near the factories of au-
tomobile manufacturers. They supply various auto-parts immediately to the
factory requesting parts. This supply method brought a very high efficiency to
their production system. Automobile manufacturers made various small- and
medium-sized cars in Japan, and exported them mainly to the world biggest
market, that is USA.

In the middle of the 1980’s Japan came under sharp criticism from USA
for its continuously growing trade surplus. A long sequence of repeated nego-
tiations between the two countries eventually created a new economic context
for Japanese industry, and after the Plaza Accord signed by the economically
developed nations, the relative value of the yen increased rapidly, with the
consequence that automobile manufacturing plants were relocated in USA At
the same time, various political schemes were devised to increase domestic
demand. After the termination of the Cold War, however, political interven-
tions of this kind were rejected, and were ultimately succeeded by an era of
deregulation. This sequence of policy changes had consequences for industrial
structure, and business networks are key to understanding these changes.

1.4.2 The Electric Machinery Industry

In the 1980’s Japanese companies survived intense competition from Ameri-
can competitors in the manufacturer of audio-video equipment such as video
recorders and televisions. This was also broadly true for companies making
components of personal computers, such as liquid crystal panels and DRAM
chips. As a result, USA government accused Japan of dumping DRAM chips,
and forced Japan to monitor their export prices by concluding the Japan-
USA Semiconductor Agreement (from 1985 through 1995). In the process
of increasing production of liquid crystal panels and DRAM chips, Japanese
companies built their plants in Korea and Taiwan, a decision motivated in part
by the desire to avoid trade conflict. To reduce possible risks in these projects
the Japanese companies asked local companies to invest in the business and
in return offered technical expertise. This period of activity overlapped to
some degree with that during which the Japan-USA Semiconductor Agree-
ment was effective. The point to emphasise here is that Japanese companies
changed their industrial structure from vertical integration to a horizontal
division of work by switching from self-manufactured components to those
out-sourced through collaboration with companies abroad. It should also
be remarked that the distribution of process units also entailed the leakage of
production technologies.

Although Japanese companies became front-runners in the 1990’s, this
golden age did not persist for long, as companies were exposed to aggres-
sive pursuit by Korean and Taiwanese companies, and a price drop due to
over production. Furthermore, the Japan-USA Semiconductor Agreement
seriously damaged Japanese companies and at present Japan has only one
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manufacture for DRAM.
Putting aside the subject of specific components for personal computers,

there are other more general problems regarding general environmental or
contextual change in the computer manufacturing sector. Until the 1980s
the computer world was largely a closed system, in which Japanese compa-
nies were able to retain a high-profit business in relation to IBM-compatible
mainframe computers for the mission-critical systems of banks and other large
financial institutions. This really was an age of vertical integration, but after
the end of the Cold War in 1990, a new period of open systems emerged,
one characterised by personal computers and networks. At that time Japanese
companies failed to gain control of the standardisation of the CPU for per-
sonal computers so that they had to follow an industry standard determined by
companies in the United States. The simple assembly of components and the
localisation of software packages were not sufficient to permit Japanese com-
panies to take advantage of cumulative technological development by making
further progress, and the superiority of Japanese companies has consequently
been gradually eroded.

The explosive development of the internet led to a coming of age, if not
quite maturity, in the late 1990’s, and, combined with deregulation policies,
has radically transformed the industrial structure of communication equip-
ment businesses from vertical integration to horizontal division of work. The
new wave has all-but destroyed the industrial cluster consisting of NEC, Fu-
jitsu and Hitachi, once called the “Denden family”, and the Nippon Telegraph
and Telephone Public Corporation, NTT, which exerted near complete con-
trol over this family, which it also supported. Even Japanese companies which
manufacture telecommunication equipment for open systems, such as routers,
are being out-competed. In contrast USA has a number of highly-profitable
fabless companies6 such as Cisco, which can respond promptly to market
needs by simply switching manufacturer. This remarkable outcome is a clear
manifestation of the strong causal relationship between network formation
and competitive powers.

In addition, the electric power equipments division is undergoing drastic
changes due to deregulation. The electric power industry is typical, hav-
ing been government controlled until the 1990’s. Companies making electric
power equipment were able to main high profit margins via their relations
with the power companies. However, deregulation of the energy market, which
started around 2000, has begun to change this intimate relationship.7 Some
equipment makers even have their own power plants to sell electricity to power
suppliers, and in future it is expected that the formation of business networks
amongst generators and suppliers will lead to reductions in the price of elec-

6A Fabless company is an equipment manufacturer that does not have its own manufac-
turing capability for electronic components, which is known as a fab.

7USA experience of the deregulation of electric power is instructive, since it allowed the
emergence of Enron, the notorious collapse of which due to a large quantities of improper
transactions is one of the defining corporate scandals of our time, and has focused discussions
of corporate governance.
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tricity.

1.4.3 Automobile Industry

Like the electric machinery sector, the automobile industry has also under-
gone global reorganisation as a consequence of a trade conflict between USA
and Japan, notably Japanese companies were prompted to build manufactur-
ing plant in the United States. However, it was the acquisition of Chrysler by
Daimler-Benz that triggered the most important phase of global reorganisa-
tion. The fact that size matters for survival was widely recognised, as might
be guessed by the term “Four Million Club” to refer, somewhat enviously or
complacently, to those automobile manufacturers produced over four million
vehicles per annum.

However, looking through the industrial structures of Japan, we observe
no fundamental change that excludes certain of the automobile manufactur-
ers. Similarly, in USA we observe an industrial system established with the
cooperation of the Japanese automobile manufacturers and auto-parts man-
ufacturers. Indeed, Japanese companies have now caught up with USA com-
panies as regards sales numbers in spite of the fact that these American com-
panies retain a strong influence on the market. This is partly because these
USA companies must incorporate very large costs of welfare, including pen-
sions and medical payments for retired employees, into the prices of cars. By
comparison Japanese companies enjoy relatively low costs for welfare, in ad-
dition to efficient production technologies, and can therefore increase their
market share and maintain a healthy profit margin. Concerns with regard
to energy security and environmental pollution have provided a tailwind for
those Japanese companies excelling in the production of economical small- and
medium-sized cars. By contrast, Korean companies are still in the catch-up
stage on this matter.

The key production technology keeping Japanese companies internation-
ally competitive is just-in-time production which makes each process hold
inventory to a minimum (Ōno, 1988). The Kanban system is key to the
realisation of this efficiency, and is used in the following way. A Kanban deliv-
ery slip is transferred by the manufacturer to the post-process stage together
with manufactured goods. Once the goods are used in the post-process, the
Kanban is returned to the preceding manufacturer process as a purchase or-
der. Thus, in each process goods are only manufactured once authorised by
a Kanban, creating a chain reaction of production with minimum inventory.

Just-in-time production is based on a business network, in which vertical
integration for key components such engines and automobile bodies coexists
with a horizontal division of work for peripheral components such as electronic
parts. Formation of a suitable business network is the key to efficient and
flexible production.
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1.4.4 Industrial Structures and Business Network

In the last twenty years, the electric machinery industry in Japan drastically
changed its shape in ways which will be familiar from the other industry ex-
amples discussed above. Instead of self-manufactured components they are
now using out-sourced components to produce computers, communication,
and other types of equipment. This change in industrial structure, together
with a move towards an open system due to deregulation, has confronted elec-
tric machinery companies with a major alteration in relationship with other
companies in the sector. Generally speaking, this has required companies
to regard themselves as a part of the whole economy, not as a single entity
isolated from the system.

On the other hand, the automobile industry continues to develop busi-
ness networks in an environment made up of a mixture of the two industrial
structures. Broadly speaking, vertical integration is used for autobody and
core components such as engines, while horizontal division of work is used
for peripherals such as electronic components. However, strengthening of the
just-in-time production methods, with the aim of keeping Japanese industries
internationally competitive, clearly requires elucidation of the business net-
work structure. Furthermore, a case study of the successful handling of major
accidents shows that the business network plays an important role in quickly
recovering from disasters.

To shed light on these issues in the industrial economy, we thereby have
to elucidate what network is formed by companies through their linkages and
how they interact with each other on the network, and it is expected that
methods developed for analysing complex networks and agent-based simu-
lations will be very useful, as demonstrated in Chapter 5. Perspectives for
possible applications of the basic insights obtained in the previous chapters
to practical business are given in Chapter 6. Topics such as business strategy
development methodology, the management of the propagation of credit risk,
and innovation of business models, are also explored.

In the following chapters we will explain, using many figures, what analyses
of real data and simulations teach us about the statistical life and death of
companies, and also the relationships between companies. We are all facing
a great new wave of methodological opportunities for the understanding of
economical phenomena, and have designed our book to serve as a messenger
of some parts of what we believe will be an intellectual revolution.
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Powers of ten

At many points in our text we use large numbers. In some cases, for example
money, our intuitive understanding, of one million dollars say, is adequate,
but it is not always so, and in some cases the quantitative comparison of
two large numbers can be opaque or cumbersome. For example, faced with
two numbers it is not always immediately obvious how many times greater
one is than another. Using exponent expressions such as 106 dollars is much
more convenient in these cases. Within a Western system properly known
as the “short scale” special names are assigned to large numbers in units of
103 as shown below:

thousand = 1, 000 = 103

million = 1, 000, 000 = 106

billion = 1, 000, 000, 000 = 109

trillion = 1, 000, 000, 000, 000 = 1012

This continues up to vigintillion (= 1063). Interestingly, in the East
the basic unit is 104, giving, in Japanese, “Man”(104), “Oku”(108),
“Chou”(1012), “Kei”(1016), and so forth. “Muryotaisu”, the largest unit for
numbers currently used in Japan is 1068, which makes 1072 − 1 the largest
number that can be described by words.

It is curious to note that there are other special names for large numbers,
and that these do not form part of a sequence, and therefore cannot be called
“units” in a strict sense. For example, Richard P. Feynman once remarked
that “There are 1011 stars in the galaxy. That used to be a huge number.
But it’s only a hundred billion. It’s less than the national deficit! We used
to call them astronomical numbers. Now we should call them economical
numbers.” He, however, must have meant “debt” not “deficit”, because the
latter is about 5× 109 (in USA dollars, 2008) while the former is about 1013

similarly. Thus we propose that:

1 Feynman economical number := 1013. (1.1)

In the microscopic world, 10−13cm is 1 Fermi (Yukawa), which is approxi-
mately the radius of the proton. Therefore, 1 Feynman is the inverse of 1
Fermi (Yukawa), so to speak.

Incidentally, there are other names for extremely large numbers, such as
googol (10100), centillion (10303 or 10600, depending on which side of the
Atlantic you are), and googolplex (1010100

). In physics, a large number we
encounter is the total number of protons in the observable universe, which
is known as the Eddington number, and is approximately 1.57 × 1079.

No economist should want to encounter numbers beyond 1 Feynman.
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Chapter 2

Size Distribution

By looking at a wide conspectus of companies, rather than individual organ-
isations, a curious and somewhat mysterious pattern becomes evident in the
rise and fall dynamics.

As a preliminary to examining the dynamics of group of companies, we
will first explain what we mean by the size of a company, and then introduce
the important concepts of flows and stocks, and several tools necessary for
examining the distribution of company sizes.

We will find that among “giant” and “dwarf” companies, the size distri-
bution of giants obeys Pareto’s law. We will also see that the same law is
also found for flow quantities such as individual incomes, and we will touch
upon its connection with inequality in society and how it is linked to macro-
economics.

We can now turn to the strange world of company dynamics.

2.1 Preliminaries

2.1.1 Flows and Stocks

Companies are economic agents that buy materials and services, and create
added value by utilizing their own resources, and earn money by selling the
products. Thus, the key to understanding company behaviour is a clear un-
derstanding of money flows. Companies raise money, and use this capital
to obtain raw materials, employees, and facilities, and then by using these
resources add value to products and services, which are then sold to obtain
more money.

A company is usually legally obliged to communicate its financial situation
to shareholders and creditors through audited accounts and statements, which
are by and large in the public domain. Such sources of information are valuable
source of information about company behaviour, but in using such measurable
variables, it is critical to recognise that flows and stocks have very distinct
physical dimensions. For example, let us take a person’s savings account,

15
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where both deposits (inflows) and payments (outflows) occur. The current
balance is a stock, and is a quantity measured at a point in time and in
monetary units (yen, pounds, dollars, etc.). On the other hand, the payments
made in a particular month constitute a flow and, are measured in units of
yen per month. Stocks and flows are therefore differentiated by time.

While a flow is a change of stock, stock itself is a total-sum of flow in
the past. Consequently, there’s more to describing the financial standing of a
company than examining stocks or flows on their own. The same is true of a
national macro economy, where GDP (Gross Domestic Product) is a flow and
National Balance Sheet is a stock.

For a company, flow quantities including sales, expenditure, and operating
profit are measured in the Income Statement, and stock quantities such as
capital and debt are measured in the Balance Sheet.

Now, the size of a company is a measure of available money and can be
measured from stocks like capital or debt, or from flows like sales or operating
profit. The number of employees is also another good measure of size. On
the other hand, no single variable is adequate for determining the size of a
company. The company with the largest sales is not necessarily that with the
greatest capital.

However, by examining the size of a large number of companies from vari-
ous angles, we find that the fundamental properties remain the same regardless
of the variable used, stocks or flows. This may not be surprising since all these
stock or flow variables are induced by the money dynamics of the company.

In order to deal with a group of companies, such those in a business sector
(energy say, or food processing), or the companies within a nation state, it is
critical to use data that is either as exhaustive as possible or has been obtained
from consistent examination of carefully selected samples. Otherwise, the
analysis may produce misleading results with regard to the distribution and
behaviour of the population (see Section 2.3.3). Even if the sampling is well-
planned, it is quite common for only summarised statistics to be published,
and individual data is available only to a limited number of researchers, and
consequently the dynamics of companies are hidden. One way round this is to
use information from income and corporation tax, and this is the route that
we adopt here.1

2.1.2 Size Distribution and Pareto’s Law

If it were possible to obtain all the flow and stock quantities for all companies
and individuals at all times, a complete description of these economic agents
would be obtained. However, such a description would be almost meaningless,

1It may be objected that tax data are potentially prone to error, since actual income
and declared income might vary. However, it can be argued, and we think persuasively,
that listed companies and high-income individuals will file accurate tax forms since the
penalties, both legal and reputational, are considerable. Furthermore, statistical analysis
reveals some outstanding phenomenological laws, which may be a reflection of truths of a
still deeper interest, and this in itself makes the data worth examining.
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Figure 2.1: Probability distribution of human height (High school
senior male students in Japan).

and what we require are statistically-sorted facts. That is to say, instead of
a complete list of the capital status of a million companies, it would be more
useful to obtain macroscopic descriptions, such as the number of companies
with capital between one hundred million and one billion yen, or how many
companies have capital in excess of a billion yen. Briefly, distributions are the
key to understanding the dynamic properties of the way in which companies
rise and fall.

As we have mentioned in Section 2.2, this is identical to the methods used
in statistical mechanics for analysing microscopic and macroscopic physical
states. Since the distribution of company sizes is extremely surprising we will
first introduce some appropriate tools for handling these, and make compar-
isons with other distributions.

The height of male students in the third year of Japanese high school in
2005 is plotted in Figure 2.1. We denote the height by x and the frequency
of people with height between x and x + dx, where dx is a small number,
by p(x)dx. For the sake of brevity we will refer to the function p(x) as a
probability density function (PDF).2

Figure 2.1 is a histogram with a abscissa graphing the height x, and or-
dinate graphing the frequency p(x)dx. Adding all the frequencies over the

2Strictly speaking, the term “PDF” applies to cases with continuous variables. In this
case, since the data is tabulated, the height variable is essentially discrete. The same is
true in economics, where the variable x could be money or number of people and hence
is often discrete. In such cases, and strictly speaking, the relevant term is “probability
mass function”. However, the difference is not that important and because the scale of the
variable is so large compared to the minimum unit, i.e. a million pounds to 1p, and also
because translating all equations and discussions from continuous variables to discrete vari-
ables is straightforward. For these reasons we use the terminology for continuous variables
throughout this book.
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Figure 2.2: PDF of companies’ declared income.

range yields a result of 1, which means that the total area of the histogram
adds up to 1.

Note that in this figure most of the individuals are distributed around
about 170 cm in height, and in spite of individual differences no-one is 10 cm
or 500 cm high.

This kind of bell-shape, which is centred around a peak and rapidly de-
creases away from it, is quite common, and the so-called “normal distribution”
is a representative instance. This is a very standard and untroubling distri-
bution.

Normal Distribution

The Probability Density Function (PDF) of a normal distribution p(n)(x) is the
following:

p(n)(x) =
1√
2πσ

exp

»
− (x − µ)2

2σ2

–

Here, µ is the mean and σ2 is the variance.

By comparison, the distribution of company sizes exhibits striking prop-
erties. Take the declared income of companies, an area in which we can get
access to data from nearly all the companies with positive income. Figure
2.2 is the PDF plot of the top seventy-eight thousand Japanese companies in
2002, represented in a manner similar to that used above for human height. It
can readily be seen that this distribution is widely spread. The largest income
is the six hundred and eighty trillion yen of the Toyota, which is far too large
to be included in Figure 2.2. The smallest income in this data is about twenty
million yen. Although there must be companies with an income smaller than
this, we can say with confidence that the income of companies differs by at
least fifty thousand times. This makes the distribution in Figure 2.2 right-
skewed. A better way to describe this characteristic of the distribution is to
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Figure 2.3: Double-logarithmic plot of PDF of companies’ declared
income.

say that it has a long tail.3 This sort of long tail is sometimes also called a
“fat” or “heavy” tail.

The total of income gained by all the domestic companies is limited. In
view of the fact that there is a huge disparity between companies it may not be
surprising that a small number of companies engrosses a large share of income.
However, there is a pattern in this plot. Fig. 2.3 is a double-logarithmic version
of Fig. 2.2. This plot shows that PDF can be approximated by

log p(x) = −α log x + c,

where log denotes the natural logarithm and α and c are constants. This
approximation is valid in a very wide range, from one billion to several hundred
billion yen. The equation above may be rewritten as,

p(x) = C x−α,

where C = ec. Thus this distribution obeys a power law, and the constant
α is the exponent of the power-law.

Careful examination shows that the distribution in Figure 2.3 is somewhat
shaky in the range x > 1010. In making this histogram, we have divided the
abscissa of x into small equal-sized segments and have counted the number
of companies in each segment. As x becomes larger, the size of the segments
becomes smaller in proportion and there are many segments without data,
causing a rough appearance. Naively, it might be supposed that this could

3It will be as well to note in passing that the long-tail described here is not directly
related to the recently popular notion of “long-tail” in business. We will elaborate on this
in Section 2.5.
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be avoided if larger segments were chosen. One might also choose variable
sized segments that become larger as x increases, in order to avoid segments
with zero entry. For example, we might choose segments with size equal to
log x. However, optimised choice of segments remain as a technical problem,
and the roughness remains no matter what. Moreover, by taking segments of
a larger size, we lose some of the information in the original data. These two
problems conflict with each other: smaller segments allow us to keep detailed
information but leads to roughness in the results, while larger segments leads
to a smoother PDF but results in a loss of information. Selecting the right
size for the segments, in order to achieve a reasonable balance, is an extremely
frustrating technical problem.

We can work around this problem by using a cumulative distribution
function, or CDF.4 The CDF P>(x) is defined by the following:

P>(x) = [The rate of data with a value larger than x]

By this definition, P>(∞) = 0, and if there is a lower bound x0 for x,
P>(x0) = 1, as all data has x larger than x0, it is also evident that P>(x) is
a monotonically decreasing function of x.

CDF is related to PDF as follows:

P>(x) = [Total sum of p(x′)dx′ with x′ > x]

That is, P>(x) in an integration of p(x). From this we find from the equation
on page 19 that the power-law distribution has the following CDF:

P>(x) ∝ x−µ ⇐⇒ p(x) ∝ x−µ−1

The power-exponents are related by α − 1 = µ.

PDF and CDF

The definition of the CDF above can be written as follows using the integral.

P>(x) =

Z ∞

x

p(x′)dx′.

Therefore, the PDF is obtained from the CDF by differentiating it:

p(x) = −dP>(x)
dx

.

This leads to the relation between the exponents α = µ + 1.

In practise, the CDF of data can be obtained as a rank-size plot. Let us
say we have n data, x1, . . . , xn. We sort them in decreasing order and denote
them as x(1) ≥ x(2) ≥ · · ·x(n). The i-th rank data is x(i) and there are i
items of data with a larger size, x ≥ x(i). Therefore, if we plot them with the

4This is also known as a cumulative distribution or cumulative probability.
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Figure 2.4: Double-logarithmic plot of CDF for companies’ de-
clared income.

size x on the abscissa and rank divided by the total number of data n on the
ordinate, it yields the plot of the observed CDF.

Or, one may simply plot the rank on the ordinate, we obtain the CDF
multiplied by n, n × P>(x).

This kind of rank-size plot does not suffer from the problems we encoun-
tered in making histograms, so we don’t need to worry about the size of
the segments, and we get to keep all the information. The rank-size plot is,
therefore, an ideal tool for examining these distributions.

Sometimes the ordinate indicates the size and the abscissa the rank, with
their roles exchanged. Also, the data could be sorted in increasing order, not
in decreasing order. In that case, we would be looking at a variation of the
CDF:

P<(x) = [Rate of data with its value smaller than x],

which is related to our original CDF by the following:

P<(x) = 1 − P>(x).

Therefore all these approaches are in some sense looking at the same property,
but from different angles.

Figure 2.4 is a rank-size plot of the companies’ declared income. According
to this, from x = 108, the income ranges from a hundred million yen, to
x = 1011 a hundred billion yen, the power law evidently applies with the
power exponent very close to µ = 1.0.

A number of natural, social, and economic phenomena obey the power-law
distribution, for example the magnitude of earthquakes, the size of craters on
the moon, the strength of solar flares, and the size of fragments of shattered
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objects. Amongst social phenomena examples might include the size of cities,
the number of references to academic papers, the frequency of appearance of
words, and individual incomes.

Individual income was investigated first by Vilfredo Pareto in 1896 (see
the column in Chapter 1), and made a huge impact on the issue of inequality
in economics (Pareto, 1896). The power law for the size of cities was noted
first by Felix Auerbach in 1913 (Auerbach, 1913), while the size of companies
was studied by Herbert Simon and many other researchers. G. K. Zipf’s book
in 1949 studied long-tailed distributions in a wide variety of social phenomena
and human activities and had a considerable influence in the natural science
and the humanities, amongst the best known being Zipf’s law concerning the
frequency of English words (Zipf, 1949).

However, it is important to be aware that while some phenomena appear

The Size of Cities

The choices made by individuals with regard to where they live, in large or
small cities, are certainly influenced by variations in individual life story and
local culture and history. Nevertheless, human societies resemble and often
exhibit mysterious and surprising self-organizing phenomena. The chart
below plots the population of the cities and towns in the northern Japanese
island of Hokkaido, based on data obtained from the censuses of 1980 and
2005.

Even though there only around two hundred samples a power law is clearly
evident in the tail (the fit to the logarithmic normal distribution is also
represented in the figure). A rough estimate of the power exponent for 1980
would be µ = 1.0, but µ = 0.9 in 2005 suggesting that population has
become more concentrated in large cities as a smaller value for µ indicates
a greater number of larger cities. As we explain in Sections 2.4 and 2.6, a
value for µ smaller than 1 indicates the oligopolistic phase. (H.I.)
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to obey a power law at first sight, close examination reveals that in fact they
do not.

In quite a number of power law cases the power exponent µ is somewhere
between 1 and 3. A smaller value for µ indicates a broader distribution, and
thus the existence of larger quantities. In this sense, the power exponent µ is
a measure of inequality in the region where the power law applies. We will
elaborate on this point in Section 2.4.

As is well known, the power law is often called Pareto-Zipf’s law, or simply,
Pareto’s law. In particular, in the case of µ = 1, and in relation to phenomena
such as city size or frequency of words, it is commonly referred to as Zipf’s
law. This is no accident: µ = 1 is one of the most important of power laws,
a point we will elaborate in Section.2.6.

Hereafter in this book, for brevity we shall refer to the general power law
as the Pareto’s law, or as the Pareto distribution, and its exponent as
the Pareto exponent.

2.1.3 Other Distributions with a Long Tail

It should be noted that the term “Pareto distribution” is based only on the
behaviour of the distribution in the asymptotic region, where its variable x is
large. Thus it covers a range of distributions, which differ in their functional
behaviour in the small-to-medium range, and some of these will be explained
in a later section. Thus, the “Pareto Distribution” in this sense is a generic
name.

The Pareto distributions are not the only long-tail distributions, a par-
ticularly well-known instance being the log-normal distribution, which is, in
essence, a normal distribution in log x. Another important long-tail distri-
bution is the Tsallis distribution (Tsallis, 1988), which has some desirable
mathematical properties, although we will not use it in this book.

As we have argued, the Pareto distribution is a class of distribution with
a long-tail, and is used most extensively due to the following reasons:

• Power-law behaviour is apparent in a wide variety of data.

• The Pareto Distribution has only one (significant) parameter, the Pareto
index (Farmer et al., 2005).

• The processes that induce power-law distributions are well understood.

Of course, it is important to make a careful examination of the dynamics
behind the phenomena in question and to determine what kind of distribution
is in fact most suitable for understanding its true nature.

2.2 Distribution of Personal Income

We will digress here to deal with the issue of personal income. This was
studied in earlier work by some of the present authors on the basis of a very
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large Japanese data set which allowed the discussion of this distribution in
detail, with particular emphasis on issues of inequality and their relation to
the macroeconomic situation (Aoyama et al., 2000). A lack of similar data in
other countries seems to have prevented work of similar accuracy before and
since (but if any reader knows of comparable data we would very much like
to hear of it). Because of its apparently unique status this data has become
an important corner-stone of research on the subject of personal income.

While reading this section keep your own income in mind, to put the study

Log-normal distribution

The PDF of a log-normal distribution p(ln)(x) is defined in the range of its variable
x from 0 to ∞ as follows:

p(ln)(x) =
1√
2πσ

1
x

exp

»
− (log(x/a))2

2σ2

–
.

This is obtained from the normal distribution p(n)(y), which is discussed on page
18, by changing the variable by y ≡ log x,

p(n)(y)dy = p(ln)(x)dx,

and then by rewriting it by using a new parameter a defined by µ ≡ log a,

The average of x is not a (= eµ), but is in fact ae
σ2
2 , and its standard deviation is

ae
σ2
2

p
eσ2 − 1. Further, the median is a and the maximum value of the PDF p(ln)(x)

is at x = ae−σ2
. The plot below is the log-normal PDF p(ln)(x) for σ = 0.1, 1, 2

with the average fixed to one.

Its CDF P>(x) is given by the following:

P> (x) =
1
2

»
1 − erf

„
log(x/a)√

2 σ

«–
,

where erf (x) ≡ (2/
√

π)
R x

0
dt exp(−t2) is the error function.
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Figure 2.5: Distribution of personal income-tax and income.

into personal perspective.

2.2.1 Income Distribution and Pareto’s Law

Japanese tax returns have been recorded since 1887, giving a very long data
series. However, it should be noted that since the tax system has been changed
a number of times, there are some grounds for caution when comparing data
from different periods. However, with this caveat in mind, we can look at
the rank-size plot of the income distribution from 1887 to 2003 in Figure 2.5,
where the abscissa represents the income-tax or income.

The distribution on the leftmost with filled circles is for 1887. After this
year, the distribution keeps moving to the right and reaches the rightmost
curve with open circles in 1991. After that it reverses its direction and starts
to move to the left, reaching the curve in the middle with open squares in
2003. The gap in the middle of the plot divides the earlier distributions of
income tax and the later ones of income. Although the data characteristics
are different as such, it is at least true that the distributions can be fitted by
power-law distributions.

A rough estimate of the Pareto index is given in Figure 2.6, where the
abscissa indicates the year and the ordinate the Pareto index. In relation to
the inequality of distribution and macroeconomic situation, we observe several
things from this plot.
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Figure 2.6: Evolution of Pareto index of personal income.

First, the valley-like structure between the 1910’s and 1950’s. A smaller
Pareto index means greater inequality, so a small Pareto index indicates the
existence of some people with very large incomes. Therefore, we can see that
during this forty years period, the distribution became more unequal and then
returned more or less to its earlier state. This phenomenon has been described
in the economic literature from a different angle, and it is worth pausing to
consider just what happened in this period, and what the economic situation
was really like.

In 1955 an economist Simon Kuznets studied the evolution of Gini’s coef-
ficient5 in the U.S.A., Germany and England, and proposed that in the early
stage of economic development inequality in income increases with growth,
while countries in an advanced state of economic development the income
inequality is reduced and Gini’s coefficient becomes smaller, a phenomenon
referred to as Kuznets’ inverted U-shaped curve hypothesis.6 In other words,
when economic structure is changing rapidly, the income inequality grows, but
reduces again when conditions stabilise. This might be just what happened
in Japan from the 1920’s to the 1950’s.

Another thing we learn from Figure 2.6 is that the income inequality in-
creased in the 1970’s. This period was characterised by a real estate boom,
encouraged by the then prime minister Kakuei Tanaka, and the oil crisis, both
of which may be behind the income phenomena observed.

We can also see in Figure 2.6 that inequality increased again from 1985
to 1998, the so-called “Bubble Economy” of the Heisei era. We will touch
again on this point in Section 3.2.2.

Examination of recent income distribution using high-frequency data also
yields interesting findings. Japanese personal income in 2000 is plotted in
Figure 2.7, where income on the abscissa covers a range from a million to

5We will elaborate on Gini’s coefficient in Section 2.4.1.
6Pareto index and Gini’s coefficient moved in opposite direction: Larger inequality means

smaller Pareto index and larger Gini’s coefficient.
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Figure 2.7: CDF of personal income in 2000 (Japan).

several billion yen.7 From this plot, we observe that Pareto’s law applies
to income greater than about twenty million yen. Below this boundary the
distribution is different, where we indeed expect the majority of individuals to
be on salaries. It is reasonable to expect that these small-to-medium income
individuals will exhibit a different distribution to that of the rich, as the
latter have income sources other than salary, coming from their investments
and other usage of capital.

The relations between the Pareto index, and two risk capitals, the land-
price index and average TOPIX (Tokyo Stock Price Index) are shown in Figure
2.8 for 1980 to 1998.

Note that the land-price index is normalised, with the baseline in 1993,
and also that the average TOPIX is the average over the year. The solid line in
this plot shows the correlation between the land-price and the Pareto index.
We see that from 1980 to 1985 the Pareto index does not change much in
spite of the rise in land-price. In the next six years, the land-price increased
rapidly with a decreasing index. The land-price peaked in 1991, while the
index peaked in 1990, and in 1992, the Pareto index increased significantly,
although the land-price did not change a great deal. Afterwards, we see a
decrease in land-price associated with a (mostly) increasing index. This kind
of motion is registered as a counter-clockwise rotation in this plot.

7This kind of data is obtained from salary income and declared income published by the
National Tax Agency, and income-tax data for high-income individuals published at local
tax offices. The former is in a tabulated form, while the latter is a list of all the people who
paid income-tax of more than ten million yen. This covers approximately eighty thousand
individuals, and thus there are approximately that number of points in this plot. Since
anyone with an income of more than twenty million yen must file a tax return, there is
an overlapping region between these two kind of data, which allows us to draw one unified
profile of distribution.
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Figure 2.8: Correlation between the Pareto index, land prices, and
stock prices (TOPIX).

The broken line in the plot shows a correlation between the averaged
TOPIX and the Pareto index. From 1980 to 1984, we see a moderate increase
in the average TOPIX, and an almost constant Pareto index. But later, as the
average TOPIX increases rapidly, the index decreases rapidly. The average
TOPIX peaks in 1987 and starts to decline later, but the index continues to
decrease even after 1987, then peaks in 1989, and starts to decline rapidly as
the bubble of the Heisei era bursts.

As we can see from this kind of study of income distribution, the Pareto
index fluctuates around 2, with a strong connection to the macroeconomic
situation.

In concluding, it should be recognised that this pattern of income distribu-
tion, and the evolution of the Pareto index, is not unique to Japan. We have
also looked, though not in so much detail, at income distribution in the United
States of America and Europe, and similar patterns reveal themselves. Con-
nections between the Pareto index, stock price, and land price are also known
to be strong in the United States (Nirei and Souma, 2006). This appears to
be a general phenomenon.

Inspiration in Bali and Kolkata

In the summer of 2002, one of the authors attended an International Con-
ference in Econophysics at Nusa Dua in the island of Bali. The location
was a gorgeous resort hotel on a beautiful sun-drenched beach. The days
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were filled with excellent presentations on all kinds of economic and social
phenomena, the evenings with culinary delights and cabaret. Very nice, but
once outside the resort complex, the reality of Indonesia made itself painfully
evident: According to a World Bank report, almost half of the Indonesian
population has income of less than two US dollars. And these are dollars
which have been adjusted in purchasing power parity, which means that
these two dollars indicate money which can buy two dollars worth of goods
in the United States. So, this is true poverty.

How can econophysics respond to this situation? One of us was engaged
in research relating to high-income people, the results of which are outlined
in this section, but he spent a part of his talk in drawing attention to the
Indonesian problem, a point which was warmly received by the audience.
However the kind of data he needed for a detailed study of poverty was
beyond his reach and several of the data resources which he could obtain
conflicted with each other. (H.A.)

In 2005, an econophysics conference “ECONOPHYSICS-KOLKATA I”
was held in Kolkata, India, and the main theme was income and wealth
distribution. Of course, the caste system is still strong in India and there
is a huge disparity in income and wealth. One of us got lost in town and
wandered around the main and side streets for four hours. The contrasts
were memorable; perhaps the most vivid being the sight of a business man
in a clean white shirt, talking on a mobile phone, while at his feet an old
homeless woman ate rice and vegetables from a newspaper spread on the
road.

At the second Kolkata conference, in 2006 the contrasts were if anything
sharper. New Suzuki automobiles were a common sight around the hotel,
and mobile phones were visible and their ring tones audible all the time,
especially in the conference. On the other hand, the town was filled with
homeless people, some of whom do not have even a tent.

India is growing nation of extremely energetic people, but when combined
with the effects of globalization and other macroeconomic phenomena far
from solving the problems these virtually seem to contribute to making the
inequalities still larger. Standing there in the streets of India, surrounded
by frenetic activity and a heat which is not just atmospheric, we began to
wonder whether any government can control the situation and improve mat-
ters, and whether econophysics, economics, or any other academic discipline
can make any contribution to this seemingly intractable situation. (W.S.)

2.3 Distribution of Companies

2.3.1 Size Distribution of Companies

In Section 2.1.2, we used the declared income of companies to explain Pareto’s
law, but other financial data is also potentially relevant in this context, and
may actually be more informative.
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Figure 2.9: CDF of company size: (a) Sales, (b) Income in 2002,
Japan.

Figure 2.9(a) and (b) depicts the sales of about 450,000 and the profits
of about 270,000 companies, ranging from large to small companies. The
potential for data inaccuracy in relation to very small companies should be
borne in mind, but information from large companies, those with sales greater
than several hundred million yen, is generally regarded as reliable, and the
data for profits exhaustive in its detail. In spite of that, it is evident in this
plot that large companies obey Pareto’s law for these flow quantities. For
sales, a rough estimate of the Pareto index in the range from several billion
yen (x ) 109 on the abscissa) to several trillion yen (x ) 1012) yields a value
µ = 1.05. Similarly for the profit, in the range between several hundred
million yen (x ) 108) and several hundred billion yen (x ) 1011), the Pareto
index is about µ = 1.02.

Thus, the company size distribution has a Pareto index close to 1, a very
different result from that obtained in regard to personal income.

If we sort the companies into business sectors we find Pareto distributions
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Firm-size (yen) Firm-size (yen)

Firm-size (yen)

Firm-size (yen)Firm-size (yen)

Firm-size (yen)

Figure 2.10: CDF of sales in various business sectors in 2002
(Japan).

for most groups. Figure 2.10 shows the CDF for the following categories: (a)
Electric and machine making industry, (b) Wholesale, (c) Retail, (d) Steel and
other metal-related manufacturers, (e) Machine manufacturers, (f) Chemical
and oil-related industry.
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Figure 2.11: The CDF of company size in 2001 for: (a) Total
capital in France, (b) Sales in France, (c) Number of employees in
U.K..

2.3.2 Size of European Companies

As we noted before, company size can be measured either in terms of flows or
stocks. The question then arises as to whether the Pareto law holds for both.

Unfortunately, it is not easy to obtain exhaustive data for companies with,
say, a total capital greater than a specified value. Fortunately, the Euro-
pean electronic publishing company, Bureau van Dijk, offers a comprehensive
database, AMADEUS, which covers all companies with either an operating
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Figure 2.12: Evolution of the Pareto index: (a) France, (b) Italy
(c) Spain, (d) U.K., for total capital, sales, and number of employees
from 1993 to 2001.

profit greater than 15 million euros, or a total capital greater than 30 million
euros, or more than 150 employees. This kind of exhaustive listing is ideal.8

Figure 2.11(a), (b) and (c) plot the CDF of Total Capital and Sales of
French companies, and the number of employees in British companies. We
observe in these plots that no matter which quantity we use for measuring
company size, we obtain a Pareto distribution. Rough estimates of the index
yield values between µ = 0.9 ∼ 1.0.

As we will make clear in Section 2.4.3., µ = 1 is a boundary, or a critical
value where the overall characteristics of the size distribution changes. It
should be noted that the value we obtained here for European companies is
very close to this value.

In this plot of the evolution of the Pareto index, Figure 2.12, the value is
stable, staying very close to µ = 1, independently of the quantity used, and
the country.

2.3.3 A Caveat: Sample and True Distributions

In this section, we will elaborate on a detailed and technical issue. Some
readers may want to skip this section and can do so without losing the track
of the discussion.

8The following results were obtained in collaboration with Mauro Gallegati at Ancona,
Italy.
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Figure 2.13: gives the CDF for declared company income for all
the data (filled circles) and for all listed companies (open circles).

Figure 2.14: PDF of companies’ declared income for all the data
(filled circles) and data for listed companies (open circles).

Although financial data is accessible for quite a number of companies, our
experience shows that they are often limited to listed companies, and it is
reasonable to fear that statistical examination which is confined to this set
may yield misleading results. Consequently, in order to get a reliable picture
of the character of the whole population of companies, not just the listed ones,
we need a consistently planned sample investigation, and if possible, data for
all or at least a very large part of the population.

Exhaustive data on declared income was used for Figure 2.3. Restricting
ourselves to the listed companies might produce a different result.

Figure 2.13 plots the CDF of the subset of all the listed companies (there
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are about two thousand of them) with open circles, while the filled circles
represent the CDF of the entire set of companies. A best fit, with the log-
normal distribution, is given by the solid curve. As we noted before, and as
is seen clearly in this plot, the log-normal distribution is quite different from
the power-law distribution, even though both of them have long tails.

Figure 2.14 shows the same kind of analysis for the PDF. Both of these
plots imply that if one had data only for listed companies, one would con-
clude that the companies obey the log-normal distribution, in spite of the fact
that a completely different distribution, Pareto’s distribution, applies to the
companies in exactly the same region of declared income.

Here we have used data on business tax provided by the National Tax
Agency, which made it possible to examine the whole population. But for
most financial data such comprehensive coverage is rare. In other less well
documented cases we need carefully planned sample investigations of compa-
nies, or databases provided by private organisations that specialise in provid-
ing information of this kind. Careful preparation of data may lead to reliable
statistical conclusions on the population of companies, although sampling of
a small number of companies may limit the statistical accuracy.

2.4 Pareto’s law

We have seen above that a considerable number of financial quantities for
both individuals and companies follow Pareto’s law, which, in our view, is
essential to an understanding of the economic behaviour of these entities.
(See also Axtell (2001); Ijiri and Simon (1977); Steindl (1965); Takayasu et
al. (1997) among a large body of literature.) Pareto’s law also manifests itself
in many other economic and social phenomena; indeed, it is ubiquitous. As
we have stressed in Chapter 1, if one took for granted elementary statistical
concepts such as the normal distribution and applied their implications to all
these phenomena, fatal errors would often arise. This is true for other issues
involving fluctuations 9.

In this section, we will elaborate on several important properties of Pareto’s
law which are necessary for understanding its further implications.

As we explained in Section 2.1.3, the term “Pareto distribution” refers
to a group of distributions exhibiting power-law behaviour in the asymptotic
region. Therefore, in examining the properties of the Pareto distribution,
it is important to distinguish which property is determined by asymptotic
behaviour and which property depends on behaviour in the small-to-medium
range of the variable. In other words, we need to take care that we select only
those properties which are proper to all the Pareto distributions, not just a
few of them.

We note that in referring to the scale of the variable (x), it is relative
to a proportional constant in the Pareto distribution: The form of its CDF

9For example, wind power. It is a problem of fluctuation and normal distribution is not
obeyed and naive discussion of averaging is groundless.
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Figure 2.15: PDF of various Pareto distributions.

was given on p.20. Here, we rewrite it as follows by putting its proportional
constant in explicit form:

P>(x) ∼
(

x

x0

)−µ

.

This implies that the asymptotic region is the region where x is much larger
than x0, x * x0, since that is the region where P>(x) is much smaller than
1.

Several Pareto distributions are given in the column below.10 The PDFs
are given in Figure 2.15, while the CDF’s are formed in Figure 2.16. All these
exhibit µ = 1.5, and show a different behaviour for a finite x/x0, but they
approach to the same power function as x/x0 increases.

When confronted with a distribution a schoolchild would probably want
to know the average, the mean. There’s no harm in us doing the same: In fact
the mean is finite only for µ larger than 1 and its actual value depends on how
the distribution behaves for a finite x. When µ is equal to or smaller than 1,
the average is infinite. Therefore, the way in which the average diverges when
it approaches 1 from greater values is common to all the Pareto distributions.
It is well-known that the average is anti-proportional to µ − 1:

〈x〉 ) x0

µ − 1
.

As it happens, there are a variety of properties to be examined, and in
what follows we first examine some well-known and less-known indices in
economics, then we generate some of the distributions with simulations and
visualise them as a Devil’s Staircase. With that in hand we can then move
on to the most important theme, phase transitions, which is in fact our main
theme.

10Kleiber and Kotz (2003) gives several explicit formulae for Pareto distributions, in
addition to some of other kinds.
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Figure 2.16: PDF of various Pareto distributions.

For the sake of description, we refer to the stochastic variable x that
obeys Pareto’s law as the company size. Readers may replace it by any other
variable.

Various Pareto distributions

Some of the Pareto distributions with a simple function form will be useful for the
simulations used later in the book, and we list them here.

As we noted in the main text, the Pareto distribution is defined as a power function
in the asymptotic region of its variable x. The CDF P>(x) has to satisfy P>(0) = 1,
so that total probability is 1. But the power-law distribution does not satisfy this
property when extended to the finite region of x irrespective of the value of µ. In
other words, it cannot be normalised. In order to avoid this problem, we need to
modify the behaviour of the CDF for small values of x to obtain a useable probability
distribution. (Of course, the CDF is a decreasing function of x by definition, and
we must not violate this restriction in such a modification.) Thus, we can obtain an
infinite variety of Pareto distributions.

An inverse function of the CDF is needed to conduct a simulation (a point ex-
plained in Section 2.4.2 below). Here are three Pareto distributions whose inverse
function of the CDF are especially simple.

First, we shift the variable x by x0 in the equation on p.36 to obtain the following:

P>(x) =

„
1 +

x
x0

«−µ

. (A)

This simple function satisfied all the necessary conditions. We refer to this as Pareto
distribution (A) and use it for simulations in this book.

Alternatively, if we suppress the divergence of the power function at x = 0 we
arrive straightforwardly at the following distribution:

P>(x) =

8
><

>:

1, for x ≤ x0,„
x
x0

«−µ

, for x ≥ x0.
(B)
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This is as simple as the distribution (A), although its PDF is sharply peaked and
may not be suitable for some purposes. We call this distribution (B).

It is also possible to invert the variable in the Weibull distribution to obtain the
following:

P>(x) = 1 − e−(x/x0)−µ

(C)

This is sometimes called a “stretched exponential distribution”, which we call dis-
tribution (C).

2.4.1 Gini and Robin Hood

At this point it seems appropriate to discuss Gini’s coefficient and the Robin
Hood indices, both of which are measures of inequality. The first of these is
well-known, and while the second is a little more obscure it is based on a
unique and intriguing idea.

Corrado Gini was an Italian statistician,11 who invented a measure for
income inequality in 1912, now named after him. The Robin Hood index
is another measure invented for the same purpose by Edgar Malone Hoover
Jr. (Hoover, 1936). It is sometimes called the Hoover index, and crops up
in contemporary literature from time to time, for example in a recent article
by Robert Sapolsky (Sapolsky, 2005).

It is interesting to look at these indices in relation to Pareto distributions
and the Pareto index.

A Lorenz curve is defined by the following. Let us say that we have N
companies, and we arrange them in increasing order, from small to large,
and calculate the proportion of the smallest k companies, which we denote
by Sk. Since the total share of all the companies is 1, we have SN = 1.
Corresponding to the k-th (smallest) company, we can place a dot on the
coordinate (k/N, Sk). By definition, such dots stay within a square where
both sides are equal to 1. By connecting all these dots, we obtain a line graph
that goes up from the lower-left corner to the right-top corner. In actual
cases, N is very large and the line graph appears smooth. For this reason,
it is called a Lorenz curve. An example is given in Figure 2.17, where the
solid line is the Lorenz curve for the Pareto distribution (B) with µ = 1.5 in
the column on p.37.

If all the companies are of the same size, the Lorenz curve is a diagonal
line (the dotted line in the figure), and in general it is below that diagonal
line.

Gini’s coefficient is defined by the area between the Lorenz curve and
the diagonal (the shaded region in Figure 2.17), divided by the area of the
triangle made by the diagonal line and the sides, which is 1/2. Therefore,
Gini’s coefficient is zero if all the companies are of the same size, and is always
between zero and 1. The larger Gini’s coefficient is the larger the inequality.

Now, Gini’s coefficient as defined above depends on the value of µ as in
Figure 2.18 for this distribution. As is seen here, Gini’s coefficient increases

11His detailed biography is given in Kleiber and Kotz (2003).
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sh

Figure 2.17: An example of a Lorenz curve.

Figure 2.18: The µ-dependence of Gini’s coefficient.
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Figure 2.19: Lorenz curves for various values of µ.

as µ decreases, which is in agreement with the general property of µ, where
smaller values of µ mean the appearance of larger companies and thus higher
inequalities.

Once µ is smaller than 1, Gini’s coefficient is exactly 1. The Lorenz curve
behaves as in Figure 2.19 as µ decreases, where the solid curves are for the
values µ = 1.5, 1.4, 1.3, 1.2, 1.1 downwards, ending with the dotted curve for
µ = 1.01 at the bottom. It is evident that as µ approaches 1 from above,
the Lorenz curve shrinks down to the sides, resulting in Gini’s coefficient
converging to 1.

The Robin Hood index may be better explained for personal wealth. Let
us suppose that we want to create a society where everyone has an equal
share of wealth. In order to achieve this goal, we need to move wealth from
the rich to the poor in the style of Robin Hood. First we define the boundary
between the rich and poor classes. A suitable choice is the person who has
the ideal, equal, amount of wealth, a value we can arrive by dividing the total
wealth by the number of people. This person is at the place where the Lorenz
curve has a gradient equal to 1, as the gradient is the share of wealth of the
person at that point (the black dot in Figure 2.20). This may be more easily
understood if one recalls that the Lorenz curve has a constant gradient of 1
when complete inequality is achieved. Those above this person in the rank
order are rich, and those below are poor.

The rate of the population of the poor is R, as defined in the figure, while
the rate of the population of the rich is 1−R. Therefore, the poor must have
a share of wealth equal to R and the rich 1−R. However, the poor’s share of
wealth is S, while that of the rich is 1−S. Therefore, our task is to move the
share equal to R − S from the rich to the poor. This is equal to the largest
vertical distance between the Lorenz curve and the diagonal line, and is shown
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Figure 2.20: Definition of the Robin Hood index.

Figure 2.21: µ-dependence of the Robin Hood index.

by the white arrow in the figure. By this definition, this quantity, known as
the Robin Hood index, is larger for larger inequalities, with a maximum value
equal to 1.

The µ-dependence of the Robin Hood index for the Pareto distributions
(A)-(C) is plotted in Figure 2.21. The Robin Hood index is equal to 1 for
µ ≤ 1, as is evident from the plot of the Lorenz curve Figure 2.19.

The behaviour of the Lorenz curve, Gini’s coefficient and the Robin Hood
index implies that for µ equal to or less than one the completely unequal
society is realised. Thus the value one of µ is a very special point. This is
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Figure 2.22: The inverse-function method to generate random
numbers that obey an arbitrary distribution.

the most important property of Pareto distribution, which we will further
investigate.

One note before we proceed: Our previous plots of the Lorenz curve, Gini’s
coefficient, and the Robin Hood index were appropriate for cases where the
number of companies was infinite, when there are a finite number of compa-
nies, only when one company holds 100% of the share, complete inequality
is achieved with the Gini’s coefficient and the Robin Hood index equal to 1.
Analytical simulation methods can be used to estimate the values of Gini’s
coefficient and the Robin Hood index for a finite number of companies and
values smaller than 1 can be obtained.

2.4.2 Simulation: the inverse-function method

One useful approach to the properties of the Pareto distribution is to simulate
them. For example, we can generate random numbers that obey a Pareto
distribution and then calculate various quantities of interest. Large numbers
of such simulations yield reliable results, a method called a Monte Carlo
simulation, which is perhaps a misnomer since the casinos of that pleasure
city seem unlikely to be relying on pure chance.

It is fairly easy to generate a set of numbers that obey a Pareto distri-
bution, and it can be done even with standard spreadsheet applications. Of
course, such a calculation is meaningful only when repeated for a sufficient
number of times, which may require abundant resources such as a fast PC
or workstation, fast and efficient applications, time, and so on. But as the
basic idea for generating Pareto distributions is so simple and is applicable
to other distributions, it is worthwhile to explain it here. Readers may note
that a Monte Carlo calculation with the familiar normal distribution can be
conducted with a combination of the method we describe here and a use of a
two-dimensional space, which is called the Box-Muller method.

The first step is to generate (pseudo-)random numbers uniformly dis-
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Figure 2.23: How to make a staircase plot. Each dot corresponds
to a company.

tributed between zero and one, which we denote by y. The necessary function
is available in most applications. We then solve the equation y = P>(x) to
obtain x. Since P>(x) is equal to 1 at x = 0, it decreases as x increases, and
approaches to zero as x → ∞, the solution x always exists and is unique. By
repeating this many times, we obtain a set of solutions for x, which obeys the
CDF P>(x). This inverse-function method is illustrated in Figure 2.22. The
validity of this method is obvious, given the relation between the rank-size
plot and CDF explained above.

We have listed several examples of the Pareto distribution on p.37. In
the following discussion, we use the distribution (B) to examine the essential
properties of the Pareto distribution, since it allows a rapid calculation.

2.4.3 Devil’s Staircase

One intuitively intelligible method to study the properties of a Pareto distri-
bution is a visualization called a staircase plot.

If we order the companies randomly and plot the total share of the first
k-companies, as Sk, then place a dot for the k-th company at the coordinate
(Sk, k/N), and then connect them with lines, a staircase plot emerges, as
illustrated in Figure 2.23. Note that although this is similar to the case of the
Lorenz curve, here we have a random order and the vertical and the horizontal
axes are exchanged.

In this kind of staircase plot, the flat step of the stair indicates the share
of a company, with a wider step indicating a larger share.

Some simple examples will illustrate the method. For example, if there
are ten companies and they all have an equal share of 10%, the staircase plot
is as shown in Figure 2.24(a). If one company has a 50% share and the other
nine companies share the remainder equally, the staircase plot is as shown in
this figure 2.24(b). Of course, a random ordering of the companies creates a



44 CHAPTER 2. SIZE DISTRIBUTION

Figure 2.24: Examples of the staircase plot.

staircase plot with the wide step located at a different place. In any case, this
kind of staircase plot offers a convenient and accessible visualization of the
distribution of the shares.

Once the share is distributed according to a PDF, the stair has irregular
steps throughout its extent. Although the height of the steps is equal to 1/N
and is constant, the width varies. For a large value of N , the staircase becomes
very ragged and would be extremely difficult to climb, which is why it has
become known as the Devil’s Staircase.12 Mathematically, it is defined as
the mapping of a finite interval between real numbers onto another that is
almost universally constant.

Figure 2.25 shows Devil’s Staircases for several different values of µ. The
data was generated by the method explained in the previous section and
contains N = 105 companies, but in this figure, we have omitted the dots and
just drawn the stairs. We observe that for µ = 0.8 (the uppermost two plots)
the stair is quite irregular and ragged, and thus is truly devilish. Generating a
large number of staircases for a number of different values of µ, we have found
that this raggedness is a common property for µ < 1 and that the smaller the
value of µ, the more ragged the staircase is. On the other hand, for µ = 1.2 we
observe that the staircase is almost uniform and is like a smooth slope. This
is a common property for µ > 1 and the larger the value of µ, the smoother
the “slope”.

Of course it is still a staircase, though the individual steps are not par-
ticularly clear since in this case the value of N is large. Closer examination
of a selected portion would reveal its detailed features, but we will postpone
discussion of this to Section 2.4.6 which covers fractal dimensions.

At the boundary µ = 1 an intermediate behaviour is observable, part
ragged, part devilish. This extent of this variation depends on the (generated)
data.

We have learned from these plots that companies with a large share appear
12An internet search for “Devil’s Staircase” yields several mountain trails, among which

is a trail up Mt. Ngauruhoe in New Zealand, which was the location for the filming of Mt.
Doom in Peter Jackson’s “Lord of The Rings” trilogy, which seems appropriate.
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Figure 2.25: Devil’s Staircases for µ = 0.8, 1.0, 1.2.
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for µ < 1. In fact, in spite of the fact that there are a hundred thousand
companies the top two or three companies have nearly half of the share. So,
these companies are not just large, but huge. While not quite a monopoly
this is obviously an overwhelming oligopoly.

On the other hand, the situation for µ > 1 is quite different. Of course,
the size of the companies is not uniform and is distributed more evenly, but
the staircase is so smooth that it is almost indistinguishable from the case
with equal shares. At least, there is no oligopoly.

This argument is based on casual or intuitive observation of the plots, but
it can be confirmed by rigorous analysis, which we will see next.

2.4.4 Oligopoly and Monopoly

In the previous subsection, we have observed that for µ < 1 a Devil’s Stair-
case with exceptionally large companies appears and an oligopolistic situation
arises. Here we will look at the share of top companies in order to obtain a
quantitative perspective and increase the accuracy of our discussion.

Let us first look at the maximum size. By this we mean the following
situation: Suppose we have N companies in total, with sizes x1, x2, . . . , xN .

The largest company in a Pareto distribution

When there are N -companies, the size of the largest company is given by the following
when µ is larger than 1:

〈X(max)〉 = Γ

„
1 − 1

µ

«
N1/µ

This is common to all the Pareto distributions. Here Γ(z) is the Gamma function
obtained by a suitable analytic continuation of the following expression:

Γ(z) ≡
Z ∞

0

tz−1e−tdt

At µ = 1 and when N is large, its share is

ln(ln N) − γE

log N
,

where γE = 2.7799 . . . is the Euler’s constant. The numerator of this expression
varies very slowly with N and thus we have elsewhere described it as “almost anti-
proportional to logarithm of N”.

For a value of µ less than 1, when N is infinite, the share of the finite-rank company
is known analytically. Since it is a complex expression including an incomplete
gamma function, we will not go into the details here, but, we note that it is somewhat
surprizing that while a Pareto distribution is defined by such a simple power-law
behaviour it also yields complex expressions for these quantities through a long series
of analytic calculations. This is the joy of Mathematics.
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Figure 2.26: Share of the largest company.

We can measure and anticipate the maximum of value of these sizes. In Pareto
distributions with a large N and an µ larger than 1, the average maximum
size is proportional to N1/µ. This is common to all the Pareto distributions.
As stated above, the average size does not have this property. A difference
arising from the fact that the maximum size is determined by the behaviour
of the distribution at large values of x, when N is also large. And this is
stronger as N increases. Therefore, the dominant term in the expression of
the average of the maximum size for large values of N is determined by the
asymptotic behaviour of the distribution, which is common to all the Pareto
distributions. We will give an explicit formula of the proportional constant in
the column on p.46, but here we only note that it diverges as µ approaches
to 1 from above, in agreement with the fact that the average size diverges at
the same time.

Next, we will look at the share of the top companies, which is crucial in
determining the overall appearance of the Devil’s Staircase.

Figure 2.26 indicates the results of the Monte-Carlo calculation and the
analytic calculation for the average of the share of the top company. The
thick, solid, curve denoted with N = ∞ is the analytic result for an infinite
number of companies (N = ∞), while the lines above it show the results
of the Monte-Carlo calculation for ten, one hundred, . . . , and ten million
(N = 107) companies from top to bottom. As N increases the results of
the simulation converge on the analytic results for N = ∞, as they should.
(In this simulation, one hundred thousand data points were generated by the
Monte Carlo method for most N , except that for N = 107 one thousand data
were generated. This is sufficient to guarantee the statistical accuracy of the
result.)

As can be clearly seen, the average share of the top company is zero for
µ greater than 1 for N = ∞. One might think this is a trivial result: Since
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there are an infinite number of companies, the share of any company must be
zero, but this is a misleading argument.

If one is dealing with distributions that do not have long tails, such as the
normal distribution, the above argument is sufficient, but it isn’t the case for
Pareto distributions, which have long-tails.

We need to look carefully at what is really happening for Pareto distribu-
tions. As we have noted already, the average size is finite for µ > 1. Therefore,
the average of the sum of the size of all N companies is proportional to N .
On the other hand, the average of the maximum size is proportional to N1/µ.
The simple ratio of these yields

N1/µ

N
= N (1/µ)−1,

which offers an estimate of the average share of the top company. So we find
that the exponent of N is (1/µ) − 1, which is negative for µ > 1. Therefore,
this ratio goes to zero as N goes to infinity. The behaviour of the average
share of the top company in Figure 2.26 for µ > 1 agrees with this estimate.

When µ is smaller than 1 a completely different situation arises. In this
case, both the average share and the average of the maximum size diverges
when N goes to infinity. Therefore, the simple estimate we made above is
not valid,13 so we need a different calculation for this case. Since it is long,
tedious and quite complicated, we will not give the derivation, but simply give
the resulting plot in Figure 2.26 with a thick solid curve.

We have seen in the Devil’s Staircases that even though there are a large
number of companies the top few had major shares. Correspondingly, we
see that even when the number of companies is infinite, the top company
has a finite share. As we noted when dealing with µ > 1, this also shows
how dangerous it is to apply our naive “intuition”, which has been raised on
normal distributions, .

To repeat, as soon as µ crosses the value 1 and becomes less than 1, the
average share of the top company is finite. In spite of the fact that there are
an infinite number of companies, the top company has a finite share. As µ
approaches to zero, that share approaches to 1, in other words, a complete
monopoly.

This is, of course, caused by the long tail of the Pareto distributions. The
smaller µ is, the longer the tail, and on that long tail we find exceptionally
large companies. As soon as µ becomes smaller than 1, the quantitative nature
of the size of those extremely large companies changes drastically.

The average share of the second-largest company behaves as in Figure 2.27,
where results similar to the top company are observed. The average share is
finite for µ less than 1 in spite of the fact that there are an infinite number of
companies.

13This is also understandable, as the above estimate yields infinity for values of µ less
than 1, and N also goes to infinity, which is simply wrong because the share must be less
than 1 by definition.
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Figure 2.27: The average share of the second-largest company.

Figure 2.28: Total shares of the top companies.

We have also obtained the shares of the top one hundred companies for
N = ∞ and plotted their sum in Figure 2.28. The lowest curve denoted by
“m = 1” is the share of the top company, the curve above it denoted by “2”
is the sum of the shares of the top and the second companies, and so forth,
ending with the sum of the share of the top one hundred companies denoted
by “100”.

Some of the representative values of the shares of the top companies are
listed in Table 2.1, where it is evident that even when µ is less than 1 by a
small amount, the oligopoly is severe.

The sum of the shares of the top to the ∞-th company add up to 1 for
µ < 1. One might think this is a trivial fact, but it is not that simple, since
in calculating the shares we took the total number of the companies, N , to
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Table 2.1: Average shares (%) of the top ten, fifty, and one hundred
companies for values of µ closer to 1.

µ Top 10 Top 50 Top 100
0.90 40.0 49.8 53.5
0.95 24.2 30.5 33.0
0.98 11.8 14.7 15.9

be infinite. If we defined N as a finite number and added the shares from the
top to the N -th company, it should add up to 1. If we deined N as infinite,
distributions without long tails, like the familiar normal distribution, would
yield zero since the share of any company of a finite rank is zero and zeros
add up to zero. This happens for Pareto distributions with values of µ greater
than 1. Therefore, it is somewhat surprising, or one might say, spectacular
that they add up to 1 for values of µ less than 1.

We can also look at the distribution of the shares, not just their averages.
Figure 2.29 illustrates the PDF of the share of the top company for µ =
0.2, 0.4, . . . , 1.4 and N = 10, 102, . . . 107. In all the plots, the curve closest
to “107” is for that case, and N becomes smaller as the curve moves further
away. Also, for any value of µ, the average share becomes smaller as N
becomes larger. So, it should be easy to use this fact to determine which
curve is for which N . From these plots, we see that if µ is larger than 1,
the distribution is concentrated around the value of the share equal to zero,
and as N becomes larger the concentration becomes more intense. This is in
agreement with the fact that the average is zero for an infinite N . On the
contrary, if µ is less than 1, the distribution is spread over the whole region
from zero to 1. This shows that in addition to the fact that the average is
of order 1, the share of the top company for each data set could be quite
different from the average. That is, the order of fluctuation of the share of
the top company is of order 1.

2.4.5 Pareto’s 80-20 rule

It is important to distinguish the so-called “Pareto principle”, or “Pareto’s
80-20 rule”, from “Pareto’s law”. Some posited instances of the 80-20 rule are
listed below.

• 80% of sales are to 20% of consumers

• 20% of time used for a study results in 80% of the conclusions

• 80% of crime is committed by 20% of population

• 80% of happiness in life is derived from 20% of time

• 80% of marriages involve that 20% of the population with divorce his-
tories
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Figure 2.29: Distribution of the share of the top company.
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Figure 2.30: The value of µ below which the top n-companies
achieve a total share greater than 80%.

and so on and so forth. Some of these are obviously dubious. Sometimes,
they are referred to as a solid and proven universal scientific law, and the
power-law is referred as a justifying foundation. This is a rather dangerous
trend, bordering on “pseudo-science”. By looking at this rule by means of the
properties of the Pareto distribution we may be able to shed a more scientific
light on it.

For µ < 1, it is easy to see what really happens: Even if N is infinite,
the top companies have finite shares. Therefore, if we take the top 20% of
companies, there are an infinite number of them and their total share is 100%.
The “Pareto principle” appears to be wrong.

In Figure 2.28 we have drawn a line for the share equal to 80% and plotted
the rank of those achieving that share in Figure 2.30. We readily see that for
µ < µ1 ) 0.28 the top company has a share greater than 80%, while for
µ1 < µ < µ2 ) 0.46 the top and the second company have a total share more
than 80%, and so on. Further, for µ < µ100 ) 0.79, the top one hundred
companies have a total share greater than 80%. We have plotted the rank
that achieves the 80% share in Figure 2.31, from which one can read the value
of µ under which the top twenty companies achieve a 20% share.

On the other hand, if µ is greater than 1, the share of the top 20% of com-
panies is less than 1. But one should be careful in dealing with actual num-
bers, since this share is not common to all the Pareto distributions, but rather
depends on its behaviour in the non-asymptotic region, where its stochastic
variable (x) is not large. This returns us to a point of caution raised earlier,
namely that the “Pareto distribution” refers only to its behaviour. To put
this another way, it is the name of a class of distributions that approach to
the power function as the variable x goes to infinity. Each has a different be-
haviour for small-to-medium values of x. What we have studied above, such
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Figure 2.31: The minimum number, n, of the top companies, whose
total share is greater than 80%.

Figure 2.32: Various Pareto distributions and the 20% line.

as the behaviour of the largest company, depends only on the power aspect
for large values of N , and is common to all the Pareto distributions with
the same value of µ. But we are now thinking of the top 20% of companies,
and their properties are uncommon, no matter how large the total number of
companies, N . This can be most easily understood by looking at Figure 2.32.
The top 20% of companies are below the horizontal line denoted by “20%”.
The distribution of their size, x, is given by the curve of distribution, which
differs from one distribution to another. Therefore, it is not sufficient to speak
casually about using a Pareto distribution; we have to specify which Pareto
distribution we are using.
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Figure 2.33: Dependence of the share of the top 20% companies
on µ.

With this caution in mind, we can use our Monte Carlo method to in-
vestigate the Pareto distribution (A) given on p.37. The result is illustrated
in Figure 2.33, where the dots connected by broken lines are the results of a
Monte Carlo calculation with N = 102, 103 . . . 108 from below, and the thick
curve is for N = ∞. As we stated above, for values of µ less than 1 a finite
number of top companies have the 100% share and therefore the thick curve
is exactly 1 for µ ≤ 1. The grey area is where the share is between 75% and
85%, so, one might say that when the desired broken line or the thick curve
is within this grey area, the top 20% companies have about 80% of the share.
Also, Table 2.4.5 lists the values of µ where the top 20% companies have the
share 75%, 80%, and 85%. From this we see, for example, that when there
are ten thousand companies the top 20% of companies have about 80% of
the share for µ between 1.2 and 1.6. In Figure 2.34, we plotted the value of
µ where the top 20% of companies have the share 75%, 80%, and 85% with
three curves. Further in this plot, we gave the range where we did not restrict
the rate of the companies to exactly 20% but extended it to range between
15% and 25%, as denoted by the grey area. From this, as soon as there are a
certain number of companies, say one thousand, for values of µ a little greater
than 1 and less than 2, the 80-20 rule holds approximately. Of course, this is
the result for the Pareto distribution (A), but it is easy to see that a similar
result will hold approximately for other Pareto distributions.

As we have seen here, the 80-20 rule is not unconditionally guaranteed
by the power law, but it is approximately valid in some regions of µ (and
N). Since in practice quite a variety of Pareto distributions have a value of
µ somewhere between 1 and 3, the 80-20 rule is valid to some extent, which
accounts for its popularity.

Even so, we should be aware that the 80-20 rule is not justified in any pre-
cise sense. What is important in practice is to see which kind of distributions
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Figure 2.34: The range of m where the 80-20 rule holds.

Table 2.2: The value of µ below which the top 20% of companies
have a combined share of 75%, 80%, and 85%.

N 75% 80% 85%
102 1.42 1.18 0.98
103 1.58 1.34 1.16
104 1.61 1.39 1.22
105 1.62 1.40 1.24
106 1.62 1.41 1.25
107 1.63 1.41 1.26

the quantity in question obeys, and in what range, and to carry out a correct
statistical analysis, including the estimate of possible range of errors. One
may end up with a Pareto distribution, but, equally, the result might well be
quite a different kind of distribution. Robust business or governmental strate-
gies can come only from this kind of examination. In other words, “Pareto’s
80-20 rule” belongs only in casual conversation, and could cause real problems
if it is allowed to escape into analysis with serious consequences.

2.4.6 The Fractal Dimension

The “Fractal” is a mathematical concept discovered by a French-American
mathematician, Benoit Mandelbrot. Since his famous book Fractals: Form,
chance, and dimension was published in 1977 the number of scientific papers
developing the concept has kept increasing, and now covers a wide range of
disciplines. Indeed, fractals crop everywhere in science and technology. There
are even industrial applications such as fibres with a strongly water-repellent
fractal surface, and fractal antennae that are smaller and more powerful than
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conventional ones.
It is probably less well-known that the concept of the Fractal can also

be used in the study of complicated behaviours in a market, for example
movements in cotton prices, exchange rates, and stock values. None of these
values obey ordinary, smooth, functions, but jump about all over the place.
In other words, they are ragged,14 and such raggedness is apparent even if we
focus on the detail, a property referred to as self-similarity. In fact, since
real market data has a minimum time-interval the similarity fades as we close
in on that minimum unit of time-scale. Similar structures are commonly seen
in nature, a famous and well-studied example being coastlines.

Fractal objects are thus characterised by raggedness and self-similarity,
which is measured by their fractal dimension. Think of it like this. The
ordinary smooth lines we draw on paper by hand have a dimension of 1. If
we draw a circle and fill it in with black ink, we obtain a two dimensional
object. A simple dot has a zero dimension. Turning to the ragged lines of
exchange rates, stock prices, and coast lines we might assume that they are
one-dimensional since they form a line. But this is not necessarily true. In
fact, the length is uniquely determined for ordinary lines, and we can measure
it by using a divider. We split the line into segments of the unit length of the
divider, and by multiplying the number of segments with the unit length we
obtain an approximate value for the total length. By reducing the unit length
of the divider, we can get a more accurate value. If it approaches to a unique
value as we reduce the unit length, we define that value as the length of the
line.

However, a ragged line may not have that limiting value. Often the mea-
sured length becomes longer as the unit length becomes smaller. In such a
case, it cannot be regarded as an ordinary one-dimensional line. On the other
hand, since the ragged line does not cover an area of a region, it is not a
two-dimensional object either. The dimension of such a line is somewhere
between 1 and 2 and is not an integer; it has a fractal dimension. This is
basically the condition of calling an object fractal.

In the previous subsection, we have visualised the shares of companies
{Sk} using the Devil’s Staircase. This is one example of a fractal.

We will now count the fractal dimension D, whose definition is illustrated
in Figure 2.35. We divide the region (0,1) of the abscissa into small segments
of equal size, some of which contain dots and some of which are empty. We
denote the number of non-empty segments by k(n) when there are n segments,
If the dots cover the region (0,1) then k(n) should be equal to n. For example,
consider the set of all real numbers in the region (0,1), which is just a line
segment of length 1 and is one-dimensional. (Alternatively, we could select the
set of all rational numbers or the set of all nonrational numbers.) In this case,
since there are real numbers in any segment of non-zero length, k(n) = n. On
the other hand, if the set is made with only a point in (0,1), its dimension is
zero and k(n) is always equal to 1 independently of n. From this, we assume

14In other words they are “not universally differentiable”.
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Figure 2.35: How to obtain the fractal dimension of the size dis-
tribution of companies.

the following relation between k(n) and n:

k(n) ∝ nD.

This exponent D is the fractal dimension. If D is between zero and one, that
set is fractal. If D is close to one, it is a line-like object, while if D is close to
zero it resembles sparsely distributed points.15

Figure 2.36 charts the results of the Monte Carlo calculation of the fractal
dimension D for various values of the Pareto index µ. Since the fractal di-
mension is obtained more accurately for large numbers, we used data for some
108 companies. One possible conclusion from this result is that the accurate
value depends on µ as the broken line denoted by “∞?”. This line is divided
by µ = 1: For µ > 1, we find that D = 1, and that the distribution is dense,
while for µ < 1 we find that D is smaller than 1, and that fractality manifests
itself in a Devil’s Staircase.

Golden ratio, Silver ratio, and self-similarity

Both the Golden and Silver ratios have long been associated with powerful
aesthetic effects.

The Golden ratio, sometimes called the golden mean, has been observed
in numerous places: for example structures such as the Pantheon, and in
paintings such as the Mona Lisa. The Silver ratio is said to be hidden in the
pagoda of the famous Horyuji-temple in Nara, Japan, and in images of the
15We note that there are a variety of “fractal dimensions”. What we have explained here

is the “box dimension”, sometimes called the “entropy dimension” or “capacity dimension”.
We have used this here because it is easy to measure (Alligood et al., 1997; Falconer, 2003).
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Figure 2.36: Fractal dimension of the Devil’s Staircase.

faces of Buddha.
The actual value of the golden ratio is 1 : 1+

√
5

2
∼= 1 : 1.168, and the silver

ratio 1 :
√

2 ∼= 1 : 1.414. Both of these have a close connection with the
self-similarity which is essential to the fractality.

We show below various rectangles whose sides have these ratios. The slim
rectangle on the left has a ratio equal to the golden ratio, while the larger
one the right is that of the silver ratio.

If we delete the leftmost square from the left rectangle, as shown in the
illustration, the sides of the remaining rectangle still have the same ratio,
the golden ratio. A similar operation on this smaller rectangle yields another
rectangle with the golden ratio. This goes on and on infinitely, always result-
ing in a rectangle with the golden ratio, a variety of self-similarity. Inversely,
if we impose this kind of self-similarity on a rectangle, it automatically has
the golden ratio.

On the other hand, if we fold a rectangle of the silver ratio along the
middle we again obtain a rectangle of silver ratio. Folding in half again, we
obtain a silver ratio again and this goes on infinitely, yet another variety
of self-similarity. Incidentally, this property is used for the international
standard (ISO 216) for paper size: A0 paper is a rectangle of area equal to
1 m2 whose sides have the silver ratio. Having it we obtain A1, halving A1
is A2, and so on.
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Is the infinite self-similar layer the source of beauty? Many artists and
philosophers have supposed it must be, and there is a large literature on the
subject. We don’t know the answer, but we are very wary of explanations
that try to unite very diverse phenomena on slender grounds. Is there really
any reason for thinking that there will be one fundamental causal factor
behind aesthetic phenomena as apparently diverse as colour combinations,
facial characteristics, landscape, sculpture, music, and literature? Perhaps
not. However, it may well be that self similarity is peculiarly attractive
and rewarding for the human mind, and accounts for some part of some of
those experiences which we categorise together, in spite of their diversity, as
aesthetic.

(H.I. & J.C.)

2.5 Side story: “long-tail phenomena”

Chris Anderson, the editor-in-chief of Wired magazine,16 learned of an em-
pirical law of sales by using statistics from a digital jukebox company. This
empirical law is quite different from that familiar in the relation to mega-hits
(Anderson, 2006). A CEO of the company asked “What percentage of the
top 10,000 titles in any on-line media store (Netflix, iTunes, Amazon, or any
other) will rent or sell at least once a month?” Knowing Pareto’s 80-20 prin-
ciple, described in Section 2.4.5, Anderson estimated that 80% of the sales
comes from 20% of the products, and so guessed at about 50%. His mental
image was ten thousand books at a large bookstore and ten thousand CD
albums at Wal-Mart, half of which are left unsold. However, the answer from
this CEO was that “99%” of those top titles sold at least once a month!

In a world where the cost including packaging and storage is negligible
and instant search and download is possible, consumers behave in a certain
pattern: demand is unlimited in variety. Consequently, Anderson became in-
terested in what endless demand and unlimited supply could bring to business
and found similar phenomena in iTunes music and Amazon books.

In particular, he made a rank-size plot of one month’s downloads of about
one million titles from an on-line music company and found a long tail of
albums that did not sell much, but whose aggregate contribution to sales is
comparable to mega-hits. He described his finding in his article entitled “The

16It is interesting to the present authors that he too comes from a background in physics,
and has a degree from George Washington University, and did research at Los Alamos
Laboratory, before starting his career in publishing.
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Long Tail”, which made a great impact on net-business.
There is a difference in perception here. The long tail we have so far

discussed was concerned with a few giants, mega-hits, while Anderson’s “long-
tail” is about dwarves and their sum total.

An average American movie theater needs to have at least 1,500 customers
during a two-week period of play in order to stay in business, but on-line
distributors, which do not need a millimeter of shelf-space, are apparently
quite different.17

This “long-tail” phenomena can be understood by using the CDF, with
its variable x being the sales of goods or downloads as the property not of the
tail that extends to the right of the plot,

but of the region of small values of x to the extreme left. The behaviour is
revealed in the following plot:

It is interesting to ask whether the power law is obeyed in the region of small
values of x.

This sort of new business model is now attracting considerable attention,
and is crossing over from the academy into the world of business. For instance
the well-known microeconomist Hal Varian of the University of California
Berkeley (Varian, 1992) is also a chief economist at Google. We think it’s
important that a wider range of companies becomes interested in new ways
to examine various economic data. The mere plotting of distributions is just
a start. New insights into the long tails caused by elementary processes, such
as the sales of individual items, whose distributions and fluctuations are not
modeled yet, may result in still more new routes leading to fresh business

17It is worth noting that well before the age of the internet, some retailers like Sears were
launching a business model with an unlimited supply.
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models. For instance, with improved knowledge of the distribution of growth-
rates we may be able to achieve scientific risk management of the sales of
goods.18

Neither Pareto nor Gibrat could have anticipated modern internet busi-
ness with all its new distributions, but their work is intensely relevant, and has
prepared the way for a new world of research, bringing academics into partner-
ship with businesses producing very large and valuable data-sets. Certainly,
the present authors would welcome contacts from any enterprise interested in
this kind of collaborative work.

2.6 µ = 1 and Phase Transition

As we have seen in this chapter, the Pareto index, µ = 1, is a very special
value. Let us now look back at what we have found and think about its
meaning.

We have seen that in various countries, such as France, the United King-
dom, Italy, Spain, and Japan, several quantities used to measure company size,
such as total capital, sales, and the number of employees, exhibited a Pareto
index very close to 1, with only a small fluctuation around this value from year
to year. This is radically different from personal income, the Pareto index of
which fluctuated between µ = 1.3 and 2.6 (Figure 2.6). This may seem unsur-
prising when we recall that people tend to be more equal than companies. In
mature capitalism, companies are engaged in an unremitting struggle for sur-
vival. If defeated, a company may become bankrupt or be subject to merger
or acquisition. By contrast, while individuals try to achieve more prosperity
they rarely try to eliminate other people financially. Therefore, it is natural
to expect that people are more equal than companies, resulting in a larger
Pareto index.19 If this is case, why does the Pareto index of companies stay
close to 1, rather than falling below this value?

We have examined the property of Pareto distributions in Section.2.4 using
the staircase plot as a guide to and a visualization of inequality. We have seen
that for µ < 1 the staircase became quite ragged, indeed devilish, making the
inequality of the society manifest even to a casual observer. On the other
hand, for µ > 1, the staircase is disguised by the slope and the inequality is
hidden behind its smoothness.

This has been quantified by the calculation of the relative shares. For
values of µ smaller than 1, even if there are infinite number of companies, the
finite number of top companies have a finite share. This is the emergence of
oligopoly, which wouldn’t occur under a normal distribution. On the other
hand, nothing like that happened for µ > 1. At µ = 1, a somewhat interme-
diate situation is realised. In fact, the average top share was almost inversely

18We are a bit ahead of our story here: we will elaborate on growth rate in detail in the
next chapter, where Gibrat’s Law will play an essential role.

19However, it should be noted that several studies of business sectors where governmental
control is tight, such as the electric power industry, the distribution is known to be far from
a Pareto distribution, namely µ = 1.
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proportional to logarithm of the number of companies, N , and very slowly
goes to zero as N diverges. Further, in this case the shape of the Devil’s
Staircase was sometimes smooth and sometimes rough, varying a lot from
dataset to dataset.

We also saw that both Gini’s coefficient and the Robin Hood index showed
that oligopoly does occur for µ < 1, and that a self-similar fractal appears for
µ < 1.

All these show that the Pareto index µ = 1 is the very boundary be-
tween the oligopolistic state and other more equal states, which we might call
pseudo-equal states.

Borrowing terms from Modern Statistical Physics, this kind of a point may
be called a transition point, or a critical point.

The majority of economists and business people know little of contempo-
rary physics and its analytical tools and modeling methods. We think that
this is a pity, not least because, as we discussed earlier history tells us that
the disciplines of physics and economics have long been connected. But the
real value is that even a modest grasp of physics may yield substantial im-
provements in understanding of the character of economic and social states.

Let us consider heating water at a location close to sea level. If we fill a
kettle with water and start to heat it, the temperature rises. As it approaches
100 degrees Celsius, the water will start to boil. Further heating at this stage
does not raise the temperature, but only results in more vapour. The water
molecules in the vapour obtain their kinetic energy from the heat and are able
to exit the liquid state. So any additional heat is used to make vapour, and
is carried away by those molecules. However much more energy you put into
the water the temperature of the water does not rise further.

In cases such as this the water molecules may exist in a liquid state, water,
or can be in a gaseous state, vapour (or a solid state, ice). These states are
called a phase. The liquid state is the “liquid phase” and the gaseous state
the “gaseous phase”. A change of water to vapor, or vice versa, is called a
phase transition.

The point µ = 1 for Pareto distributions is the critical point between the
oligopolistic phase and the pseudo-equal phase. The economic society
of companies is, so to speak, boiling at this critical point.

There are two forces that drive the economic society of companies towards
this critical point µ = 1. Companies, especially large companies, try to grow
and to obtain large profits at the expense of their competitors. This drive
towards yet larger companies forces the value of µ to decline. On the other
hand, the oligopolistic phase is in some senses undesirable, as it obstructs
free competition and may distort the market. Antitrust laws exist in many
countries to suppress this kind of economic state, and at the worst case,
large companies are split into smaller companies. There are a number of
other governmental measures to suppress oligopoly and monopoly. All these
work to push up the value of µ, but only up to 1, as above µ = 1 oligopoly
essentially vanishes. Therefore these two competing pressures enforce µ = 1,
as illustrated in Figure 2.37. This is why the actual Pareto index in mature
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Figure 2.37: Two forces that besiege µ = 1.

capitalistic countries hovers around µ = 1.
When heating water, added thermal energy is transferred to kinetic energy

of water molecules. Those molecules collide with each other, which results in
the exchange of a part of their kinetic energy. As a result, the kinetic energy
of a water molecule obeys an exponential distribution called a Boltzmann
distribution. Since molecules keep colliding with each other, the kinetic
energy of each molecule fluctuates. But as the number of molecules is very
large, the group of molecules as a whole obeys the Boltzmann distribution
and other elegant statistical laws.20

We think that many readers will be thinking of the connections by now:
“molecules” . . . “companies”? “collisions” . . . “business transactions”? That,
in a nutshell, is the analogy between boiling water and companies. Since all
the agents that make the society, individuals, companies, banks, markets, and
government agencies, are diverse and differ considerably in their functions, one
may think it is impossible to find any law to describe them all. However, there
are so many of them, each influencing the others through trade, stock exchange
and other financial transactions, the exchange and sharing of personnel, and
so forth, that a single economic society is the result, just as the myriads
of interactions between water molecules produces a phenomenon susceptible
of scientific explanation. We suggest that, in fact, some statistical laws are
indeed valid for the whole, and in this chapter, we have tried to show that
there are some statistical laws governing the group of all companies.

Water molecules interact with each other in three-dimensional continuous
space. On the contrary, heterogeneous economic agents interact with each
other on a network, such as a transaction network, a stock-holding network,
or a personnel-sharing network. Economic society is made of layers of these
various networks overlapping with each other. Our next task, then, is to look
at these network structures and the interaction between companies, and so to
arrive at a scientific vision of modern-day economic society.

20We note that Aoki and Yoshikawa (2007) contains a theory that predicts the produc-
tivity distribution to be a Boltzmann distribution, which was further developed in the
framework of superstatistics by Aoyama et al. (2008).
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Chapter 3

Fluctuations — Company
Growth

In the preceding chapter we examined the statistical laws and patterns ob-
served in distributions of company-sizes, and it was noted that the tails of the
distributions of flow and stock variables quantifying company-size both obey
Pareto’s law.

Indeed, as was mentioned in the Section 2.1.2, Pareto’s power-law is com-
monly found in many phenomena observed within natural science, as well as
the social and economic sciences. Most researchers in these fields would ac-
cept that there is no single mechanism giving a universal explanation for all
these phenomena, but rather that different mechanisms would be found for
each of a variety of classes of phenomena.1

Company-size obviously changes over time: last year’s sales are not equal
to this year’s; the previous quarter’s total assets is different from that in this
quarter; and debt increases or decreases according to levels of borrowing from
financial institutions or from investors. Thus we can see that observations on
the distribution of company size are an instantaneous snapshot of the state of a
collection of companies, each of which is individually subject to fluctuations.

Our analysis is now being led towards the examination of temporal change
of company-size in terms of flow and stock variables, with a view to provid-
ing an account of the appearance of size distributions seen as a consequence
of fluctuations. Therefore, our next step is to understand fluctuations in
company-size, in other words the growth or contraction of companies.2

The following chapter’s focus on temporal change of flow and stock vari-
ables relating to company-size is structured as follows.

1Mechanisms explaining the origins of power-laws in natural and social sciences have
been uncovered for more than a dozen classes of phenomena. See Sornette (2004) and
references therein.

2The importance of understanding fluctuations in terms of heterogeneous interacting
agents is well covered in recent studies (Aoki, 2002; Aoki and Yoshikawa, 2007; Delli Gatti
et al., 2008)
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First, we show that another factor called Gibrat’s law is phenomeno-
logically valid by examining it in large datasets for European and Japanese
companies. In the course of this work we reveal a remarkable fact, an effect
which we will call detailed balance, which represents a sort of stability in
the growth of companies, and is key to relating Gibrat’s law (dynamics) to
Pareto’s law (statistics).

In addition, we discuss an important statistical method, namely the cop-
ula method, which can be employed as an alternative to growth rate when
measuring the change between two variables.

Secondly, we will make a detour through the subject of personal-income
distribution, and reconsider Pareto’s original finding, his famous Law, in con-
junction with Gibrat’s law, and both in the light of “detailed balance”. In-
terestingly, we will find the same dynamical structure that is apparent in
company-growth, but more importantly, it will be shown that those laws can
break down under abnormal situations in a nation’s economy, such as the
collapse of the Japanese “bubble economy” in 1990.

So far our story has been concerned with and applies to large companies,
which are dominant in the aggregated sum of sizes and fluctuations. On the
other hand, small and medium-sized companies prevail in overall number.
Fortunately, the financial institutions responsible for credit risk management
in Japan have recently accumulated and published very large datasets con-
cerning small and medium-sized companies, enabling us to study distributions
and fluctuations in this area and reveal phenomena not covered by Pareto’s
laws. Indeed, we shall find a distinctive boundary between large and small
companies based not on the legal regulations or arbitrary definitions of what
are large and small companies, but instead on quantitative differences in the
statistics and dynamics. This observation is our third major point.

Fourthly, in contrast to “growth”, it is possible for a company to pass into
a state of “death”. Recall that a company’s activity is aimed at the profit
anticipated from sales over and above expenses such as labour and financing,
and thus that the profit will be determined a posteriori by several factors such
as sales fluctuations, costs, the price of intermediate goods, interest rates, and
risks due to exchange-rates. If the company becomes short of retained earnings
because of those factors, it goes into bankruptcy, or experiences corporate
death.

Finally, it would be of crucial importance in such activity for a company
to determine the amount of output by deciding the input of capital (non-
human resources) and labour (human resources). How can we understand the
collection of those activities in terms of microscopic behaviour, in which each
company attempts under various constraints to maximise profit? We discuss
this point briefly under the terms production function and what we call
the ridge theory of company growth.
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Figure 3.1: Time-series of annual company-sizes for the eight
largest electronics and electric-machinery companies (1988 to 2004).

3.1 Gibrat’s Law and Detailed Balance

Let us begin and take a look at real data so as to understand important
phenomenological facts concerning the fluctuations of company growth.3

3.1.1 Growth Rate and Gibrat’s Law

The growth of company-size for flow or stock variables can be easily quantified
by measuring the quantities at different points in time. To illustrate this, in
Figure 3.1, we depict the time-series of annual company-sizes (defined by the
summation of assets and debt) for the eight largest electronics and electric-
machinery companies (Fujitsu, Hitachi, Mitsubishi, NEC, Panasonic, Sony,
Sharp, Toshiba) in Japan, from the fiscal year 1988 to 2004.4

The time-scale here is on an annual basis for illustrative purposes; in fact, a
quarterly or monthly basis would be adequate. The point is that the dynamics
of company growth can only be understood with a time-scale that is longer
than that of the activity of the company, typically days and weeks.

In addition, the time-scale should be shorter than that over which macroe-
conomic conditions surrounding the companies are subject to change, say,

3There exists a huge literature on company, industry and country growth in economics.
We refer to Amaral et al. (1997, 1998); Bottazzi and Secchi (2003); Fu et al. (2005); Gabaix
(2008); Ijiri and Simon (1977); Okuyama et al. (1999); Stanley et al. (1996); Steindl (1965);
Sutton (1997); Takayasu et al. (1997) and references therein for other aspects and intro-
duction to previous studies.

4The data is on an unconsolidated basis. Companies have slightly different policies in
accounting for consolidated and unconsolidated data, so a simple comparison of values for
company-sizes might be inappropriate here.
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Figure 3.2: Time-series of growth-rates for the eight major elec-
tronics companies (corresponding to Figure 3.1; 1989 to 2004).

years and decades. Otherwise, we would not be able to separate the “fast”
variables of company-level dynamics from the “slow” variables of nation-level
macroscopic dynamics.5

Let us denote by x1 and x2 a company’s sizes at time t1 and a succeeding
time t2 respectively. We can further define growth-rate by

R =
x2

x1
.

The variable R represents the ratio at which a company increases or decreases
its size, such as sales and total-assets, in the time interval. In addition, we
will define the logarithmic growth-rate as

r = log10 R = log10 x2 − log10 x1 ,

where log10 is a logarithm with base 10.6 If the size does not change, the
growth-rate is R = 1 and the logarithmic growth-rate is r = 0; if the size
increases, R > 1, r > 0 and if it decreases, R < 1, r < 0.

Figure 3.2 shows the annual growth-rates calculated from Figure 3.1. (The
upper and lower panels divide the eight companies into two groups of four
simply for visual ease.) It can be seen that the growth-rates are diverse across
the companies and over time vary around the value 1. If we think of individual

5It is not trivial, a priori , that such a separation of time-scales is possible. Some
abnormal situations, caused by a global shock, for example, may not allow one to distinguish
between time-scales in this way. It would, nevertheless, be reasonable to assume that it
is possible in ordinary instances, and thus to observe consequences which can be tested
against empirical facts a posteriori.

6For non-math readers: when y = 10x, one writes x = log10 y by definition. E.g.,
log10 1 = 0, log10 10 = 1, log10 100 = 2, . . ..
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Figure 3.3: Probability distribution for logarithmic growth-rates
of company-income (2001 to 2002; roughly 57,000 companies).

companies at the same instant of time as spatially related, we can say that
growth-rates fluctuate both in space and time.

Since this spatial fluctuation is related to company-size distribution, we
can now proceed to investigate the spatial distributions of growth-rates.

We can begin by using the flow variables of companies’ declared incomes
in the Japanese dataset, the distribution of which was shown in Figure 2.4.
This is a suitable set since it is an exhaustive list of incomes for about 57,000
companies covering the region where the power-law holds. We can calculate
the growth-rate for each company for two successive incomes from the year
2001 to 2002. Figure 3.3 is the PDF as a histogram for the logarithmic
growth-rates r. The magnitudes r = 0.5 and 1 correspond to the increase
by 3.2(≈ 100.5), 10 times, while r = −0.5 and −1 represent the decrease by
0.32(≈ 10−0.5), and 1/10 times, respectively, in terms of R.

Note that the ordinate is a logarithmic scale. The growth-rate distribution
has a strong peak at r = 0, and declines as an exponentially decreasing
function on each side of positive and negative values of r. The number of
companies increasing or decreasing in size by a multiple of three (R = 3 or
0.3) can be roughly estimated to be 10% of the number of companies with
no change (R = 1); also the number for increase or decrease by a multiple
of 10 is roughly 1% of the number for unchanged companies. It is intuitively
remarkable that a company as large as R = 2 or R = 0.5 could double or halve
in a year, but in fact the data shows that this is a quite dramatic observable
change.

It is evidently reasonable to ask whether growth rate is dependent on com-
pany size, for example we might ask whether the growth-rate of a company
of size 1 in an arbitrary scale is large when compared with that of a com-
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Figure 3.4: Probability distribution for logarithmic growth-rates
conditioned by company income size (corresponding to Figure 3.3).

pany of size 2? To answer this question we can examine the distribution of
sizes in Figure 2.4 on page 21 again. Let us segregate those companies into
categories (or bins) by dividing the size range into five logarithmically equal
bins, covering incomes of 50 million up to 5 billion yen. In other words, we
will divide the interval between two orders of magnitude (from 50 million to
5 billion) into bins by multiples of 102/5 = 100.4 ≈ 2.5; the first bin ranges
from 50 million to 100.4 × 50 million, roughly 125 million, and similarly for
the others.7

The resulting bins are then

[5 × 1010+0.4 (n−1), 5 × 1010+0.4 n] (n = 1, . . . , 5)

We can examine the PDF for the logarithmic growth-rate r by choosing those
companies whose sizes fall into each bin. This is called a conditional PDF.
Figure 3.4 depicts in a single plot the conditional PDFs thus obtained.

What can we conclude from this plot? Obviously the calculated PDFs
overlap and form a single curve as shown in Figure 3.4 (or equivalently as
in Figure 3.3). The growth-rate does not depend on the selected bin, i.e. it
is independent of the company size at the outset, as the distribution in the
figure shows.

In other words, for companies in the regime of Pareto’s law, the fluctuation
in their rise and fall, as quantified by growth-rate, is statistically independent
of the size.

This fact looks quite strange at first sight, for one might expect a quantita-
tive difference in the fluctuations for group A and B of companies with differ-

7One could simply split the range into linearly equal bins, but since we know that the
tail of the distribution exhibits a power law, this would make an inefficient use of the data.
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Figure 3.5: Probability distribution for growth-rates ((a) sales and
(b) profits for the years 2002/2001).

ent sizes, a difference that would be responsible for the diversity of companies-
sizes between A and B.

However, our finding is different, and we shall refer to this non-trivial fact
as Gibrat’s law.

3.1.2 Data for Japanese Companies

So far, we have examined an exhaustive list of companies from a Japanese
company-income dataset, and found Gibrat’s law. It is interesting to ask
whether this law also holds for the other quantities that can characterise
company activity.

For example, we could take the dataset used for our study of company-size
distribution, which covers hundreds of thousands of companies, and examine
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the sales and profits (positive profits, not deficits, are considered here).
Figs. 2.9 (a) and (b) show the annual growth-rate for the years 2001 and

2002 for sales (0.34 million companies) and for profits (0.27 million), respec-
tively. The PDFs are conditional, just as they were in Figure 3.4, though the
condition is imposed on the magnitude of sales or profits.

The indices n = 1, . . . , 5 correspond to five logarithmically equal bins,
ranging from 2 billion to 2 hundred billion yen for sales, and from 20 million
to 2 billion yen for profits.

We observe that the distribution of growth-rate differs from one variable to
the other. The growth-rate for profit has a larger width in its distribution than
that for sales, and a narrower peak around r = 0. We can see, nevertheless,
that the PDFs overlap in a single curve irrespective of the chosen bin n. Thus,
Gibrat’s law also holds for these variables.

3.1.3 Data for European Companies

Sales and profits are flow variables, as opposed to stock variables such as total-
assets, the number of employees, and others, so we might further ask whether
Gibrat’s law applies to this latter class of characteristics of company-size, and
whether it applies in countries other than Japan.

To shed light on these questions we will now turn to several results from
datasets for European companies used in Section 2.3.2. The criterion used
for selecting companies for inclusion in the datasets are as follows: profits are
larger than 15 million euros, or total-assets exceed 30 million euros, or the
company has more than 150 employees. See Fujiwara et al. (2004) for details.

In Figure 3.6 (a) (b) and (c) are the distributions for annual growth-rates of
total-assets and sales in France, and of the number of employees per company
in UK, using the same method of conditional PDFs as employed in Figure 3.4.

The bins employed, n = 1, . . . , 5, are 30 million to 3 billion euros for total-
assets, 15 million to 1.5 billion euros for sales, and 150 persons to 15 thousand
for the number of employees, in logarithmically equal intervals.

It can be seen that the distributions for different variables have different
shapes, and that the width of fluctuation in the number of employees is rel-
atively small compared with that in total-assets. The time-scales involved
in the fluctuation and dynamics of those variables are different, but we can
see, simultaneously, that the PDFs give a single overlapping curve whichever
bins, n, are observed. Thus we have established that Gibrat’s law holds quite
universally, irrespective of variables and countries.
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Figure 3.6: Probability distribution for growth-rates ((a) total-
assets (companies in France), (b) sales (France), and (c) number of
employees per company (UK) for the years 2001/2000.)
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Mathematical expression of Gibrat’s law

If the conditional PDF for the growth-rate R of the company-size x is denoted by
q(R|x), Gibrat’s law can be expressed as

q(R|x) = q(R) ,

that is, R’s independence of x for a certain range of x > x0.
The PDFs shown in Figure 3.4, Figure 3.6 and elsewhere depict the probability

distribution function for a logarithmic growth-rate r = log10 R, which is related to
that for R by the equality of probability, q(r)dr = q(R)dR.

3.1.4 Gibrat Revisited

Readers in a tearing hurry may want to skip this section, where we pause to
consider Robert Gibrat (1904 - 1980) a French researcher in economics and
the origin of the law.

In his seminal treatise, “Les Inégalités Économiques” (Gibrat, 1931), Gibrat
proposed a stochastic process which offers the potential of explaining the dy-
namics of company-size. At the time of writing, researchers had found dis-
tributions with heavy-tails in various disciplines of natural science as well as
social and economic sciences, amongst them Jacobus Kapteyn, an astronomer
who had discovered the rotation of the Galaxy. Kapteyn had suggested a sim-
ple process as one of the possible mechanisms that might bring about a highly
skewed distribution, and as a result of correspondence with Kapteyn, Gibrat
turned his mind to the origin of economic and social inequalities (see Sutton
(1997)).

The stochastic process is quite simple. Consider a dynamical variable xt at
time t and its growth Rt which is independent of xt and temporal statistical-
independence, i.e., at each time the growth simply takes a value drawn from
a distribution. He called the basic idea in this stochastic process a “law of
proportionate effect”, and actually placed this expression in the subtitle of the
treatise.8 “Proportionate” refers to the multiplicative nature of the process,
that is, the size at the next time-step is determined by a multiplication of the
previous size and an independent multiplicative factor (see Redner (1990) for
instance). We shall call this Gibrat’s process.

We will later see that if we run a simulation for this stochastic process,
the result is a so-called “log-normal” distribution, one of the classes of skewed
distributions well-known in physics and the social sciences (see Aitchison and
Brown (1957)). One can prove, in addition, that the average and variance
of the distribution grow in time. Now, Gibrat employed data of personal
income and company-size (measured by number of employees, factories, etc.)

8The subtitle is long; applications: aux inégalités des richesses, à la concentration des
entreprises, aux populations des villes, aux statistiques des familles, etc., d’une loi nouvelle,
la loi de l’effect proportionnel. The phrase “the new law” may be read as a strong claim
with regard to his endeavor to explain many social phenomena such as personal income,
companies, cities, etc.
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available at the time of writing, and actually fitted their distributions by log-
normal distributions claiming the stochastic process as a new finding, a new
principle or a law.

Revisiting Gibrat’s study with today’s high-precision and large-scale data,
we immediately notice the difficulties:

• The log-normal distributions do not fit well for the region of major
companies of large size which have studied in his work, putting aside
the region of small and middle-sized companies.

• The average and variance do not grow over time.

The data employed in Gibrat’s study were not only limited in extent, but
were presumably to some degree biased, with the result that the apparent
fit to the log-normal distribution and its mathematically well-studied model,
led Gibrat into concluding that this was what should be considered first. In
regard to the second point, Gibrat himself recognised the difficulty and tried,
without success, to provide possible solutions (see Sutton (1997)).

Let us recall that we denominated as Gibrat’s law the following property:
let the growth-rate of a company i at a point in time be denoted by Ri; if the
probability distribution for the collection of growth-rates {Ri} is statistically
independent of the company-size x, then the law holds.

Gibrat’s law itself does not lead to the Gibrat’s process. It will be instruc-
tive to exemplify and emphasise this point.

Consider an example of Gibrat’s process, that is, a multiplicative process
as described above (see page 169). Suppose a company follows this process,
then it can continue its activity of business however small it may be, because
the succeeding multiplicative factors may happen by chance to be small. To
avoid such an unrealistic situation, let us assume that there is a threshold
for the size of company, which is interpretable as the minimum size of assets,
facilities, and number of employees necessary for survival. Also suppose that
a company exits the field of business, and is replaced by a newcomer. The new
company could start with a minimum size as we have already assumed. This
can be conceived of as a “reflecting barrier”, positioned at a small value for
company-size; the barrier repels companies shrinking down to the threshold
and propels them in the direction of growth in size.

This modifies Gibrat’s process slightly, but obviously satisfies the property
of Gibrat’s law as defined above. Moreover, if we were to run a computer
simulation for a collection of companies, each of which follows the modified
process, we would find that the distribution for company-size follows a Pareto
law in the tail. Mathematically, it can be proved that a Gibrat process with
a reflecting barrier boundary condition obeys Pareto’s law (see Sornette and
Cont (1997)).

However, we do not claim here that this is a plausible model for explaining
the dynamics of companies, at least with respect to the Pareto’s and Gibrat’s
laws. Nevertheless, we can now see that Gibrat’s law itself does not lead to
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the Gibrat process, which is just one of the many possible models that satisfy
the property of Gibrat’s law.

Even so, this observation does not contradict the law of proportionate
effect which we refer to here as Gibrat’s law. On the contrary, Gibrat’s insight
was to focus on the statistical independence of growth-rate, and this turns out
to be correct.9

The point is that Gibrat’s process was simply not an appropriate model to
describe real dynamics, as researchers have found with the help of abundant
empirical data. We need to find another key to understanding the kinematics
of the rise and fall of companies, and this will be attempted in the following
section, where we will introduce the concept of “detailed balance”, a concept
drawn from statistical physics. Together, these two key concepts — Gibrat’s
law and detailed balance — solve the long-standing problem of the origin of
Pareto’s law, eighty years after Gibrat’s finding.

3.1.5 Detailed Balance

So far we have been using the variables, R and x1 for the description of
growth-rate, but we could also use another equally valid pair, for example, x1

and x2. A brief glance at the pattern of fluctuation in terms of this pair of
variables will illustrate this point.

It will suffice to examine how companies with size x1 at time t1 make a
transition to a region of x2 at time t2. We will take all the companies in
the Pareto region, and first put points for the pair (x1, x2), resulting in a so-
called scatter-plot. Figure 3.7 (a) and (b) are scatter-plots which correspond
to Figure 3.5 (a) and (b) respectively. Similarly Figure 3.8 (a), (b) and (c)
correspond with each of Figure 3.6 (a), (b), and (c).

Consider, in such a scatter-plot, a portion of a rectangle spanning x1 to
x1 +dx1 and also x2 to x2 +dx2, and then calculate the number of companies
which fall into the rectangle and divide this by the total number in the entire
plot. The calculated quantity as a function of the point (x1, x2) is called a
joint probability denoted by p12(x1, x2)dx1dx2. Here dx1 or dx2 represents
a small interval in the direction of x1 or x2.

Even to the naked eye a significant feature is visible, namely that the
distribution of points looks almost symmetrical with respect to the diagonal
line (running from south-west to north-east).

If it is actually symmetrical in a statistical sense,10we can say that the
following fact holds: companies make a transition from a neighbour of x1 in
size (state of x1) to a neighbour of x2, and vice versa, from the state of x2 to
x1. The frequency in the transition of companies from x1 to x2, and that for

9We will assume that the reader who has followed this discussion is now comfortable
with this distinction, though even some professional researchers seem to confuse Gibrat’s
law with the Gibrat process associated with log-normal distribution.

10While it looks symmetrical, a careful statistical analysis is necessary to check the sym-
metry, since our eyes easily fail to identify the density of a cloud of points.
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Figure 3.7: Scatter-plot for company-sizes at successive points in
time ((a) sales and (b) profits for the years 2001/2000).
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Figure 3.8: Scatter-plot for company-sizes at successive points in
time ((a) total-assets (France), (b) sales (France), and (c) number of
employees (UK) for the years 2001/2000.)
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the reverse transition is the same. This property is a kind of balance, which
holds for any pair of states (x1, x2) in the Pareto region.

In the study of the motion of molecules in a gas, and in other cases,
statistical physics has a concept for this property, which is called detailed
balance, a term which we shall consequently adopt in this book.

One way to show whether this property holds or not in actual data is to
conduct a direct statistical test. Take a scatter-plot for p12(x1, x2) and flip it
so that the x1 axis is replaced with x2, and then compare the flipped plot with
the original one. The statistical test is to check if the distribution of points in
these two plots is indistinguishable merely as two realisations (random sam-
plings) of the same joint probability. A two-dimensional Kolmogorov-Smirnov
test can be used for this.11 The null hypothesis, namely the symmetry in the
scatter-plot, survives this test for most datasets.12

Mathematical expression of detailed balance

Detailed balance can be expressed for the joint probability P (x1, x2) as

p12(x1, x2) = p12(x2, x1) ,

that is, the joint probability function is symmetric with respect to the exchange of
the two arguments in the function.

The other way to check the validity of detailed balance is, as explained in
the next section, to compare the data with one of the consequences of detailed
balance and Gibrat’s law, which we shall call a reflection law.

11To be precise, one should subtract the overall average in the growth-rate. For example,
in Figure 3.2, there are trends at epochs in time, shifting the values of growth-rate to
either the positive or negative side. We need to subtract such a shift of the average before
conducting the statistical test, because the detailed balance we want to study here is a
different property from the effect of a trend.

12The profit data in 3.7 (b) is an exception, the probable reason being a problem in the
dataset itself, as discussed in Section 2.3.1.

Two-dimensional Kolmogorov-Smirnov test

The Kolmogorov-Smirnov test for a one-dimensional distribution is well-
known and widely used. This is a non-parametric test (no parameters are
assumed in the distribution) to check if, for a one-dimensional case, the
“two sets of samples are from the same distribution”. In multi-dimensional
cases no non-parametric test is available. Astronomy requires such a two-
dimensional test, because researchers want to test whether the distribution of
stars differs in two different directions (samples) in a sky (of two-dimensions).
Empirically, astronomers have found a statistical test which depends only on
the correlation coefficient (see the column on page 121) for a two-dimensional
distribution. See Press et al. (1992, Chap. 14) and references therein.
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It is a surprising fact that such a property holds for the stochastic tran-
sitions of company-size in competing companies, and we might regard it as a
kind of balance or stability. In addition, we should remark that the condition
of detailed balance is a law which is independent of Gibrat’s law. It is easy
to see that in the ecology of growing and shrinking companies, some become
dominant and occupy niches vacated by falling companies. However, and this
should be emphasised, detailed balance is not a mere balance for the entire
population of companies, but a more stringent mathematical statement about
the stochastic transitions of companies.

3.1.6 Relation between Pareto’s and Gibrat’s Laws and
the Reflection Law

To sum up: we have so far shown that in the phenomenology of fluctuations,
and for a wide range of company sizes, the following hold:

• Pareto’s law for the distribution of the company-size

• Gibrat’s law of the growth-rate of company-size

• Detailed balance in the process of growth

The question that faces us now, is how to relate these three laws to each
other? A detailed argument is put in the mathematical section below, but
we can anticipate the conclusion, by stating that there is actually a provable
relation:

Under the condition of detailed balance, Gibrat’s law
leads to Pareto’s law as the resulting distribution of
company-size

As a bonus from the proof, it follows that what we call the reflection law
also holds, which can be written as

q(R) = R−µ−2 q(R−1) .

This equation states that in the PDF for the growth-rate the functional form
in the side of R > 1 has a mathematical relation to that in the side R < 1,
and that the relation depends on the Pareto index µ. Note that this reflection
law alone does not determine the shape of the growth-rate’s PDF. Actually
we have seen that the PDFs for different variables measuring company-size
take various shapes (see Figure 3.4 for company-income and Figure 3.6 for
comparison).

It is implied from the reflection law that it is possible to know the distribu-
tion of growth-rate for the group of shrinking companies once one knows the
distribution for the rest of the growing companies. We have actually drawn a
curve in the PDFs depicted so far by first fitting a nonlinear function to the
data in the positive logarithmic growth-rate (r > 0, equivalently R > 1) and
then by calculating the other side of negative growth (r < 0 or R < 1) from
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the reflection law. Figure 3.4 and Figure 3.6 confirm that the fit is satisfactory,
and the reflection law works adequately.

If you are practitioner, these laws might appear to be distracting, even
boring, mathematics, and certainly far from intriguing. In fact, they have im-
plications for the practice of business. Knowing the details in the distribution
for the growth-rate of companies is of value to risk management, since one
can perform a quantitative estimation of the risk associated with the growth
or decline of companies. It would, of course, be necessary to take into account
the consequences of Gibrat’s law, that is, the independence of growth from
company-size. If you make investments in a set of many enterprises, it would
be prudent to consider the reflection law relating positive to negative growth-
rates, which in turn requires you to have the distribution for growth-rate and
also to measure the Pareto index in a statistically reasonable way. That is to
say, these points might prove useful in the risk management toolbox.

Proof of mathematical relation between the laws

It is not difficult to show that Gibrat’s law on page 74 and the detailed balance on
page 79 lead to Pareto’s law (see page 20) (Fujiwara et al., 2004).

Since the pair of variables (x1, x2) and that of (x1, R) are related by the change
of variable, R = x2/x1, one can easily see that the joint probability distribution
p1R(x1, R) is related to the joint probability distribution p12(x1, x2) by

p12(x1, x2) =
1
x1

p1R(x1, R) .

Now, the conditional PDF q(R|x1) for the growth-rate satisfies

p1R(x1, R) = q(R|x1) p1(x1) ,

by definition, where p1(x1) is the PDF for the size x1.
Assume that detailed balance holds, then the first equation yields

p1R(x1, R) =
1
R

p1R(Rx1, R
−1) ,

as readily shown by a simple calculation. Therefore, this equation and the second
equation above lead us to

q(R−1|x2)
q(R|x1)

= R
p1(x1)
p1(x2)

.

Note that this is a consequence from detailed balance alone.
With the additional assumption of Gibrat’s law, one can immediately rewrite this

equation as
p1(x1)
p1(x2)

=
1
R

q(R−1)
q(R)

.

Note that the left-hand side is a function of x1 and x2 = R x1, while the right-hand
side is a function of only R. The equality holds if and only if p1 is a power-law
function. (For example, if we expand this equation in terms of R around R = 1,
we obtain a differential equation that p1 has to satisfy, one whose solution is the
power-law and is verified as satisfying the above equation.)

It is also possible to obtain a proof by inserting the power-law function p1(x) ∝
x−µ−1 into the above equation so that the reflection law follows as a consequence.
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3.1.7 Copula

Gibrat’s law, detailed balance, and so forth have been uncovered by conduct-
ing an analysis of the statistical dependence between multiple variables. A
powerful method beyond conventional approaches can be applied to such an
analysis, and more generally to other analyses regarding correlations, namely
the copula method.

For two stochastic variables a copula is a function which represents the
joint probability function of the variables in terms of cumulative probability
functions for each of the variables. A cumulative probability function P<(x)
for a stochastic variable is defined, as explained on page 21, as the probability
that the variable takes a value smaller than x. For two stochastic variables
the joint cumulative probability function P<(x, y) is the probability that the
first variable is smaller than a value x and that the second one is smaller than
y. If the two stochastic variables are statistically independent of each other
(you cannot predict one from the other), then the probability is simply the
multiple of each variable’s cumulative probabilities:

P<(x, y) = P<(x)P<(y) .

This is not always true, however. Yet one is able to show that the joint proba-
bility can be expressed by a function of each variables’ cumulative probabilities
as

P<(x, y) = C(P<(x), P<(y)) .

The function C(u, v) that appears here is the copula (more mathematically-
oriented readers may consult Nelsen (2006)).13

The word “copula” is used in linguistics as the connecting link between
the subject and predicate of a proposition. In statistics, it refers to a link or
bond which connects two stochastic variables, and to the method involved in
joining them.

Since the copula function has variables consisting of cumulative probabil-
ities P<(x), it is a multi-variate function with the domain of its argument
variables being between 0 and 1. In addition, a copula represents a joint
probability, so the value it takes ranges from 0 and 1. Note that copula are
invariant under an appropriate change of scale in the stochastic variables,
because the argument variables are cumulative probabilities, but not stochas-
tic variables. If the stochastic variable is money, we have the same copula
irrespectively of how the variable is represented in units of dollars, millions
of dollars, or the logarithm of a dollar sum. We can even go one-step fur-
ther, and use only the rank (smaller or larger), instead of the value of x. In
this sense, therefore, copula is the concept regarding so-called order-statistics.
Remember that the concept of correlation coefficient (see the mathematical
column on page 121), and related concepts, are based on the realm of normal

13It is possible to generalise this to more than two stochastic variables, though we shall
focus on pairs of variables.
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Figure 3.9: Three typical examples of copula.

distributions.14 In contrast, copula have desirable properties which enable us
to describe distributions with fat tails, such as the Pareto distribution, since
it does not depend on assumptions for each stochastic variable’s distribution
(marginal distribution). Copula can also be used to conduct simulations in
multi-variate statistical problems that involve statistical correlations, for ex-
ample in quantitative finance, risk management, and so forth (see Iyetomi et
al. (2009b) for example).

Interestingly, the copula function C(u, v) has an upper-bound function
and a lower-bound function, as shown in Figure 3.9. In each of these figures,
the two axes on the horizontal plane are u and v, the ordinate is the value
of C(u, v). The left figure gives the upper-bound, while the right illustrates
the lower-bound, and the middle figure depicts the case of two statistically
independent variables. τ and ρ in these figures are to be understood as follows.
Kendall’s τ is a parameter characterising the copula, it takes a value from −1
to 1 correspondingly to the lower and upper bound of the copula, while it is
exactly 0 in the case of statistical independence.15 Let P+ be the probability
that the relative ordering of the ranks with respect to x is the same as the
relative ordering of the ranks with respect to y (so-called concordant case);
and let P− be the probability that the relative ordering of the ranks with
respect to x is opposite to the relative ordering of the ranks with respect to y
(i.e. it is a discordant case). Then assuming that there exists no tie or similar
rank in either of x or y, we have

τ = P+ − P− ) 2P+ − 1 ,

which reads as the meaning of τ . Suppose, for example, that the variables
are company-sizes in two consecutive years. If you choose two companies at
random, the relative ranking of the two companies in the first year is always

14One can appreciate this simply by noting that a proper definition of correlation coef-
ficient requires a finite variance, but in fact our world has enough space for distributions
without finite variances.

15This parameter is also called Kendall’s rank correlation τ .
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Figure 3.10: Copula for company-incomes in the years, 2001 and
2002.

the same as the relative ranking in the second year, if τ = 1. And it is fifty-
fifty, if τ = 0. If τ = −1 then the rankings are always opposite to each other,

The parameter ρ is conventionally known as Spearman’s ρ. This concerns
a triplet of companies rather than a pair. Let us be satisfied here with under-
standing this as (a linear function of) the volume under the surface spanned
by the copula function. It is −1 for the lower-bound, 1 for the upper-bound,
and 0 in the case of statistical independence.

We will now turn to examine examples of copula for actual data.
Figure 3.10 depicts the copula for Japanese company incomes in the years

2001 and 2002, as studied in Section 3.1.2. The copula has similarity in
its functional shape as the upper-bound function shown in Figure 3.9. The
parameters of τ and ρ, actually derived from the real data, are tabulated in
Table 3.1. The value of τ implies that for a randomly chosen pair of companies
the probability that the relative ordering of the ranks in the first year is the
same as that in the second year is approximately 80%.

The various data for European countries have similar copulas. Table 3.1
exemplifies this point from the total-asset data for French companies.

For Japanese personal income data the copula has a qualitatively different
function from the upper-bound. In fact, the parameter τ is nearly 0.6, as
listed in Table 3.1, which means that for a randomly chosen pair of high-
income earners the probability that the relative ordering of the ranks in the
first year is opposite from that in the second year is roughly 20%. Some
readers will be relieved to hear that this turnover probability does not vanish
to zero.

We are also able to test Gibrat’s law by using copulas. In the preceding
section, the validity of the law was clear from the PDF figures, but it is
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Table 3.1: Parameters of τ and ρ for copulas
data τ ρ

Tax-income (Japan): 2001–2002 0.59 0.77
Total-assets (France): 2000–2001 0.86 0.95

Personal-income (Japan): 1997–1998 0.62 0.72
Tax-income and its growth-rate (Japan): 2001–2002 0.02 0.05
Total-assets and its growth-rate (France): 2000–2001 0.03 0.04

Personal income and its growth-rate (Japan): 1997–1998 -0.04 -0.05

Figure 3.11: Copula for personal-incomes in the years, 1997 and
1998.
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Figure 3.12: Copula for company-incomes in the year 2001 and its
growth-rates.

valuable to quantify the validity in terms of a copula and its parameters.
Figure 3.12 shows the copula for the tax-income of companies in 2001,

and its growth-rate from that year to 2002. It can be observed that the
copula function is close to the middle copula of Figure 3.9. Actually, both
parameters, τ and ρ, are close to zero. These facts16 show that Gibrat’s
law holds with a respectable accuracy, as quantified by the copula and its
parameters. Similarly for total-asset data of French companies.17

In addition, for personal income and its growth-rate, the parameters τ
and ρ have small absolute values, as shown in Table 3.1. (The copula figure is
omitted here.) Thus we can have further evidence for the validity of Gibrat’s
law.

It should be remarked that the copula method will shortly be shown to
open the way to a more sophisticated method of performing simulations of
multi-variate problems.

3.2 Digression: Personal-income Fluctuation

3.2.1 Gibrat’s Law and Detailed Balance

Let us make a brief digression away from company growth, and instead con-
sider personal income in relation to Gibrat’s law and detailed balance. In
doing so, we will show that Gibrat’s law and detailed balance, as well as the
Pareto’s law, can break down, depending on the economic environment (see
Fujiwara et al. (2003)). We focus, as we have done hitherto, on the high-
income region where Pareto’s law holds.

16Calculated for the top ten thousand companies in the year 2001.
17Calculated for the top two thousand companies in this case.
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Figure 3.13: Scatter-plot for personal-incomes (measured by the
amount of taxes paid) for two consecutive years (1997 and 1998).

Consider on the one hand, the process by which a person’s annual income
of 20 million yen doubles in the following year, and on the other, the doubling
process for an initial income of 40 million yen. Do they differ, and if so, how?
Alternatively, take the probability of these incomes halving in the following
year. At the risk of offending our readers, those with moderate incomes may
wrongly guess that fluctuations of this scale are negligible for high income
earners.

We will perform the same analysis on the study of fluctuation of personal
income as we did for company growth. Let the last year’s annual income be x1,
and this year’s x2. We can calculate from the dataset of high-tax payers each
person’s growth-rate R. How is this possible? From the Japanese datasets in
the fiscal years 1997 and 1998, for example, we can identify high-tax paying
individuals, and make a list of those persons appearing in both years’ data.
(See Section 3.2.3 if you are interested in the story behind this exhaustive
Japanese data set).

We first show in Figure 3.13 the scatter-plot for income-tax pairs (x1, x2)
for these high-tax payers (some 52 thousand extracted from 93 thousand tax-
payers in the fiscal year 1997, and from 84 thousand in 1998). The values of
x1 and x2 respectively represent the income-taxes in 1997 and 1998 (both in
yen). The lower limit in the data is 10 million yen, so we are left with the
points in the rectangular region x1, x2 > 107. In passing, it should be noted
that there are a few extremely high-tax payers towards the north-east, beyond
the scope of the figure.
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Figure 3.14: Probability distribution for growth-rate of personal-
income (1997 to 1998).

A statistical test for detailed balance gives no ground for the rejection of
the null hypothesis that the joint probability distribution is symmetric, so the
data is compatible with the property of detailed balance.

Then we proceed to calculate the PDF as a histogram for the logarithmic
growth-rate r = log10 R conditioned on the value of x1, and obtain the result
in Figure 3.14. Here the bins n = 1, . . . , 5 are used corresponding to five
logarithmically equal intervals from 10 million (x1 = 107) to 100 million yen
(x1 = 108). Because numerically 100.2 ) 1.58, these bins are sequentially
multiples by 1.58 up to the limit of 10 million yen.

It is clear from the figure that the distribution for the growth-rate col-
lapses into a single curve irrespective of the bins considered, indicating that
the growth-rate is statistically independent of the previous year’s income-tax
(Gibrat’s law). In other words, for the high-tax payers present in the Pareto
region, the transition probability for a doubling or halving of income is inde-
pendent on initial income.

We additionally see in Figure 3.14 that the calculated function of the PDF
in the side of r < 0 by the reflection law from the nonlinear fit in the side of
r > 0 yields a satisfactory fit.

We conclude, therefore, that both Gibrat’s law and detailed balance hold
for personal income, as we conjectured on page 86.
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Figure 3.15: Probability distribution for growth-rate of personal-
income ,1991 to 1992, corresponding to the bubble collapse in Japan.

3.2.2 Breakdown of the Laws

By taking a close look at the distribution for the growth-rate of personal
income in Figure 3.14, we can see that there is a cusp at r = 0 implying little
variation in income, so relatively stable income-earners are dominant. On the
other hand, there is a non-negligible percentage of people whose income grows
or shrinks by large magnitudes. While the Japanese Tax Law did not compel
the high-tax payers to reveal the sources of their incomes, it is reasonable
to assume that they were derived from financial assets and real estate, an
assumption that can be verified by Japanese government surveys on Family
Income and Expenditure.

If such high risk assets as real estate and stocks are prone to large variations
in their returns, personal income would be obviously be sensitive to such
variations, particularly for those with high-incomes. And, when a macroscopic
shock occurs, the laws and balance so far observed can break down, as we shall
see shortly.

In the late 1980s, Japan experienced an abnormal rise in the price of real
estate and stocks peaking during 1990 and 1991, followed by a great plunge
in the markets. The period is colloquially known in Japan as the Bubble, or
the Heisei bubble, the name being derived from the term used to describe
the reign of the emperor. A number of high-income earners rose into the
Pareto region just before 1991, and after that year, the majority of them
disappeared. Hitherto stable high-income earners were also subject to a great
variation in their risky assets. Examination of the details for two years’ of
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data for high-tax payers shows that:

• Pareto’s law broke down, and the distribution deviated from a power-
law,

• Gibrat’s law also broke down as shown in Figure 3.15, and

• Detailed balance did not hold.

That is to say, while the Laws and Balance hold under relatively stable
circumstances, they can break down in the presence of drastic changes in the
macro-economic environment (see also Aoyama et al. (2004)).

This observation completes our description of the phenomenology of fluc-
tuation.

3.2.3 Side-story: Public Notice of High-Tax Payers, and
Lost Data in Japan

From 1947 to 2005, Japan required a legal public notice of income, in accord
with the Income Tax Law, the initial purpose of which was “to reduce tax
evasion through public notice of high-tax payers’ incomes, allowing them to
be checked by independent agents”. (Later, publication was justified on the
grounds that it gave publicity to those making large contributions to society.)
Indeed, for a while after taking effect, information providers who revealed
tax dodgers were offered rewards depending on the amount involved in tax
evasion. The Income Tax Law, Article 233, required that income earners “give
notice to the public of the names, addresses, and amount of income-tax of the
tax-payers whose income-tax exceeds 10 million yen”, and also the Ordinance
of Enforcement 106 in the Tax Law states that “the relevant district director
must post the notice by displaying it at the posting area in the district or at
a public area within the district”.

This law, which is presumably quite unusual in the world context, can
potentially infringe privacy, or assist criminals in finding targets, since the
names, addresses and the tax amounts have posted every May in front of tax
offices all over the country. After considerable dispute the law was abandoned
in 2006, partly due to the weakening of the initial purpose, the prevention of
tax evasion, as well as the newly issued Privacy Law.

While the problems of privacy encroachment and criminal risk were clear
and hardly debatable, the data is, nevertheless, of remarkable intellectual
value. Without it, it would not have been possible to reveal the personal-
income distribution for the entire range of incomes or conduct an investigation
of individual growth-rate. Indeed, Japanese economists have benefited signifi-
cantly from the existence of this and other datasets concerning socio-economic
inequality, and when presenting the results at international conferences we
have observed that colleagues were as surprised by the existence of the data
as they were by the results.
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Indeed, in the high income region the tax data is exhaustive, which is
not the case in most datasets examined since Pareto. For example, the well-
known economist D. G. Champernowne was advised by J. M. Keynes to study
personal-income for his thesis, and proposed a stochastic model to explain
the distribution, which describes transition of an individual’s income from
one moment to another, or growth process (see Champernowne (1973) for
details; and also Mandelbrot (1997, chap. E11)). However, to the best of our
knowledge, there has been no work that directly observes the process, and
such an investigation has been regarded as a formidable task up until the
present time.

The Pareto distribution and its index, the distribution of growth-rate, are
matters of interest not only for economists examining the skewed distribu-
tion of high-income earners and the origin of this phenomenon in terms of
growth, but are also of significance for tax administrators aiming to maintain
government tax revenue and manage the associated risk.

Furthermore, it should be remarked that the data serves as a tool for
measuring “social disparity”, since the tail of the Pareto region and its quan-
tification is complementary to the well-known Gini coefficient described in
Section 2.4.1. Let us recall the way in which the long tail of the distribution
is stretched towards the high-income side. If we take readily available data
published by the Japanese National Tax Authority in Japan, as with the tab-
ulated data in other developed countries, we find a single point for the total
number of high-income earners (above a few tens of millions of yen in the
Japanese case).

One of the present authors (Y. F.) raised this issue with a member of
the Japanese Government’s Tax Commission. Since the abolition of the law
requiring the publication of tax data this material is no longer available, and
while personal privacy is a critical concern, it should not become an excuse
for ceasing to think about the issue. Perhaps the government could have
improved the law instead of abandoning it. We can agree that the precise
relation between a particular tax-payer and the certain amount of income-
tax is merely intrusive gossip, but it might be argued that publication and
scientific analysis of the stretched long tail of personal-income distribution
and its changes over time is in the public interest. It would be interesting to
know how readers react to this matter.

3.3 Small and Medium-sized Companies

3.3.1 Large-scale Data for Small and Medium Enter-
prises

We have so far focused only on bigger companies in Japan and in Europe, and
as explained in the preceding section, the Pareto region is dominated by a few
giant companies comprising a large part of the aggregated quantities of size,
so the dynamics of these firms are obviously important. However, of equal
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Figure 3.16: Cumulative distribution for company-size measured
by number of employees (whole range; year 2001).

importance are the many dwarfs, the small and medium enterprises, which
form the majority of companies.

One of the primary concerns of financial institutions is to determine a
reasonable interest rate in financing a large number of small and medium-
sized companies. The provision of a quantitative and statistical evaluation
of financial risks for such a number of financial entities requires the public
availability of a large-scale dataset covering those companies and firms in
exhaustive detail.

The Credit Risk Database (CRD) for Japan was founded in 2001 as a
membership organization to collect financial and non-financial data, including
default information, on “small and medium enterprises” (SMEs). In 2005 it
was renamed the CRD Association. The purpose of establishing CRD was to
promote the streamlining and efficiency of SME financing by assessing their
business conditions on the basis of data gathered by measuring credit risks
related to SME financing. As the membership and data collection expanded,
the CRD established its footing as an infrastructural basis for the gathering
and provision of SME data. This data is provided by commercial banks,
government-affiliated financial institutions, and the National Federation of
Credit Guarantee Corporations, which collects information from more than a
million SMEs across the country.

For the purposes of our discussion in this text we accept the definition
of SMEs as laid out in the Small and Medium Enterprise Basic Law. If the
company’s stated capital or number of employees is less than a threshold
specified by the law, the company is said to be an SME, the exact threshold
depending on the business sector to which the company belongs. For the
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manufacturing sector, companies with less than 300 million yen of capital or
300 employees are SMEs. For wholesale businesses the level is set at 100
million yen of capital or 100 employees, while for retailers the threshold is 50
million yen or 50 employees. Service industries with less than 50 million yen
or 100 employees are classified as SMEs.

Figure 3.16 depicts the cumulative distribution for company-size (num-
ber of employees) in the whole range where data are available based on the
Establishment and Enterprise Census (Ministry of Internal Affairs and Com-
munications) in the fiscal year of 2001, and also on an exhaustive list of the
largest 460 companies (provided by a credit research agency). The tail of
the distribution will by now be familiar, since it is the Pareto region where
a power-law applies. A deviation from the power-law can be observed in the
smaller region, with a qualitative change occurring round about the 200 to
300 employee point. The CRD, therefore, covers the non-power-law region
as well as the Pareto region, irrespective, for the most part, of the business
sector, on which the criterion in the data is dependent. This is ideal for the
following study.

3.3.2 Size-Dependence of Growth

At this point we turn to examine the growth-rate and distribution for the
stock variables of total-assets and debt, and for the flow variable of sales.
We can expect the character of fluctuation in the non-power-law region and
its transition to the power-law, to differ from that considered in Section 3.1
where we examined the power-law regime, and our purpose in this chapter is
to demonstrate that difference (see Fujiwara et al. (2006a,b) for more details).

We will create eight bins, in the same way that we did for large companies
in Section 3.1.1, divided by logarithmically equal intervals from 10 million to
1 billion yen for each of total-assets, debt and sales. We can then calculate
the PDFs for the logarithmic growth-rate r conditioned by the size of each
corresponding bin. The result is shown in Figure 3.17.

Immediately we can see that Gibrat’s law does not hold, as it is clearly
evident that for each of the PDFs the distribution for the growth-rate differs
depending on the bin or the size. Noting that the indices n = 1, . . . , 8 are
numbered from small-sizes to large-sizes, the PDF’s show that the typical
variation in the growth-rate’s distribution becomes smaller, as is plain for the
cases of larger companies.

To quantify this fact, we can calculate the variance σ of the growth-rate
distribution, which reveals that the initial size x1 is the controlling variable,
as shown in Figure 3.18. This dependence can be expressed quantitatively as
a scaling relation:

σ is proportional to x−β
1 .

Here β is a constant whose value is close to 0.5.
It appears that there is a threshold below which the variance in the growth-

rate decreases for the larger size of companies, and above which the growth
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Figure 3.17: Probability distribution for growth-rates of small and
medium companies: ((a) total-assets, (b) debt and (c) sales; years
2001/2000).
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Figure 3.18: Relation between company-size and variance of
growth-rate for small and medium companies: ((a) total-assets,
(b) debt and (c) sales; years 2001/2000).
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rate does not change, and Gibrat’s law holds. Moreover, the threshold mark-
ing the transition of these two phases may differ depending on the variables
chosen, i.e. total-assets, debt, sales etc.

In summary, we observe from our study of the growth-rate of companies
and firms that:

• There is a size below which Gibrat’s law does not hold, implying that
there is a “natural kind” of “small and medium-size companies”, as
opposed to a merely legal definition,

• The variance in the distribution for the growth-rate of small and medium-
sized companies has a scaling relation with respect to the company-size,
and the scaling relation is of real significance in a quantitative analysis
of credit risk management.

3.4 Companies Bankruptcy

3.4.1 Companies Activity and Bankruptcy

We so far have talked mainly about the growth of companies, but in fact
the activities of companies have, in the abstract, three facets: (1) obtaining
finance from financial institutions, markets and investors, and (2) investing
money to add value to materials and services in anticipation of future return
of profit, and (3) collecting the realised profit from the sales minus costs.

The flip sides of these activities implying, however, (1) the presence of
creditors other than the company’s investors, (2) the risk of the loss of invested
money, because (3) the profit is necessarily uncertain.

The increase or decrease of stock variables or growth in a company’s activ-
ities is associated with two aspects of money flow, namely, where the money
comes from and goes to, and how it does so.

The idea of double-entry bookkeeping is to describe these aspects of a
company’s activity (see Pratt (2008) for example). As is well-known, the
balance sheet (B/S) describes stock variables, while the profit and loss (P/L)
account describes flow variables.18 The left-hand side (the debit column)
records the state of money in terms of where it goes to and how it is used,
while the right-hand side (the credit column) describes the cause of an increase
or a decrease of money in terms of where it comes from and how it is financed.

The basic ingredients in a B/S are

• assets (left): funds in a business which are considered likely to bring
about a future increase of the company’s fund,

• liabilities (right): debts which provide a temporary increase of funds
at a moment but will cause a future decrease of the fund when it is
returned to the creditors,

18An additional book describes cash-flow, which enables the observer to understand the
causes of increase and decrease in a company’s money.
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• capital (right): assets minus liabilities, by definition, which is the share
by the company’s stockholders. This consists of the stockholders’ invest-
ment and retained earnings arising from the flow of profit.

The ingredients in the P/L are

• costs (left): money used to gain profit, including the purchase of inter-
mediate materials and services, labour costs, and various other costs,

• profit (right): revenue minus costs,

• revenue (right): increase of the company’s money in consideration of
value added that was generated in the activity of production.

A change in the stock is equal to the flow, and usually speaking, profit
increases the capital as retained earnings. Also, additional investment by
stockholders increases the capital. On the other hand, borrowing from finan-
cial institutions and markets, such as bonds, increase the liabilities or debts.

Suppose that the company has negative capital, that is the state of exces-
sive debts over assets, then the company will have difficulty in returning the
money borrowed from creditors. This is the state of negative net worth. A
flow of profit can bring about the possible resolution of this critical state, but
more probably the company will be plagued with serious funding problems
and run out of capital.

Bankruptcy is a general term referring to the process in which a company
falls into the state of financial insolvency as a debtor. It is classified by legal
and private procedures, namely, suspension of bank transactions, corporate
reorganization and rehabilitation, procedure for liquidation, etc. Specifically,
in Japan, two note payment defaults made by a company within six months
forces all transactions of the company to be suspended. More generally, a
bankruptcy refers to the malfunction of a company’s activities due to critical
problem of funding in one form or another.

3.4.2 Debt when Bankrupted and Life-time

In Section 5.3, we will describe the ways in which one can model the dy-
namics of a balance sheet, but at this point we will pause to examine the
phenomenology of the process of bankruptcy, using exhaustive Japanese data
(see Fujiwara (2004) for more details).

Over the last 10 years, the annual number of bankruptcies has varied from
10,000 to 20,000, as shown in Figure 3.19 by a dotted line (see the right
axis), while the total number of companies in Japan is, at a rough estimate,
approximately two million.19 Bankruptcy statistics are obtained from Small

19Figures according to the National Tax Agency’s Statistical Survey. There are two
other major sources of statistics, the Ministry of Internal Affairs and Communication’s
“Establishment and Enterprise Census”, and the Ministry of Justice’s records on the entry
and exit of companies. These statistics are said to have under- or over-estimation problems
arising from, for example, the counting of non-active companies etc.
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Figure 3.19: Annual number of bankruptcies in Japan and total
sum of resulting debts (1985 to 2005; calendar-years).

Figure 3.20: Annual sum of debts when bankrupted, and ratio to
nominal GDP (1996 to 2004; fiscal years).
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Figure 3.21: Cumulative distribution for debt when bankrupted
(approximately 16,000 companies bankrupted with debts larger than
10 million yen in 1997).

& Medium Enterprises and Regional Innovation in Japan (SMRJ). The figure
plots bars representing the total debts of bankrupted companies across the
country, varying from 10 trillion to 25 trillion yen, as shown in the left axis
(see also Fujiwara (2008)).

In the data accumulating the total debts in fiscal years, the quantity of
debts involved in each year’s bankruptcy is more than 2% of the nominal GDP
in the year, as can be seen in Figure 3.20 (line; right axis). Of course, not
all the debts are lost, since some are partially returned to creditors, who are
eligible to receive a portion of the credit from the bankrupted debtor with
a ratio determined by the types of bankruptcy and how the creditors are
situated. It should, however, be noted that a very large sum of money is at
risk every year in Japan; there is no reason to suppose that this is not the
case in other countries too.

This point deserves serious consideration, since the distribution for company-
size when bankrupted, and accordingly that for the amount of debt, has a
heavy tail, implying that a giant bankruptcy can occur at a non-negligible
probability. Indeed, with the help of an exhaustive list of bankruptcies with
debts of 10 million yen or more in the year 1997, essentially covering all the do-
mestic bankruptcies, the distribution for the debt of 16 thousand bankrupted
companies can be depicted in Figure 3.21.

To assist the naked eye, a dotted line corresponding to the Pareto distri-
bution with the index µ = 0.9 is drawn on the figure. The result shows that in
the wide range of debt larger than 500 million yen, debt when bankrupted
obeys Pareto’s law for the tail of the distribution. Moreover, for those
large bankruptcies, we can calculate the ratio A = d/s between the sales s and
the debt d immediately before the bankruptcy. Interestingly, the distribution
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Figure 3.22: Cumulative distribution for life-time before
bankruptcy (approximately 16,000 companies bankrupted with debts
larger than 10 million yen in 1997).

p(A) is statistically independent of the size s. It follows from this observation
that the distribution p(s) for company-size s and the distribution p(d) for its
debt d are compatible with each other, and obey the Pareto distribution with
approximately the same Pareto index. Pareto’s laws for company-size and for
debt when bankrupted are consistent in this sense.

We can also examine the lifetime of company before bankruptcy, by study-
ing the time elapsing between establishment of the company to its financial
collapse. Figure 3.22 depicts the cumulative distribution for the lifetime, and
shows that it is an approximately exponential distribution. Note that the
abscissa in the figure is linear. If we were to estimate the typical time before
company death from the age at the cumulative probability of 10% or 10−1,
we would arrive at the figure of roughly 30 years. Incidentally, if we look back
through the 45 year era before 1997, the time-scale involved in the survival
process of companies changes drastically within 10 years. This corresponds to
the dissolution of the corporate-alliances monopoly, a measure enacted dur-
ing the government of US General Headquarters (from 1945 to 1952), during
which a large number of new companies entered the market, as confirmed by
mathematical argument.

3.5 Production Function and Ridge Theory

3.5.1 Production Function

The activities of companies are primarily aimed at earning profits from sales,
after spending and investing money on inputs of labour and capital. How do
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companies determine the amounts of inputs to invest?
Suppose that a company can make an amount of production Y from certain

amounts of capital K and labour L. The relation between the inputs and the
output is the production function. (See Varian (2005) for example).

As early as in the spring of 1928, the economist P.H. Douglas had analysed
a plot of data for capital, labour and production, and got into difficulties.
Seeking for a reasonable function to fit the data, he discussed with his friend
the mathematician, C. W. Cobb, and, together they proposed a function of
this form:

Y = F (L,K) = AKαLβ ,

which is today known as the Cobb-Douglas production function Cobb and
Douglas (1928). Here A is a constant of proportionality, and α and β are the
selectable parameters. In the special case for which α+β = 1, the production
function can be written as

F (L,K) = AL

(
K

L

)α

= Lf(x), x ≡ K

L
.

This states that the production function is an extensive quantity, to use
the terminology of statistical mechanics. That is to say that if a physical
system can be analysed by thermodynamics and statistical mechanics then it
is possible to calculate its macroscopic state variables. If these state variables
do not depend on the system’s size they are called intensive, while those
depending on the size are called extensive. Examples of intensive quantities
include pressure P , and temperature T , while the extensive quantities are
internal energy U , volume of the system V , entropy S, and so forth (see
Callen (1985) for example).

Now, managers in companies make decisions on allocating inputs between
labour and capital; they could, for instance, purchase new machines in facto-
ries, and at the same time, reduce employment. The intention in such a case
is to increase efficiency in production by augmenting the reduction of labour
with the increase of capital. Economists often express the allocation between
capital and labour as a “substitution between capital and labour”. The mea-
sure used to quantify the extent of this activity is the elasticity of substitution
denoted by σ. In the case of the Cobb-Douglas production function, σ = 1. In
fact, there are different views on the substitution between capital and labour.
For example, the economist W. Leontief, claimed that there is no substitution
between them in company production in Leontief (1941). This claim amounts
to saying that the level of production is determined by the minimum of cap-
ital or labour. This corresponds to σ = 0, which is quite the contrary to the
Cobb-Douglas case.

These views might be regarded as too extreme, but in fact, in 1961, the
economist K. J. Arrow, with his collaborators, interpolated both extremes
of Cobb-Douglas and Leontief, and proposed a production function, called
CES (constant elasticity of substitution) (Arrow et al., 1961). In this case
σ = 0 ∼ 1, and the CES production function includes a special case of perfect
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substitutes, which is expressed by

F (L,K) = A {δL + (1 − δ)K} ,

where δ is a constant. The set of all possible combinations of capital and
labour which are sufficient to produce a given amount of output are simply a
linear combination of K and L.

Yet another new proposal for the production function followed in the litera-
ture, suggesting that the elasticity of substitution is a constant for all the cases
of Cobb-Douglas, Leontief, and CES. Generalisation of this is clearly possible
to allow elasticity, and is given by some function of capital and labour. A
well-known example for this kind of production function is the one proposed
by L. R. Christensen et al. in 1973 (Christensen et al., 1973), under the name
of the transcendental logarithmic production function.

There are still other types than those we have seen so far, but with a
variety in the number of parameters included in the definition of production
function. There is as yet no decisive answer as to which are best, partly
because it is trivial to achieve a better fit to data with larger number of
parameters, though one could attempt to obtain an answer by employing
some sophisticated technique developed in statistics.

For example, if we take data for about a thousand companies listed in
the first sector of Tokyo Stock Exchange in 2004, we can find that the Cobb-
Douglas production makes a relatively better fit than others, with the resulting
parameters satisfying α + β = 1.02, which implies the extensive nature of the
production function. For the same data set we find that α = 0.121 and log A =
0.081, so for our purpose here, we content ourselves by observing the validity of
the extensive claim, and we will adopt the Cobb-Douglas production function
in what follows.

3.5.2 Ridge Theory for Companies Growth

The problem now facing us is to explain the behaviour of the population
of companies through their attempts to maximise profits. In addressing this
matter we shall focus on production function, as described above, and examine
the distribution of companies in the space of (L,K).

We will start by considering profits. A company usually pays for the cost
of its capital, K, in various forms, which we summarise here by an interest
rate r. Also the company has to compensate for labour L of employees. Thus
the profit Π is given by

Π = F (L,K) − rK − L .

(Here the quantity of labour L is measured by a unit of money, say dollars,
rather than in terms of a number.) Now, the company operates under various
constraints in making decisions. This can be revealed by an attempt to max-
imise the profit of the above equation by choosing the amounts of its capital
K and labour L. We call this strategy profit maximisation with respect
to all the factors of production.
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In fact, we can prove that profit maximisation with respect to all the fac-
tors simply does not work, if the production function is an extensive quantity
as shown in the preceding section. Actually, the calculation following from the
maximisation with respect to all the factors results in an interest rate r which
is equal to 20% or so, which is unrealistic by an order of magnitude. That
is to say, companies could not in reality accept such high interest rates and
gain positive profits. (See the Mathematical column on page 104 for further
exposition.)

If profit maximisation with respect to all factors is non-existent, how can
the present framework enable us to understand the basic strategy of companies
intending to earn profits?

An obvious possibility is that, for one reason or another, a company can
only change its amount of capital relatively slowly. We could then reasonably
ask if it is possible to maximise profit by changing the labour L, only, while
maintaining a fixed capital K. One can determine, under the validity of ex-
tensive production function, the ratio x = K/L, if we assume the interest rate
is given by the average for the companies. Another possibility is clearly that
a company may have difficulties in changing the labour input, but can easily
control the amount of capital. Also, in this case, the ratio x can be determined
by maximisation. (The calculation for these two methods of maximisation is
explained in the Mathematical column on page 104.)
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Extensivity and maximisation of profit

As has already been noted, the extensive nature of the production function can be
stated in the way that the function can be written as

F (L, K) = Lf(x) ,

where x = K/L. Putting this into the profit equation, we have

Π = L(f(x) − rx − 1) ≡ Lπ(x) .

Here we use the notation π(x) = f(x) − rx − 1.
Profit maximisation with respect to all the factors of production implies that the

profit Π is maximised with respect to K and also with respect to L. The former
maximisation for K can be written as

0 =
∂Π
∂K

˛̨
˛̨
L

=
1
L

∂Π
∂x

˛̨
˛̨
L

= π′(x) .

And the maximisation for L can be put as

0 =
∂Π
∂L

˛̨
˛̨
K

=
∂Π
∂L

˛̨
˛̨
x

+
∂x
∂L

˛̨
˛̨
K

∂Π
∂x

˛̨
˛̨
L

= π(x) − xπ′(x) .

To maximise profit with all the factors of production, it suffices to require both
of these conditions. As a consequence, it follows that π(x) = 0, and equivalently
Π = 0, i.e. that the profit is zero at maximum, so is negative elsewhere, a state of
deficit. Also, the value for r is determined by two conditions, as noted in the main
body of text.

If either L or K is fixed, and the non-fixed variable is changed to maximise the
profit, only one of the two conditions is required, so we can avoid the nonsensical
solution of vanishing profit. In this case, if we assume the value of r, x can be
determined by one of the two conditions, whose values are illustrated in Figure 3.23.

Figure 3.23 shows the consequence of our consideration in terms of the
determined ratios x to be compared with the actual distribution for x. The
actual values are concentrated mostly from 1 to 2, with the peak of the distri-
bution approximately located at 1.5. On the other hand, the ratios calculated
by maximisation with respect to either capital or labour deviated considerably
from the peak. A trivial consequence of this observation is that companies fix
neither capital nor labour, but change both to some degree in seeking profits,
so the actual x values are scattered mostly between the two extremes.

Of course, it must be admitted that this overly rough conclusion gives
us little insight into any mathematically useful understanding of company
production, even if we understand the properties of the production function.
At this point we may wonder whether any further progress is possible in
understanding the distribution of x? The answer is yes, but the key to this
matter resides in ridge theory.

To understand the concept of a “ridge”, think of a mountain climber. A
company aiming at larger profits is like a climber attempting to reach a point
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Figure 3.23: Distribution of company’s x and two values of x at
which profit is maximised under different constraints.

Figure 3.24: Mountain-view with a ridge.
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Figure 3.25: A mountain-climber and his or her directions.

further up the mountain.
Consider the terrain illustrated in Figure 3.24. This terrain includes a

ridge or a long area of high land towards the top of the mountain. Suppose
you are a climber standing somewhere in this terrain and want to get to a
higher place as efficiently as you can. Your best bet is to take the steepest
route from the place in which you are standing. Figure 3.25 draws the climber
in enlargement. The direction A is the steepest ascent, B and D are two
directions with no gradient, and C is the steepest descent. The directions A,
C are perpendicular to contours, while the directions B, D are tangential to
contours. You will walk along the direction A, perpendicularly to contours,
so along the steepest-ascent line, and will eventually run into the ridge, along
which you will head for the mountain’s top. Some climbers may be distracted
and deviate from the most efficient path, yet, after a while, all climbers will
end up along the ridge.

We can expect from this analogy that the companies will be distributed
along the ridge in the terrain of profit.

Finding the ridge in our case is a non-trivial task. In the terrain depicted
in Figure 3.24 the ridge can be easily identified by eye, and the profit has
a gentle terrain, as shown in Figure 3.26. (Note that this figure shows the
surface corresponding only to the positive profit. The white and flat segment
near the axis of L is actually below the horizontal plane, where the profit is
negative, i.e. a state of deficit.) How can we find the ridge in this terrain?
The answer is to use a ridge equation, that is to say an equation which defines
the ridge as a curve connecting points, each of which gives the least gradient
among the steepest-ascent directions on the contour where the point is located.
Details of the equation determining the ridge are given in the Mathematical
column on page 109. By solving the ridge equation, one can find the ridge in
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Figure 3.26: Landscape for the profit function Π.

Figure 3.27: Contour lines, steepest ascent lines and a ridge for
the profit landscape of Figure 3.26.

any terrain.
The actual solution of the ridge equation for Figure 3.26 is depicted in the

contour plot of Figure 3.27, where higher places are drawn in a lighter colour,
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Figure 3.28: Distribution of company’s x (Figure 3.23) and the
solution of x corresponding to the ridge.

and dashed lines are “steepest-ascent lines”, which an efficient climber would
take at each point in the terrain. It is clear that these steepest-ascent lines are
perpendicular to the contour lines, and it should also be noted that these lines
converge asymptotically into the curve of ridge depicted by a dotted line. Our
proposition is that the profit seeking behaviour of companies can be described
by this picture.

If the production function satisfied the property of extensivity, the ridge
equation determines the ratio x. Consequently, the curve of the ridge is actu-
ally a line, as shown in Figure 3.27. If we add this value of x in our previous
plot for the distribution of x, Figure 3.23, we have Figure 3.28. We can see
that the peak in the distribution is located close to the ridge. Of course, the
distribution of x is spread around and centred on the ridge, and this can be un-
derstood from the fact that the ridge is the place to which the steepest-ascent
lines asymptotically approaches, but do not cross into, and that companies
for various reasons are presumably subject to swings and distracting bounces
from various endogenous and exogenous reasons. We conclude, therefore,
that one can model such fluctuations in a stochastic formulation, and make a
bridging explanation to assist in understanding the distribution of companies.

In conclusion, we have seen in this section that the quantitative analysis
of the production function offers considerable insight into the distribution of
companies and their strategies, and leads us to a more complete sketch of
the statistical universe of companies. In the next chapter we will try to add
colour to this picture by drawing on the theory of business network among
companies.

Ridge equation
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To write down a ridge equation in a general form, it would be more comprehensible
to consider n variables, φi (i = 1, 2, . . . , n), for the function of profit Π. This is
so although what we actually need to consider is the case, (φ1, φ2) = (L, K), in
two-dimension n = 2.

In this notation, the ridge equation can be given by

nX

j=1

∂2Π
∂φiφj

∂Π
∂φj

= λ
∂Π
∂φi

.

Mathematically, this is an eigenvalue equation for the second-derivative of Π, and
the eigenvalue λ is a parameter on the curve of the ridge solution. That is, for a
given λ (in an appropriate range), the solution of the ridge equation gives a set of
coordinates (φ1, φ2, . . . , φn), or a point in the space, the location of which varies by
changing the value of λ resulting in the curve of a ridge.

The above equation can also be interpreted as an extremisation of the length
of the gradient vector (∂Π/∂φ) under the constraint that Π = constant, which is
easily proved by the argument of the “Lagrange multiplier”. From the solutions of
the ridge equation we need to choose the minimum of the extreme values in this
argument, which correspond to ridge.

Note that ridge and steepest-ascent line are different concepts. A steepest-ascent
line is along the gradient or the direction perpendicular to the contours. In other
words, since it is necessarily obtained by requiring that it be parallel to the gradient
vectors, a steepest-ascent line is defined by the differential equation:

dφi(s)
ds

=
∂Π
∂φi

(i = 1, 2, . . . , n) .

Here s is a parameter on the line of steepest-ascent. This is a differential equation
with respect to the spatial coordinates, (φ1, φ2, . . . , φn), with an arbitrary choice of
initial values for those coordinates. Thus we have an infinite number of steepest-
ascent lines for choices of initial-values. The dotted line in Figure 3.27 is drawn by
solving this equation for different choices of initial values. See Aoyama and Kikuchi
(1992) and Aoyama et al. (1999).
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Chapter 4

Complex Business
Networks

Perhaps everyone has asked themselves if there is there anything in the uni-
verse that is perfectly isolated, separate and complete within itself. Some will
answer that the universe itself is the only thing, because the universe alone is
unique. However, the physics of elementary particles and cosmology suggests
the possibility that many universes similar to our universe exist and interact
with each other through quantum gravity.

The appearance of a discussion of the universe or universes in a book on
economic theory may seem abrupt and even odd, but if we recast the point in
terms that are more familiar it won’t seem so peculiar. When strangers meet,
at a party or by chance on a train, it is not uncommon for them to find that
they have shared acquaintances. “It’s a small-world!”, they will exclaim, in
genuine surprise. In fact this happens all the time, so it is not so much the
frequency that stimulates our wonder, but the reasons which underlie it, and
these are the subject of long-standing and unsolved questions.

In an attempt to shed light on this matter, sociologists have conducted
many kinds of experiments, and needless to say this attempt requires an un-
derstanding of human networks. However, it is as important to extend our
outlook and to consider the more abstract and far-reaching question: “What
is a network?” In other words, when we cannot solve a problem in a particular
and special case, we can sometimes gain insight by generalising. Networks are
just such a case.

The history of the train of thought grounded on this viewpoint is not long,
indeed it started only very recently under the title of network science, and
is making remarkable progress (Barabási, 2003; Buchanan, 2003; Watts, 1999,
2003; Caldarelli, 2007). In the next section, we provide a brief introduction
to this new field.

111
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Figure 4.1: Watts-Strogatz β model

4.1 Introduction to Network Science

The origin of network science is graph theory in mathematics, social net-
work analysis in sociology, statistical mechanics in physics, and computer
science. Historically, graph theory came first, with its origin being Euler’s so-
lution of the Köningsberg bridge problem in 1736. Subsequently, the theory
was developed by various figures of enormous distinction, Pólya, Erdős, and
others.

A graph is constructed from dots and lines. In network science, a dot is
called a node or a vertex, and a line is called an edge or a link. In this
book, we use the terms “node” and “link”, except in certain special cases. In
addition, we use the terms “graph” and “network” interchangeably, as having
the same meaning.

The field of graph theory has concentrated its investigation on regular
networks, trees, and random networks. The regular network has nodes
with an equal number of links, and these nodes are connected in a regular
fashion. For example, the left panel of Figure 4.1 displays a regular network.
In this figure, each node has four links, and these links connect each node with
its two nearest neighbours both right and left. Hence, in a regular network,
every node is equal and there is no special node. A tree is a graph which does
not contain loops, and its topology is same as trees and rivers in the real
world. A random network, on the other hand, is constructed by connecting
nodes completely at random. For example, the right panel of Figure 4.1
displays a random network.1 Graph theory proved various theorems for these
networks, but the instances it investigated were quite different from real world
networks, for example social networks.

Social network analysis in sociology has experienced two revolutionary de-
velopments, firstly in the 1930s, and secondly in the 1960s through to the
1970s (Freeman, 2004). Between these two revolutionary developments, Stan-

1Strictly speaking, that shown here is a Watts-Strogatz random network, one of several
classes of random networks.
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ley Milgram famously experimented three times to measure the size of the real
social world (Milgram, 1967), and consequently his name is strongly associ-
ated with the terms “small-world”, and “six degrees of separation” However,
there are many sociologists who do not accept Milgram’s interpretation of his
experiments, and some sociologists have asked whether the real world is actu-
ally small or not?. In distinction from graph theory, social network analysis
has investigated networks in the real world, but the size of networks considered
is comparatively small, not exceeding the order of 103.

However, recently, several sets of network data have become available as
readily accessed computerised databases, for example, the gigantic network
of the internet itself, a development which switched the target of study from
small to large networks.

It was in this context that Watts and Strogatz published their seminal
paper in Nature, and so shaped network science as we currently know it
(Watts and Strogatz, 1998). The paper introduced the concepts of averaged
path length and the clustering coefficient to characterise networks.

The averaged path length is the average number of links which connect a
pair of randomly selected nodes with the shortest path. Let us denote the
number of links which is necessary to connect node i and j with the shortest
path as lij . By using lij , for node i, we can calculate the mean value of
the shortest path, Li. Thus, the averaged path length, L, of the subjecting

Milgram’s positivism

Milgram is often thought to be the 20th century’s charac-
teristic psychologist, less for “six degrees separation” than
the notorious “obedience to authority” experiment, in which
naive subjects were given apparent control over the appli-
cation of, in fact false, electronic shocks to a third person.
The purpose was to investigate our capacity to commit in-
humane acts when legitimated by a person in authority.

The result of the experiment suggested that almost all of us, independent
of socioeconomic status and sex, are capable of great cruelty if authorised,
a result that was contradictory to the preliminary expectations of many
psychologists and caused a sensation in 1963 when the paper was published.

As is clear from this experiment, Milgram’s approach to science was
to proceed empirically without relying unduly on plausible but weakly
grounded discussion and prejudice. In our investigation of the relation of
economy and society, Milgram’s attitude will be one of our guiding principles.

(H.A)
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network is given by the averaged value of Li, i.e.,

Li :=
1

N − 1

∑

j $=i

lij , L :=
1
N

N∑

i=1

Li.

where N is the total number of nodes.
If three nodes are connected with each other, i.e., if two of my friends

are also friends with each other, this configuration forms a triangle, which we
will call a cluster. The clustering coefficient quantifies the cliqueyness of
nodes, and is given by the probability of finding triangles in the network. If
the node i has ki links, the number of possible triangles is given by the number
of the combinations in which two nodes can be selected from ki nodes, i.e.,
C(ki, 2) = ki(ki − 1)/2. However, in a real network, only a fraction of these
possible combinations is accomplished. The clustering coefficient of node i,
i.e. Ci, is defined by dividing the number of really existing clusters, Ei, by the
number of possible clusters. Thus, the clustering coefficient of the network,
C, is given by

Ci :=
2Ei

ki(ki − 1)
, C :=

1
N

N∑

i=1

Ci,

i.e., it is the averaged value of Ci. (See the column on page 114). By conven-
tion, Ci = 0 for the trivial cases ki = 0 or 1.

Watts and Strogatz calculated the averaged path length L and the clus-
tering coefficient C for the collaboration graph of actors in feature films, the

Global clustering coefficient

We can define another type of clustering coefficient called a global clustering co-
efficient. This differs from the clustering coefficient defined in the main text. The
global clustering coefficient is defined by

Cglobal =
3 × (number of triangles in the network)
number of connected triplets of nodes

.

If “Mr. A” has two friends ,“Mr. B” and “Mr. C”, we refer to this configuration as
a connected triplet of nodes, and denote it as “B-A-C” (or “C-A-B”). Additionally,
if “Mr. B” and “Mr. C” are also friends with each other, we can construct the
triangle ∆ABC. This triangle contains three connected triplets of nodes, i.e., (A-B-
C, B-C-A, C-A-B). The factor of 3 in the above equation makes Cglobal = 1 in this
situation.

Incidentally, Ci is explained in the main text as being equivalent to the probabil-
ity that the friends of node i are also friends with each other, and where C is the
averaged value of this probability. On the other hand, Cglobal gives the probability
that a randomly selected triplet forms a triangle. C and Cglobal generally have dif-
ferent values (Newman, 2003c). One must be careful which definitions of clustering
coefficient are applied in any particular case.
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electrical power grid of the western United States, and the neural network
of the nematode worm, C. elegans (Watts and Strogatz, 1998). Their re-
sults suggested that these networks have both the short averaged path length
that is characteristic of random networks (see the column on page 115) and a
large clustering coefficient that is characteristic of regular networks (see the
column on page 116). They referred to networks with this combination of
characteristics as small-world networks (see the column on page 116).

The right panel of Figure 4.1 is an example of a random network, and
shows that only a few links connect a pair of randomly selected nodes, and
also that there is a low probability finding triangles. Thus, a random network
has a short averaged path length and a small clustering coefficient. On the
other hand, the left panel of Figure 4.1 is an example of a regular network.
Contrary to a random network, this figure shows that two randomly selected
two nodes are connected by many links, and that the probability of finding
triangles is high. Hence, a regular network has a long averaged path length
and a large clustering coefficient.

Watts and Strogatz also proposed a so-called β model, which aims to
answer the small-world problem, as discussed in the sociology (Watts and
Strogatz, 1998; Watts, 1999). In their model the links of the regular network
shown in the left panel of Figure 4.1 are rewired with the probability β. Thus,
the case of β = 0 is a regular network. By changing the rewiring probability

Poisson random network

The network proposed by Erdős and Rényi is another example of a random network
(Erdős, P. and Rényi, A., 1960), this time one where the probability with which two
nodes are connected is constant θ and independent of the existence of other links.
In this case, we can easily see that by definition the probability p(k) of finding a
node with the degree k is given by

p(k) = C(N − 1, k)θk(1 − θ)N−1−k,

where N is the total number of nodes.
If we take the limit N → ∞ under the constant averaged degree 〈k〉 = Nθ =: z,

we have p(k) , zke−z/k!, where k! is a factorial of k. Thus, the degree distribution
is given by p(k) , zke−z/k!, which is a Poisson distribution, and the network is a
Poisson random network.

In a Poisson random network the averaged path length Lrand and clustering coef-
ficient Crand are given by

Lrand , log N
log z

, Crand , z
N

,

respectively (see Bollobás, B. (1985); Newman (2003b) for example). The defining
characteristic of a random network is that the averaged path length is proportional
to the logarithm of the network size, namely log N . On the other hand, the clustering
coefficient is proportional to the size of network, in other words N .
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β we can reproduce a small-world network. That is to say, a network with
β = 1 would belong to the class of random networks.2 The β model suggested
that the existence of links corresponding to short cuts is what turns the real
world into a small-world.

A little earlier we said that the paper written by Watts and Strogatz was
the first paper on network science, but it might be more accurate to say that
the paper turned the key of the door to network science without quite opening
it. That honour goes to A.-L. Barabási. whose research group at Notre-Dame
University wrote a series of papers in 1999 analysing the structure of the
World Wide Web (Albert et al., 1999; Barabási and Albert, 1999). They
found that the degree distribution of that network follows a power-law
distribution, and they refer to such networks scale-free. Here, the degree

2The difference between the random network made by rewiring with β = 1 and that
proposed by Erdős and Rényi is degree distribution.

Regular network

As shown in the left panel of Figure 4.1, a regular network is constructed by regularly
arranging nodes with an equal number of degrees, k0. In a one dimensional and
regularly linked network the averaged path length Lreg and the clustering coefficient
Creg are given by

Lreg =
N(N + k0 − 2)

2k0(N − 1)
, N

2k0
,

Creg =
3(k0 − 2)
4(k0 − 1)

,

respectively. The defining characteristic of a regular network is that the averaged
path length is proportional to the size of network, namely N . On the other hand,
the clustering coefficient is completely independent of the size of the network, and is
given by Creg , 3/4 = 0.75, when k0 is comparatively large. In addition the degree
distribution for a regular network is given by Dirac’s δ function, i.e., p(k) = δ(k−k0).

Small world network

Watts and Strogatz calculated the averaged path length Lsw and Csw for some real
world networks, and found that many have short average path lengths and large
clustering coefficients. That is to say, these quantities satisfy

Lsw , Lrand - Lreg,

Csw , Creg . Crand,

respectively. At present, networks with these characteristics are referred to as the
small-world networks of Watts-Strogatz, or, more simply, small-world networks. In
the β model of Watts-Strogatz, the degree distribution changes from Dirac’s δ func-
tion to the Poisson distribution, by changing the rewiring probability β.
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is defined by the total number of links held by a node (See the column on
page 117). In Section 4.5.2, we will show that some economic networks are
also scale-free networks.

Scale-free phenomena were first observed in the year 1897 when Pareto
found the power-law distribution in the wealth distribution of the rich (see
Chapter 2). Scale-free phenomena were also observed in the study of phase
transition and critical phenomena, Mandelbrot’s fractals, and the study
of complex systems, all of which have a long history. Many physicists
have been fascinated by these phenomena, and had already studied them for
some decades before moving smoothly across to the examination of scale-free
networks.

Subsequently, many concepts and analytical methods were imported into
network science from the fields such as biology, life science, and sociology.
Simultaneously, the number of scientists studying network science increased
rapidly, and at present the study of networks is interdisciplinary and inte-
grated. It is also practical.

One example of the application of network science to the real world is
the concept of hub and authority, which was introduced by J. Kleinberg
while studying the Internet (Kleinberg, 1999). Another would be the concept
of PageRank proposed by Brin and Page (Brin and Page, 1998),3 a concept

3Curiously, “Page” in the word “PageRank” refers to the name of its discoverer, not a
“page” of a book or a web page.

Degree distribution and others

Degree is the total number of links held by each node. A node with large degree
is called a hub. The degree distribution p(k) is the probability that a randomly
selected node in the network has degree k.

Sometimes each hub is connected to every other and sometimes not. The degree
correlation quantifies the correlation between the degrees of two nodes connected
by a link. For example, we can study the joint distribution for a pair of degrees,
and calculate their correlation coefficients (See the column on page 121).

If we use qualitative or quantitative characteristics of nodes (for example, race or
age) instead of degree, we can examine what kinds of features effect the existence
of links connecting a pair of nodes. That is to say, if we cut links and connect
nodes randomly, we lose information embedded in the characteristics of links; there-
fore, the correlation between nodal characteristics is useful in determining network
character. When the probability of constructing a link between nodes with simi-
lar characteristics is higher than that between nodes with different characteristics,
we refer to the former case as assortativity (see Newman (2003c) and references
therein).

There are other indices characterising networks, for example, the correlation be-
tween degree and clustering coefficients, hierarchical structure (Barabási and
Oltvai, 2004), many kinds of centralities, network motifs (Milo et al., 2002;
Shen-Orr et al., 2002), network spectrum, and others.
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responsible for the beginnings of the Google search engine.
The development of network science also has connections with changing

social conditions. The terrible September 11 attacks have had profound con-
sequences, and there is now widespread fear of terrorist networks spanning the
world, a previously uncontemplated diversified network. Similarly, epidemics
such as SARS, bird flu, and swine flu, the expanding virtual internet society,
and arguably dwindling relations between individuals have drawn attention
to the importance of understanding the world as complex networks.

At present the concerns of network science are the study of large networks,
new network indices,4 fast algorithms for the calculation of network indices,
dynamics in the network, mechanisms for the generation of networks, and the
visualisation of networks, amongst others. In addition, how to apply the re-
sults of network science to the real world is also an important problem. In the
international conference held in Aveiro, Portugal, in 2004, one of organizers,
S. Dorogovtsev, referred to the need to move “beyond Google”. It will take
a long time to apply network science to the real world on a broad scale, but
the possibility of that outcome is gradually increasing.

4.2 1, 2, 3, . . . , 6 degrees of separation

We earlier referred to Milgram’s “six degrees of separation”, and explained
that the β model gives an answer to the small-world problem. Here, we
explain the method for calculating the averaged number of nodes within a
given number of degrees of separation for both real world and theoretical
networks. This not only gives another intellectual perspective on small-world
phenomena, but also includes an important suggestion towards understanding
the connection of nodes in a complex network.

We will start with “one degree” of separation, instead of jumping in at
“six”. In short, a node within “one degree of separation” is a node directly
connecting to an arbitrary node with one link. Therefore, the average number
of nodes in one degree of separation is equal to the “averaged degree”, that is
the averaged number of nodes within one degree of separation. In a complete
graph, in which every node is connected to every other node, the averaged
number of nodes equals the total number of nodes minus one. On the other
hand, in complex networks the averaged number of nodes is of order one.
Many social or economic networks are huge, and the range of the total number
of nodes is from 105 to 108 and there is practically no possibility that all nodes
can be connected to each other.

Let us now turn to “two degrees of separation”. In the case of all nodes
with an equal degree, k0, an arbitrary node is connected by k0 nodes, each
of which is connected with k0 − 1 nodes, except the original node. Thus the
number of nodes within “two degrees of separation” is k0(k0−1). If we believe
that this estimation is correct in the case of a large number of nodes, we might

4An index characterising network is called a network index. The previously introduced
topics of averaged path length, clustering coefficient, and degree are also network indices.
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Figure 4.2: A complete graph in which every node is connected to
every other within “two degrees of separation”

say that the averaged number of nodes within “two degrees of separation” is
approximately given by

〈k〉 (〈k〉 − 1),

by replacing k0 to the averaged value 〈k〉. However this estimation is com-
pletely wrong as shown in what follows.

A simple example illustrating this point is shown in Figure 4.2. In this
network, the node in the centre of network is connected to every other node.
Thus, the degree of the centre node is N − 1, and that of the other N − 1
nodes is 1. Hence, the averaged degree is given by

1 × (N − 1) + (N − 1) × 1
N

=
2(N − 1)

N
) 2,

being approximately equal to 2 for large N . If we substitute this value for
our naive estimate for the averaged number of nodes within “two degrees of
separation”, we get

〈k〉 (〈k〉 − 1) = 2(2 − 1) = 2.

However, as is apparent from the figure, all N−1 dead-end nodes are connected
with all N − 2 dead-end nodes through the centre node within “two degrees
of separation”. (The centre node does not have nodes within two degrees
of separation.) Thus, if we calculate the averaged number of nodes within
two degrees of separation, the result is approximately equal to N when N
is sufficiently large, which is completely different from the naive estimate
obtained above.

Actually, for general networks that contain nodes with different degree
values, we can calculate the number of nodes within two degrees of separation
more precisely. By using the square average of degree of node 〈k2〉, the result
is given by

〈k2〉 − 〈k〉.
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Of course, if the degree of nodes is uniformly k0, the result is given by 〈k2〉 =
〈k〉2 = k2

0 which agrees with the naive estimate. However, in general, 〈k2〉 is
larger than 〈k〉2, and the difference between them is given by a variance. Thus,
the simple estimation given previously is an underestimate. (See Newman
(2003a) for the exposition of this fact.)

In fact, in the example of Figure 4.2, because of existence of the centre
node, the magnitude of the square average of degree 〈k2〉 is approximately N .
As a result, if we calculate the average number of nodes within two degrees
of separation by using the solution stated above, we obtain the correct result
which is approximately equal to N .

From this example, we can see why the average number of nodes within
two degrees of separation becomes large, as stated below;

• Nodes can be connected to many nodes within two degrees of separation
through directly connected nodes with a large degree (a hub).

• Nodes with a large degree (hubs) can take such an intermediating role
in many cases because they are connected to many other nodes.

To put it simply, the number of your friends is much larger than that which
you naively expect, because you have a non-negligible probability of finding
a hub amongst your friends. The probability is non-negligible due to the fact
that she or he has many friends, and in spite of the fact that the number of
such hubs is quite small. The number of your friends’ friends is, therefore,
much larger than that might be expected.

Actually, the real-world networks discussed so far have fat tails and large
variance, and the number of nodes within two degrees of separation can be
much larger than the above estimate. In fact, the tail of the degree distribution
for scale-free networks follows a power-law distribution:

P>(k) ∝ k−ν ,

and therefore, if the power-law exponent ν is less than 2, 〈k2〉 diverges and
becomes infinite. However, since a divergence of 〈k2〉 occurs in the case of
ideal infinite networks, it is clear that, therefore, such a divergence does not
happen in real, finite, networks. Precise estimation clarifies that the square
average of degree 〈k2〉 becomes the magnitude of the total number of nodes,
when the power-law exponent ν is equal to 1. Thus, in scale-free networks,
every node connects with another within two degrees of separation, when
exponent ν equals to 1. However, this is not accomplished in the real world,
because actual scale-free networks do not have such a small ν.

Now, if we move to the discussion of three degrees of separation, new
evidence is added to the discussion of two degrees of separation and it becomes
more interesting, though at this point we will simply display the result. The
most effective term for the number of nodes within three degrees of separation
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is given by5

r 〈k3〉.

r can be referred to as the correlation coefficient of degrees, and char-
acterises the correlation between degrees which are for two nodes attached to
each end of a link (See Figure 4.3). If degrees have no correlation, r = 0.
In scale-free networks, when ν = 1.5, then the average of the cube of degree
〈k3〉 approaches to the total number of nodes, i.e., N . Thus, as long as the
degree correlation is not equal to zero, every node is connected with every
other within three degrees of separation when ν is below 1.5. Incidentally, if
there is no correlation between degrees and r = 0, every node is connected
with another within three degrees of separation when ν is below 4/3. From
this result, we can see the importance of the correlation between nodes.

Now, if we expand the calculation to the case of six degrees of separation
we get a very complicated and long equation, needing many pages to display.6
If we pick up the effective part of the equation, which contains the degree
correlation coefficient r4 of nodes connecting within four degrees of separation
(See Figure 4.4), we get

r4〈k17〉1/8.

This quantity is of the same order as the total number of nodes when µ is
less than or equal to 3; therefore the subject of this section, “six degrees of

5We here show the equation which is applicable when clustering coefficient is sufficiently
small.

6It is impossible to calculate it by hand, so we used the Mathematica software for
algebraic calculation and a fast PC with 8GB memory; even so, it took over ten minutes to
get the result.

Correlation coefficient

The correlation coefficient is defined as follows. We suppose that a random variable
x has a mean 〈x〉 and standard deviation,

σx =
q

〈(x − 〈x〉)2〉 =
q

〈x2〉 − 〈x〉2.

If we define a new variable x̃ as x̃ := (x−〈x〉)/σx, this new variable x̃ has the mean
equal to 0 and the standard deviation equal to 1. For another variable y, we define
ỹ in the same way. The average of the product of these two variables:

rxy := 〈x̃ỹ〉 =
〈xy〉 − 〈x〉 〈y〉

σxσy

is called the correlation coefficient of x and y. In addition, the numerator of the
last term of the right hand side of above equation, i.e., the product of correlation
coefficient and standard deviations of each variable: σxy := σxσyrxy is called the co-
variance. It is easily verified that the correlation coefficient rxy necessarily satisfies
−1 ≤ rxy ≤ 1.
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Figure 4.3: Correlation r between degrees of nodes at distance 1

Figure 4.4: Correlation r4 between degrees of nodes at distance 4

separation”, is realised if µ is not over 3. However, in a real network, it some-
times happens that the degree correlation becomes zero if the separation of
nodes is four. Thus, we simplify the problem by assuming that only the degree
correlation coefficient mediated by one link, r, which appeared in the case of
three degrees of separation, is not equal to zero, and the degree correlation
coefficient mediated by more than two links is equal to zero. In that case we
find the term

r2 〈k3〉2

〈k2〉
is effective to six degrees of separation. Such a result means that this term
becomes approximately N when ν is less than or equal 2.4, and all nodes are
connected within six degrees of separation.

In the calculation explained above we ignored the clustering coefficient in
cases with three degrees of separation or more. However, this is not likely to
happen if the exponent of N is modified by the effect of a clustering coefficient.
Additionally, many degree distributions in real world networks have a fat tail
with an exponent in the range from 1 to 3. Thus, for this reason, it is possible
to consider that all nodes are connected within the extent of six degrees of
separation in the real world, if the network is scale-free.

The calculation of d degrees of separation has an interesting application
to the estimation of chain of bankruptcy in a supplier-customer network. As
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we shall explain in Section 6.2, companies connected by supplier-customer re-
lationships to a bankrupted company can also fail. In the range of one degree
separation from a bankrupted company, if there are no other failed nodes,
the bankruptcy is isolated. However, if there is another bankruptcy in the
range, we can proceed to consider two degrees of separation from the starting
bankruptcy. If there is no other failure, then there is a chain of bankruptcies
with size two, occurring simply by chance. Proceeding in this way, one can
consider chains of bankruptcy with larger size in the supplier-customer net-
work, and compare such an estimation for the frequency of “avalanche” size
with what actually happened in a real data. See Fujiwara and Aoyama (2008)
for details.

Kevin Bacon game

Do you know the “Kevin Bacon game” which originated from the six
degrees of separation theory. Players search for the number of links con-
stituting the shortest path connecting an arbitrarily selected movie star
and Kevin Bacon, another actor, by tracing a path through the movie
collaboration network. This is called the “Bacon number”. At the
end of 2008, approximately one million actors were connected to Kevin
Bacon, and the average value of the Bacon number was approximately
2.95. Interestingly, if we calculate the same number for other actors,
the actor who has the smallest number, i.e., the centre of the network,
is not Kevin Bacon but Dennis Hopper, whose “number” is equal to
2.74. There are several other “numbers” of this kind, for example the
“Erdős number” which is defined by the number of links in the collab-
oration network for the mathematician Erdős (introduced in pp. 112).
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4.3 Networks in Economy

When discussing networks in economy it is important at the outset to define
what we mean by a node in this case. If we decide that we want this to
correspond to the minimum unit which is accepted as an economic entity
we might propose the individual person as a candidate. In a future where
electric money and IC tags are widespread, and the consumption pattern of
an individual and the flows of money and goods are traceable, we will be able
to study the network constructed from individuals. However, at present this
is impossible.

Since, for practical reasons, we need to find another candidate definition
of “node” it is obvious that we must reconcile ourselves to some degree of
coarse graining. For example, we might suggest that a node could be defined
as a group consisting of several persons, that is to say a company, a local
government, a country, and so on. For our purposes in this book we have
elected to consider the company as a node.

This decision raises the question as to what kind of relationship between
companies we should consider as constituting a link. In a company limited by
shares, which is the predominant conformation, ownership and management
are separated. The shareholders own the company, and may hold shares in
several companies. In listed companies it is frequently found that shareholders
are themselves also listed companies. Thus, we can identify for consideration
the shareholding network, a network in which the nodes are companies
and the links are shareholding relationships.

Members of the board of directors are selected at the meeting of share-
holders, and the board of directors makes decisions for the management of
the company. Sometimes, some members of one board are also members
of another board, and so are interlocking directors connecting two or more
companies. Thus we can identify the interlocking directors’ network as
another company network.

Under such ownership and management, companies perform many kinds
of activity, the most important of which is production. Many companies
buy materials and services to make products, and sell these products with
value added, so we can on the basis of these relations identify a transaction
network.

The importance of innovation is a much discussed topic, but measuring
it is a very difficult problem. Some traction can be obtained by considering
patents as if they were innovations, and this is the approach we adopt here.
Since companies sometimes apply jointly for a patent, presumably because of
previous joint research, we can consider the network of joint applications
for patents as evidence of an innovation network. In what follows we will
consider the shareholding network, the interlocking directors’ network, the
transaction network, and innovation network, in sequence.
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4.3.1 The shareholding Network

Major shareholder data is useful for studying the shareholding connection
between companies,7 and the data we have used provides the list of top thirty
major shareholders for each listed company.

Stock holdings data is also useful for studying the shareholding network.
In Japan, we can buy an annual security report at major book stores, or read it
on the home page of Electronic Disclosure for Investors’ NETwork (EDINET).
An annual security report contains an investment portfolio item in which the
details of a company’s investment status is reported. In many cases the top
ten to twenty major investment companies are reported, but the length of
the disclosed list differs from company to company. The list of investment
portfolios includes investment trust funds, but in this book, we ignore such
funds in our examination of the shareholding network, which is restricted to
major shareholder data and stock holding data in 2004.

Figure 4.5 is a conceptual picture of the connection of companies. In this
figure, each white circle corresponds to a company. We draw the shareholding
network by tracing an arrow from shareholder to company. Thus, major
shareholder data corresponds to the left side part of Figure 4.5. In this part,
each white circle existing in the left side corresponds to a shareholder, and each
link describes a shareholding relationship. In other words, major shareholder
data is data for links, which come into to each listed company. In this way,
the link that comes into a node is called an incoming link, and the number
of incoming links is called the in-degree or the incoming degree. As stated
before, in the case of major shareholder data, the incoming degree is up to
30.

Meanwhile, stock holdings data corresponds to the right side part of Fig-
ure 4.5. Stock holding data refers to the links that go out from each listed
company. That is to say, a link that goes out from a node is called an out-
going link, and the number of outgoing links is called the out-degree or
the outgoing degree. In the case of stock holding data, the outgoing degree
differs from company to company.

By using these two kinds of data, i.e., major shareholding data and stock
holding data, we get the part shown in Figure 4.5 for each listed company.
The shareholding network is constructed by connecting these elements to each
other.

For the purposes of the present analysis we will focus on companies con-
cerned with automobile manufacture. According to the classification of in-
dustry by Nikkei NEEDS, industries concerned with automobile manufacture
are separated into automobile (automobile), automobile (auto body and oth-
ers), automobile (auto parts), and electric machinery (automobile-related),
the terms in the brackets corresponding to the minor classification of automo-
bile and electric machinery industries. We will concentrate on the automobile
(automobile) industry, which for simplicity’s sake we will refer to as the auto-

7Major shareholder data, for example, is commercially available from Toyo Keizai Inc.
and Nikkei Data Service Inc.
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Figure 4.5: Incoming and outgoing links of a listed company in a
shareholding or a transaction network

Figure 4.6: Shareholding network in automobile sector

mobile industry. The companies belonging to the automobile sector are 13 in
number, namely Isuzu Motors, Suzuki Motor, Daihatsu Motor, Toyota Motor,
Mazda Motor, Aichi Machine Industry, Kanto Auto Works, Mitsubishi Mo-
tors, Nissan Diesel Motor, Nissan Motor, Hino Motors, Fuji Heavy Industries,
and Honda Motor.

The network shown in Figure 4.6 is constructed from only these companies,
and is constructed from directed links, so is referred to as a directed graph
or digraph. Sometimes we ignore the direction of links to simplify discussion,
and, in addition, there are networks constructed from links which were not
originally directed. Unsurprisingly, networks with undirected links are called
undirected graphs.

Isuzu Motors, Mazda Motor, Mitsubishi Motors, and Honda Motor, do
not appear in Figure 4.6, indicating that these companies are not connected
to companies in the same industry by a shareholding relationship. In this
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case we used major shareholder data and stock holding data, and these data
sources list only a limited number of companies. If a complete list of share-
and stockholders were available there is a possibility that connections be-
tween these four companies and other companies belonging to automobile
industry would be revealed. Figure 4.6 also shows that the network is con-
structed from three connected components. Suzuki Motor and Fuji Heavy
Industries are connected by a bidirectional link meaning that there is a
cross-shareholding. In addition, both Toyota Motor and Daihatsu Motor
are shareholders of Hino Motors.

4.3.2 The Interlocking Directors’ Network

The members of the board of directors of a company are selected at the
meeting of shareholders, and their names then announced to the public, along
with any interlocking directors. However, the previous history of members
of a corporate board is not necessarily announced to the public. However,
for listed companies in 2004, we use data which contains lists of interlocking
directors and the previous history of members of the corporate board.8

By employing this data we can conceptually draw an interlocking directors’
network and corporate board network as shown in Figure 4.7. This network is
constructed from two kinds of nodes, namely directors and corporate boards.
A network constructed in this way from two kinds of nodes is called a bi-
partite graph. If a certain director links many corporate boards and if the
director’s ideas for the management are frequently adopted, the director’s ef-
fect is obviously widespread, and so it is natural to consider that such boards
are strongly connected by the director. Acting on this consideration we get
the upper right panel of Figure 4.7, which is constructed from just one type of
node, i.e., corporate boards. The process by which we reduce a network with
two types of node to that with only one type is called graph reduction.

Conversely, if we consider that the directors on the same corporate board
know each other, we get the lower right panel of Figure 4.7, which is solely
constructed from directors. Both are interesting, but in this study we will
not investigate the director network, and will instead focus on the company
(corporate board) network.

Since we can identify interlocking directors and the previous history of
directors we can trace links from the previous board of a company to its
present board, and from the main corporate board to sub-corporate boards,
and then draw these networks as directed graphs.

If we draw the corporate board network alongside the shareholding net-
work shown in Figure 4.6, we get Figure 4.8, with the dotted lines indicating
newly drawn links. As before all the thirteen automobile companies do not
appear in this figure, indicating that some companies are not connected in this
way with other companies in the same industry. In this figure, the number
beside each dotted link corresponds to the number of interlocking directors

8This data is commercially available from Toyo Keizai Inc.
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Figure 4.7: The corporate board and directors’ network and its
reduced graphs

Figure 4.8: The corporate board network in automobile industry

and the number of directors connected by a relationship of previous history.
For example, in the case of Daihatsu Motor, eight directors are sent from the
board of Toyota Motor or were previously members of the board of Toyota
Motor. As with the shareholding network, this network is constructed from
three connected components, including the group clustered around Toyota
Motor and the group centred on Nissan Motor.
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4.3.3 The Transaction Network

When we talk about friends, we can probably easily and honestly answer the
question “how many friends do you have?” However, if we are asked “Who
are your friends?” we may hesitate, and, even if we attempt an answer, vanity
might tempt us to include the name of some well-known person. Something
similar happens when a company answers the question “Which companies are
your business partners?”. In general, a company does not have an obligation
to disclose the name of business partners, so business data companies get in-
formation of suppliers and customers by conducting an interview, and because
of the vanity effect the resulting data is considered to be potentially biased.

Nevertheless, we can gain some insight from this data, and we use two
kinds to investigate what we will call the transaction network. One source
gives business partner information for 1,404 listed companies, which are non-
financial companies listed in the first section of the Tokyo Stock Exchange in
2004.9 The total number of links in this dataset is 55,348, and therefore each
of the 1,404 companies has approximately 80 links. The other gives data for
all listed companies in Japan in 2004 and this data lists the five main suppliers
and the five main customers for each company.10 In our analysis below we
synthesise these two dataset, and consider the resulting transaction network.

To draw this network we trace links along the flow of materials and ser-
vices (which is the reverse of the flow of money), and thus we get part of
the network shown in Figure 4.5 for all listed companies, just as we did for
the shareholding network. In the case of a transaction network the flow of
materials and services defines the direction of the links. Hence, the white
circles on the left side of Figure 4.5 correspond to main suppliers, which are
located upstream of physical distribution. On the other hand, white circles
on the right of Figure 4.5 correspond to main customers, which are located
downstream of physical distribution. The transaction network is constructed
by connecting these parts.

We will once again focus on the case of the automobile industry, and draw
the transaction network on shareholding and interlocking directors’ networks
shown in Figure 4.8, thus leading to Figure 4.9. Thin and dashed lines are
newly added links, and the direction of these links corresponds to the direction
of physical distribution. As was the case with the shareholding network and

9This data is provided by Teikoku Data Bank Ltd.
10This data is provided by Nikkei NEEDS.

Freewares for network analysis

Graph drawing and graph analysis need considerable programming skills,
so we might expect that software for graph analysis and graph drawing is
expensive, but in fact there is a great deal of free software, for example,
Graphviz, Pajek and Network Workbench.
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Figure 4.9: Transaction network of the automobile industry

interlocking directors’ network, four companies, Isuzu Motors, Mazda Motor,
Mitsubishi Motors, and Honda Motor, are not in the transaction network
shown in Figure 4.9. The shareholding and interlocking directors’ networks are
separated into three connected components as shown in Figure 4.8. However,
in this case, these connected components are connected into one component
as shown in Figure 4.9.

In Figure 4.9, we can see that there are two groups. One is the group cen-
tred on Toyota Motor, and the other is the group centred on Nissan Motor.
However, these two groups are connected by the link running from Aichi Ma-
chine Industry to Daihatsu Motor. In addition, the links from Aichi Machine
Industry to Suzuki Motor and Fuji Heavy Industries play an important part
in making one connected component. In this case, Aichi Machine Industry
connects different groups, and is called a gatekeeper.

In most offices there are well-informed people who may not hold a senior
post but play an important role in connecting the various parts of the de-
partment. Such a person is a gatekeeper. The importance of gatekeepers is
characterised by betweenness centrality. This index is explained in Sec-
tion 4.4.4. In Figure 4.9, we can see that there are many overlaps between
shareholding links, the interlocking directors’ network, and the links of the
transaction network.
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Figure 4.10: Patent network and its reduced graphs

4.3.4 The Innovation Network

The patent office publishes information relating to patent applications, and
there are several databases derived from that information. For our work we
have chosen to investigate cumulative patent data up to 2004. This set con-
tains many items for each patent, for example, citation of scientific papers and
patents, main text, classification of technology, applicants, inventors, address
of applicants and inventors, etc. Such information is conceptually drawn in
the left panel of Figure 4.10. Based on this figure we can construct many
kinds of networks.

For example, as shown in Figure 4.10, if we use the citation of scientific
papers and patents we can construct a network in which scientific papers and
patents or technologies are nodes. In addition, if we extract keywords from
the main text and consider them in relation to the citation network, we can
construct a conceptual network in which keywords are nodes.

As conceptually shown in Figure 4.10, we can see that patent “A” and
patent “B” are connected by applicant “3”. In addition, we can also see that
patents “B”, “C”, and “D” are connected by applicant “4”. Thus, as shown in
the upper right panel of Figure 4.10, we can construct a network with patents
as nodes. Conversely, applicants “1”, “2”, and “3” are connected by patent
“A”, and applicants “3” and “4” are connected by patent “B”. Hence, as
shown in the centre right panel of Figure 4.10, we can construct a network
with applicants as nodes. In many cases, applicants correspond to companies,
therefore, we can regard this network as having companies as nodes. In the
current study we call this a network of joint patent applications. In addition,
we can say that inventors “a”, “b”, “c”, and “d” are connected by patent
“A”, and inventors “d”, “e”, and “f” are connected by patent “B”. Thus,
as shown in the lower right panel of Figure 4.10, we can construct a network
with inventors as nodes.

Just as we did before, we will restrict our analysis to the case of the
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automobile industry. However, and this is a significant difference, the links in
a patent network do not have direction, therefore it is drawn as undirected
network. If we draw the patent network alongside that for shareholding
and interlocking directors, we obtain Figure 4.11. Undirected and dashed
lines represent the connections of joint applications for patents. The number
beside each link corresponds to the number of joint application for patents
up to 2004. However, this number suffers from inaccuracy because it is very
difficult to identify companies with complete confidence. Different companies
sometimes have the same name.

Contrary to the previous examples, this network is constructed from all
thirteen companies, and although the Toyota Motor and the Nissan Motor
groups were evident in the previous networks they are not evident in Fig-
ure 4.11. An interesting point is that Toyota Motor and Nissan Motor are not
connected directly, but are connected by an intermediary, Honda Motor. We
can also see that there are many overlaps between the links of the sharehold-
ing and interlocking directors’ network and those of joint patent application
network. In addition, companies, which are not connected in the sharehold-
ing and interlocking directors’ network, are connected in this case. From this
fact, we can infer that for the purposes of innovation companies are sometimes
connected beyond company walls.

We can also investigate the network of joint patent applications con-
structed from companies belonging to the automobile (automobile) and elec-
tric machinery (automobile-related) sectors. In this case we obtain Fig-
ure 4.12. Although there are many companies the remarkable fact is that
there are many joint patent applications between Toyota Motor and Denso
Corporation, with the total number amounting to 915. There are also many
joint patent applications between Honda Motor and Stanley Electric, with
the total amounting to 114. On the other hand, there are no joint patent
applications between Nissan Motor and companies belonging to the electric
machinery (automobile-related) category. Thus, we can infer that Nissan Mo-
tor applies for patents with companies belonging to the electric machinery
industry, not the electric machinery (automobile-related) industry. However,
as noted before, there is possibility that there are missing links, because patent
data is not necessarily complete.

4.4 Network Indices

At this point we will turn to a discussion of the characteristics of networks
through the calculation of network indices. Up to now, we have considered
four types of networks, i.e., the shareholding network, the interlocking direc-
tors’ network, the transaction network, and the innovation network. As shown
above, some companies are connected to other companies with multiple rela-
tionships, i.e., multiple links (multilinks). A network with multiple links
can be called a multiple network or a multiple graph (multigraph).

Now suppose that the weight of every link is equal to 1. Thus, if two nodes



4.4. NETWORK INDICES 133

Figure 4.11: Network of joint application of patent in automobile
industry
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Figure 4.12: Network of joint patent applications between auto-
mobile and electric machinery industries
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Figure 4.13: Weighted network of automobile industry

are connected by four types of relationship, we say that these two nodes are
connected by one link with weight 4. As explained here, a multiple network
is regarded as a weighted network. The multiple network and weighted
network are here given as an undirected network because a network of joint
patent applications is an undirected network. In the light of this consideration
the automobile industry network is drawn as Figure 4.13. The number beside
each link represents its weight, and in what follows we will investigate this
network by applying the methods of network analysis.

4.4.1 Degree Centrality

As stated before, the number of links held by a node is called its degree. In
social network analysis in sociology degree is referred to as degree centrality.
In this book, we denote the degree of a node i as ki, where i corresponds to the
company’s number in the first row of Table. 4.1. The second row of Table. 4.1
corresponds to the name of the company. The degree calculated for each
node of the network shown in Figure 4.13 corresponds to the third row of
Table. 4.1. From this result we can see that Nissan Motor and Hino Motors
have the largest degree value: k10 = k11 = 6. On the other hand, Mazda
Motor has the smallest value: k5 = 1.

The sum weight of links attached to each company, which is called the
node strength or the vertex strength, is summarised in the forth row of
Table. 4.1. If we denote the weight of a link between node i and node j as
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Table 4.1: Network indices for 13 automobile companies
Number Name ki si Li Ci Cw

i Cb
i

1 Isuzu 4 4 1.92 0.5 0.5 0.03
2 Suzuki 3 4 2.17 1 1 0
3 Daihatsu 4 10 1.75 0.5 0.53 0.11
4 Toyota 4 13 1.92 0.5 0.62 0.05
5 Mazda 1 1 2.5 0 0 0
6 Aich Machine 4 10 1.83 0.5 0.53 0.111
7 Kanto Auto 3 7 2.17 1 1 0
8 Mitsubishi 3 3 2 1 1 0
9 Nissan Diesel 5 8 1.58 0.4 0.34 0.20
10 Nissan 6 12 1.58 0.27 0.28 0.28
11 Hino 6 12 1.67 0.4 0.4 0.16
12 Fuji Heavy 4 5 1.83 0.67 0.67 0.04
13 Honda 3 3 1.75 0 0 0.09

wij , the node strength of node i is defined by

si :=
∑

j∈adj(i)

wij .

Here, adj(i) represents the set of adjacent nodes of node i. Thus, j ∈ adj(i)
states that “node j belongs to the set of adjacent nodes of node i”. By
summing up wij for j, we obtain si. In the case of the network shown in
Figure 4.13, Toyota Motor has the largest value for node strength: s4 = 13.
On the other hand, Mazda Motor has the smallest value for node strength,
s5 = 1, just as it had for degree value. A consideration of both node strength
and degree yields a deep understanding of the characteristics of a network.

4.4.2 Shortest Path Length

As noted before, path length is also one of elementary quantities characterising
a network. We will here consider the path length in Figure 4.13 in concrete
terms. For example, let’s take Toyota Motor as the starting point. The
company is connected to four companies by one link, these four companies
being Hino Motors, Honda Motor, Daihatsu Motor, and Kanto Auto Works.
In addition, Toyota Motor is connected to five companies by two links, these
five companies being Mitsubishi Motors, Nissan Diesel Motor, Isuzu Motors,
Nissan Motor, and Aichi Machine Industry. Fuji Heavy Industries, Mazda
Motor, and Suzuki Motor are connected to Toyota Motor by three links. Thus,
the average value of links necessary to connect Toyota Motor and the other
companies is given by L4 = (1×4+2×5+3×3)/12 = 1.92. If we calculate Li

for each company, the result is summarised in the fifth row in Table. 4.1. From
this result, Nissan Diesel Motor and Nissan Motor have the smallest value for
shortest path length. In other words, these two companies can easily approach
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other companies. On the other hand, Mazda Motor has the largest value for
shortest path length. Finally, if we calculate averaged path length for this
network, we obtain 〈L〉 = 1.897.

4.4.3 Clustering Coefficient

As explained previously, the clustering coefficient is an index which quantifies
the cliqueyness of nodes. Taking the network shown in Figure 4.13 we can
calculate a concrete clustering coefficient. As in the case of path length, we
will consider the case of Toyota Motor as an example. Toyota Motor has four
links, i.e., companies. Thus, the possible number of combinations to connect
these four companies to each other is equal to the number of ways of selecting
two companies from four companies, i.e., C(4, 2) = 4(4 − 1)/2 = 6. However,
as we can see in Figure 4.13, three sets are realised. These are Hino Motors
and Daihatsu Motor, Hino Motors and Kanto Auto Works, and Kanto Auto
Works and Daihatsu Motor. The clustering coefficient is defined by the ratio
of realised numbers of combinations to possible numbers of combinations;
therefore, in the case of Toyota Motor, the clustering coefficient is given by
C4 = 3/6 = 0.5.

As we can see in Figure 4.13, Mazda Motor has one link; therefore, the
possible number of combinations is C(1, 2) = 0. Hence, the clustering coeffi-
cient of Mazda Motor diverges. As stated before, the clustering coefficient of
a node with one link is defined by 0. If we calculate the clustering coefficient
for each company, the result is summarised in the sixth row in Table. 4.1. By
definition, the clustering coefficient has value from 0 to 1. As stated above, the
clustering coefficient of Mazda Motor is equal to 0 by definition, and although
Honda Motor has three links, the clustering coefficient of Honda Motor is also
equal to 0. However, the clustering coefficient of Suzuki Motor, Kanto Auto
Works, and Mitsubishi Motors is equal to 1, because all possible combinations
are realised. If we calculate the averaged value of clustering coefficient of the
network, we obtain 〈C〉 = 0.518. This value is relatively large.

A weighted clustering coefficient, that is to say, a clustering coefficient
defined by considering the weight of links, has also been proposed. There are
several definitions of weighted clustering coefficient, some of them using the
weight of links connecting to a node (see Saramäki et al. (2007) for example).
Taking definition of the node strength in Section 4.4.1, we denote the weight
of a link between node i and node j as wij . In addition, we denote node
strength and the degree of the node i as si and ki, respectively. Thus, if node
j and node k, which are adjacent to node i, are connected with each other,
we define the weighted clustering coefficient as

Cw
i =

1
si(ki − 1)

∑

j,k∈adj(i)

wij + wik

2
,

which was originally proposed in Barrat et al. (2004). If the weights are equal
this expression reduces to the previously stated formula for the case without
weight, as is easily verified.
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By using this definition of weighted clustering coefficient we obtain the
result summarised in the seventh row of Table. 4.1. The weighted clustering
coefficient Cw

i has a value between 0 and 1, just as it did in the case of the
clustering coefficient Ci. Now, we can compare Ci and Cw

i . As can easily be
seen, if Ci is equal to 0 or 1, then Cw

i is also equal to 0 or 1. On the other hand,
if Ci has a value between 0 and 1, even if two nodes have the same value of
Ci, these two nodes sometimes have a different value of Cw

i . For example, as
shown in Table. 4.1, Isuzu Motors, Daihatsu Motor, Toyota Motor, and Aichi
Machine Industry have C1 = C3 = C4 = C6 = 0.5. However, by considering
a weighted clustering coefficient, we obtain Cw

4 > Cw
3 = Cw

6 > Cw
1 . In other

words, Toyota Motor is responsible for the most tightly connected cluster.

4.4.4 The Betweenness Centrality of Nodes

We can now consider an experiment in which we randomly select two nodes
from a network and connect these two nodes by the shortest path. If we repeat
this experiment many times, we notice that some nodes and links appear
frequently on the shortest path, and others never do so. This characteristic
of nodes and links can be quantified with a betweenness centrality.

Let us start with nodes and denote the number of the shortest paths
connecting node i and node j as σj,k. Note that we do not consider the
length of the shortest path. In addition, we denote the number of shortest
paths, which passes through node i and connects node j and node k, as σj,k(i).
The betweenness centrality of node i is defined by

Cb
i := A

∑

i $=j $=k∈V

σj,k(i)
σj,k

.

Note that A is a normalisation factor and V is a set of nodes in network.
For example, we can consider the case connecting Mazda Motor and Kanto

Auto Works in Figure 4.13, where we find that the length of the shortest path
is equal to 4, and that three paths exist.

• Mazda → Nissan → Nissan Diesel → Hino → Kanto Auto

• Mazda → Nissan → Honda → Toyota → Kanto Auto

• Mazda → Nissan → Aich Machine → Daihatsu → Kanto Auto

Thus, σ5,7 = 3. In addition, σ5,7(10) = 3 for Nissan Motor, and σ5,7(i) =
1, (i = 3, 4, 6, 9, 11, 13) for Nissan Diesel Motor, Hino Motors, Honda Mo-
tor, Toyota Motor, Aichi Machine Industry, and Daihatsu Motor respectively.
Thus, Cb

10 = 1 for Nissan Motor, and Cb
i = 1/3, (i = 3, 4, 6, 9, 11, 13) for

the other five companies, when we ignore the normalisation. Though we are
only considering the path between Mazda Motor and Kanto Auto Works, the
betweenness centrality is obtained by calculating for every path of every com-
bination of nodes. The eighth row of Table. 4.1 is the normalised betweenness
centrality of each node. From this result we can see that Nissan Motor has
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the largest value. This is because we can see in Figure 4.13, all companies
have to pass Nissan Motor to arrive at Mazda Motor.

4.4.5 Cliques

The clustering coefficient, which was explained earlier, is constructed by re-
garding a triangle as a cluster, when a subgraph constructs a triangle. How-
ever, we are not limited to triangles and can extend the concept to clusters
larger than three nodes. For example, suppose there are four nodes and these
four nodes are connected to each other. Such a network is extendable to a
network including many nodes, in which all nodes are connected to each other.
When every node is completely connected to every other we refer to it as a
complete graph. In addition, such a complete graph is also referred to as
an n-clique, where n is the number of nodes contained in the network.

As we can see in Figure 4.13, there are three 4-cliques. These are sum-
marised in Table. 4.2, where we can observe that the clique constructed from
Hino Motors, Mitsubishi Motors, Nissan Diesel Motor, and Isuzu Motors is
regarded as the truck making group. In addition, the clique constructed from
Hino Motors, Toyota Motor, Kanto Auto Works, and Daihatsu Motor is re-
garded as the Toyota group. These two cliques are connected by Hino Motors,
so we can conclude that Hino Motors is the gatekeeper. The other clique is
constructed from Nissan Motor, Aichi Machine Industry, Fuji Heavy Indus-
tries, and Suzuki Motor, and is regarded as the Nissan group. As we can see
in Figure 4.13 there are no cliques constructed from five or more nodes.

If we calculate the total sum of weight of links within each clique, (the
result is summarised in the third row of Table. 4.2) we observe that the Toyota
group has the largest value for the total sum of link weights, and we can infer
that the Toyota group is a more tightly connected group than other groups.

4.5 Statistical Properties of Network Indices

In the previous section, as an example, we investigated a small network con-
structed only from automobile companies, and calculated some indices and
considered the overall characteristics of the network. In this section, we will
investigate some large networks and consider the statistical characteristics of
network indices.

4.5.1 Comparison of Industries by Using Network In-
dices

Before we calculate network indices, as explained in the previous section, it
should be noted that if the number of nodes becomes large then disconnected
parts may appear. If we regard these disconnected parts as islands, the whole
network looks like a world map. That is, although each node in an island is
connected, there are no links connecting the islands. Consequently, we must
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Table 4.2: Clique of 13 companies belonging to the automobile
industry

Clique Company Total sum of weight

Hino 6
Mitsubishi
Nissan Diesel
Isuzu
Hino 18

4-clique Toyota
Kanto Auto
Daihatsu
Nissan 11
Aichi Machine
Fuji Heavy
Suzuki

5-clique none

calculate network indices for the largest island, which we call the largest
connected component.

Firstly, we will investigate the whole network described so far. As shown
in the second row of Table. 4.3, this network contains N = 3, 576 nodes and
K = 55, 332 links. This network constructs one connected component, i.e.,
the largest connected component is the network itself. In addition, the av-
eraged degree, the averaged path length, the averaged clustering coefficient,
and the averaged weighted clustering coefficient are 〈k〉 = 30.95, 〈L〉 = 2.78,
〈C〉 = 0.24, and 〈Cw〉 = 0.19, respectively. If we calculate betweenness cen-
trality Cb for each node, we can list the top five companies, namely Japanese
Securities Finance Co. Ltd., Mitsui & Co. Ltd., Mitsubishi Corporation,
Hitachi Ltd., and Panasonic Corporation, as shown in the second row of Ta-
ble. 4.3.11 The first company, i.e., Japanese Securities Finance Co., Ltd., has
a large number of links concerned with shareholding; therefore it has large
value of betweenness centrality. The second and third companies, i.e., Mitsui
& Co., Ltd. and Mitsubishi Corporation, have many links concerned with
shareholding and transactions. The forth and fifth companies, i.e., Hitachi
Ltd., and Panasonic Corporation, have many links concerned with sharehold-
ing, transactions, and innovation.

The analysed results for the electric machinery industry are summarised in
the third row of Table. 4.3. This industry contains 285 companies and 2,196
links. In this case the largest connected component is also the network itself.
However, if we compare 〈k〉 of this industry with that for whole network, we
find that the 〈k〉 of the electric machinery industry is approximately half that
of whole network. However, the value of 〈L〉 is almost the same in both the
electric machinery industry and whole network. On the other hand, 〈C〉 and

11Note that banks were not included in this investigation.
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Table 4.3: Network indices for the whole network, electric machin-
ery, and automobile
index Whole network Electric machinery Automobile

N 3,576 285 85
K 55,332 2,196 568
〈k〉 30.95 15.41 13.37
〈L〉 2.78 2.32 1.98
〈C〉 0.24 0.65 0.89
〈Cw〉 0.19 0.45 0.46

1 Japanese Securities Finance Hitachi Honda
2 Mitsui & Co. Toshiba Nissan

Cb 3 Mitsubishi Panasonic Suzuki
4 Hitachi Mitsubishi Electric Toyota
5 Panasonic Sharp Fuji Heavy

〈Cw〉 for the electric machinery industry is larger than that of whole network,
meaning that companies in electric machinery industry are densely connected
with each other.

The analysed results for the automobile industry are summarised in the
fourth row of Table. 4.3. This industry contains the electric machinery (automobile-
related), automobile (automobile), automobile (auto body and others), and
automobile (auto parts) categories. The network for this industry contains 87
nodes and 569 links, and is constructed from two connected components, the
largest connected component containing 85 nodes and 568 links. In the largest
connected component the averaged degree is 〈k〉 = 13.37, which is almost the
same as the averaged degree in the electric machinery industry. On the other
hand, the averaged shortest path length 〈L〉 in this industry is smaller than
that in electric machinery industry. Thus, companies in the automobile indus-
try are connected by a smaller number of steps than companies in the electric
machinery industry. In addition, though the clustering coefficient 〈C〉 of the
automobile industry is larger than that of the electric machinery industry, the
weighted clustering coefficient 〈Cw〉 is almost the same as that in the electric
machinery industry.

We have now compared the group of whole network with those in the elec-
tric machinery and automobile industries. However, the numbers of nodes and
links in these industries are very different, so let us compare the pharmaceu-
ticals and steel industries, which have almost the same number of nodes and
links, as shown in the second and third rows of Table 4.4. By comparing these
two industries we can find that the values of 〈C〉 and 〈Cw〉 are very different,
namely, the pharmaceuticals industry has very small values compared to the
value calculated for whole network. On the other hand, the values of 〈C〉 and
〈Cw〉 in the steel industry are much larger than that in the pharmaceuticals
industry. From this fact we can infer that companies in the steel industry are
densely and tightly connected to each other compared to companies in the
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Table 4.4: Network indices of the pharmaceuticals and steel indus-
tries

index Pharmaceuticals Steel

N 49 47
K 126 119
〈k〉 5.14 5.06
〈L〉 2.53 2.30
〈C〉 0.22 0.57
〈Cw〉 0.16 0.42

1 Mitsubishi Pharma Nippon Steel
2 Takeda Pharmaceutical Sumitomo Metal

Cb 3 Seikagaku Kobe Steel
4 Yamanouchi Pharmaceutical Hitachi Metals
5 Tanabeseiyaku Daido Steel

pharmaceuticals industry.

4.5.2 Degree Distribution

As stated in Section 2.1.1, the coverage of data is important when consider-
ing degree distribution. Though this book concentrates on investigation of
the shareholding network, the interlocking directors’ network, the transaction
network, and the innovation network, it is not necessarily possible to investi-
gate the precise degree distribution for these networks. For example, in the
case of the transaction network the data contains only the main suppliers and
customers and this coverage of data is insufficient. However, we can examine
the shareholding and innovation networks because data for these networks
satisfies the coverage requirement.

As explained in Section 4.3.1, the data useful to an investigation of the
shareholding network are major shareholder and stock holdings information.
Major shareholder data contains the total number of shareholders (the total
number of incoming degrees) and the list of the top thirty major shareholders
(incoming links) for each listed company. In addition, stock holding data
contains the total number of stocks (the total number of outgoing degrees)
and the list of the top ten major investing companies (outgoing links) for each
listed company.

We will now turn to an investigation of the distribution of outgoing degree
in the shareholding network. As stated above, because of the limitation of
stock holdings data we cannot know precisely which listed companies are
connected to outgoing links, but we can to some extent determine the total
number of outgoing links. On the other hand if we use major shareholder
data we can find companies with large outgoing degrees, even for unlisted
companies, because, companies with large outgoing degrees appear frequently
in the major shareholder data. Thus we can approximately determine that the
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number of times a company appears in the major shareholder data corresponds
to the number of outgoing degrees of unlisted companies.

We will use the total number of outgoing degrees, which is listed in stock
holdings data, since this number is a precise value. The black circles in Fig-
ure 4.14 correspond to the degree distribution of companies contained in this
data. The abscissa corresponds to degree and the ordinate corresponds to
rank. This figure is log-log plot of the rank-size plot, which is explained in
Section 2.1.2. Figure 4.14 is also kind of rank-size plot, however, we will
simply call it the degree distribution. In addition, for unlisted companies we
can consider the number of appearances in major shareholder data as being
approximately equal to the value of outgoing degrees. The open squares in
Figure 4.14 correspond to the degree distribution obtained by the method
stated here. Thus, unification of these two types of outgoing degree distribu-
tions derives the outgoing degree distribution with some precision. However,
some companies appear in both outgoing degree distributions so we will adopt
a larger value as the true outgoing degree. The crosses in Figure 4.14 are
obtained by the method explained here, and the solid line and dashed line
correspond to power-law distributions with power-law exponents γ = 1.5 and
2.0, respectively. In network science if we denote degree as k and consider
the degree distribution, the power-law exponent γ is generally represented by
using a probability density function:

p(k) = Ak−γ ,

where A is a normalisation constant. In short, although γ is the same as α
as defined in Section 2.1.2, in network science it is customary to denote it as
γ. From this figure, we can see that shareholding network is approximately
a scale-free network because the tail part of the outgoing degree distribution
follows a power-law distribution.

On the other hand, for the innovation network, i.e., a network of joint
patent applications, we can investigate a database that covers all joint patent
applications up until 2002, and so analyse the degree distribution. This is the
TamadaDB, which contains all information relating to 4,998,464 patents ap-
plied for in Japan over the period 1993 to 2002. The largest connected compo-
nent of the network of joint patent applications constructed from TamadaDB
contains 34,840 nodes and 84,840 links. The degree distribution of this largest
connected component is shown in Figure 4.15.12 This figure is a log-log plot of
degree distribution, and the abscissa corresponds to degree and the ordinate
corresponds to rank. The solid line in this figure is a power-law distribution
with a power-law exponent equal to 2. We can see in this figure that the
distribution follows the power-law distribution in a wide range of degrees;
therefore, the network of joint patent applications is a scale-free network.

12This result is obtained by collaboration with Prof. S. Tamada (Kwansei Gakuin Univ.)
and Dr. H. Inoue (Osaka Sangyo Univ.). (W.S)
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Figure 4.14: Outgoing degree distribution of the shareholding net-
work

Figure 4.15: Degree distribution of the network of joint patent
application
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Figure 4.16: Degree correlation of the shareholding network

4.5.3 Correlation related to Degree

At this stage we can consider the correlation related to degree. We assume
that the node with degree k′ is adjacent to the node with degree k. In addition,
we define the conditional probability density pc(k′|k), which is the probability
of selecting nodes with degree k′ when we select a node with degree k. Thus,
the averaged degree of a node adjacent to a node with degree k is given by

〈knn〉 =
∑

k′

k′pc(k′|k).

Here, 〈knn〉 is called the nearest neighbour’s average connectivity.
If we calculate 〈knn〉 for the shareholding network in 2002 and plot it on a

log-log graph, we obtain Figure 4.16. The abscissa corresponds to k and ordi-
nate corresponds to 〈knn〉. This figure displays degree-degree correlation.
The solid line in Figure 4.16 is given by

〈knn〉(k) = Ak−ν , ν ) 0.8,

where A is a proportionality coefficient. This result shows that the averaged
degree of nodes adjacent to the node with a large degree is small. In short,
the probability of connecting between hubs is very low.

It is known that the degree-degree correlation in the study of gene networks
and the World Wide Web is represented by a power-law function with an
exponent of ν ) 0.5 (Pastor-Satorras et al., 2001). Thus, the degree-degree
correlation of the shareholding network is almost the same as that of the gene
network and the World Wide Web.
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Figure 4.17: Correlation between the degree and clustering coeffi-
cients in the shareholding network

In a friendship network, we know experimentally that the probability of
connecting persons with many friends is very high. In short, there is a high
probability of connecting hubs in a human network. In such a case the scatter
plot is not similar to Figure 4.16, in which distribution is diagonally right
upwards, but is diagonally right downwards, which is opposite to the case of
the shareholding network, the gene network, and the World Wide Web.

We will next consider the correlation between the degree and clustering co-
efficients of each node. If we investigate the case of the shareholding network
in 2002, we obtain the result shown in Figure 4.17. In this figure, the ab-
scissa corresponds to degree k and the ordinate corresponds to the clustering
coefficient C. The solid line in this figure is given by

C(k) = A′k−α, α ) 1,

where A′ is the proportionality coefficient. From this figure, we can see that
nodes with a large degree have a small clustering coefficient. However, we
should note that the nodes with a large degree have many clusters. To cal-
culate the clustering coefficient, the number of actual clusters is divided by
the possible number of combinations of clusters, i.e., C(ki, 2) = ki(ki − 1)/2.
In the case of a node with large degree, C(ki, 2) = ki(ki − 1)/2 is very large.
Thus, the clustering coefficient of such a node is small.

It is also noted that for the gene network and the World Wide Web the
nodes with a large degree have a small clustering coefficient (Ravasz et al.,
2002). Thus, the shareholding network has similar characteristics to the gene
network and the World Wide Web. To explain the relation between degree
and clustering coefficients the concept of network motif and hierarchy have
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Figure 4.18: Distribution of total assets, and correlation between
degree and total assets

been proposed (Barabási and Oltvai, 2004; Milo et al., 2002; Shen-Orr et al.,
2002). Network motif is the minimal unit constructing a network, and has a
typical shape. Some network motifs construct a module, and some modules
construct another module. It is considered that such a hierarchical structure
in a network realises the relation C(k) ∝ k−α.

4.5.4 Shareholding Network and Company Size

In this section, we will construct a network by using only major shareholder
data, and then calculate the outgoing degree. In addition, we will consider the
correlation between outgoing degree and the total assets of a company and
the correlation between outgoing degree and the company’s age. Figure. 4.18
is a rank-size plot of total assets of listed companies at the end of March
2002. In this figure, the abscissa corresponds to total assets and the ordinate
corresponds to rank. The solid line in this figure is a power-law distribution
with an exponent of µ = 0.6. From this figure, we can see that total company
assets follows an approximate power-law distribution.

At this point we are only considering listed companies at the end of March
2003. Thus, this data does not contain every company having total assets
greater than some value, so this data does not cover the distribution of total
assets in detail. Because of this defect the complete power-law shown in
Chapter 2 does not appear in Figure 4.18. However, in Chapter 2, we have
shown that the distribution of income, sales, and profit of Japanese companies
follows a power-law distribution. In addition, we have also shown that the
distribution of total assets and sales of European companies follows a power-
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Figure 4.19: Distribution of company age, and correlation between
outgoing degree and the age

law distribution. Thus, it is reasonable to assume that if we can obtain the
complete list of total assets for Japanese companies, we can probably show
that they also follow a power-law distribution in the wide range of total assets.

The small panel in Figure 4.18 is a log-log plot of the correlation between
outgoing degree and the total assets of listed companies at the end of March
2002. From this figure, we can see that the outgoing degree and total assets
have a strong and positive correlation. In fact, Kendall’s τ (see Section 3.1.7)
is equal to τ = 0.53.

In the present study we define a company’s age by counting the months
from its foundation day to the end of March 2002, the date of the company
data we used. The semi-log plot of the rank distribution of company’s age
is shown in Figure 4.19. In this figure, the abscissa corresponds to company
age and the ordinate corresponds to rank. The dashed line in this figure is an
exponential distribution. From this figure, we can see that the distribution
of a company’s age follows an approximately exponential distribution. In
Section 3.4.2, we discussed the life span of companies, and showed that the
distribution of company life spans follows an exponential distribution. Thus,
it is to be expected that company age and life span will follow the same
distribution.

The small panel in Figure 4.19 shows the log-log plot of the correlation
between outgoing degree and company age for listed companies at the end
of March 2002. From this figure, we can see that outgoing degree and com-
pany age have a weak and positive correlation. In fact, Kendall’s τ (see
Section 3.1.7) is equal to τ = 0.20.

Map constructed by four mega banks and listed
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companies in 2002

So far we have drawn several networks, but we have not given any meaning
to the positions of companies in those networks. The study of graph drawing
has a long history, and international conferences on this subject are held
every year. Elementary physics might be useful determining the relative
positions of companies in the entire network of the shareholding relationship.

To do so, we first establish the initial positions of companies as shown
below in this column. Note that banks and nonfinancial listed companies are
randomly arranged in a two dimensional plane, with the four mega banks,
Mizuho Bank, Sumitomo Mitsui Banking, The Bank of Tokyo-Mitsubishi,
and UFJ Bank all marked as large filled circles in this figure. Our data
lists the top ten major shareholders for each bank and each company. The
list of the top ten major shareholders includes stock brokerage companies,
trust companies, and insurance companies. However, we are interested in
a network constructed from banks and nonfinancial listed companies, so we
will ignore the other companies.

Let us suppose that a company “A” is owned by two shareholders, and
that one shareholder has two shares and the other shareholder has one share.
Now, we regard the number of shares as a mass, and set the appropriate
position of company as the centre of mass. Thus in this example the ap-
propriate position of company “A” is given by the point on which the line
connecting two shareholders is divided by 2:1. However these two sharehold-
ers also have some shareholders; therefore, these two shareholders also move
to an appropriate position. By repeating this calculation we can regard such
a configuration as the appropriate state if we can obtain the stationary state
of the distribution of banks and nonfinancial listed companies.

And in fact, if we actually perform this calculation we do obtain the sta-
tionary state. However, this state is not unique and depends on the initial
state of the distribution of banks and nonfinancial listed companies. The typ-
ical stationary state is shown in the right figure of this column, and from this
figure, we can see that most companies are owned by the four mega banks.

4.6 Dynamics of the Company Network

Up to this point we have considered networks as a snapshot of a certain
year, thus we can regard these as static networks. In this section, we will
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consider change both in the network and the correlation between companies
in networks; that is to say, we will investigate dynamic networks.

4.6.1 Change in the Shareholding Network

Patent data is extremely useful when discussing change in a network, since
we can trace the development from the first patent. In this network a new
patent application connects to a network constructed from patents previously
applied for. This type of network is referred to as a growing network, that
is to say one in which the number of nodes and links increases with time.

In many economic networks, growth and collapse of the network, and the
rewiring of links, happens frequently. However, this never occurs in a patent
network, so instead we will examine the shareholding network since changes
are numerous and frequent. We will investigate a shareholding network con-
structed only from major shareholder data.

Figure. 4.20 is the sub-network extracted from the network constructed
from listed companies in 1985. In this sub-network, shareholders are com-
panies belonging to the transport machine industry.13 In this figure black
nodes correspond to companies belonging to the transport machine industry,
and white nodes correspond to companies belonging to other industries. We
note that four companies, Toyota Motor, Nissan Motor, Honda Motor, and
Mitsubishi Motors, are hubs in the network. In addition, we can see that
these four hubs (companies) are not directly connected. As explained in Sec-
tion 4.5.3, this sort of network means that the degree-degree correlation is
negative. Hubs are connected by companies belonging to both the transport
machine industry and another industry. These companies generally belong to
the electric machinery industry or industries in which companies make parts
of automobiles.

By applying the same criterion for the shareholding network in 1995, we
obtain Figure 4.21. By comparing Figure 4.20 and Figure 4.21, we can see that
there is no remarkable change. If we draw the same type of figure in 2000, we
obtain Figure 4.22. This figure is almost same as Figure 4.20 and Figure 4.21.
However, Figure 4.23 for 2003 is remarkably different from Figures 4.20, 4.21,
and 4.22. In this figure, Mitsubishi Motors and Nissan Motor are no longer
hubs in the network. In the period between 2000 and 2003, foreign capital
participated in these two companies, and the management policy changed
significantly, resulting in the drastic change observable in Figure 4.23.

To consider whether a similar change occurred or not in other industries
we will investigate the case of the electric machinery industry. Figure. 4.24 is
the sub-network extracted from the network constructed from listed compa-
nies in 1985. In this sub-network, shareholders are companies belonging to the
electric machinery industry. Black nodes correspond to companies belonging
to the electric machinery industry, and white nodes correspond to compa-
nies belonging to other industries. We can see that eight companies, Hitachi

13The transport machine industry includes the automobile industry and some other in-
dustries.
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Figure 4.20: Shareholding network with shareholders belonging to
the transport machine industry (1985)

Figure 4.21: Shareholding network with shareholders belonging to
the transport machine industry (1995)
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Figure 4.22: Shareholding network with shareholders belonging to
the transport machine industry (2000)

Figure 4.23: Shareholding network with shareholders belonging to
the transport machine industry (2003)
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Figure 4.24: Shareholding network with shareholders belonging to
the electric machinery industry (1985)

Ltd., NEC Corporation, Sony Corporation, Toshiba Corporation, Fujitu Ltd.,
Panasonic Corporation, Mitsubishi Electric Corporation, and Sanyo Electric
Co. Ltd., are hubs in the network. As in the case of the transport machine
industry, we can see that these eight hubs (companies) are not directly con-
nected. As explained in Section 4.5.3, this nature of network means that the
degree-degree correlation is negative.

As in the case of the transport machine industry, we can draw networks
for 1995, 2000, and 2003 as Figures 4.25, 4.26, and 4.27, respectively. By
comparing these four figures for the electric machinery industry, we can see
that there is no remarkable change, and in fact there has been no drastic
change of management, such as participation of foreign capital, in the electric
machinery industry.

4.6.2 Change of Degree Distribution

We will now consider the change of degree distribution by using only major
shareholder data. Originally the shareholding network was drawn as a directed
graph. However, as explained in Section 4.3.1, the major shareholder data
provides the list of the top thirty major shareholders for each listed company.
Thus, if we draw the shareholding network by tracing links from shareholders
to listed companies, the incoming degree has an upper bound. However, the
outgoing degree does not have an upper bound. Thus, in this section, we will
investigate only the outgoing degree.

Denoting the total number of nodes and links as N and K respectively,
the changes of N and K are summarised in Table 4.5. From this table, we can
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Figure 4.25: Shareholding network with shareholders belonging to
the electric machinery industry (1995)

Figure 4.26: Shareholding network with shareholders belonging to
the electric machinery industry (2000)
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Figure 4.27: Shareholding network with shareholders belonging to
the electric machinery industry (2003)

Table 4.5: Change of shareholding network

year 1985 1990 1995 2000 2002 2003
N 2,078 2,466 3,006 3,527 3,727 3,770
K 23,916 29,054 33,860 32,586 30,000 26,407
γ 1.68 1.67 1.72 1.77 1.82 1.86

see that N increased rapidly between 1985 to 2002 and is slowly increasing
in recent years. This means that the increase of the number of newly listed
companies is slow. On the other hand, K peaks in 1995, and decreases rapidly
after 1995. This behavior of K is related to bad-debt disposal after the year
1990, when the so-called Heisei bubble collapsed.

Figure 4.28 is a log-log plot of the cumulative distribution of outgoing de-
grees in 1985, 1990, 1995, 2000, 2002, and 2003. In this figure, the abscissa
corresponds to the outgoing degree and ordinate corresponds to the cumula-
tive distribution. From this figure, we can see that all annual distributions can
be well fitted by a linear function in the wide range of the distribution, though
not in the tail part. In short, the distribution of outgoing degree follows a
power-law distribution, and the shareholding network is a scale-free network.
The change of the power-law exponent γ is summarised in Table. 4.5. From
this Table, we can see that γ = 1.67 ∼ 1.86.

An oligopoly of degree makes the power-law exponent γ small. This char-
acteristic of γ is the same as the Pareto exponent discussed in Section 2.2. The
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Figure 4.28: Change of degree distribution

change of γ is summarised in Table. 4.5. As explained in Section 4.5.2, γ is
obtained by fitting the probability density function of degree with a power-law
distribution. From this Table, we can see that γ decreases slightly over the
period 1985 to 1990, and increases consistently after 1990. This means that
shareholding became an oligopoly up to the Heisei bubble, and this oligopoly
was eliminated after the collapse of Heisei bubble.

Now, we can consider why the power-law exponent changed. Some years
ago, the bad-debt disposal of major banks was a serious problem in Japan. To
settle bad-debts, banks and non-financial companies sold a portion of their
stock holdings. It is believed that these stock holdings were not held by
banks and companies for investment, but for cross-shareholding. Thus, it is
to be expected that the change of power-law exponent has a relation with
the cross-shareholding rate, i.e., the long-term shareholding rate. Long-term
shareholding is not for speculative buying and selling, frequently within one
year, but for stable possession for periods greater than a year.

We can now investigate the correlation between the power-law exponent
and the shareholding rate with the unit base (long-term shareholding rate
and cross-shareholding rate), as reported by Nippon Life Insurance (NLI)
Research Institute. The left panel of Figure 4.29 shows the change of the
long-term shareholding rate and the cross-shareholding rate. In this figure,
filled circles and filled squares correspond to the long-term shareholding rate,
and the cross-shareholding rate, respectively. In addition, the right panel of
Figure 4.29 shows the correlation between the power-law exponent and long-
term shareholding rate and the correlation between the exponent and cross-
shareholding rate. From this figure, we can see that power-law exponent has
a strong and negative correlation with the long-term shareholding rate and
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Figure 4.29: Change of the long-term shareholding rate and the
cross-shareholding rate, and correlation with the power-law exponent

the cross-shareholding rate.
The degree distribution of the shareholding network has also been inves-

tigated for companies listed on Milano Italia Borsa (MIB), the New York
Stock Exchange (NYSE), and the National Association of Security Dealers
Automated Quotations (NASDAQ) (Garlaschelli et al., 2005). These anal-
yses showed that the degree distribution follows the power-law distribution,
exactly as is the case in Japan. For example, the power-law exponents of
MIB, NYSE, and NASDAQ are γ = 1.97, γ = 1.37, and γ = 1.22, respec-
tively. These results are almost identical to those in Japan.

Thus, it is to be expected that a degree distribution following a power-
law distribution is a universal structural feature of shareholding networks,
although the value of power-law exponent γ depends on country and year. In
addition, if we consider that scale-free networks are found in many networks
from biology to internet, it is reasonable to conclude that the shareholding
network in Japan is not special.

In both degree distribution and also many power-law distribution phenom-
ena the tail part of the distribution does not follow a power-law. In such cases
the deviation from a power-law is sometimes ignored, because the tail part
describes rare events. Nevertheless detailed investigation is promising, and
we will examine this a little further.

If we plot the distribution of outgoing degree in the semi-log graph, we can
obtain Figure 4.30, and from this figure we can see that the tail part of the
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Figure 4.30: Change of degree distribution in a shareholding net-
work

distribution is well fitted by a linear function, namely, the tail part follows an
exponential distribution. In addition, this tail part is mainly constructed from
financial companies. On the other hand, 95% of the part following a power-law
distribution is constructed from nonfinancial companies. Thus, it is expected
that the development mechanism of a network of financial companies differs
from that for nonfinancial companies.

4.6.3 Correlation between Companies in Networks

In Section 4.6.1 and Section 4.6.2, we considered the change of network topol-
ogy and the change of degree distribution as the dynamics of a network. How-
ever, we can take a different viewpoint and consider the correlation between
companies in networks. For example we can consider the correlation between
companies by using a correlation coefficient (see column in pp. 121).

A correlation coefficient has a value from −1 to 1, thus when the correlation
coefficient is close to 1, it is said “strong and positive correlation”, while when
the correlation coefficient is close to −1, it is said to be a “strong and negative
correlation”. In addition, when the correlation coefficient is close to 0, there is
said to be “no correlation”. However, we should be aware that the correlation
coefficient is on the ordinal scale, which represents the relative strength of
the correlation. In short, when we compare the correlation coefficients 0.1
and 0.5, we must not conclude that the correlation of the latter is five times
stronger than the former.

When considering the correlation between companies in networks, we begin
by imagining the correlation between sales and cost in the transaction network.
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In our analysis up to now we have investigated certain kinds of network, such
as shareholding networks and transaction networks, so it is natural to wonder
which network accounts for the strong correlation between companies. In
addition, from the viewpoint of risk management, the correlation between
bankruptcy probabilities is extremely interesting as it is connected with chain-
bankruptcy.

To investigate the correlation between companies, we need financial and
network data for several years. However, for the transaction network we only
have data for 2004, so we will assume that the shape (topology) of the trans-
action network in 2004 was sustained in the past. Hence, we will investigate
the correlation between companies by assuming that companies change dy-
namically in a static network.

Correlation between Growth Rates of Sales and Cost

For an adequate description of the growth of each company, we must consider
the direct interaction between companies through transactions, and we
can check this by analysing data about growth of company (Ikeda et al., 2008).

Figure 4.31 shows the distribution of growth of sales X and the distribution
of growth of costs for Y Japanese companies listed on the 1st Section of the
Tokyo Stock Exchange in 2003. Cost is here defined as approximately equal
to the cost of raw materials. In addition, growth rate is defined as the ratio
of realised value in one year to that of the previous year. From Figure 4.31,
we can see that the distribution of growth rate has a fat tail on both sides of
the distribution, and follows a Laplace distribution (double-sided exponential
distribution).

Now, we can anticipate that sales and costs (costs of raw materials) for a
pair of companies with transactions will have a strong correlation. Thus, to
check this expectation we will compare the correlation coefficient between the
growth rate of sales and costs for pairs of companies linked by transactions
and pairs of companies without such connections. The important thing to
note is that we are not considering the correlation between sales and costs
itself, but investigating the correlation between the growth rate of sales and
the growth rate of costs. Because a correlation coefficient has meaning for
stationary process, so sales and costs, which are generally considered to
be a nonstationary process, must be rendered stationary by calculating the
growth rate.

Figure 4.32 shows the correlation coefficient between the growth rate of
sales and the growth rate of costs. From this figure, we can see that the dis-
tribution for pairs of companies with transactions shifts in the direction of a
large correlation coefficient, compared to the distribution for pairs of compa-
nies without transactions. Although we can find large correlation coefficients
for pairs of companies without transactions, we conclude that such a large
correlation coefficient is an effect of the correlation with a business partner’s
business partner. It follows from this that in the discussion of the growth rate
of each company we must consider the direct interaction between companies
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Figure 4.31: Distribution of growth rate of sales X and that of
costs Y
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Figure 4.32: Correlation coefficient between growth rates for sales
and costs

with transactional relationships. In the discussion of growth rate stated be-
fore we ignored the interaction between companies. Thus, in the next stage
we will consider cases including interaction between companies.

In Figure 4.32, we find that even though we are investigating the corre-
lation coefficient of growth rate between transacting companies there is an
element showing negative correlation. It is reasonable to regard this negative
part as noise, and thus, following basic statistical practise, we remove noise
by using the noncorrelation test. The noncorrelation test is performed as
follows: firstly we assume the null hypothesis that two statistical variables
are uncorrelated with each other. If noncorrelation is realised the statistical
quantity T = r

√
L − 2/

√
1 − r2, which is obtained by using the correlation

coefficient r calculated from time series data, is characterised by the t distri-
bution with L − 2 degrees of freedom. Here, L is the length of time series.
In addition, P is the area larger than the statistical quantity T in the t dis-
tribution with L − 2 degrees of freedom. In this case, the null hypothesis is
rejected with confidence level (1 − P ) × 100%. In Figure 4.32, the shaded
part shows that the correlation coefficient is statistically meaningful with a
confidence level larger than 95%.

The transaction network is drawn as a directed graph; therefore, we can
calculate the incoming degree kin and outgoing degree kout. If we set the di-
rection of links as the direction of physical distribution, the incoming degree
corresponds to the number of suppliers and the outgoing degree corresponds
to the number of customers. Figure. 4.33 shows the cumulative probability
distribution of incoming degree and outgoing degree, as defined above. The
tail part follows an approximate power-law distribution. When we remove
noise by using the noncorrelation test, the power-law exponent γ is approx-
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Figure 4.33: Cumulative probability distributions of incoming de-
gree and outgoing degree
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imately equal to 3, which is same value derived from the growing network
model proposed by Barabási and Albert (Barabási and Albert, 1999).

If we consider the suppliers in the transaction network, the growth rate of
cost for i-th company is represented by

δYi(t + 1) =
Ns∑

j=1

kijδXj(t) + εi(t),

where δXi(t) and δYi(t) are the normalised growth rate of sales (Xi(t) −
〈Xi〉t)/σ(X)

i and the normalised growth rate of cost (Yi(t) − 〈Yi〉t)/σ(Y )
i , re-

spectively. Here Ns is the number of suppliers, 〈Xi〉t represents the time
average of the time series Xi(t), and σ(X)

i represents the standard deviation
of the time series Xi(t). The set of parameters, kij , denotes the strength of
interaction. See also the upper panel of Figure 4.33 for the cost Ci of i and
the revenue Rj of j. The normalised growth-rates are related to each other
by the above equation.

On the other hand, if we consider the customers in the transaction network,
the growth rate of sales for the i-th company is represented by

δXi(t + 1) =
Nc∑

j=1

kijδYj(t) + εi(t),

where the first term in the right hand side of this equation corresponds to
the interaction by transaction between companies. Here, Nc is the number of
customers. See also the lower panel of Figure 4.33 for the cost Ci of i and
the revenue Rj of j. The normalised growth-rates are related to each other
by the above equation.

The parameter kij is estimated by applying regression analyses with resid-
ual error. We performed regression analyses by including kij for the pairs hav-
ing statistically significant correlations as explained above. From this analysis
we found that the residual error follows a normal distribution with a standard
deviation equal to 0.84, which is smaller than that of the normalised growth
rate. This fact means that the introduction of the first term of the right hand
side of the equation above was successful.

It is reasonable to expect that we can make residual error still smaller
by lowering the confidence level and including more interaction terms. Fig-
ure. 4.34 shows the relation between the standard deviation of residual error
and the confidence level, which confirms the validity of our expectation.

Network Dependence of the Correlation between Sales

We will now consider the network dependence of the correlation between com-
panies. To this end, we will consider the shareholding network, the transaction
network, and the overlapping network. The overlapping network corresponds
to the network in which nodes are connected by both a shareholding relation-
ship and a transaction relationship. In the previous section we stated that the
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Figure 4.34: Standard deviation of residual error and confidence
level

correlation coefficient has meaning for a stationary process, however we will
relax this limitation in order to consider the correlation with company sales.

In graph theory the definition of correlation coefficient corresponds to a
weighted complete graph in which every node connects to every other node.
For example, if we calculate correlation coefficients for 1,400 nonfinancial com-
panies listed in the first section of the Tokyo Stock Exchange by using sales
data over the period 2000-2004 (5 years), we can obtain Figure 4.35. The
mean value of this distribution is 0.079. This value is shown in Figure 4.36
as the cross at the length of time series equal to 5. If we change the length
of time series from 4 years (the period 2001-2004) to 20 years (the period
1985-2004), and calculate mean values, we obtain the solid line connecting
crosses in Figure 4.36.

If we extract the 1-link correlation (correlation between companies con-
nected by one link) in the overlapping network from the correlation coefficient
calculated by using data over the period 2000-2004 (5 years), we obtain the
distribution shown in Figure 4.37. By comparing Figure 4.35 and Figure 4.37,
we can see that the positive correlation in the overlapping network is larger
than the mean value of the correlation coefficient. The mean value of the cor-
relation coefficient in the overlapping network is equal to 0.244. If we change
the length of the time series we obtain the solid line connecting the filled tri-
angles in Figure 4.36. If we apply the same analysis to the part corresponding
to the transaction network, we obtain the solid line connecting the filled cir-
cles in Figure 4.36. In addition, the solid line connecting the filled squares in
Figure 4.36 is for the part corresponding to the shareholding network.

If we extract the 2-link correlation (correlation between companies con-
nected by two links) in the overlapping network and repeat the same calcu-
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Figure 4.35: Distribution of correlation coefficient for sales

Figure 4.36: Network effect on correlation coefficient
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Figure 4.37: Distribution of correlation coefficient for sales in the
overlapping network

lation used in the case of the 1-link correlation, we obtain the dashed line
connecting the open triangles in Figure 4.36. In this figure, the dashed lines
connecting open circles and open squares correspond to 2-link correlations in
the transaction network and the shareholding network, respectively. From
this figure, we can see, in the case of 1-link correlation, that the correlation
in the overlapping network is the largest correlation. This is applicable to the
case of 2-link correlation. In addition, the 2-link correlation is smaller than
the 1-link correlation for every type of network.

Network Dependence of Correlation between Bankruptcy Probabil-
ities

We can consider the correlation between bankruptcy probabilities. Although
many models for bankruptcy probabilities have been proposed we use the
bankruptcy probability model known as SAF2002 (Simple Analysis of Failure
2002) (Shirata, 2004). SAF2002 is defined by

SAF2002 = 0.0104x1 + 0.0268x2 − 0.0661x3 − 0.0237x4 + 0.7077.

Here, x1, x2, x3, and x4 correspond to retained earnings to total assets, net
income before tax to total assets, an inventory turnover period, and inter-
est expenses to sales, respectively. This bankruptcy probability was derived
by applying nonlinear regression for these four financial items, which differ
remarkably between bankrupted companies and non-bankrupted companies.

As is obvious from its name, SAF2002 was proposed in 2002, and conse-
quently it is widely supposed that the model is inapplicable to earlier years.
However, we assume that this model is so applicable, and we can calculate
the correlation coefficient between bankruptcy probabilities over the period
2000-2004 (a five year period). Thus, we obtain the mean value of correlation
coefficient equal to 0.0863. On the other hand, for a 1-link correlation the
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mean values of correlation are 0.1345, 0.1614, and 0.1780 in the transaction
network, the shareholding network, and the overlapping network, respectively.
For 2-link correlation, the mean values of correlation are 0.1136, 0.1334, and
0.1677 in the transaction network, the shareholding network, and the over-
lapping network, respectively.

From these results we can see that the overlapping network has a strong
correlation. However, compared with the correlation between sales the net-
work dependence of the correlation between bankruptcy probabilities is weak.
In addition, the difference between the 1-link correlation and the 2-link cor-
relation is small. This finding indicates that chain bankruptcy is unlikely.
We can consider two underlying causes for this fact. One possibility is that
SAF2002 is not applicable to network structure phenomena such as chain
of bankruptcy, because SAF2002 indexes only the bankruptcy probability of
the company itself. Another possibility is that our data covers only listed
companies, for which chain bankruptcy is rare.
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Chapter 5

Agent-Based Model for
Companies

In Chapters 2 and 3 we investigated various statistical properties of com-
panies by treating them as a statistical ensemble. In the preceding chapter
we demonstrated that companies are interconnected through transaction re-
lations, share holdings, cooperative filing of patents and so on, thus resulting
in the formation of a complex network. In this chapter we introduce the re-
sults of recent studies elucidating the dynamics of interacting companies using
agent-based models.

The agents appearing in economic phenomena include consumers, investors,
companies, and others, and we can regard economic phenomena as many-body
systems in which a number of those agents interact with each other. Such an
approach is called an agent-based simulation. Recently more and more
simulations of various economic phenomena have been carried out using com-
puters.

An agent in computer science means a small piece of software possess-
ing such properties as autonomy (acting with its own “will”), social nature
(collaborating with another) and adaptability (making itself fit to its sur-
roundings). These features of the agent exactly coincide with the agent-based
model treated in this book.

So we might say that economic agents are the actors and the stage is a
network connecting those agents. But what drama is played out in this the-
ater? We will begin with modeling the dynamics of companies as a stochastic
process and then proceed to an explanation of agent-based modeling of com-
panies.

5.1 Gibrat’s Process

In the present context we refer to the income, assets, and the number of
employees attributed to a company as its complete “size”. We attempt to

169
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model the dynamics of companies on the basis of Gibrat’s process (Gibrat,
1931), as has been briefly described in Section 3.1.4. The size of a company
in a certain year t is denoted by x(t); hence x(t− 1) represents the size of the
company in the preceding year. Gibrat’s law is explicitly expressed as

x(t)
x(t − 1)

= a(t − 1),

where a(t−1) is a stochastic variable with some probability distribution which
is statistically independent of x(t − 1) and plays a role of growth rate. The
law is also rewritten as

x(t) = a(t − 1)x(t − 1).

Namely, the size x(t) of a company in this year is x(t − 1) multiplied by
a(t−1). Such a stochastic process, characterized by multiplication of random
variables, is generally called a multiplicative stochastic process. Since
Gibrat’s process is the simplest among multiplicative stochastic processes, it
may be referred to as a pure multiplicative stochastic process.

If we go back one year, Gibrat’s law reads

x(t − 1) = a(t − 2)x(t − 2),

and combination of this with the previous expression for x(t) results in

x(t) = a(t − 1)x(t − 1) = a(t − 1)a(t − 2)x(t − 2).

Repeating this process, we reach the original or initial time and obtain

x(t) = a(t − 1)a(t − 2) · · · a(1)a(0)x(0).

Let us take a logarithm of both sides of the above equation:

log x(t) = log a(t − 1) + log a(t − 2) + · · ·
+ log a(1) + log a(0) + log x(0)

The right-hand side has been thus converted to additive operations from mul-
tiplication. Such a process is called additive stochastic process (Gibrat,
1931) (see also Sutton (1997)).

If various instances of a(t) are uncorrelated to each other, then the cen-
tral limit theorem states that the distribution of log x(t) will asymptotically
approach the normal distribution as time evolves. Hence the asymptotic dis-
tribution of x(t) is given by the log-normal distribution, which is sometimes
called Gibrat’s distribution. The growth rate a(t) of a company may well de-
pend on the size of the company. However, Gibrat assumed that the size of the
company and its growth rate were independent of each other, in other words,
that the business chances of a company increased just in proportion to its size.
As has been demonstrated by the empirical analyses in Chapter 3, Gibrat’s



5.1. GIBRAT’S PROCESS 171

Figure 5.1: behaviour of companies in Gibrat’s process

Figure 5.2: Distribution of company sizes in Gibrat’s process

law is certainly satisfied by large companies. The log-normal distribution
is skewed with a fat tail on the upper side. But the tail is not particularly
fat in comparison with that of the power-law distribution. According to this
model, diversity in the size of companies continues to be enlarged without any
limitation even if they were of the same size at an initial time. However, the
ranking of companies by size is not fixed. Figures 5.1 and 5.2 illustrate this
interchange of companies. The simulation used one thousand companies and
assumed that a(t) took uniform random numbers in 1/2 < a(t) < 3/2. The
initial value for x(t) was set as x(0) = 40. Uniform random numbers were
generated by selecting numbers in a given range randomly and with equal
probability.
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5.2 Model of Shareholding Network

We can now develop the idea of Gibrat’s process to construct a model which
reproduces the results in Secs. 3.1 and 4.5.4. And using the model we try to
shed light on such phenomena as are characterised by the power-law degree
distribution. Those phenomena have been demonstrated in Section 4.6.2.

5.2.1 Reproduction of Size Distribution

How can we derive a power-law distribution on the basis of Gibrat’s process?
Physicists have already prepared several answers to this question. One of them
is to reset the stochastic variable to its initial value with a certain probability
q (Manrubia and Zanette, 1999). This can be expressed as

xi(t) =
{

ai(t − 1)xi(t − 1) with probability 1 − q
xi(0) with probability q

where i is an index distinguishing companies. Companies do not interact with
each other in this model and they have their own evolutionary paths with dif-
ferent statistical uncertainties. The process is referred to as a multiplicative
stochastic process with a reset event.

Suppose that the parameter q represents a bankruptcy probability for com-
panies. In this model, as long as companies do not fall into bankruptcy, they
evolve according to Gibrat’s process. Once a company becomes bankrupt,
it restarts its business under the initial condition or is replaced by a new-
comer with the same condition. Actually such a simple process is able to
explain the outline facts such as the power-law distribution of the sizes of
companies, and the exponential distribution of company lifetimes. Alterna-
tive models which can reproduce the power-law distribution include multi-
plicative stochastic processes with a reflection wall (Solomon and Levy, 1996)
or with additive noises (Sornette, 1998; Sornette and Cont, 1997; Takayasu et
al., 1997). The reflection wall totally reverses the direction of evolution of a
company whose size becomes smaller than some lower limit. The multiplica-
tive stochastic process with additive noises was studied in detail by Kesten
(1973), and is sometimes referred to as Kesten’s process.

We are now in a position to carry out simulations in the reset-event model
described above. It is however necessary to specify the simulation parame-
ters. We used 50,000 companies and set xi(0) = 1 as the initial condition. We
also adopted q = 0.005 for the reset probability. This value arises from the
historical fact that Japanese companies went into bankruptcy with annually-
averaged rates ranging from 0.2 % to 1.7 % during the period of 1970 through
1997. Finally, the growth rate ai(t) was assumed to take random numbers
uniformly distributed in (0.5, 1.5]. Figure 5.3 exemplifies the results obtained
by the simulation. This is a log-log plot of the size x of companies on the
ordinate versus the corresponding rank on the abscissa for results at a dif-
ferent time. We can readily observe that the distribution stabilises as time
evolves. In particular, the distribution is almost stationary beyond t = 200.
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Figure 5.3: Simulated results for sizes and ages of companies

We note that the stable distribution has a power-law tail and its exponent is
approximately µ = 1. The inset in Figure 5.3 shows a distribution of the ages
of companies at t = 1000. This is a linear-log plot of the age T of companies
on the ordinate versus the corresponding rank on the abscissa. The linear
behaviour of the distribution demonstrates the exponential characteristics of
the distribution. We have thus succeeded in explaining half of the results
given in Section 4.5.4.

The Weber-Fechner law

In 1834 E. H. Weber experimentally established that the perceived intensity
of physical stimuli is proportional to relative change of the magnitudes of
the stimuli, not to their absolute change. Further, in 1859 Fechner mathe-
matically formulated Weber’s observation by remarking that our perception
intensity is proportional to the logarithm of the stimulus intensity. Every-
body experiences saturation of perception in response to increasing physical
stimuli. The experimental fact is really a characteristics of the logarithmic
function. As well as our five senses, our sense of money, if one may call it
that, seems to obey the Weber-Fechner law, according to a recent experiment
carried out by one of the authors. The modeling of behaviour of stock prices
as a geometric Brownian process may be related to this observation; the rate
of return is adopted as a fundamental stochastic variable instead of the stock
price itself. Fechner is thus known to be a founder of psychophysics. In fact,
he also formulated a statistical concept regarding Kendall’s τ , introduced in
Chapter 3. (H.I.)
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Figure 5.4: Conversion of the simulated results to the degree dis-
tribution

5.2.2 Reproduction of Degree Distribution

To explain all of the results in Secs. 4.5.4 and 4.6.2 on the basis of the
present model we need an additional creative device. To that end we will
try to convert the assets possessed by a company to the degree of its links.
Companies possess part of their assets in the form of stocks. The percentage
of investment in stocks in the sum of total assets differs from company to
company, as does the division of the investment funds into different stocks.
We will simply define the degree ki(t) of company i as ki(t) ≡ xi(t)/ri where
the assets xi(t) are divided by a uniform random number ri ∈ [1, 5).

Figure 5.4 shows the results for the degree distribution obtained by several
simulations at t = 1000. This figure plots the simulated results with the
degree k on the abscissa and the corresponding rank on the ordinate, both in
a logarithmic scale. We see that the distribution has a power-law behaviour
over a wide range. Its power-law exponent is estimated as being close to
γ = 2, which is slightly larger than the value in Table 4.5.

The inset placed at the upper-right corner in Figure 5.4 displays a typical
example of correlations between the degree k and the age T of companies
at t = 1000. This figure is a log-log plot of k on the abscissa and T on
the ordinate. The correlation is weak, and is quantitatively confirmed by
the value τ = 0.21 for Kendall’s τ . This agrees well with the result given
in Section 4.5.4. On the other hand, the inset at the lower-left corner in
Figure 5.4 exemplifies correlations between the degree k and the assets x of
companies at t = 1000, both of which are plotted in a logarithmic scale. The
correlation with τ = 0.60 is assessed as rather strong. This is also in good
agreement with the result in Section 4.5.4.
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5.2.3 Effects of Nodal Characteristics

We have proposed a successful model to explain the power-law behaviour
of the degree distribution for companies. At this point we will turn to the
remaining issue of why the distribution has an exponentially-decaying tail, a
matter raised at the end of Section 4.6.2.

In 1999 Barabási and Albert worked out a simple model to reproduce
networks with scale-free characteristics, a model which, for brevity, is often
referred to as the BA model (Barabási and Albert, 1999). The key ingre-
dients in their model are network growth and preferential attachment. By
network growth we mean that the number of nodes in the network increases
over time, and by preferential attachment we mean that nodes with a higher
degree have a larger probability of establishing links with new nodes added to
the network; in the original model the attachment probability is proportional
to the degree of the existing nodes.

In 2000 Amaral and his collaborators demonstrated that the degree distri-
butions of some networks are characterised by an exponential form instead of
a power law (Amaral et al., 2000). They then tried to extend the BA model
to explain their finding, and in the process they modified the BA model by
setting an upper bound to the number of links that a node can have. They
interpreted the upper bound as arising from aging or the limited capacity of
nodes. That is, the aging effect prevents old nodes from connecting to a new
node. Alternatively nodes with a large degree of connections suffer from high
cost necessary to keep existing links, so that they have no capacity to make a
new connection beyond a critical value kmax for the degree.

In view of the outline facts of the shareholding network, we will assess the
validity of the model due to Amaral et al. for studying the tail of the degree
distribution. Because the model is a generalised version of the BA model
we will initially focus on whether the network is growing with a preferential
attachment or not.

Table 4.5 confirms that the network is actually growing although the
growth rate is fluctuating over time. Also we note that the tail of the de-
gree distribution mainly stems from contributions by financial institutions,
which take positive action in spending their money on investment in new
companies. The larger financial institutions are, the higher probability they
have of acquiring new stocks. This is really a preferential attachment process
working for financial institutions. The key postulates in the BA model thus
seem to be satisfied in the shareholding network. So how about effects of
the aging and the limited capacity, which are the new ingredients to the BA
model introduced by Amaral et al.

In the case of financial institutions, it is hard to imagine that they tend
not to acquire new stocks as they become older. And it is difficult to treat
their ages in a systematic way because M&A’s occur regularly. On the other
hand, the total amount of investment money is fixed for financial institutions
so that they have a limited capacity to establish shareholding connections. We
thereby claim that the model of Amaral and his colleagues can account for the
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exponential tail in the degree distribution. The next problem is how we can
estimate the critical value kmax from the real data. This is reserved for future
study. We expect that kmax depends on how much money for investment each
financial institution possesses.

5.3 Balance Sheet Dynamics

An agent-based model can be used to elucidate complex phenomena encoun-
tered in a wide variety of social and economic systems, and is a natural ex-
tension of the atomic concept worked out for describing physical systems.
Agents have internal structures characterised by different parameters. For
instance, agents are made sufficiently intelligent as to be autonomous; that is,
an agent has the capability to adapt itself to surrounding conditions. In ad-
dition, agents interact with each other according to simple rules. A complex
system is thus regarded as an assembly of interacting agents.

D. Delli Gatti and M. Gallegati and their collaborators constructed a
promising model consisting of interacting economic agents to describe the
dynamics of companies (see Delli Gatti et al. (2000); Gallegati et al. (2003)
for the original work and also Delli Gatti et al. (2008)). They demonstrated
that the model successfully reproduced a set of stylised facts including the
company size distribution with a power-law tail, and the Laplace-type distri-
bution of the growth rate of companies.

A large collection of agents with identical characteristic parameters and a
monopolistic bank constitute the model as shown in Figure 5.5. The dynamics
of the agents are characterised by their balance sheets. Each company tries to
maximise its expected profit against a background of the possible risks in the
market. The companies, which are mutually interacting through the bank,
become heterogeneous in the course of temporal evolution, and the possibility
of bankruptcy is also taken into account. Such a microscopic model, once
established, enables us to investigate the interplay between the behaviour of
individual companies and the macroscopic trend of economy. We are now in a
position to calibrate the model thanks to the accumulation of results relating
to the statistical properties of the dynamics of real companies.

We will initially reconstruct the original model to elucidate the conceptual
ingredients. The compromise between the two concepts, profit maximisa-
tion and maintaining the company as a going concern plays a key role in
the decision making of companies using imperfect information relating to their
financial conditions. Simulations based on the model are then carried out for
the statistical properties of company dynamics and the results so obtained are
discussed in light of observations in the real economy. For more details of the
contents given in this section, we refer the readers to Iyetomi et al. (2009a).
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Figure 5.5: Conceptual figure of agent-based model: companies
interacting through a single bank

Figure 5.6: balance sheets for companies and a bank

5.3.1 The Basic Agent Model

The dynamics of the agents are described in terms of balance sheets as shown
in Figure 5.6. A company i has total capital Ki(t) and debt Li(t) from the
bank at the beginning of a time period t. Here, i = 1, . . . , N and N is
the total number of companies. According to the accounting equation, the
equity capital Ai(t) of the company must equal the total capital minus the
debt. On the other hand, the bank agent has a balance sheet on which its
aggregate supply of credit, L(t) =

∑
i Li(t), is balanced by the sum of total

deposits D(t) and equity capital E(t). Stocks and flows are two kinds of basic
variables to construct models of system dynamics. balance sheets have only
stock variables so that they are just snapshots in time of a company’s financial
condition. Flow variables such as profit and investment determine evolution
of the economic system.

For the sake of simplicity when we model a company’s dynamics we con-
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Figure 5.7: Value added versus fixed assets for listed Japanese
companies in 2003

centrate on the financial aspect of the production function and assume the
value added Yi(t) linearly scales to the capital input:

Yi (t) = φKi (t)

where the proportionate φ is taken as φ = 0.1. Figure 5.7 validates this
modeling for the production function.

At the beginning of a given time period t the i-th company changes its cap-
ital Ki(t) to maximise the expected value of profit. This strategic behaviour
of the company, called profit maximisation, is a well-known hypothesis
in economics since the time of Adam Smith, although it has not yet been
confirmed.

The profit of a company is fixed at the end of each period as

πi(t) = ui(t)Yi(t) − ri(t)Ki(t) = [ui(t)φ − ri(t)]Ki(t),

where ri(t) is the interest rate for financial cost. The parameter ui(t) re-
flects uncertainty in the market. Since a market consists of a huge number of
economic degrees of freedom, the determination of the selling price becomes
inevitably stochastic. We also assume that ui(t) is independent of the com-
pany size in harmony with Gibrat’s law. We arbitrarily take ui(t) as a uniform
random number in (0, 2). Expected profit is thus given by setting ui(t) = 1
in the equation for πi(t) as

〈πi(t)〉 = [φ − ri(t)]Ki(t).

At the lower limit ui(t) = 0, products are so discounted that they are unable
to yield value added, and maximum value added is obtained at a price double
the expected price corresponding to ui(t) = 2.
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Figure 5.8: Emergence of finite probability of bankruptcy with
increase of expected profit

If a company adopts an aggressive production plan it has a finite proba-
bility of bankruptcy. The bankruptcy of a company is defined at the end of a
period t by the condition,

Ai(t) = Ai(t − 1) + πi(t − 1) < 0.

Substitution of the previous equation for πi(t−1) into the bankruptcy criterion
results in the following formula for the bankruptcy probability:

PB (Ki(t)) =






ri(t)Ki(t) − Ai(t)
2φKi(t)

for Ki(t)>
Ai(t)
ri(t)

,

0 otherwise.

We thus see there is an upper bound in the size needed for a company to
be free from bankruptcy. The relationship between the increase of expected
profit and the emergence of bankruptcy is depicted in Figure 5.8.

Another management policy, known under the label of the going concern
policy, prevents a company from expanding its size infinitely; a company aims
to survive forever. We assume here that companies adopt a solid production
plan with a safety factor σ(≤ 1):

Ki(t) = σ
Ai(t)
ri(t)

.

This choice compromises two directly-opposed economic ideas.
The interest rate for each company is then determined through the demand

and supply balance in the credit market inhabited by companies and the bank.
The company requests the bank to finance the following amount of money
derived from the equation for Ki(t):

Ld
i (t) = Ki(t) − Ai(t) =

(
σ

ri(t)
− 1

)
Ai(t).
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Figure 5.9: Determination of the interest rate for a company

On the other hand, credit is granted to the company by the bank in proportion
to its relative size in the preceding period as

Ls
i (t) = L(t)

Ki(t − 1)∑
i

Ki(t − 1)
,

Balancing Ld
i (t) and Ls

i (t) gives the formula for the interest rate,

ri(t) =
σAi(t)

Ls
i (t) + Ai(t)

.

Such an equilibrium mechanism to determine the interest rate is depicted in
Figure 5.9. The maximum rate is given by rmax = σ. If the company obtains
more credit from the bank, the interest rate decreases, and vice versa.

Companies with the above-mentioned behavioural rules would never go
bankrupt, but real companies, of course, are always afraid of bankruptcy. To
incorporate the possibility of bankruptcy into the model, we will replace the
equity capital of the current period by that of the preceding period in the
previous equation for Ki(t):

Ki(t) = σ
Ai(t − 1)

ri(t)
.

Companies thus determine their production plans with delayed information.
This replacement overturns the conservative attitude of companies when they
are in a recession phase, and the companies incidentally take speculative man-
agement actions. We can arbitrarily set σ = 1/2, which enables us to make a
smooth connection with the original model. The present equations are seam-
lessly reduced to the corresponding equations in Delli Gatti et al. (2008) by
omitting the intensive terms which are independent of the dimensions of the
agents.
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Delay of information is one of causes of bankruptcy for companies. Al-
ternatives include the existence of unexpected risk, and the propagation of
bankruptcy akin to a chain reaction. In our analysis so far the possible risk
is supposed to be totally predictable by specifying a definite range for the
stochastic parameter ui(t), but nobody can avoid unexpected risk in real
business. In fact, companies are linked to each other through transactions
and with a supply of credit. If a large company is bankrupted, then a credit
risk shock will propagate over the network. The chain reaction bankruptcy
arising from such direct interactions among companies is beyond the scope of
the present section and will be discussed later in this book.

With regard to the dynamics of the bank we assume that the bank expands
its business subject to the minimum requirement of a prudential rule with a
risk coefficient α:

L(t) =
∑

i

Li(t) =
E(t)
α

.

The Basel committee of the Bank for International Settlements introduced an
international capital adequacy standard called Basel I in 1988.1 It requires
that each bank has capital equivalent to at least 8% of the total asset: α =
0.08. The bank derives a profit through investing its money in companies.
Here the profit margin is set as 0.2%. However its net profit Πt is given by
subtracting financial costs from the sum of interests. The financial costs are
interest payments paid to depositors and investors along with additional loss
due to bad debts stemming from bankruptcy of companies.

5.3.2 Representative Agents

Before discussing the results for multi-agent simulations, we will first study
a simple system comprising a single ideal company interacting with the bank
agent; companies are thus represented by a single agent. This representative
agent model, neglecting the heterogeneity of agents, is a traditional approach
in economics. Figure 5.10 shows that both agents grow exponentially. This is
an intrinsic property of the present model. For a market with no fluctuations
in the selling price (ui(t) = 1) and in the interest rate (ri(t) = r), one can
obtain an analytic solution with exponential growth for each agent. Equat-
ing two formulae for the growth rate of the representative agents, one can
determine the average interest rate r and hence the growth rate. The growth
rate derived analytically in this way provides a very good explanation of the
results in Figure 5.10.

5.3.3 Reduction to a Multiplicative Process

One can terminate the interaction by assuming

ri(t) = φ.

1Basel I is to be replaced by the Basel II with more refined rules.
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Figure 5.10: Representative company (left panel) and bank (right
panel)

The profit for companies vanishes on average in such a situation, correspond-
ing to a zero-growth economy without competition between companies. This
assumption reduces the present model with ideal companies to a random
growth model:

Ai (t + 1) = λi(t)Ai (t) =
1
2

[1 + ui(t)]Ai (t) ,

with
〈λi(t)〉 = 1.

We thus see that Gibrat’s process underlies the present model. If companies
do not go into bankruptcy their size distribution approaches the log-normal
form, but is ever-growing. The system constituted by companies with finite
probability of bankruptcy reaches a stationary state in which the size distri-
bution is represented by the Pareto distribution with µ = 1.

5.3.4 Distribution of Company Sizes

We executed numerical simulations based on the present model with 100,000
companies. This number of companies is still much smaller than the actual
number of existing companies in Japan, at about 2.5 million. We started the
simulations by giving all companies identical initial conditions. When, as time
passed, companies went into bankruptcy, they were replaced by new ones with
the same initial conditions. That is, the total number of companies was kept
constant during the simulations. Although companies were completely equal
at the outset, they became differentiated and some of them died and were
replaced by new companies. Eventually companies were divided into classes
of large, medium, and small sizes. This evolutionary process of companies is
depicted in Figure 5.11.
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Figure 5.11: Temporal evolution of the agent-based simulation

Figure 5.12 exemplifies the temporal behaviour of companies in the present
model, and are results obtained with small numbers of companies (N =
2, 3, 1000). Note that the tracks of companies are very irregular and that
there is competition amongst companies. This is in sharp contrast to the
representative agent model in which a single company steadily grows together
with the bank. We thus see that heterogeneity of companies is a natural out-
come of the competition amongst companies interacting through the bank.

Figure 5.13 shows how the bank evolves in time. This is a result for a bank
dealing with a group of actual companies with possibilities of bankruptcy. Its
equity fluctuates appreciably and sometimes encounters large shocks, such id-
iosyncratic shocks stemming from the bankruptcy of large companies. On the
other hand, the growth of the bank is very steady for ideal companies without
bankruptcy; its rate is almost indistinguishable from that of the representative
company.

In Figure 5.14, we plot the size distribution of ideal companies without
bankruptcy. The left panel shows the result obtained when the bank evolves
naturally with exponential growth, while the right panel is the result when the
size of the bank is artificially fixed, that is a stationary economy is realized.
Both distributions are well fitted to the log-normal form, which is in keeping
with Gibrat’s process in its simple form. In Figure 5.15, we display the size
distributions for actual companies susceptible to bankruptcy corresponding
to the two economic conditions in Figure 5.14. The sizes of those companies
are distributed in a power-law form:

Rank ∝ Ki(t)−µ.

When the bank grows naturally the Pareto exponent is tentatively stabilised
around µ = 2 and then approaches µ = 1 as time proceeds. We thus see that
the size distribution of companies and the temporal evolution of the bank
critically depends on whether companies make full use of available information
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Figure 5.12: Competition among companies
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Figure 5.13: Temporal evolution of the bank agent

Figure 5.14: Size distribution for companies existing eternally

on their financial conditions or not in determining a production plan for the
next period. If we control the macroscopic economy by keeping the size of the
bank fixed, we have a stationary state with a power-law size distribution as
shown in the right panel of Figure 5.15. The exponent is close to µ = 2. This
value is totally different from the exponent (µ = 1) found for non-interacting
companies. The interactions among companies through the bank give rise to
profound changes in the statistical properties of companies as manifested by
the variation of the Pareto exponent.

5.3.5 Synchronised Bankruptcy

Bankruptcies of companies take place in a synchronised way with macroscopic
shocks reflected in the equity capital of the bank. Figure 5.16 enlarges Fig-
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Figure 5.15: Size distribution for companies susceptible to
bankruptcy

ure 5.13 to confirm the emergence of such synchronised bankruptcy. The
bankruptcy of a large company triggers a chain of bankruptcies in the present
model, which takes into account interactions amongst companies. The large
bankruptcy gives rise to large bad debts for the bank. Then the equity capital
of the bank shrinks and accordingly the bank’s credit supply to other compa-
nies decreases. This leads to an increase of interest rates for loans from the
bank and hence decrease of profits for companies. Financially fragile com-
panies with a low equity ratio Ai(t)/Ki(t) are thus strongly affected by the
bankruptcy of the large company.

Toward an unequal society

Socioeconomic disparity is growing throughout the world, and is emerging
as a serious social problem which should be solved. Equality in every aspect
is not a solution, however. As has been demonstrated by the agent-based
simulations introduced here, heterogeneity of agents in an economic system
is a natural outcome of competition amongst agents with both growth and
failure, giving rise to vitality in the system. Bearing in mind Pareto’s law
we expect that many readers may be on the “useless” side of the distribu-
tion, but they may be exactly the people to lead society in the near future.
Everyone should prepare themselves for taking over the pole position on a
routine basis. What must be avoided is a society in which there is no poten-
tial for challenge and the current disparity is thereby fixed. A sound society
is fluid and continuously promotes the interchange of positions. Having only
a single measure for evaluation is one of major causes of fixing disparities
in society. For example, the concentration of research resources is recently
observable in the academic world in Japan. This tendency may eventually
lead to loss of diversity in research activities. We thus have reason to be
concerned that the pursuit of tentative and perhaps illusory efficiency may
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Figure 5.16: Macroscopic shocks originating from synchronised
bankruptcy
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hamper intellectual progress in the long term. (H.I.)

5.4 Network Effects on Wealth Distribution

Recent development in the means of transport and communication enables
companies to connect with each other in spite of physical distances. It is
indispensable to take account of direct interactions between companies arising
from such an economic network to elucidate various economic phenomena. For
instance, we aim to shed light on the origin of business cycles, the stability
of economic systems against external shocks or large bankruptcies, and the
formation of industrial clusters.

In the previous section, we explained the distributions of company sizes
and degrees without any account of interactions between companies. In the
present section we will consider a prototype model for such economic interac-
tions. Although the model may be too simple to be applied to actual economic
phenomena, we expect that it will be useful for illuminating the effects of the
network on the whole economy. The model described here is not limited to
interactions between companies, but is generally applicable to any interac-
tions of agents with entities which can be regarded as constituting wealth
(Bouchaud and Mezard, 2000; Souma et al., 2001). A typical example of
wealth is the total asset base of a company. Here xi(t) denotes the wealth of
the i-th agent at time t.

5.4.1 Model Construction

Suppose that the i-th and j-th agents are dealing with each other for wealth
and their dealing is described by Jij(t)(≥ 0). The interaction coefficients
Jij(t) constitute a dealing matrix. The present model is then given by

xi(t + 1) = ai(t)xi(t) −
∑

j

Jji(t)xi(t) +
∑

j

Jij(t)xj(t).

This is a generalisation of Gibrat’s process, with the second and third terms
in the right-hand side (Bouchaud and Mezard, 2000). The second term rep-
resents the transfer of wealth from the i-th agent to the j-th agent, so that it
takes a minus sign. On the other hand, the third term with a plus sign repre-
sents the reverse process. Relative magnitudes of these two terms determine
the direction of net flow of wealth. Thus the terms additional to Gibrat’s
process mimic wealth transactions between agents.

We will now simplify the model so that the dealing matrix Jij(t) is inde-
pendent of time and given as

Jij =
J

kj
Aij ,

where Aij is an adjacency matrix which is constituted by 0 and 1. If the i-th
and j-th agents are connected (adjacent) to each other through the transaction
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Figure 5.17: Wealth distribution in a regular network

network, Aij takes 1 and otherwise 0, and kj refers to the degree of the j-th
agent. In addition, J is a constant and arbitrarily specified. Compilation of
the aforementioned simplifications further reduces the model to

xi(t + 1) = ai(t)xi(t) − Jxi(t) + J
∑

j∈adj(i)

xj(t)
kj

,

where adj(i) denotes a set of nodes adjacent to the node i in the same way as
that on p. 136.

5.4.2 Network Effects

For our simulation of wealth distribution on a given network let us assume that
the total number of agents is 10,000 and J = 0.01. Furthermore, the stochastic
variable ai(t) is assumed to obey the normal distribution with an average of
1.01 and variance of 0.02. Figure 5.17 shows the results so simulated for a
regular network of the type depicted by the leftmost panel of Figure 4.1, where
the average degree of the network was set to 10. This figure plots magnitudes
of wealth reduced with its average on the abscissa and the corresponding ranks
on the ordinate; both axes are on a logarithmic scale. Open circles, squares,
and triangles in the figure show the results at t = 4000, 12000, and 20000,
respectively. The curves attached to each of the results show the outcome of
fitting by the log-normal distribution. We see that the wealth distribution
is not stationary and is well described by the log-normal distribution with
time-varying average and variance. Also we note that wealth is distributed
very unequally over the scale of 107.

We will next modify the network structure by keeping the average degree
fixed. For instance, the regular network is randomised by rewiring links with
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Figure 5.18: Wealth distribution on a small-world network

the probability of 0.05 as depicted in Figure 4.1. The results in such a network
are shown in Figure 5.18. The symbols in the figure share the same meanings
as those in Figure 5.17, and the dashed line shows the fitting of the tail part of
the distribution with a power-law form, and the solid curve shows fitting of the
remaining part of the distribution by a log-normal form. As we clearly see from
the figure, the small-world network realises a stationary distribution, which
is explained by combining the power-law and the log-normal distributions. In
the small-world network wealth is distributed over the scale of 105. Addition
of even a small amount of randomisation processes to the regular network
thus results in significant improvement over the uneven distribution observed
in the network.

So what happens to a completely random network? Figure 5.19 shows the
results. The notations in the figure are exactly same as those in Figure 5.18.
The distribution is stationary with a power-law tail and its relative spread is
almost confined within the order of 103. We see that wealth is distributed
much more equally in the random network as compared with the case in a
regular one.

5.4.3 Clustering of Wealth

In order to elucidate the origin of different distributions of wealth we will
focus our attention on how wealth changes its distribution across agents in
a given network as time passes. Figure 5.20 displays the temporal evolution
of the distribution of wealth in the regular network used in Figure 5.17. The
abscissa of the figure is the agent number, ranging from 1 to 1,000, and the
ordinate is the time period, t = 0 ∼ 104. For an agent whose rank as regards
magnitude of wealth falls within the top (bottom) 10%, it is depicted by a
black (gray) point. We observe those black and gray points make clusters in
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Figure 5.19: Wealth distribution in a random network

Figure 5.20: Time evolution of distribution of wealth across agents
on the regular network, corresponding to Figure 5.17.

the figure. Since neighboring agents are connected to each other in the regular
network, this means that linked agents have almost the same magnitude of
wealth; namely, clustering of wealth takes place in the regular network.

What happens to the clustering of wealth if we modify the network struc-
ture? Figure 5.21 shows the results in the same small-world network as used
in Figure 5.18. Note that the clustering tendency of wealth is significantly
depressed. The results for the same random network as used in Figure 5.19
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Figure 5.21: Time evolution of distribution of wealth across agents
on the small-world network corresponding to Figure 5.18.

are given in Figure 5.21, where no appreciable clustering tendency of wealth
is observed.2

We have thus learned that the unequal distribution of wealth stems from
clustering of wealth in the case of a regular network. The model given on
p. 189 has an identical value for all kj in the third term on the right-hand side
of the equation, when applied to a regular network, and the number of adj(i)
is identical to kj . In addition xi(t) ! xj(t) obtains for neighboring agents
owing to the clustering of wealth. Accordingly the second and third terms are
almost cancelled out. This cancellation mechanism leads to

xi(t + 1) ! ai(t)xi(t).

which is simply Gibrat’s process.
On the other hand, the rewiring of links in a network gives rise to a

difference between the second and third terms on the right-hand side of the
model equation. The model given on p. 189 is written as

xi(t + 1) = [ai(t) − J ] xi(t) + J
∑

j∈adj(i)

xj(t)
kj

.

Here the first term on the right-hand side amounts to the original with the
average of ai(t) merely shifted by J . If there is no correlation between xi(t)

2More strictly speaking, we investigated the correlation between the wealth of the i-th
agent, xi(t), and the mean wealth of agents adj(i), xi(t), i.e., 〈xi(t)xi(t)〉 in Souma et al.
(2001). Such a numerical analysis confirms our present conclusions on the clustering of
wealth over the networks.
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Figure 5.22: Time evolution of distribution of wealth across agents
on the random network, corresponding to Figure 5.19.

and the second term on the right-hand side, then this model is reduced to
a multiplicative stochastic process with additive noise, and it is well-known
that the stochastic process is able to reproduce a power-law distribution. We
note that the present model is also applicable to any networks other than the
small-world network model of Watts and Strogatz. For instance, we applied
the model to the scale-free network derived from BA model and obtained
nearly the same results as those in the random network (Souma et al., 2003).

We have introduced a primitive model for interacting agents in this section.
However addressing the real economy requires us to continue to develop the
modeling. Section 4.6.3 empirically revealed various aspects of interactions
between companies. We thereby proceed one step further in the next section
to model companies as agents and carry out more realistic simulations.

5.5 Modelling the Transaction Network

The most fundamental activity of companies is production. Companies build
productive facilities and hire employees. Then companies buy materials to
make goods and sell them to generate profits. Companies spend the obtained
profits to expand their productive facilities and increase their employees. This
is a positive feedback mechanism for the growth of companies. Such produc-
tion activity apparently requires an individual company to establish connec-
tions to other companies for buying materials and selling goods, eventually
leading to formation of a transaction network.

In this section we will consider a model for working interactions between
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companies over a transaction network (Ikeda et al., 2007a,b). We aim to
develop the arguments given in Section 5.4. In this model companies make
autonomous decisions as regards investment in capital and labour to make
goods, and they buy the necessary materials and sell goods through transac-
tion relations. We refer to this model as a transaction network model.
We will explain the basic ideas of the model one by one below.

5.5.1 Autonomous Companies

As has been demonstrated in Section 4.6.3, sales grow according to the fol-
lowing formula:

δXi(t + 1) =
N∑

j=1

kijδYj(t) + εi(t),

where δXi(t) = (Xi(t)−〈Xi〉t)/σ(X)
i is the standardised sales growth rate. In

the definition of δXi(t), we employed the time average growth rate 〈Xi〉t. This
basically assumes that economy grows in a constant manner. In fact, however,
this assumption cannot be valid, because the actual sales of companies depend
heavily on the time-varying business trends of competitors and customers and
also the consumption trends of individuals. To take account of this realistic
situation, we replace 〈Xi〉t by

〈Xi〉t → R(G)
i (t + 1)/R(G)

i (t),

where R(G)
i (t + 1)/R(G)

i (t) represents the trend change of the sales growth
rate due to the decision making of companies as regards capital Ki(t) and
labour Li(t). The superscript (G) of R(G)

i (t) stands for game theory. The
capital Ki(t) is the total amount of expenses for facilities necessary to produce
goods, and the labour Li(t) is the total amount of wages for employees who
operate the production facilities. Companies are able to determine Ki(t) and
Li(t) autonomously. On the other hand, the sales Ri(t) and the costs Ci(t)
are determined by the transaction relationships between buyers and sellers.
A company with such properties is depicted by Figure 5.23. A number of
companies thus form a business network through transactions. In passing we
note that σ(X)

i takes a small value if the trend of the sales growth rate changes.
Each company makes decisions about Ki(t) and Li(t) to maximise its own

profit, and accordingly determines R(G)
i (t). So how do companies make their

own choices? To grasp their autonomy we can invoke game theory. It should
be remembered that companies make decisions about Ki(t) and Li(t) using
game theory in the present model.

Game theory can be traced back to the seminal work of John von Neu-
mann and Oskar Morgenstern in 1944 and is a mathematical theory to describe
the decision making of agents in competition with others (von Neumann and
Morgenstern, 1944). Since game theory is full of specific terminologies, many
readers may have difficulty understanding it. We will briefly review the ter-
minology often used in the theory and then explain its basic parts. Readers
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Figure 5.23: Interacting company agents

who are interested in more details of the theory can consult the standard texts
(Davis, 1983; Gibbons, 1992; Owen, 1995).

• Non-cooperative game: This is a game in which agents make their
own decisions without any cooperation, leading to a competitive situa-
tion. The transaction network model assumes that companies compete
against each other to maximise their profits. It is thought that col-
laboration (cooperation) of companies emerges as a result of the profit
maximisation of companies at an individual level.

• Pure and mixed strategies: A pure strategy indicates that a player takes
only one choice out of the available strategies. On the other hand, a
mixed strategy means that a player takes multiple choices, randomly,
with certain probabilities. The pure strategy is thereby a special case
of mixed strategy.

• Strategic form: This is a way to define a game in the form of matrix
which shows players, strategies, and payoffs. In this case the player
stands for an autonomous agent who is able to make a decision; a strat-
egy represents a collection of actions which circumscribes the behaviour
of a player in any situation; while payoff indicates an evaluation associ-
ated with each action. From now on we will use “player” as a technical
term instead of “company”. The possible choices for a company about
whether to increase or decrease Ki(t) and Li(t) constitute the strategies
of the agent. In this form all players are assumed to make decisions
simultaneously and without knowing other players’ choices.

• Best response: This is the strategy which leads to the highest payoff for
a player, taking other players’ strategies as given.

• Nash equilibrium: This is a set of the strategies corresponding to the
best reactions for every player. In such a state, no player will change
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Table 5.1: Strategic form game 1
!!!!!A

B S T

S 4,4 6,1
T 1,6 2,2

Table 5.2: Strategic form game 2
!!!!!A

B S T

S 4,4 1,6
T 6,1 2,2

his or her strategy unless other players change their strategies. This
equilibrium state was named after J. F. Nash, Jr.,3 who first proposed
it.

• Extensive form: This is a form of game in which the decision making
of players is repeated as time passes. Such a process is depicted using
a tree diagram. Each node of the tree represents a point of choice for a
player. Branches growing out of the node represent possible actions for
the player.

• Perfect information: This is the most basic game in extensive-form
games. A player can select his or her strategy knowing exactly the
past behaviours of other players.

• Rationality: This means that a player behaves to maximise his or her
own payoff by considering a complete set of possible strategies adopted
by other players in the future. On the other hand, bounded rationality
means that a player has to consider other players’ future strategies to a
limited extent and make an optimum decision with imperfect knowledge.

We will explain the basics of game theory by solving three illustrative
examples of strategic form games as shown in Tables 5.1, 5.2, and 5.3. In
these examples players A and B can select two strategies, S and T. The left
number in each cell of the table refers to the payoff for A and the right number
to that for B.

Let us begin with the very simple game shown in Table 5.1. If player A
adopts mixed strategy S with probability p, then he or she adopts the other

3Nash won the Nobel Prise in Economy in 1994 and was featured in the film “A Beautiful
Mind”.
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Table 5.3: Strategic form game 3
!!!!!A

B S T

S 6,4 0,0
T 0,0 4,6

strategy T with probability 1 − p. The probabilities of player B adopting
strategies S and T are given as q and 1 − q, respectively.

According to Table 5.1, the expectation value of payoff for player A is

4pq + 6p(1 − q) + 1(1 − p)q + 2(1 − p)(1 − q) = (4 − q)p − q + 2.

The inequality 0 ≤ q ≤ 1 guarantees that the prefactor (4 − q) of p is al-
ways positive. The more p is increased, therefore, the more payoff player A
can obtain. Strategy S (p = 1) is thus the best reaction for player A. The
expectation value of payoff for player B is likewise given as

4pq + 1p(1 − q) + 6(1 − p)q + 2(1 − p)(1 − q) = (4 − p)q − p + 2.

Since 0 ≤ p ≤ 1, the prefactor (4 − p) of q always takes a positive value
and hence strategy S (q = 1) is also the best reaction for player B. From the
above-mentioned arguments, a set of strategies (S,S) gives a Nash equilibrium
solution.

The next example is defined by Table 5.2. The payoffs are slightly different
from those in Table 5.1, and the example manifests an interesting phenomenon
known as prisoner’s dilemma.

The expectation value of payoff for player A is calculated as

4pq + 1p(1 − q) + 6(1 − p)q + 2(1 − p)(1 − q) = −(1 + q)p + 4q + 2

The inequality 0 ≤ q ≤ 1 proves that the prefactor −(1 + q) of p is definitely
negative. The payoff of player A increases with decreased p, so the best
reaction for that player is strategy T (p = 0).

The expectation value of payoff for player B is also calculated as

4pq + 6p(1 − q) + 1(1 − p)q + 2(1 − p)(1 − q) = −(1 + p)q + 4p + 2.

The prefactor −(1+p) is likewise negative. Hence the best reaction for player
B is the same as that for player A. We thus see that a set (T,T) of strategies is
in Nash equilibrium. Let us look at the payoffs in Table 5.2 again. We find the
strategy pair (S,S) gives a better choice for both of the players than the Nash
equilibrium solution (T,T). Such a phenomenon, called prisoner’s dilemma,
is a typical example of the way that a combination of the best strategies for
individual players does not always result in global optimisation.
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Figure 5.24: Multiple Nash equilibrium solutions

The two games so far examined have only one Nash equilibrium solution,
but the last game in Table 5.3 has many. The expectation value of payoff for
player A is

6pq + 4(1 − p)(1 − q) = (10q − 4)p − 4q + 4.

Here the positivity of the prefactor (10q − 4) of p is not guaranteed by 0 ≤
q ≤ 1. If (10q − 4) is positive (q > 0.4), the best reaction for player A is
strategy S (p = 1). If (10q − 4) is negative (q < 0.4), on the other hand, the
best reaction is strategy T (p = 0). In addition to these two cases, if (10q−4)
is equal to zero (q = 0.4), player A can select any strategy with 0 ≤ p ≤ 1.
The expectation value of payoff for player B is given as

4pq + 6(1 − p)(1 − q) = (10p − 6)q − 6p + 6.

Likewise the prefactor (10p − 6) of q takes either positive or negative values.
Therefore, the best reaction for player B is strategy S (T) for p > 0.6 (p < 0.6)
and any strategy with 0 ≤ q ≤ 1 at p = 0.6.

The tracks of the best reactions for players A and B are overlaid on the
p-q plane as shown in Fig 5.24. The intersections of the two lines depicted by
open and filled circles identify Nash equilibria. Note that there are three such
solutions. The open circles corresponding to (S,S) and (T,T) are solutions
for pure strategies and the filled circles at (p, q) = (0.6, 0.4) is a solution for
mixed strategies.

The three examples discussed so far are all games in which each player
makes a single decision. However managers of actual companies have to make
multiple decisions over extended periods of time. This situation corresponds
to an extensive form game, which can be graphically represented by way of a
game tree diagram. Here we suppose that payoffs of players are calculated in a
finite period of time and also they play with perfect information. In a game of
perfect information represented by a tree of finite size we can obtain the exact
solution for a pure strategy Nash equilibrium using backward induction.
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Here is an illustrative example with two terms as shown in Figure 5.25.
Players A and B take strategy S or T, and player B makes a decision after
player A. Since this is a game of perfect information, each of the information
sets depicted by open circles has only a single branching point. The rightmost
end points are accompanied by the vectors of payoffs. For instance, let us
concentrate on the case where players A and B select strategies S and T,
respectively, in the first term, and then take T and S, respectively, in the
second term. This series of actions assigns payoffs (7,10) to the players A and
B. Those payoff values should be regarded as what results when the calculation
takes into account interactions between agents. Backward induction proceeds
in a direction from end to root by choosing either of the upper and lower
branches whose payoff is larger. We first decide the strategy of player B in
the second term. In this example the payoffs of the upper branches (strategy
S) are always larger than those of the lower branches (strategy T) for player B,
so that player B takes strategy S in the second term; this selection is depicted
by solid lines in Figure 5.25. Then player A takes strategy T for all branches
in the second term because the lower branches have payoffs larger than the
upper branches; this selection is also depicted by solid lines in Figure 5.25. In
the next step, player B and then player A decide their strategies in the first
term. The decision is made exactly in the same way as that in the second
term. The iteration of this procedure enables us to find a Nash equilibrium,
which is shown by a connected thick line. We remark that it is not necessarily
the case that a player selects the same strategy at every stage in each term,
although it is true for this example; the choice of strategies depends on their
payoff values.

5.5.2 Model of Bounded Rationality

The number of branches in an extensive game grows exponentially as the
numbers of players and terms increase. Accordingly, the computational task
based on backward induction becomes heavier, requiring a larger memory re-
gion and longer computing time. When carrying out simulations for a system
with many agents, we thereby need an alternative method. One of the candi-
dates is a genetic algorithm (Goldberg, 1989) which finds an approximate
solution to the Nash equilibrium efficiently with less intensive use of com-
puting resources, thus enabling us to carry out simulations for a large-scale
system.

The genetic algorithm is an heuristic optimisation method, and the com-
putational procedure consists of nine steps as outlined below.

• Step 1: We input N agents, T terms, M genes, L generations, the prob-
ability pc of crossover, and the probability pm of mutation. Here the
gene is a long tape of the type shown in Figure 5.26. Typical values
for pc and pm are 0.8, and the inverse of the length of genes, respec-
tively; however, these values may have be tuned in the light of emergent
problems. Each gene site (a separated sector on the tape) inscribes the
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Figure 5.25: Extensive form game
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Figure 5.26: Gene

Figure 5.27: Crossover process

strategy of each agent. In the t-th period the i-th agent may increase or
decrease the capital Ki(t) and the labour Li(t); that is to say in total
it has four strategies. In Figure 5.26, +∆Ki(t) is set to 1 when Ki(t) is
increased and −∆Ki(t) to 0 when it is decreased. The same is true for
Li(t).

• Step 2: We generate initial values for M genes; 1 or 0 is written randomly
on each gene site.

• Step 3: For each gene, we select another gene randomly with the prob-
ability pc. As displayed in Figure 5.27, the two genes are then cut at
a position randomly determined and the two portions are exchanged.
This is called a crossover process.

• Step 4: For every gene site, the value is flipped with the probability pm;
0 is converted to 1 or vice versa. This, called a mutation process, and
is demonstrated in Fig 5.28.

• Step 5: For the j-th gene, we calculate the total sum of profits made by
the i-th company during the period (0, T ); the payoff is denoted by P (j)

i .
Then we calculate the payoffs of all of the companies (i = 1, . . . , N) for
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Figure 5.28: Mutation process

Figure 5.29: Payoff and fitness

all of the genes (j = 1, . . . ,M). Here we note that the interactions
between agents are taken into account in the calculation of the profits.

• Step 6: We calculate the individual fitness for M genes. As shown in
Figure 5.29, the M genes are ranked for each site. The figure shows
that the first agent is ranked eighth in the first gene, (M − 6)-th in the
second gene, . . . , sixth in the M -th gene. Then we sum up the ranking
values assigned at every site for each gene and define the inverse of the
sum as fitness of the gene. If a gene is ranked first at all sites, its fitness
is equal to 1/N , the maximum value that the fitness can take. Since the
strategies are best optimised for all of the agents in this case, we have
the Nash equilibrium solution.

• Step 7: Using random numbers, we select M successors from the M
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Figure 5.30: Selection by roulette method

genes according to their fitness values, where selection of the same genes
is allowed. This selection amounts to M repetitions of such a roulette
game as visualised in Figure 5.30. The roulette is made with M selec-
tions corresponding to the M genes and each area of the selections is
proportional to the fitness value of the corresponding gene.

• Step 8: We repeat the procedure from step 3 through the step 7 by L
times.

• Step 9: The genetic information with the highest fitness score is recorded.

A Nash equilibrium solution obtained by a genetic algorithm is different
in two ways from that based on backward induction. We first note that the
genetic algorithm gives an approximate solution to the Nash equilibrium, not
the exact solution. This is true for many complicated problems. Therefore
the solution is best understood as decision making by an agent with bounded
rationality. Secondly, each agent makes its decision without knowing strate-
gies adopted by others. This amounts to not assuming that agents possess
perfect information.

The agent-based model sketched here serves as a starting point for building
a model of autonomous agents interacting on a transaction network. We
believe that this kind of model can and should play an important role in the
exploration of business applications, and in the next chapter this perspective
will be explored regarding the possible application of econophysics to the
management of companies in the real economy, with illustrative applications
of the present model in Sections 6.1.4 and 6.2.6.
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Chapter 6

Perspectives for Practical
Applications

In the previous chapters, we have described various outcomes derived from the
basic research, such as a growth theory of companies, business networks, and
agent simulations. In this chapter, by changing our perspective, we will review
what consequences are expected from the research outcomes, in other words
the practical applications of Econophysics. Real economic data is abundant in
Japan compared with other countries, and for this reason alone the Japanese
economy is of particular importance in our work. It is also convenient in other
ways. The practical applications of our work are currently under development,
and the concrete content of these applications is being improved through
ongoing conversations with companies in Japan. Indeed, the contents of this
chapter should be regarded as an interim statement, and might be greatly
altered in the future. However, we think that it is of real interest even at
this stage to describe some of our suggested applications. We will concentrate
on three topics, namely, the methodology for developing a business strategy,
the management of the propagation of credit risk, and the encouragement
of innovation in business models, and offer them as of potential value to
central government civil servants, acquisition specialists, investment bankers,
staff working in the management planning division of companies, financial
departments, materials departments, credit divisions, and rating companies,
as well as business administrators.

6.1 Development of Business Strategies

In this section we will begin by explaining the elements of corporate finance
theory, then move on to discuss issues relating to the practical applications
of that theory. Subsequently, we will describe a simulation of company deci-
sion making and business performance in a competitive environment under a
given macroeconomic trend using the autonomous agent-based model. This

205
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approach is not considered in traditional corporate finance theory.

6.1.1 Valuation of Companies

We need to understand the elements of corporate finance theory in order to
estimate corporate value (Brealey et al., 2008). Corporate finance starts by
reading financial statement data, such as income statements, balance sheets,
and cash flow statements. Although it is a hard work to read financial state-
ment data in detail, it is easy to understand their outlines, so a description of
these fundamentals is the first step towards an understanding of corporate
valuation.

When examining a company’s operation, sales revenue is decomposed into
the following three components:

Sales Revenue = COGS + SGA + Operating Profit,

where COGS is the abbreviated form of Cost of Goods Sold, and SGA stands
for Selling, General and Administrative expenses. COGS is the sum of three
costs, that is the cost of raw materials, labour costs, and the amortisation
cost of premises and equipment. SGA consists of the employment costs of
the sales department and administration staff and all sorts of other costs. By
rewriting the above relation we can obtain the operating profit,

Operating Profit = Sales Revenue − COGS − SGA.

Next we calculate the free cash flow from the operating profit. The cash
flow, which literally means the flow of money, is a fundamental quantity in
corporate valuation, and, more specifically, the net cash flow generated from
a company’s business operation is called the free cash flow (FCF) and is the
sum of the operating cash flow and the investment cash flow. It is noted that
the sign of cash flow is deemed to be positive when cash flows to the company
from other companies, and to be negative when cash flows from the company
to other companies. In other words, free cash flow is the money remaining
when expenses incurred in a company’s operation are deducted from earn-
ings. The word “free” indicates that a business administrator can distribute
this cash flow freely to investors in the company. This quantity is estimated
approximately by using both the income statement and the company balance
sheet:

Free Cash Flow
= NOPAT + Amortisation Cost of Premises and Equipment
−Investment of Premises and Equipment
−Increasing Working Capital,

where NOPAT stands for Net Operating Profit After Tax, although the ex-
act value of free cash flow is usually reported in a cash flow statement with
decomposition into two components:

Free Cash Flow = Operating Cash Flow + Investment Cash Flow.
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Table 6.1: Correspondence between symbols used in corporate fi-
nance theory and variables in this book

Name of quantity Corporate finance theory This book
Free Cash Flow FCF Ct

Net operating profit NOPAT Ot

after tax
Economic profit EP Rt

Corporate value CV U
Net present value NPV V
Weighted average WACC rw

cost of capital
Internal rate of return IRR r0

The correspondence relations of symbols used in corporate finance theory and
variables in this book are summarised in Table 6.1.

The corporate value (CV) U at the present time (t = 0) is calculated
from the time series of the expected future free cash flow Ct (t = 1, . . . , T )
according to

U =
T∑

t=1

Ct

(1 + rw)t
,

rw = re
E

E + D
+ rd(1 + τ)

D

E + D
,

where (1+rw)t in the denominator is a factor to reduce Ct for the correspond-
ing value at t = 0, namely the present value. The weighted average cost
of capital (WACC) rw is sometimes called the discount rate for short. In
addition, re, rd, E, D, τ are the returns on invested capital, borrowing rate,
invested capital, debt payable, and tax rate, respectively. The borrowing rate
rd, the invested capital E, and debt payable D, are recorded for each company
in the relevant financial statements. The expected rate of return µ, which is
calculated by using the historical series of stock prices with the capital asset
pricing model (CAPM), is used as a typical value for the return on invested
capital re relating the companies listed in the stocks market.

The corporate value U is also defined as the sum of the present value of
economic profit R,

U =
T∑

t=1

Rt

(1 + rw)t
+ E + D,

Rt = Ot − rw(E + D),
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The quantity V , calculated by deducting invested capital E+D from corporate
value U , is referred to as the net present value (NPV):

V (rw) = U(rw) − E − D,

which plays a very important role in business investment theory for decision
making. If the NPV of the business under consideration is positive, the busi-
ness will be profitable, and the business is suitable for investment. If rw is
chosen so that V (rw) is equal to zero:

V (r0) = 0,

the discount rate r0 is called the internal rate of return (IRR).

Capital asset pricing model

In what follows we will try to explain the basics of the Capital Asset Pricing Model
(CAPM) (Luenberger, 1997). The return ri(t) of the risk asset i changes from time
to time. In CAPM the expected rate of return µi = 〈ri〉 of the risk asset i is given
by

µi = rf + βi(µM − rf ),

where rf and µM are, respectively, the return of a risk-free asset and the expected
rate of return of the market portfolio. The coefficient βi is a proportional factor
multiplied by the risk premium µM − rf , and is given by,

βi = σiM/σ2
M ,

where σiM is the covariance (see the column on p. 121) between the return on the
market portfolio and return of the asset i.

Let us assume that the portfolio consists of risk assets i(= 1, . . . , n) with a ratio
xi. Thus we have

Pn
i=1 xi = 1. The expected rate µp of return and the variance σ2

p

of the return for this portfolio are written as

µp =
nX

i=1

xiµi,

σ2
p =

nX

i=1

nX

j=1

xixjσij ,

where σij is the covariance between assets i and j. Minimising the variance σ2
p with

respect to variables xi(i = 1, . . . , n) is called portfolio optimisation.
We will now assume that there is no correlation between the returns from the

assets(σij = 0, i $= j). The variance of the return of the risk asset i is

σ2
i = β2

i σ2
M + σ̃2

i , (6.1)
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and thus the variance of the return of the portfolio σ2
p is written as,

σ2
p =

nX

i=1

x2
i (β

2
i σ2

M + σ̃2
i ). (6.2)

The first term and the second term of the r.h.s. of Eq. (6.1) are the market risk
and the idiosyncratic risk, respectively. By assuming xi = 1/N , the limit N → ∞
of the second term of r.h.s. of Eq. (6.2) converges to zero. We could set up the
portfolio without idiosyncratic risk by combining a large number of risk assets. It is
noted that only market risk brings profit, because βi is included only in risk. It was
recently discovered that the major fraction of the covariance matrix σij consists of
noise, and noise reduction methodology using the random matrix theory is attracting
the attention not only of academic researchers but also of those working in practical
business situations.

6.1.2 Optimum Capital Structure

The capital structure of a company is characterised by the ratio of invested
capital E and debt payable D. In economics there is a well-known the-
ory regarding capital structure, namely the Modigliani-Miller theorem
(Modigliani and Miller, 1958). In this theorem, by assuming a perfect capital
market, it is shown that corporate value is independent of the company’s capi-
tal structure. However the above assumption is not valid in the real economic
system, thus it is expected that in practice there is an optimum capital
structure for the maximisation of corporate value.

There are various methods to determine the optimum capital structure,
one, for example, calculates a trade-off between opportunity loss and bankruptcy
cost, while another proposes a structure designed to minimise agency cost. An
alternative method approaches the problem by minimising the cost of financ-
ing.

In the following example, the optimum structure is determined from the
point of view of risk management as shown in Figure 6.1. When events of
corporate value U are generated using a Monte-Carlo simulation about a
certain business in due diligence process, we obtain the distribution of U −D
by subtracting the debt payable D from the generated corporate value U . If
U −D is negative without invested capital E, the company immediately goes
bankrupt. On the other hand, if the company is rich in invested capital E to
cover the negative deficit U − D, the company does not go bankrupt. Thus
it is possible to determine the invested capital E required in order to avoid
bankruptcy for the large fluctuation of the deficit U −D, under the condition
that the average net present value is positive 〈V 〉 > 0. The invested capital
E determined by this method is exposed to risk, that is the fluctuation of
cash flow. Therefore the invested capital E determined above is called the
risk capital Ep.
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Figure 6.1: Distribution of U − D and risk capital Ep

Modigliani and Miller theorem

Suppose the capital structure of company A is different from that of company B,
e.g. company A has only equity as invested capital, and company B has both equity
and bonds. The question is which company’s market value is larger than the other’s.

The earnings before interest, the market values of stocks and bonds for the com-
pany i(= A, B) are Xi(= X), Si, and Di(DA = 0), respectively. Thus the market
values for the companies A and B are

VA = SA,

VB = SB + DB.

We have here assumed that the complete capital market satisfies the following
conditions:

• There is no tax and no bankruptcy.

• No cost is required for issuance and trading of stocks and bonds.

• Investors can borrow any amount of money with an interest rate equal to that
of company B. (Company A has only equity.)

• The differing stakes among financial institutes, companies, and investors are
harmonised without cost.

Initially, we will assume that the investor’s portfolio consists of only stock αBSB.
The coefficient αi is the fraction of equity of the company i owned by the investor
(0 < αi < 1). The profit of the portfolio is

YB = αB(X − rDB), (6.3)
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where r is an interest rate of the company B.
If the stock of the company A is comparatively low in price, (VA < VB), the

investors will sell the stock αBSB, and buy the stock of company A, αASA, by
borrowing d = αBDB. Here it is noted that αA = (αBSB + d)/SA. In this case, the
profit of the portfolio is equal to

YA = α
VB

VA
X − rαDB. (6.4)

If VA < VB, we have the relation YA > YB by comparing Eq. (6.3) and Eq. (6.4).
Thus other investors with stock αBSB trade in exactly the way described above until
the relation VA = VB is obtained.

Now, let us consider an investor’s portfolio consisting of only stock αASA. The
profit of the portfolio is

Y ′
A = αAX. (6.5)

If the stock of the company B is comparatively low in price, (VA > VB), the investor
will sell the stock, αASA, and buy the stock of company B by αBSB = SBαASA/VB

and the bonds of company B by βBDB = DBαASA/VB. Here βi is the fraction of the
bonds of company i owned by the investor. It is noted that αBSB + βBDB = αASA.
In this case, the profit of the portfolio is equal to

Y ′
B = αA

VA

VB
X. (6.6)

If VA > VB, we have the relation Y ′
A < Y ′

B by comparing Eq. (6.5) and Eq. (6.6).
Thus other investors with stock αASA will trade in the way described above until
the relation VA = VB is obtained.

From the above discussion we can see that the theorem states that a company
cannot change its market value V by changing its capital structure, that is the ratio
of stock S and debt E (Brealey et al., 2008). This theorem, called the Modigliani
and Miller theorem, is said to have been shocking to those engaged in finance, and to
have caused considerable controversy, as well it might. In actual situations, however,
the financial department of a company is responsible for the maximisation of market
value V through financing.

6.1.3 Decision-Making for Business Entry and Exit

We will explain decision-making for business entry and exit using the net
present value V calculated by the method described in the previous section.
If V > 0 we decide to enter into business or continue the business, while if
V < 0 we will decide not to enter, or to exit from the business. Clearly, the
returns from equity re have to be evaluated by taking business risks properly
into account. However we have to recall the fact that any evaluation method-
ology is only an approximation, thus we cannot evaluate the return on equity
precisely.

Consequently, the internal rate r0 of return, the rate at which V = 0 is
obtained, is usually used instead. In this case, the decision-making is guided
by a comparison of the internal rate of return r0 and the target return rh.
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If r0 > rh, we would decide to enter into or continue with the business. If
r0 < rh, we would decide not to enter the business, or to exit.

So far we have explained the theoretical basics of corporate finance, and
we can now try to apply these methodologies to real problems. Although
the evaluation of corporate value V seems to be straightforward, as explained
above, there are many difficulties aside from the discount rate. For instance,
we might want to forecast the future revenue required for the evaluation of
corporate value. The simplest forecast method is to take the expected market
size and multiply it by a target share, where the expected market size is a
forecast made by a market research company. In this method, the following
four issues are immediately cited:

• Issue 1: When the deviation of future trends in economic growth are
taken into account, are the expected market size and the target share
considered to be a single scenario?

• Issue 2: How many scenarios for the expected market size and the target
share should we consider? How could we estimate deviation for each
scenario?

• Issue 3: When the future business scenario deviates very widely, how
do we make flexible decision-making other than the initial investment,
such as additional investment to extend the business or to sell out of
existing business?

• Issue 4: If we make additional investments to extend the business or to
sell out of the existing business, what kind of action will its competitor
take in response? How could we make a quantitative estimate of the
effect of the competitor’s action on our sales revenue and profit?

We discuss appropriate actions for each of the issues raised above in turn:

• Discussion 1: Decision-making for multiple scenarios is conducted using
the decision tree. The probabilities of scenario bifurcations have to be
given by the decision-maker as input parameters.

• Discussion 2: If the number of scenarios to be considered is very large,
the scenarios are modeled as a stochastic process and simulated by a
Monte Carlo method. The width of deviation of a scenario has to be
given by the decision-maker as one of the input parameters. The width of
deviation could be estimated by analysing the past financial statements
for any companies equivalent to the business under consideration.

• Discussion 3: The effect of stochastic deviation of a business scenario
on decision-making can be handled using the real option, that is to
say a business valuation method based on an analogy between business
decision-making and derivative financial instruments. In this method,
the business value is estimated as the price of the derivative financial in-
strument, where its underlying asset is the cash flow of the business. The
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financial market is assumed to be complete in Economics and Financial
Engineering. The pricing of a European-type option in the complete
financial market is given by the Black-Scholes formulae, which is an an-
alytic solution of the Black-Scholes partial differential equation (Black
and Scholes, 1973). However, firstly, real options do not satisfy the con-
dition of the complete market, secondly the nature of decision-making in
business is of American-type rather than European-type. Thus Black-
Scholes formulae is not appropriate in general for business evaluation.

• Discussion 4: Decision-making under a competitive environment
is a very difficult topic to discuss. Indeed, there are still many questions
about the quantitative evaluation of the effect of a competitor’s action
on a company’s performance by taking into account transactions be-
tween customers and venders. In order to treat this difficult task we
have offered and explained a new methodology, that is the transaction
network model, in section 5.5.

Black-Scholes formulae

In the following section we will attempt to explain the pricing of a derivative
financial instrument with stock as its underlying asset. For a plain European-type
call option, the Black-Scholes formulae are used (Hull, 2008). The European-type
call option is a claim to buy stock in the company by paying the predetermined
exercise price K at the maturity date T , if the stock price S is higher than the
exercise price K at the maturity date T . If the stock price S is higher than the
exercise price K at the maturity date T , the option holder exercises the claim. The
option holder earns a profit S−K by selling the stock at the market price S. On the
other hand, if the stock price S is lower than the exercise price K at the maturity
date T , the option holder does not exercise the claim. Therefore the payoff P of the
option is

P = max(S − K, 0). (6.7)

The stock price S is assumed to be described by the geometric Brownian motion

dS = µSdt + σSdz.

We obtain the partial differential equation to describe the option price C = C(S, t)
at time t

∂C
∂t

+
σ2S2

2
∂2C
∂S2

+ r
∂C
∂S

S − rC = 0, (6.8)

using Ito’s lemma,

dC =
∂C
∂t

dt +
∂C
∂S

dS +
1
2
σ2S2 ∂2C

∂S2
dt,

where r is the return on a risk-free asset. Eq. (6.8) is physically interpreted as a
drift-diffusion partial differential equation and called the Black-Scholes differential
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equation. This equation can be solved analytically with the boundary condition of
the payoff (6.7). The analytic solution given by

C = SN(d1) − Ke−r(T−t)N(d2), (6.9)

d1 =
log S

K + (r + 1
2σ2)(T − t)

σ
√

T − t
,

d2 =
log S

K + (r − 1
2σ2)(T − t)

σ
√

T − t
.

is called the Black-Scholes formulae. Here N(x) is the cumulative probability func-
tion for the normal distribution. It is noted that the discount rate used in Eq. (6.9)
is not the return µ of stock, but the return on the risk-free asset r. This pricing
method is called the risk neutral method. For the pricing of the American-type op-
tion, which can be exercised before the maturity date T , the lattice model is often
used (Hull, 2008).

In the next section we will explain a simple application of the model de-
scribed in the section 5.5.

6.1.4 Decision-making under a Given Economic Trend

In principle the macroeconomic trend is determined by aggregating individual
company performances. However, at the same time an individual company’s
investment and performance are affected by the macroeconomic trend. This
phenomenon is often called the micro-macro loop, and in this section we will
examine the effect of a given macroeconomic trend on an individual company’s
investment and performance.

The macroeconomic trend is forecast on a periodic basis by many think-
tanks, and although these forecasts are not very reliable they can be used
practically as possible future scenarios. For this reason it might be invaluable
to simulate an individual company’s investment and performance under a
given macroeconomic trend. This simulation could be conducted by using the
transaction network model described in the section 5.5, where the decision-
making of the company takes into account the interactions between companies
due to transactions.

Figure 6.2 shows a portion of the Japanese transaction network. This
transaction network shows sixteen listed companies belonging to a Japanese
industrial group led by a flagship conglomerate (indicated by open circles), and
some 79 listed companies with sales revenue of over 367 billion yen (indicated
by filled circles). Even this small portion of the transaction network includes
companies with widely varying degree (number of links), for example a small
number of the companies have a large degree and many companies have a
small degree.

The gross domestic product (GDP) scenario shown in Figure 6.3 is used as
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Figure 6.2: Portion of the transaction network in Japan

the macroeconomic trend input for the simulation. Other model parameters
were estimated using financial statement data for individual companies dur-
ing the Japanese Fiscal Year (JFY) 1993 to JFY 2003. Individual company
investment and performance under the given macroeconomic trend was then
simulated from JFY 1993 to JFY 2003 with the initial values of a company’s
performance set at JFY 1993. In this case a company’s investment means
the temporal variation of capital K and labour L. A company’s performance
means the temporal variation of sales revenue R and cost C.

Each company makes an investment decision for the capital K and the
labour L so that the sum of own operational profit during JFY 1993 and JFY
2003 is maximised. The company’s operational profit is determined by sales
revenue from customers and cost payment to suppliers, all under the influence
of the given macroeconomic trend. Therefore a company’s decision-making
is the best response to that of another company’s strategy, and the obtained
results of the simulation are a Nash equilibrium.

In the next stage we will verify the model by comparing the simulation
results and the actual data. The cumulative probability distributions of sales
revenue at JFY 1993, 1998, and 2003 are shown in Figure 6.4. The open
rhombus indicates actual data, and the filled rhombus that of the simulation.
The simulation results at JFY 1993 are identical to the actual data because
those numbers are initial values, but as time goes by from JFY 1998 to JFY
2003, there is a growing discrepancy between the simulation results and the
actual past data. It is however notable that the overall characteristics are
similar.

Suppose that an exogenous shock is given at JFY 2003 and the subsequent
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Figure 6.3: GDP scenario

Figure 6.4: Cumulative probability distributions of sales revenues
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Figure 6.5: GDP scenarios and cumulative probability distribu-
tions of sales revenues

GDP trend presents three divergent scenarios, that is, high (5%), medium
(2.5%), and low (0.5%) growth. We can simulate the effect of these GDP
scenarios on the company’s investment and performance up to JFY 2007, and
Figure 6.5 shows the relation of GDP scenarios and the cumulative probability
distributions of sales revenue. The open rhombus indicates the simulation
results of the cumulative probability distributions of sales revenue for the low
growth scenario, while the closed rhombus plots the results for the high growth
scenario. As expected, the high growth scenario gives a distribution with a
fatter tail.

So far we have shown the simulation results for the cumulative probability
distributions of sales revenue for companies belonging to the transaction net-
work. The temporal variation of the sales revenue R, the cost C, the capital
K, and the labour L for an individual company might be used to develop
a business strategy. As explained in this section, by using the transaction
network model it is possible to simulate an individual company’s investment
decision-making and resultant performance assuming a particular macroeco-
nomic trend forecast. We believe that this is a significant step towards the
practical application of the theories we are proposing.

6.2 Chain Bankruptcy and Credit Risk

6.2.1 Transaction Network

A transaction network is a succession of economic activities where compa-
nies buy materials and intermediate goods and service from suppliers located
in the “upstream” area of the network, and add value by making products and
services, and sell those to customer companies located in the “downstream”
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area of the network, and to consumers. The exact definition of “upstream” and
“downstream” are interesting problems in themselves. We will here content
ourselves with the intuitive meaning of these terms, namely that companies
manufacturing interim products from crude materials are located upstream,
while companies manufacturing end-products from interim products are lo-
cated downstream. The process by which production successively adds value
is extremely complicated. For instance, take the automobile industry. An
automobile manufacturer buys various mechanical and electrical parts from
auto-parts manufacturers, and manufactures automobiles using machine tools.
The resulting manufactured cars have an economic value which exceeds that
of the materials and parts.

For example, on the upstream side of the automobile manufacturer there
may be an auto-body manufacturer. The auto-body manufacturer buys steel
sheets and manufactures auto-bodies using machine tools. The customer
companies of the auto-body manufacturer may include not only the above
auto-manufacturer but also other auto-manufacturers and even companies in
different industry sectors, such as railroad companies. Downstream of the
automobile manufacturer we find dealers that sell cars to a large number of
consumers located at the outfall of the transaction network; the value added
by the dealers is service. So, each individual company buys intermediate goods
from upstream companies, and adds value, then sells products to downstream
companies and consumers. This cascade of economic activity forms a very
complicated network structure with several million Japanese companies en-
gaging in something like 10 million economic relationships.

In complex network theory each company and the relationship through
which value is added are called a node and a link, respectively. The whole
structure of the succession of economic activity can described by a vast di-
rected graph. Each link consists not only of materials and intermediate goods
but also two inputs, namely labour and finance. Most economics textbooks
suggest that the production of goods, labour, and finance are the most funda-
mental processes of economic activity, and this idea is intuitively intelligible
if we consider the directed graph to describe the cascade of economic activity.
In fact, the goods, labour, and financial markets play a fundamental role in
macroeconomics. It is well known that the individual equilibria of each of
these three markets are assumed as the grounding concepts of mainstream
economics.

Thus, since the aggregation of value added throughout the whole transac-
tion network is equal to the GDP, it is clearly important to understand the
structural and temporal variation of the transaction network for any study of
the various aspects of macro- and micro-economics. Furthermore, it is also im-
portant to understand the meaning of the relative position of each individual
company on the transaction network. The economic influence of one company
on another is determined by the relative position on the transaction network,
because the network structure governs the detailed behaviour of the propaga-
tion of both positive and negative economic influences. Since the production
of goods requires links between companies, no company can be independent
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of the propagation of both positive and negative economic influence, and it is
to this that we will now turn, starting with positive influence.

The Propagation of Positive Economic Influence

Suppose that consumers and companies on the downstream side of the trans-
action network make a sizeable demand for a group of final products and for
specific intermediate goods. For instance, the promotion of economic growth
in China and India increases orders for construction machines such as loading
shovels and bulldozers. At this time, a positive economic influence is propa-
gated from the construction machinery manufacturer to upstream companies,
for example engine makers selling equipment to the machinery manufacturer.
This propagation is repeated from the engine manufacturers to electrical parts
manufacturers, and so on.

The range and magnitude of this influence may be strongly dependent on
the structure of the transaction network. Although the input-output analysis
is aimed at the analysis of the strength of correlation between goods, complex
network analysis might reveal the propagation of economic influence through
microscopic relationships. In fact, the propagation of economic influence af-
fects production as well as the labour market. There is certainly an influence
not only on the labour market but also on financial markets via commercial
banks. As can be seen in the foregoing example, the network of companies,
financial institutes, and workers plays an essential role in the economic sys-
tem, but it appears that this network of microscopic relationships is little
studied. In the next section we will try to rectify this in part by illustrating
the importance of the transaction network by examining the propagation of
negative economic influence.

6.2.2 The Relationship of Debtors and Creditors

Why does a company manufacture products? Obviously because the company
has the expectation of obtaining profits by selling those products. Note that
the word “expectation” is complex, and heavily loaded with meanings. Ac-
complishment of an expectation is not guaranteed a priori, and in this case the
profit is determined by sales revenue and cost that are determined a posteriori.
Sales revenue depends on demands from customer companies and consumers
located in the downstream direction, while, on the other hand, cost depends
on supply from suppliers located in the upstream direction, namely labour
and financing costs. Consequently, the expected profit is determined a pos-
teriori, depending on the relationship between the upstream and downstream
companies.

Basically each link on the transaction network indicates a deal on credit
(Stiglitz and Greenwald, 2003). The payment for goods to suppliers is not
made concurrently with the delivery of goods, and the payment is often only
made after a certain period of time on credit. This payment on credit is
referred to as accounts payable by a purchasing company, and accounts re-
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ceivable by a supplier. It should be noted at this point that a purchasing
company does not have complete information about the credit status of a
supplier. Other examples of payment on credit are finance provided by a
bank, and payment of worker wages. Each link in the transaction network is
also interpreted as the relationship between a creditor and a debtor, which
may bring about the following consequence.

As a company goes into capital deficiency, when its liabilities exceed its
capital or has cash-flow problems, the company may go bankrupt. A company
located in the upstream region of the bankrupt company might fail to collect
accounts receivable, thus if an upstream company goes into capital deficiency,
this negative economic influence may propagate further upstream in the net-
work. Consequently many companies may go bankrupt simultaneously; this
is a collective phenomenon known as chain bankruptcy.

As explained in the section 3.4, bankruptcy is essentially a cash-flow prob-
lem. Even if a company does not go into capital deficit, the deterioration of
cash-flow makes operation difficult for the company in many areas, such as
production, employment, and finance. In this sense, chain bankruptcy is a
serious potential risk not only for an individual company but for the industry
as a whole.

Although the loss due to all bankrupt companies exceeds 2% of the nominal
GDP in Japan, as has been demonstrated in Figure 3.20, it might be thought
that chain bankruptcy is essentially a rare event and thus that the resulting
economic loss is not significant. However, empirical data tells us that this
naive view of chain bankruptcy is incorrect. The number of chain bankruptcies
occurring in each of the last ten years is about 10 to 20 thousand, as shown in
Figure 3.19, and the losses amount to some 10 to 25 trillion JPY, as shown in
Figure 3.19. In the next section we will show that chain bankruptcy accounts
for about 20% of the aggregate indebtedness of bankrupt companies, and is a
far from negligible economic event (Fujiwara, 2008).

6.2.3 The Causes of Bankruptcy and the Link Effect

The data we have analysed was taken from an annual report on business
bankruptcy published from the Organisation for Small & Medium Enterprises
and Regional Innovation, JAPAN (SMRJ). This dataset originates from a
credit research company, Tokyo Shoko Research, Ltd. (TSR), whose head-
quarters and branch offices survey bankruptcies with debts more than 10 mil-
lion JPY, and is all but comprehensive in its coverage of Japanese bankrupt-
cies.

The data categorises the origins of bankruptcy into two main causes, more
specifically, the failure in itself and the link effect.1

1. Intrinsic Failure
1TSR categorises each bankruptcy in accordance with the origin of the bankruptcy,

which is specified by a score determined by an unpublished method. The origin categori-
sation is mutually exclusive; although bankruptcies usually have more than one cause, the
categorisation is based on the most important one of these.
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(a) Anemic sales (Weak performance)
(b) Irresponsible management (Business fiasco)
(c) Accumulated deficit
(d) Excessively small capital (Lack of working capital, Increase in bur-

den of interest)
(e) Random cause
(f) Build-up of inventory
(g) Excessive business investment

2. Link Effects

(a) Aftershock of another company’s bankruptcy (excess of bad debts)
(b) Nonenforceable accounts receivable

The remaining origins are 3(a) credit collapse due to suspension of bank trans-
actions, and 3(b) others.

For example, of the 18,246 bankruptcies in JFY 1997, 8,956 were due to
(1a), 2,724 to (1b), 2,002 to (1c), 1,792 to (2a), 1,404 to (1d), 373 to (1g), 358
to (2b), 330 to (1e), 210 to (3a), 89 to (1f), and 8 to (3b). The link effect is a
negative network effect affecting credit transactions. It works like this: when
company B purchases materials from company A, the transaction is a relation
between a lender (A) and a borrower (B). If company B becomes bankrupt
then company A might not be able to call in accounts receivable or recover
the delivered products. Furthermore, since lender and borrower belong to the
same industrial group the relation is rather more complicated than a usual
transaction.

The next question is how large the link effect is, and how often it oc-
curs. Whether the effect is dependent on company size is also an interesting
question.

6.2.4 Magnitude of Link Effect

As shown in Figure 3.21, there were 16,526 bankrupt companies in the calen-
dar year 1997, and the breakdown is: anemic sales (1a) 7,834 companies, link
effect (2a) and (2b) 1,942 companies. The figure shows a power law distribu-
tion for three orders of magnitude of indebtedness. Figure 6.6 is rank-size plot
of indebtedness at bankruptcy plotted to compare the causes for bankruptcy:
(1a) and (2). The abscissa is the amount of indebtedness at bankruptcy, and
the ordinate is rank of that amount.

Let us compare the probabilities of bankruptcies with two different origins
and with an indebtedness between x and x + dx. The conditional probability
of bankruptcy is equal to the number of bankruptcies with two origins divided
by the total number of bankruptcies, thus a comparison with rank-size plots is
appropriate. Figure 6.6 shows that the shape of the distribution is fat-tailed
for both origins, anemic sales and link effects. It is notable that the slopes of
the rank-size plots, that is the power-exponents, are different. The plot for
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Figure 6.6: Rank-size plots of indebtedness at bankruptcy, com-
paring origins of bankruptcy

link effect exhibits a fatter tail than the plot for anemic sales, and therefore
as indebtedness x increases the conditional probability of bankruptcy due to
a link effect becomes larger than that for anemic sales. This inversion of order
is observed in the range of indebtedness x between 109 and 1010 JPY.

Comparisons for other origins categorised as intrinsic failure denote the
same tendency of inversion. As indebtedness x increases, the conditional
probability of bankruptcy due to a link effect becomes larger than that of
intrinsic failure. The same tendency is observed for different periods (See
Figure 6.7), and in fact, the total number of bankruptcies due to origin (2a)
in JFY 2001 was 1,731. Amongst those bankruptcies with indebtedness over
10 billion JPY, the number of those due to link effects amounted to 208 and
that of those due to anemic sales only to 48.

Figure 6.8 shows that there has been a change in the fraction of bankrupt-
cies due to link effects over the past 10 years. Panel (a) charts the fraction
of bankruptcies due to link effects, where the number of bankruptcies and
amount of indebtedness are shown by open triangles and filled squares respec-
tively. Panel (b) charts the dependence of bankruptcies due to link effects on
the amount of indebtedness. The fraction of the number of bankruptcies due
to link effects is about 10%, and the fraction of indebtedness due to link effects
is about 20%. As the indebtedness increases, bankruptcy due to link effects
also increases, and in particular the fraction due to indebtedness reaches 30%,
a fact indicating the importance of chain bankruptcy as a network effect.

6.2.5 The Ripple Effect

The question now arises as to what further effects are caused by the bankruptcy
of company, for example, how many creditors are affected by the bankruptcy?
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Figure 6.7: Rank-size plots of indebtedness at bankruptcy plotted
for comparison between two major causes of bankruptcy (Annual
reports on business bankruptcy, published by SMRJ)
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Figure 6.8: (a) Fraction of bankruptcies due to link effects, (b) De-
pendence of bankruptcies due to link effects on the amount of in-
debtedness
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As explained in the section on transaction networks, bankruptcy will obvi-
ously have consequences for workers and banks as well as production, since
the propagation paths are not restricted to links relating to production but
also to employment and finance links. In particular, any direct influence on
banks would have a very large effect in terms of the quantity of debt and
credit.

In pursuit of answers to these questions we will study an actual case of
bankruptcy in detail (See Table 6.2), in fact a medium size chain retailer that
became bankrupt during the year 2005 in Japan. The transactions in Table
6.2 can be summarised thus (The numerical number in parentheses reflects the
number of cases): accounts receivable (65), leasing receivables (12), deposits
received on sale (11), expense (7), cautionary obligation (1). Breaking out the
data from the financing table we find financial institutes (8), other financial
institutes (2), debt securities (2).

The indebtedness was about 4.7 billion JPY, of which 3.4 billion JPY
was debt from twelve financial institutions, major commercial and regional
banks. Table 6.2 shows that although a large fraction of the indebtedness was
debt from financial institutions, the creditors affected by the bankruptcy were
mainly companies engaged in goods transactions, especially vendors for the
bankrupt retailer. 65 companies amongst 96 transaction goods creditors were
creditors of accounts receivable.

Table 6.2: Number of creditors and amount of indebtedness for a
bankrupt company

Relationship Number of creditors Indebtedness (103 JPY)
Transaction 96 1,360,592

Financing 12 3,393,976
Total 108 4,754,568

As explained before, a link in a transaction network corresponds to a
relation between a debtor (borrower) and a creditor (lender). The effect of
a bankruptcy propagates in the upstream direction in a transaction network,
because that is where creditors are located. The impact of the propagation
depends on the companies affected. For example, a large company would not
be seriously disturbed by the loss of one customer and the inability to collect
a single account receivable. However, a small company or a company whose
major customer is the bankrupt company might be fatally affected. Note that
this propagation process is different from the stochastic fluctuations described
in the section 5.3, which are likely to be jump processes.

If the seriously affected company itself goes bankrupt, this is part of the
process of the chain bankruptcy, and it should be noted that there are many
companies upstream of a bankrupt company in such a chain. The workers
and banks involved with the company are affected through the employment
and financing networks. In the event of a bankruptcy the banks must increase
the risk premium on the interest rate, thus exposing many other debtors to
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credit risk. This effect may even cause a credit crunch affecting many other
companies further off in the financial network, a matter explained above in
the section 5.3.

In fact, since almost any company can be affected by a chain bankruptcy,
through the transaction, employment, and financial networks, it is essential to
grasp the structure of the transaction network for effective risk management.
In particular, the most important information concerns the financial condition
of the customers of a company’s customers.

There are about 100 companies upstream of the bankrupt company in the
case considered above. We might ask whether this number is exceptionally
large, and to obtain an answer to that question we will examine the degree
distribution explained above in section 4.5.2. The fact that the degree dis-
tribution has a fat tail may yield interesting results about the number of a
company’s customers’ customers.

When company A sells goods to the company B, we can postulate a di-
rected link from A to B. Figure 6.9 gives the cumulative distributions of (a)
in-degree (vendors) and (b) out-degree (customers) for the directed network
consisting of thirty thousand companies, including about three thousand listed
companies, in the JFY 2003.2 Both the in-degree and out-degree cumulative
distributions have fat tails where the cumulative distribution P>(k) of degree
k shows the power-law behaviour P>(k) ∝ k−ν , and the values of ν are in the
range of 1.4 to 1.5 for both in-degree and out-degree.

As we can see, there are many companies only one link upstream, due
to the fat-tail nature of the degree distribution. The number of companies
two links away upstream (that is, the friend-of-a-friend, as it were) is larger
than might be expected in a rough estimation. If we assume that the average
in-degree is 10, then the question is how many vendors are there for the
company’s vendors. We can estimate this simply by ignoring the possibility
of double counting, which would increase the number, and thus calculating
10 × 10 = 100.

However, a rigorous estimation shows that in fact the number of companies
is much larger than this, because the fat tail of the degree distribution makes
the probability of large degree companies finite.

For clarity, let us assume that all links in the network are non-directed,
that is we assume a non-directed graph. The average number of companies
upstream by two links, n2, can be estimated by

n2 =
〈
k2

〉
− 〈k〉 ,

as explained on p. 119. Here k is the degree and 〈·〉 is an average over the
degree distribution. The average number of vendors is 〈k〉. Our rigorous
estimation of the number of companies n2 is thus much larger than the simple
estimation 〈k〉2, because the first term of the r.h.s. of the above equation
becomes large for a fat tail distribution.

2Link data is not available for any listed companies, and it is presumed that distributions
of sections with large degree are not affected by the lack of data.
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Figure 6.9: Cumulative distributions of (a) in-degree (vendors)
and (b) out-degree (customers).
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For the transaction network, where the total number of nodes is 20,601,
and the total number of links is 66,623, we obtain

〈k〉 = 6.47,
〈
k2

〉
= 287.

With these numbers, the simple estimation leads to 〈k〉2 # 42. By contrast,
the rigorous estimation using Eq. (6.10) results in 281. The actual observation
is n2 = 220, which is very close to the estimate.3 See also Fujiwara and
Aoyama (2008).

In summary, there are many companies upstream by one link, and the
number of companies upstream by two links is much larger than might be
imagined from a simple estimation, due to the fat tail of the degree distri-
bution. At present, only companies upstream by one link are considered in
credit exposure management, but this underestimates the risk, an error which
we suggest could be corrected by employing the theory explained here.

As noted before, the impact of the propagation of credit risk depends
on the character of the affected companies, for example a small company or
a company whose major customer is the bankrupt company could well be
affected fatally. It is possible to detect these weak paths in the transaction
network in advance by examining the relationships from the downstream to
the upstream side.

On the other hand, a large company is not affected seriously by an uncol-
lectible account receivable or loss of a single customer, for the simple reason
that a large company has many alternative customers. If the network is stud-
ied from the upstream to the downstream, a different view emerges. There
are a great number of companies downstream by one link, two links, and three
links from a large company, and since there are many weak paths in this set
of links the possibility of a ripple from those companies at the downstream
cannot be ignored.4

In this way even a large company that is thought unlikely to be affected
seriously if the company loses a single customer could not ignore the impact
of chain bankruptcy.

Figure 6.10 is a part of the transaction network consisting of a bankrupt
company, creditors, and creditors of creditors, drawn for transaction data in
JFY 2005. Nodes on the inner circle are creditors and nodes on the outer
circle are vendors of the creditors.

If we want to be able to issue an alert of the likelihood of chain bankruptcy
we need to detect weak paths in the transaction network in advance, and tradi-
tional credit exposure management is not sufficient for this purpose. Instead,

3Error in the rigorous estimate arises from two sources. One is that company C is
one of the linked companies of the company B which are linked by the company A, and
company C is directly linked to the company A. This means there is a triangle ∆ABC and
the cluster coefficient is not equal to zero. The other reason is that there is a quadrangle
where A → B → C, A → D → C, and no link between B and D.

4The ripple effect is a general term to indicate the effect of an influence from a secondary
factor, a tertiary factor, and etc.
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Figure 6.10: A part of the transaction network consisting of a
bankrupt company, creditors, and creditors of creditors
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Figure 6.11: Model of chain bankruptcy in a transaction network

it is essential to capture the structure of the transaction network, and collab-
orative work engaging both the business and academic worlds needs to start
immediately.

6.2.6 Propagation of Credit Risk on the Transaction Net-
work

We will now explain another practical application of the network model ex-
plained in section 5.5, namely the simulation of chain bankruptcy in attempts
to grasp the importance of accounts receivable, accounts payable, and capital
structure.

The concept of chain bankruptcy in the network model is schematically
shown in Figure 6.11. An arrow in the figure indicates the direction of the
distribution of goods in the transaction network, thus the company shown by
a rhombus is located at the outfall of the transaction network in the range of
this figure. Note that such a company distributes goods to a company located
further downstream, which is not shown in this figure. We assume that each
company manufactured goods and then distributed them to a downstream
company, and is waiting to call in accounts receivable. If the company shown
by a rhombus is bankrupted by an unexpected accident, then this company
cannot pay these accounts to upstream companies. The company i shown by
a triangle located at the left of the company shown by a rhombus expects
to obtain profit Πi from sales revenue Ri less total cost Ci + riKi + Li, and
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Figure 6.12: Results of the chain bankruptcy simulation

increases equity E(i)
i at the beginning of term to equity E(f)

i at the end of term.
Because the company shown by a triangle cannot obtain accounts receivable,
the sales revenue decreases from Ri to R′

i, that is to say it goes into the red.
The company makes up for the loss by withdrawing part of its equity, and as
a result the equity E(f)

i at the end of term becomes negative, and of course
capital deficit is one of the definitions of bankruptcy. The bankrupt company
cannot pay accounts payable, and so some upstream companies may become
bankrupt, if they do not have sufficient equity to handle the loss of profit. We
call this phenomena the propagation of credit risk through the transaction
network. On the other hand, the company j shown by a open circle located
at the upper left of the figure has enough equity E(i)

j at the beginning of the
term. This company retains this equity E(f)

j at the end of the term, even
if the company makes up for the loss by withdrawing part of equity E(i)

j at
the beginning of the term. In this case, the propagation of credit risk on the
transaction network is terminated at the company j, because it has sufficient
equity to absorb the shock.

We will now put the concept sketched above into a practical simulation and
examine the propagation of credit risk. The transaction network used in the
real network simulation consists of about 1,400 listed companies on the Tokyo
stock exchange. It should, however, be noted that the initial values for sales
revenue Ri, cost Ci, equity Ei, capital Ki, labour Li, and interaction param-
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eters kij were given virtual values. A company was added to the transaction
network and three companies were arbitrarily chosen as suppliers for the ad-
ditional company. Then we supposed that the additional company became
bankrupt as the exogenous trigger of chain bankruptcy. The results obtained
from this simulation are shown in Figure 6.12. The network is drawn from the
company depicted by a rhombus at the outfall of the transaction network to-
ward the linked companies at the upstream region of the distribution of goods.
The companies which became bankrupt due to the propagation of credit risk
are marked by triangles. The basic characteristics of chain bankruptcy are
clearly visible, namely a chain of bankrupt companies stretching from the
outfall to the upstream of the transaction network. The companies which
terminate the bankruptcy chain are those with a small number of accounts
receivable from the bankrupt company or those with sufficiently large capital
E(i)

i at the beginning of term.

While the simulation explained in this section remains at a qualitative
level, it is however possible to simulate chain bankruptcy quantitatively if the
model parameters are set with actual financial statement data. By selecting
an exogenously bankrupt company systematically, a quantitative simulation
makes it possible to find weak credit risk links on the real transaction network.

6.3 Business Model and Business Information

In Japan there is a kind of industrial group known as a “Keiretsu”, which
is conventionally understood as an industrial group consisting of a family of
companies linked to each other by share holding. In a narrow sense, the
Keiretsu is a family of companies which are members of a consolidated ac-
counting set. Recently, it has been pointed that industrial groups with low
profitability need to re-activate their business by changing their fundamental
business model through M&A and the reconstruction of their portfolio of ac-
tivities. In the last decade the Japanese electric machinery sector has used
M&A to initiate this sort of reorganisation, and recent cases are shown in Ta-
ble 6.3. While it is intuitively obvious that one industrial group could record
good results at the same time that another group may be having a very tough
time in market, it is however difficult to judge their relative success simply by
sampling performance at a particular period.

In this section, we will first explain the basic advantages and drawbacks
for an industrial group, and then explain how the ability to respond to a
sudden accident is a very important advantage. Subsequently, we will verify
the business synergy expected in industrial group, and finally we propose to
combine business information and computer simulations in order to work out
an innovatory business model.
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Table 6.3: Cases of M&A in Japanese electronic component indus-
try

Year Merging company Merged company

1999 Hitachi Plasma Display PDP divisions of
Hitachi and Fujitsu

1999 Elpida Memory DRAM divisions of
Hitachi and NEC

2001 Panasonic Matsushita Electronics
2001 Sony Ericsson Mobile Communications Cell-phone divisions of

Sony and Ericsson
2002 Panasonic Matsushita Tushin-Kogyo,

Kyushu Matsushita,
Matsushita Seiko,

Matsushita Kotobuki-denshi,
Matsushita Densou system

2003 Hitachi Global Storage Technologies HDD divisions
of Hitachi and IBM

2003 Renesas Technology System LSI divisions of
Hitachi and Mitsubishi Electric

2003 PIONEER PDP division of NEC
2004 S-LCD LCD divisions of

Sony and Samsung Electronics
2005 Sharp LCD division of Fujitsu
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6.3.1 The Industrial Group as a Business Model

A business model is a scheme used by a company to define how it intends to
earn profits in a selected industry sector. In other words, the business model
defines the origins of profit, the flows of goods and money, the relationship
between customers and vendors, and the field of business, and it forms the
basis of the business strategy.

Some readers might be familiar with the word “business model” from the
term “business model patent”, which is a patent relating to a business method

The world car platform of General Motors Corpo-
ration

Most cars are designed, manufactured, and sold in order to fit the needs
of a specific market, such as the US. Only a few compact cars and a few
luxury cars are manufactured in one country and then exported worldwide.

In 1970s, General Motors Corporation in USA invented an outstanding
business model where cars to fit the various market needs of many countries
were designed and manufactured with minor modifications on a versatile
platform. This business model was called the world car platform, and it
formed part of General Motors’ strategy to dominate the world market.

Starting with the T-car in 1974, General Motors released its X-car in
1979, and then its J-car in 1981. However, their plan to achieve global
market supremacy resulted in failure, partly due to major drawbacks in
the business model itself (Piore and Sabel, 1984). The first drawback was
the distribution of manufacturing needed in emerging countries. Low-cost
and stable labour forces in emerging countries proved to be difficult to ob-
tain, and General Motors suffered from serious problems, such as demand
for higher wages and various labour disputes immediately after starting to
manufacture cars at the newly constructed factories. The second draw-
back was concerned with global component procurement. This method of
component procurement requires holding a very large parts inventory in a
car manufacturing factory. If faulty parts were delivered from very distant
distributed component factories, the company’s managers and production
engineers could not promptly replace them. This situation was in marked
contrast to the Just-In-Time manufacturing system invented by the Toyota
Motor Corporation in Japan.

It is important to note that the World Car strategy failed for reasons
other than product quality. We know this at first hand, since one of the
authors (Y.I.) once owned a used J-car, a Pontiac J2000, in the US in the
late 1980s. Although the J-car was never a car to attract enthusiasts, it was
a workhorse without serious problems.

(Y.I.)
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Number Industry Sector Number Industry Sector

1 Food 2 Textiles
3 Paper Manufacturing 4 Chemicals
5 Pharmaceutical Manufacturing 6 Oil
7 Rubber 8 Ceramics
9 Steel 10 Non-ferrous Metal
11 Machinery 12 Electric Machinery
13 Shipbuilding 14 Automobile
15 Transportation Equipment 16 Precision Machinery
17 Other Manufactures 18 Fishery
19 Mining 20 Construction
21 Wholesale 22 Retail
23 Railroad 24 Land Transportation
25 Marine Transportation 26 Air Transportation
27 Warehouse 28 Telecommunication
29 Electric Power 30 Gas
31 Service

Figure 6.13: Coarse-grained transaction network

using information technology, such as computers and the internet. The busi-
ness model patent has an infamous reputation for being used to patent the
application of business method even though it is not recognised as an inven-
tion. Concerns about the validity of the business model patent do not affect
the fact that there is no doubt that the business model is essential for well
performed business.

Figure 6.13 is a coarse grained transaction network in Japan at the industry
sector level of resolution (Ikeda et al., 2008). Arrows in the figure indicate
the flow of goods, and the numbers indicate industry sectors as shown in the
table. Industry sectors related to infrastructure and raw material, such as air
transportation, land transportation, warehousing, and mining industries, are
located in the upstream zone. On the other hand, industry sectors subject to
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consumers, such as gas, railroad, electricity, telecommunication, and retailing
industries, are located in the downstream zone. In the central part of the
network, which is a so-called “strongly connected component”, we find the
electric machinery, automobile, chemical, service, and wholesale industries.

In the electric machinery and automobile industries located in the centre of
the coarse grained transaction network, there are several very large industrial
groups employing both vertical integration and a horizontal division of work.
Why and how are these industrial groups formed? Let us consider the business
model of an industrial group.

By examining their corporate histories we find that many industrial groups
were formed as a result of mergers and acquisitions (M&A) and the split-up
of companies, actions which are considered to have the following advantages.

• Management with a long-range perspective: When a company is pro-
tected by mutual shareholding, the company is free from the threat of
M&A by competitors or investment funds, even if the stock price be-
comes low. Thus, the managers of the company could take the advan-
tage of that security and run the company with a long-range perspective
without worrying about imminent M&A drive by competitors or invest-
ment funds. In addition, managers could maintain a wage system policy
grounded in seniority and guaranteed lifetime employment.

• Augmentation of customers and agility: If a company is split up, a sub-
sidiary company could start to sell goods to competitors of the parent
company, and as a result the subsidiary company can enlarge its cus-
tomer base. In addition, small companies are often more agile in decision
and action than larger competitors, and subsidiary companies are small
in general. Thus in the industry sector, where agility is requisite for
high performance, it is sometimes regarded as advantageous to split a
company to reduce overall size.

• Ensuring job security and adjustment of cost structure: By relocating
personnel from the parent company to important posts in the subsidiary
company it is possible to run that company with a management policy
consistent with that of the parent. Furthermore, creating new posts in
the subsidiary company assists in maintaining a wage system grounded
in seniority and guaranteed lifetime employment. In addition, managers
save labour costs for the whole industrial group by holding down the
wages of the subsidiary companies to fit their profit level. Furthermore,
the subsidiary company can maintain friendly relationships with the
parent company through straightforward personal acquaintance.

• Reduction of transaction costs: The parent company does not need to
incur costs when seeking credible companies for outsourcing or other
transactions. Savings are also expected on R&D costs because of the
collaboration between the parent and the subsidiary companies, and
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flexible transactions grounded in stable relationships. Moreover, the
subsidiary companies can reduce their operating expenses in finding
new customers and understanding their needs because of the parent
company’s broad base of information. Surprisingly, before consolidated
accounting was introduced in Japan, subsidiary companies were forced
to buy goods from their parent company to reduce the stockpile and in-
crease the revenue of the parent company, and this was almost certainly
one of the historical reasons for the success of the industrial group.

• Coping with credit risk: It is possible to transact business between
members of an industrial group without incurring credit risk. Even if an
unforeseeable accident occurs, related companies are expected to make
spontaneous arrangements to deal with the emergency without previous
agreement, since companies belonging to the same industrial group are
strongly tied by common interests. If the transaction is a one-shot
sale, arrangements to deal with the emergency must have been designed
previously, and unless the arrangements are strangely far-sighted and
well designed, it is not likely that they will deal effectively with the
emergency.

However, recent changes in the business environment are showing that in-
dustrial groups have some drawbacks. As reform of corporate governance rises
up the agenda, there is a tendency to attach more importance to short-term
profitability in the interests of shareholders. For example, indices of profitabil-
ity, such as the return on equity (ROE), have been introduced for companies,
and capital adequacy requirements, such as the bank for international settle-
ments (BIS), have been introduced for banks. As a result industrial groups
based on mutual shareholding are steadily being dismantled.

Transactions between companies in the same industrial group are stable
and cost-saving because credit administration is not required. On the other
hand, inefficiency due to a cozy and uncritical relationship gives cause for
concern. During Japan’s high economic growth period in 1960s, if there was
inefficient transaction in part, most companies could obtain enough profit
because of economic growth, but in today’s business environment we could
not find a leading company willing to predict the direction of general economic
movement. Consequently, it is increasingly said that doing business with
various companies on a flexible basis is more efficient and profitable than
doing so statically with related companies in an industrial group.

The drawbacks of the industrial group are apparent even for R&D when
seen as an origin of future profit. Let us consider games as an analogy for
business. Victory or defeat in chess is determined largely by the ability to
consider an opponent’s moves. On the other hand, in Poker a player has to
play cards by considering their own cards in the context of restricted informa-
tion about their opponents’ cards. This distinction resembles that between a
traditional business and a new post-internet business.

For example, in a traditional business, such as the electric machinery in-
dustry sector, a small number of large companies conduct basic-study at their
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own corporate laboratories and apply the research output to their business.
The process by which an industrial group moves from R&D to commercialisa-
tion of products is called closed innovation, or the linear model of product
development.

Meanwhile, the product cycles of software products and information equip-
ment in the post-internet information society have become much shorter. A
competitor might suddenly introduce a product which is competitive and
based on a new and superior technology. Closed innovation does not work
well in such a situation.

Consequently, a new method called open innovation (Chesbrough, 2006)
is attracting attention. This is a method of product development where the
boundary between companies is not clearly marked. If a company does not
have technology required for the development of a new product, the company
buys the technology from other companies. On the other hand, if a company
decides not to use their own technology for the development of a new product,
the company sells the technology to another company or to a split-off venture
business.

There are a several points to keep in mind when initiating open innovation.
Firstly, it is important to recognise that there is no intrinsic economic value to
technology; a technology can only be evaluated in the context of the business
model of a company. Thus, it is necessary to determine the sale price of
technology in the light of the company’s own business model. Note, however,
that open innovation does not mean that R&D at a company’s own laboratory
is unnecessary, since they must take on the difficult tasks of defining systems
to integrate the technologies. Furthermore, open innovation is not necessarily
a panacea for all new business, and it is extremely important to evaluate which
enterprise is suitable for the open innovation and which is not. For example,
although the effectiveness of open innovation for software development has
been proved, in-depth consideration might be required before applying it to
hardware development consisting of various complex components.

6.3.2 Robustness of Industrial Group

One of the outstanding features of the company network for the horizontal
division of work is the ability to respond to unexpected accidents.5 In a
business environment with high uncertainty the superiority of the horizontal
division of work is becoming apparent when compared with vertical integra-
tion. Whereas vertical integration is characterised by the division of labour in
each layer of the business process, horizontal division possess a versatile but
specialised strength called flexible specialisation.

A company seldom obeys an order from another company in the horizontal
division network. Instead, each company exhibits a sort of vague willingness
to behave according to the expected demand from other companies, and a
tendency to correct that expectation in the light of interactions with other

5This section is based on the chapter 9 of Watts (2003).
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companies in the network. By considering the effect of vagueness, the hor-
izontal division network can be understood as a hierarchical network of
information-processing nodes.

When load is centralised on a certain node, and consequently the process-
ing speed of the node is decreased, homogenisation of load will result if a
bypass link is added to this node. The network generated by adding such by-
pass links is called a multiscale network. The multiscale network possesses
robustness, which means that the whole network does not break down as the
result of a single accident, such as destruction of production system due to
fire or the bankruptcy of large company. This robustness is an outstanding
feature of the company network, and is not intended or designed by managers.

This feature is dramatically in evidence in the recovery after a serious fire
at the Aisin Seiki Co.’s Factory No. 1 in Kariya on February 1, 1997. Aisin
Seiki Co. was the exclusive supplier of the p-valve, a part of the break system
used in almost all Toyota’s cars. Production was concentrated at the Aisin
Seiki Co.’s Factory No. 1, which manufactured more than 30 thousand sets of
p-valves per a day. Since Toyota manufactures 15 thousand cars per a day,
stocks of the p-valve would be consumed within two days. The lack of this
tiny part caused the stoppage of the whole production process in Toyota, an
astonishing fact.

Even worse, the fire not only stopped the supply of the p-valve but also
destroyed the production system specialised for the p-valve. Toyota and Aisin
were worried that several months would be required for recovery, a matter of
great economic significance even for Toyota. However, the production of the
p-valve was restarted on February 4, 1997, just three days after the fire, as the
result of the cooperative action of more 200 companies in the industrial group,
and all this without any support from Toyota itself. Toyota restarted car
manufacture and daily production was close to 14 thousand on February 10,
1997. It is believed that the key to this dramatic recovery was the robustness
of the multiscale network in the Toyota industrial group. Disaster recovery,
then, is a by-product of the network constructed during a normal operation.

From this impressive story we learn that the manager of the flagship con-
glomerate leading an industrial group should not force business plans on to
subsidiary companies, but rather should encourage decision-making in busi-
ness by exploration of the vaguer aspects of the company network. We believe
that a robust industrial group will result from this decision-making strategy.

6.3.3 Synergy in Industrial Groups

It is widely believed that synergy for profit is to be expected in an industrial
group. To put this in concrete terms, such synergy means that a company
acquiring another company satisfies a certain condition and so makes a larger
profit than the sum of profits for each company, in keeping with the definition
of synergy which describes it as a phenomenon where the total value of the
linked components is larger than the sum of values of individual components.
On superficial examination it might be thought that when the company A
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selling the product x and the company B selling the product y are merged,
the sales revenue is increased by selling both products x and y through the
same sales person. In addition the merged company might obtain larger profits
with the same sales revenue by reducing various costs, e.g. management costs
in headquarters. Synergy seems attractive. But is any of this really true?

We can test the hypothesis that the increase of profit is larger than the
increase of company size by postulating an industrial group. The company
invests the labour L and the capital K and obtains the value added Y by
production activity. The labour L and the capital K are the inputs and the
value added Y is the output. In general, multiplying the inputs L and K by
a factor of λ increases the output Y by κ times;

κY = F (λL,λK).

Here the function F (·) is a production function explained in the section 3.5.1.
If κ = λ, the size of labour L and capital K is increased by a factor of λ and
accordingly the value added Y is increased by the same factor. This means
that there is no synergy at all.

The labour L, the capital K, and the value added Y are calculated using
financial statement data for each company belonging to an industrial group.
The labour L is the sum of the labour cost, the employment cost, and the
welfare expenses. The capital K is the sum of the tangible fixed asset and the
allowance for depreciation. The value added Y is the sales revenue less the
cost of raw materials and other expenses, such as electricity costs. In this way
the number of points equal to the number of companies are obtained in the
three dimensional space (L,K, Y ). Parameters A, α, and β of the production
function

F (L,K) = AKαLβ

were estimated in order to reproduce the distribution of data points. Here it
should be noted that the condition of “no synergy” is

α + β ≤ 1,

because the relation

F (λL,λK) = λα+βF (L,K)

holds.
Figure 6.14 shows the result of data analysis for twenty-four companies

listed in the first section of the Tokyo Stock Exchange and belonging to a
Japanese industrial group. The results of the parameter estimations are sta-
tistically significant. The average value in the past 20 years is

α + β = 1.001±0.033.

Thus, there is no evidence of synergy. Indeed, the data suggests to us that
the whole system of linked components is equal to the sum of individual
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Figure 6.14: Parameters of the production function for companies
belonging to a Japanese industrial group

components. Of course we cannot deny the existence of small scale synergy
which is undetectable in an analysis using publically available data, but the
result does mean that we cannot expect significant synergy for the existing
business model or any extension of it, though it might be possible for us
to produce drastically innovative business models which realise large scale
synergy. Time will tell.

6.3.4 Business Information Systems

The previous section showed that we cannot expect an increase of profitability
simply by increasing company size. It rather seems that the most important
element in creating high profitability is the business model, and if larger com-
pany size is required to realise the business model, the use of M&A might
be a pattern for success. We might now ask, what is the key for the pro-
duction of innovative of business models. This is a really hard question to
answer, and there are many possible answers. However the first step neces-
sary for innovation is common to all the answers, namely, that it is necessary
to understand the situation of your own company in terms of the relationship
between customers and vendors.

Quantitative analysis of the profitability of the business model, based on
the newly clarified facts about the own company’s business, is the decid-
ing factor in predicting success and failure. In particular, complex network
analysis and an agent simulation are invaluable tools for understanding the
relationships and quantitative evaluation of profitability.
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The Application of Business Information

Various tasks are conducted in each division of a company, and these tasks
are categorised as routine or non-routine. A routine task is an operation re-
peated regularly according to predetermined procedures. On the other hand,
a non-routine task is an operation which is different on each occasion, oc-
curs irregularly, and for which only a rough procedure is given. Business
information systems are categorised in the same manner. Conducting routine
tasks is associated with the mission-critical system, that is to say the sys-
tem that processes the information of the company as a whole for material
procurement, physical distribution, sales, finance, and personnel affairs. The
system is characterised by information transactions concerning the relation-
ship between customers and suppliers. On the other hand, the handling of
non-routine tasks is associated with business information systems and related
software. The business information system processes information for tasks
relating to each individual division, and the system is characterised by the
linking of many software packages. Of these tasks, decision-making in the
business strategy is the most important target of the business information
system.

There is a long history to company information processing, and many sys-
tems were developed in the era of the mainframe computer. Many mission-
critical systems are being reconstructed in order to facilitate the interactive
transaction of many core corporate functions. It is now becoming common
to process information for material procurement, physical distribution, sales,
finance, and personnel affairs in an integrated manner using an enterprise
resource planning (ERP) system. In addition, it is also coming to be nor-
mal to use supply chain management (SCM) in the management of a
series of task chains from procurement of materials and components to pro-
duction, physical distribution, and sales in order to improve efficiency relating
to delivery date and inventory management. The SCM is categorised either as
an intra-company SCM, which manages material procurement, physical dis-
tribution, sales, and finance within the same company, or an inter-company
SCM, which manages relations between materials companies, manufacturing
companies, customers, wholesale companies, and retailers.

Initially, we will explain the noticeable advance of the mission-critical sys-
tem from the perspective of innovation in the business model. Fortunately,
electronic disclosure of financial statement data in eXtensible Business Re-
porting Language (XBRL) is now common (Bergeron, 2003). XBRL is a
computer language suitable for the exchange of financial statement data, and
is based on and similar in principle to the eXtensible Markup Language
(XML).

In XML, flexible information exchange is made possible by tagging each
piece of information. XML is a meta language, that is to say it defines a
specific language, such as XBRL. Until very recently, the means for obtaining
financial statement data was restricted to downloading data for an individual
company or buying bulk data from a specialised data provision company. In
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addition, there were other problems such as the fact that financial data for
listed companies were basically annual, while that for unlisted companies was
incomplete. As the use of electronic disclosure employing XBRL becomes
more widespread these problems are expected to be resolved.

The disclosure of financial statement data on a quarterly or a monthly
basis, which is desired from the point of view of corporate governance, will be
made possible by using the ERP system to hold and process data written in
XBRL. It is also anticipated that there will be a reduction in paperwork costs
and increases in the speed of decision-making for business strategy formation.
If disclosure on a monthly basis is widespread for small and medium-sized
companies as well as large companies, the credit risk for customer companies
will be captured in real time. When that occurs, automatic data acquisition
using spidering programs, such as Googlebot, Scooter, and MSNbot, will be-
come an effective tool for business. It is noted here that the most important
target outcomes for the business information system and coupled software are
increases in the rapidity of business strategy decision-making and real-time
capturing of credit risk for customer companies.

We will now explain an electronic commerce system using XML. Elec-
tronic commerce is a business transaction using a computer network intended
to reduce transaction costs and improve customer service. Electronic com-
merce transactions are categorised as business to business (B2B), business to
consumer (B2C), or inter-consumer (C2C). In particular it is expected that the
B2B transaction will lead to strengthen the above mentioned inter-company
SCM.

Traditional electronic commerce using electronic data interchange (EDI)
has been used only for large companies and their partner companies, be-
cause a dedicated program and a dedicated communication line are required.
In contrast with the traditional electronic commerce, XML based electronic
commerce uses the internet and this facilitates low cost and flexible transac-
tions. Furthermore, the integration of business processes using XBRL might
bring even higher efficiency, as is the case with the ERP system.

According to the ministry of economy, trade and industry in Japan, the
market size of B2B electronic commerce in Japan was 1,939 billion USD in
2005, and the US Department of Commerce reports that the market size of
the B2B electronic commerce in the USA was 1,821 billion USD in 2004.
Direct comparison of these two countries is difficult, because the timing of
aggregation is different, and the Japanese statistics includes both transactions
using the internet and dedicated communication lines. In fact, according to
Global Industry Analysis Inc., the market size of electronic commerce in the
Asia-Pacific basin was 1,700 billion USD in 2004 and 3,753 billion USD in
2005. Estimation of the market size of B2B electronic commerce in Japan
in 2004 using the above data is 1,939×1,700/3,753=0.878 billion USD. This
means that the market size in Japan is about half the size of that in the US.

Meanwhile, it is reasonable to expect the advance of business information
systems and coupled software, reflecting the advance of the mission-critical
system. An agent simulation based on data analysis of the transaction data
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of B2B electronic commerce, accompanied with the ERP system and the SCM
system, could forecast demand of goods and supply of components simulta-
neously for many companies on the transaction network. This forecasting
method could provide more reliable results than the conventional method,
which uses only data for a specific company, and as a result benefits will be
obtained in the management of business risks such as inventory growth and
opportunity loss, the real-time capturing of credit risk for customer compa-
nies, and the acceleration of decision-making in the business strategy.

The Application of Complex Network Analysis

A very large quantity of data on inter-company transactions other than B2B
electronic commerce is currently dormant in the files of commercial banks,
since individual records of settlement operations for purchase and sales have
to be recorded in the mission-critical system of the relevant banks. Conse-
quently, the details of commercial distribution in the Japanese economy could
be revealed by analysing the combined records of settlement operations to-
gether with the B2B electronic commerce data. If these data become available,
important steps could be taken towards the design of a new high profitability
business model.

As the Aisin Seiki case shows, the manager of a flagship conglomerate
leading an industrial group should not force business plans on to subsidiary
companies, but rather should encourage decision-making in business by ex-
ploring the vaguer aspects of the company network. But studying this requires
data covering changing relationships on the transaction network, a matter we
refer to as the reconnection of the transaction network. We anticipate that
relationships in B2B electronic commerce are relatively flexible, and thus that
many reconnection events are recorded in the transaction data, a fact that
might open up the potential of studying the characteristics of reconnection,
research which is currently impossible. If we were able to successfully model
reconnection it is probable that we would observe that the information system
itself makes decisions by exploring the vaguer aspects of the company network,
thus opening the door for new methods of business risk management.

In the present complex network analysis, several network indices have been
calculated for selected industry sectors. This is rather like studying the tree
which happens to be in front of you, although the ultimate purpose of your
research is to clarify the structure of the forest as a whole. Of course, a biased
selection of subject matter is not an appropriate approach. It would be better
to begin by calculating the various network indices for the whole network, and
then selecting the subject of analysis on the basis of those obtained indices.
To go back to our analogy, this would be like drawing a map of the forest at
the outset, and then using that map to select which trees within the forest
are to be studied. We have no doubt that by using large amounts of real-time
data and sophisticated analytic methodologies it will be possible in the near
future to capture the flows of money and goods in real time in order to detect
economic problems at an early stage.
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The Application of Agent Simulation

The application of agent simulation is growing in importance in the study
of innovative business models. In many research areas a PC cluster, which
is a group of personal computers linked to each other through a high speed
network to form a single high-speed virtual computer, is now being widely
used. The processing speed is increased proportionally to the number of linked
PCs, because the sequence of calculation is divided and is then performed in
parallel. The fastest supercomputer in the world at present (June 2009) is
the Roadrunner set up at the Los Alamos National Laboratory in the US.
Roadrunner consists of 129,600 processors and performs at a computation
speed of over 1 petaFLOPS.6 The fastest supercomputer in Japan at present is
the Earth Simulator, which consists of 1,280 processors and performs with the
peak speed of 0.122 petaFLOPS. The massively parallel type of supercomputer
is not only much faster than the vector type with fewer processors, but also
cheaper. For this reason, PC-based massively parallel supercomputers are
becoming understandably popular.

In the decade ahead, the performance of computer and networks will im-
prove still further, and it will be plausible to study new business models using
agent simulations, including financial markets and consumers as well as com-
panies and banks, depending on the problem to be solved. The aim is to
study economic activity by simulating the whole economic network consisting
of various agents, each behaving autonomously in order to obtain larger profit
through the reconnection of the network.

If the business information system described in this section is realised, we
will be able to obtain a company’s data changes in real time rather than on
a yearly basis, and it will therefore be possible to capture flows of money
and goods in real time, which will probably have a very significant impact
on practical business. This is a remarkable goal, and while there are many
problems ahead, none of these are, in our view, insoluble. It is no exaggeration
to say that we are at a turning point in applying the theoretical results of
Econophysics to practical business situations. All that is needed is more hard
work.

61 petaFLOPS stands for 1 quadrillion floating-point arithmetical operations per second.
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Epilogue

Salv.: Greetings, Simplicio, Sagredo. You are both looking very thoughtful;
which I hope is a good sign and shows that you have made good progress
with Econophysics. In any case, I am very eager to hear what kind of
impression the book has left upon you?

Simp.: Well, I thought the most interesting Coffee Break bit is ....

Sagr.: Oh heavens above; I sometimes wonder if you are a serious person,
Simplicio. I haven’t forgotten that it was you made our good friend
Galileo go down on his knees before the Pope.

Simp.: That is a long time ago.

Sagr.: Indeed, and it is still fresh in my memory.

Salv.: Now, now, friends, let us keep our eye on the matter in hand. Sagredo,
you first; tell me what you think.

Sagr.: Well, in spite of what you said about it being written as non-technically
as possible and for a wide range of readers, I found much of the argument
quite complicated. In any case, I learned of many concepts that were
new to me, for example the Pareto distribution, the fat tail, Gibrat’s
law, complex networks, and open innovations, to name a few.

Salv.: Good. At least you are now free from the restrictive view of the Normal
Gaussian distribution. Incidentally, our good friend Eugene Stanley has
a very inspiring thing to say about the current global economic crisis in
relation to the Pareto distribution (Stanley, 2009).

Simp.: Which is..?

Salv.: He pointed out that there is a big difference in the way that physi-
cists and traditional economists approach laws and the theory behind
them. Our economist is, by and large, unwilling to accept a law if there
is no complete theory behind it. But physicists, as Professor Stanley
says, ‘cannot afford this reluctance’. There is so much that we don’t un-
derstand that even very useful laws, Newton’s for example, or those of
Coulomb, are discovered long before the theoretical underpinning exists.
The same is probably true of economics.

247
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Sagr.: Oh, I see. Then he must be implying that economists cannot afford
their reluctance now; they should overcome this false and unscientific
conscience, and be a little lighter on their intellectual feet, as it were,
particularly if these laws give you some degree of understanding that
returns as power, as the English philosopher Coleridge once said.

Simp.: Precisely; you see it immediately, and the value could be enormous.

Sagr.: Quite, if this scientific research could be applied to design of better,
more resilient economic systems, those responsible would truly deserve
the thanks of mankind.

Simp.: Forgive my pouring cold water on this little victory parade, but surely
what I have seen described in this book is a long way from providing
the panacea that you seem to envisage.

Sagr.: There is indeed more work to do, and the authors wouldn’t claim
anything else, but that is no reason for failing to see the potential.
May I remind you, Simplicio, you refused to even look through Galileo’s
telescope, and if you don’t mind me saying so I think you are trying to
put your intellectual blindfold again.

Salv.: I would prefer not be so hard on Simplicio. Let us look back and try to
persuade him of the rich possibilities here: What have we have learned
about the networks made by companies and financial institutions?

Sagr.: That they are made of multiple layers; trades, stock-holding, mul-
tiple positions held by executive-officers, money-lending, joint patent-
applications, to name a few aspects. Briefly, we have learned that these
interlocking networks are almost unimaginably complex.

Salv.: Precisely, and our conclusion must be that the behavior of such eco-
nomic agents should be modeled and understood on the basis of the
interactions of the complex networks of which they are part.

Simp.: Easily said, Salviati, but how do you propose to handle and model such
a complex system?

Salv.: It is data-intensive, but simulation is one option: for example problems
in cosmology, such as the collision of galaxies, are modelled through the
calculations of very large parallel computers. The same is true in the
microscopic world, where quantum chromodynamics placed on a space-
time lattice are beginning to replicate a realistic spectrum of elementary
particles.

Sagr.: What a thought, an Economic Simulator.

Salv.: Yes, yes, and difficult though all of this will be, there is always the
possibility that we will be able to develop new concepts and theories on
the way.
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Sagr.: Your enthusiasm is infectious.

Simp.: Yes, I think he’s a bit feverish.

Sagr.: But you are as cool as ever, I see. The sparks of reason appear to have
had no effect on your fireproof intellect.

Simp.: Well, that’s a little uncalled for. I’m just more cautious, that is all.

Salv.: Which is commendable my dear Simplicio, and it is why in spite of
all your faults we love you as a friend, and why I shall trust your rec-
ommendation for dinner tonight. See the sun has already set, the dew
is falling, the cool of the night is coming on, and a day of thought has
given me quite an appetite.

Simp.: Now that is real wisdom, there’s a little place down near the river...

Sagr.: Ha, so basic.

Salv.: As are we all, Sagredo, though some of us are ‘looking at the stars’,

Simp.: Yes, yes, aren’t they beautiful, almost good enough to eat.

Sagr.: Heavens, he’s at it again.

Salv.: No, no, I do believe it’s a promising sign; wonder is the beginning of
curiosity, and in such inquisitive thoughts lie the roots of science.

Simp.: Well, that’s awfully kind of you; perhaps as we walk you will explain
the ideas to me again.

Salv.: Of course, Simplicio, my patience is infinite. Lead on and I shall start
at the beginning.

Exeunt Omnes

Give me a fruitful error any time, full of seeds, bursting with its own corrections.
You can keep your sterile truth for yourself.

— Vilfredo Pareto commenting on Johannes Kepler



250 EPILOGUE



List of Figures

2.1 Probability distribution of human height (High school senior
male students in Japan). . . . . . . . . . . . . . . . . . . . . . . 17

2.2 PDF of companies’ declared income. . . . . . . . . . . . . . . . 18
2.3 Double-logarithmic plot of PDF of companies’ declared income. 19
2.4 Double-logarithmic plot of CDF for companies’ declared income. 21
2.5 Distribution of personal income-tax and income. . . . . . . . . 25
2.6 Evolution of Pareto index of personal income. . . . . . . . . . . 26
2.7 CDF of personal income in 2000 (Japan). . . . . . . . . . . . . 27
2.8 Correlation between the Pareto index, land prices, and stock

prices (TOPIX). . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.9 CDF of company size: (a) Sales, (b) Income in 2002, Japan. . . 30
2.10 CDF of sales in various business sectors in 2002 (Japan). . . . . 31
2.11 The CDF of company size in 2001 for: (a) Total capital in

France, (b) Sales in France, (c) Number of employees in U.K.. . 32
2.12 Evolution of the Pareto index: (a) France, (b) Italy (c) Spain,

(d) U.K., for total capital, sales, and number of employees from
1993 to 2001. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.13 gives the CDF for declared company income for all the data
(filled circles) and for all listed companies (open circles). . . . . 34

2.14 PDF of companies’ declared income for all the data (filled cir-
cles) and data for listed companies (open circles). . . . . . . . . 34

2.15 PDF of various Pareto distributions. . . . . . . . . . . . . . . . 36
2.16 PDF of various Pareto distributions. . . . . . . . . . . . . . . . 37
2.17 An example of a Lorenz curve. . . . . . . . . . . . . . . . . . . 39
2.18 The µ-dependence of Gini’s coefficient. . . . . . . . . . . . . . . 39
2.19 Lorenz curves for various values of µ. . . . . . . . . . . . . . . . 40
2.20 Definition of the Robin Hood index. . . . . . . . . . . . . . . . 41
2.21 µ-dependence of the Robin Hood index. . . . . . . . . . . . . . 41
2.22 The inverse-function method to generate random numbers that

obey an arbitrary distribution. . . . . . . . . . . . . . . . . . . 42
2.23 How to make a staircase plot. Each dot corresponds to a company. 43
2.24 Examples of the staircase plot. . . . . . . . . . . . . . . . . . . 44
2.25 Devil’s Staircases for µ = 0.8, 1.0, 1.2. . . . . . . . . . . . . . . . 45
2.26 Share of the largest company. . . . . . . . . . . . . . . . . . . . 47

251



252 LIST OF FIGURES

2.27 The average share of the second-largest company. . . . . . . . . 49
2.28 Total shares of the top companies. . . . . . . . . . . . . . . . . 49
2.29 Distribution of the share of the top company. . . . . . . . . . . 51
2.30 The value of µ below which the top n-companies achieve a total

share greater than 80%. . . . . . . . . . . . . . . . . . . . . . . 52
2.31 The minimum number, n, of the top companies, whose total

share is greater than 80%. . . . . . . . . . . . . . . . . . . . . . 53
2.32 Various Pareto distributions and the 20% line. . . . . . . . . . 53
2.33 Dependence of the share of the top 20% companies on µ. . . . . 54
2.34 The range of m where the 80-20 rule holds. . . . . . . . . . . . 55
2.35 How to obtain the fractal dimension of the size distribution of

companies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.36 Fractal dimension of the Devil’s Staircase. . . . . . . . . . . . . 58
2.37 Two forces that besiege µ = 1. . . . . . . . . . . . . . . . . . . 63

3.1 Time-series of annual company-sizes for the eight largest elec-
tronics and electric-machinery companies (1988 to 2004). . . . . 67

3.2 Time-series of growth-rates for the eight major electronics com-
panies (corresponding to Figure 3.1; 1989 to 2004). . . . . . . . 68

3.3 Probability distribution for logarithmic growth-rates of company-
income (2001 to 2002; roughly 57,000 companies). . . . . . . . 69

3.4 Probability distribution for logarithmic growth-rates conditioned
by company income size (corresponding to Figure 3.3). . . . . . 70

3.5 Probability distribution for growth-rates ((a) sales and (b) prof-
its for the years 2002/2001). . . . . . . . . . . . . . . . . . . . . 71

3.6 Probability distribution for growth-rates ((a) total-assets (com-
panies in France), (b) sales (France), and (c) number of employ-
ees per company (UK) for the years 2001/2000.) . . . . . . . . 73

3.7 Scatter-plot for company-sizes at successive points in time ((a) sales
and (b) profits for the years 2001/2000). . . . . . . . . . . . . . 77

3.8 Scatter-plot for company-sizes at successive points in time ((a) total-
assets (France), (b) sales (France), and (c) number of employees
(UK) for the years 2001/2000.) . . . . . . . . . . . . . . . . . . 78

3.9 Three typical examples of copula. . . . . . . . . . . . . . . . . . 83
3.10 Copula for company-incomes in the years, 2001 and 2002. . . . 84
3.11 Copula for personal-incomes in the years, 1997 and 1998. . . . 85
3.12 Copula for company-incomes in the year 2001 and its growth-

rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.13 Scatter-plot for personal-incomes (measured by the amount of

taxes paid) for two consecutive years (1997 and 1998). . . . . . 87
3.14 Probability distribution for growth-rate of personal-income (1997

to 1998). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.15 Probability distribution for growth-rate of personal-income ,1991

to 1992, corresponding to the bubble collapse in Japan. . . . . 89
3.16 Cumulative distribution for company-size measured by number

of employees (whole range; year 2001). . . . . . . . . . . . . . . 92



LIST OF FIGURES 253

3.17 Probability distribution for growth-rates of small and medium
companies: ((a) total-assets, (b) debt and (c) sales; years 2001/2000). 94

3.18 Relation between company-size and variance of growth-rate for
small and medium companies: ((a) total-assets, (b) debt and
(c) sales; years 2001/2000). . . . . . . . . . . . . . . . . . . . . 95

3.19 Annual number of bankruptcies in Japan and total sum of re-
sulting debts (1985 to 2005; calendar-years). . . . . . . . . . . . 98

3.20 Annual sum of debts when bankrupted, and ratio to nominal
GDP (1996 to 2004; fiscal years). . . . . . . . . . . . . . . . . . 98

3.21 Cumulative distribution for debt when bankrupted (approxi-
mately 16,000 companies bankrupted with debts larger than
10 million yen in 1997). . . . . . . . . . . . . . . . . . . . . . . 99

3.22 Cumulative distribution for life-time before bankruptcy (ap-
proximately 16,000 companies bankrupted with debts larger
than 10 million yen in 1997). . . . . . . . . . . . . . . . . . . . 100

3.23 Distribution of company’s x and two values of x at which profit
is maximised under different constraints. . . . . . . . . . . . . . 105

3.24 Mountain-view with a ridge. . . . . . . . . . . . . . . . . . . . . 105
3.25 A mountain-climber and his or her directions. . . . . . . . . . . 106
3.26 Landscape for the profit function Π. . . . . . . . . . . . . . . . 107
3.27 Contour lines, steepest ascent lines and a ridge for the profit

landscape of Figure 3.26. . . . . . . . . . . . . . . . . . . . . . . 107
3.28 Distribution of company’s x (Figure 3.23) and the solution of

x corresponding to the ridge. . . . . . . . . . . . . . . . . . . . 108

4.1 Watts-Strogatz β model . . . . . . . . . . . . . . . . . . . . . . 112
4.2 A complete graph in which every node is connected to every

other within “two degrees of separation” . . . . . . . . . . . . . 119
4.3 Correlation r between degrees of nodes at distance 1 . . . . . . 122
4.4 Correlation r4 between degrees of nodes at distance 4 . . . . . 122
4.5 Incoming and outgoing links of a listed company in a share-

holding or a transaction network . . . . . . . . . . . . . . . . . 126
4.6 Shareholding network in automobile sector . . . . . . . . . . . . 126
4.7 The corporate board and directors’ network and its reduced

graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
4.8 The corporate board network in automobile industry . . . . . . 128
4.9 Transaction network of the automobile industry . . . . . . . . . 130
4.10 Patent network and its reduced graphs . . . . . . . . . . . . . . 131
4.11 Network of joint application of patent in automobile industry . 133
4.12 Network of joint patent applications between automobile and

electric machinery industries . . . . . . . . . . . . . . . . . . . . 134
4.13 Weighted network of automobile industry . . . . . . . . . . . . 135
4.14 Outgoing degree distribution of the shareholding network . . . 144
4.15 Degree distribution of the network of joint patent application . 144
4.16 Degree correlation of the shareholding network . . . . . . . . . 145



254 LIST OF FIGURES

4.17 Correlation between the degree and clustering coefficients in
the shareholding network . . . . . . . . . . . . . . . . . . . . . 146

4.18 Distribution of total assets, and correlation between degree and
total assets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

4.19 Distribution of company age, and correlation between outgoing
degree and the age . . . . . . . . . . . . . . . . . . . . . . . . . 148

4.20 Shareholding network with shareholders belonging to the trans-
port machine industry (1985) . . . . . . . . . . . . . . . . . . . 151

4.21 Shareholding network with shareholders belonging to the trans-
port machine industry (1995) . . . . . . . . . . . . . . . . . . . 151

4.22 Shareholding network with shareholders belonging to the trans-
port machine industry (2000) . . . . . . . . . . . . . . . . . . . 152

4.23 Shareholding network with shareholders belonging to the trans-
port machine industry (2003) . . . . . . . . . . . . . . . . . . . 152

4.24 Shareholding network with shareholders belonging to the elec-
tric machinery industry (1985) . . . . . . . . . . . . . . . . . . 153

4.25 Shareholding network with shareholders belonging to the elec-
tric machinery industry (1995) . . . . . . . . . . . . . . . . . . 154

4.26 Shareholding network with shareholders belonging to the elec-
tric machinery industry (2000) . . . . . . . . . . . . . . . . . . 154

4.27 Shareholding network with shareholders belonging to the elec-
tric machinery industry (2003) . . . . . . . . . . . . . . . . . . 155

4.28 Change of degree distribution . . . . . . . . . . . . . . . . . . . 156
4.29 Change of the long-term shareholding rate and the cross-shareholding

rate, and correlation with the power-law exponent . . . . . . . 157
4.30 Change of degree distribution in a shareholding network . . . . 158
4.31 Distribution of growth rate of sales X and that of costs Y . . . 160
4.32 Correlation coefficient between growth rates for sales and costs 161
4.33 Cumulative probability distributions of incoming degree and

outgoing degree . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
4.34 Standard deviation of residual error and confidence level . . . . 164
4.35 Distribution of correlation coefficient for sales . . . . . . . . . . 165
4.36 Network effect on correlation coefficient . . . . . . . . . . . . . 165
4.37 Distribution of correlation coefficient for sales in the overlap-

ping network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

5.1 behaviour of companies in Gibrat’s process . . . . . . . . . . . 171
5.2 Distribution of company sizes in Gibrat’s process . . . . . . . . 171
5.3 Simulated results for sizes and ages of companies . . . . . . . . 173
5.4 Conversion of the simulated results to the degree distribution . 174
5.5 Conceptual figure of agent-based model: companies interacting

through a single bank . . . . . . . . . . . . . . . . . . . . . . . 177
5.6 balance sheets for companies and a bank . . . . . . . . . . . . . 177
5.7 Value added versus fixed assets for listed Japanese companies

in 2003 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178



LIST OF FIGURES 255

5.8 Emergence of finite probability of bankruptcy with increase of
expected profit . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

5.9 Determination of the interest rate for a company . . . . . . . . 180
5.10 Representative company (left panel) and bank (right panel) . . 182
5.11 Temporal evolution of the agent-based simulation . . . . . . . . 183
5.12 Competition among companies . . . . . . . . . . . . . . . . . . 184
5.13 Temporal evolution of the bank agent . . . . . . . . . . . . . . 185
5.14 Size distribution for companies existing eternally . . . . . . . . 185
5.15 Size distribution for companies susceptible to bankruptcy . . . 186
5.16 Macroscopic shocks originating from synchronised bankruptcy . 187
5.17 Wealth distribution in a regular network . . . . . . . . . . . . . 189
5.18 Wealth distribution on a small-world network . . . . . . . . . . 190
5.19 Wealth distribution in a random network . . . . . . . . . . . . 191
5.20 Time evolution of distribution of wealth across agents on the

regular network, corresponding to Figure 5.17. . . . . . . . . . 191
5.21 Time evolution of distribution of wealth across agents on the

small-world network corresponding to Figure 5.18. . . . . . . . 192
5.22 Time evolution of distribution of wealth across agents on the

random network, corresponding to Figure 5.19. . . . . . . . . . 193
5.23 Interacting company agents . . . . . . . . . . . . . . . . . . . . 195
5.24 Multiple Nash equilibrium solutions . . . . . . . . . . . . . . . 198
5.25 Extensive form game . . . . . . . . . . . . . . . . . . . . . . . . 200
5.26 Gene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
5.27 Crossover process . . . . . . . . . . . . . . . . . . . . . . . . . . 201
5.28 Mutation process . . . . . . . . . . . . . . . . . . . . . . . . . . 202
5.29 Payoff and fitness . . . . . . . . . . . . . . . . . . . . . . . . . . 202
5.30 Selection by roulette method . . . . . . . . . . . . . . . . . . . 203

6.1 Distribution of U − D and risk capital Ep . . . . . . . . . . . . 210
6.2 Portion of the transaction network in Japan . . . . . . . . . . . 215
6.3 GDP scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
6.4 Cumulative probability distributions of sales revenues . . . . . 216
6.5 GDP scenarios and cumulative probability distributions of sales

revenues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
6.6 Rank-size plots of indebtedness at bankruptcy, comparing ori-

gins of bankruptcy . . . . . . . . . . . . . . . . . . . . . . . . . 222
6.7 Rank-size plots of indebtedness at bankruptcy plotted for com-

parison between two major causes of bankruptcy (Annual re-
ports on business bankruptcy, published by SMRJ) . . . . . . . 223

6.8 (a) Fraction of bankruptcies due to link effects, (b) Dependence
of bankruptcies due to link effects on the amount of indebtedness224

6.9 Cumulative distributions of (a) in-degree (vendors) and (b)
out-degree (customers). . . . . . . . . . . . . . . . . . . . . . . 227

6.10 A part of the transaction network consisting of a bankrupt
company, creditors, and creditors of creditors . . . . . . . . . . 229

6.11 Model of chain bankruptcy in a transaction network . . . . . . 230



256 LIST OF FIGURES

6.12 Results of the chain bankruptcy simulation . . . . . . . . . . . 231
6.13 Coarse-grained transaction network . . . . . . . . . . . . . . . . 235
6.14 Parameters of the production function for companies belonging

to a Japanese industrial group . . . . . . . . . . . . . . . . . . . 241



List of Tables

2.1 Average shares (%) of the top ten, fifty, and one hundred com-
panies for values of µ closer to 1. . . . . . . . . . . . . . . . . . 50

2.2 The value of µ below which the top 20% of companies have a
combined share of 75%, 80%, and 85%. . . . . . . . . . . . . . . 55

3.1 Parameters of τ and ρ for copulas . . . . . . . . . . . . . . . . . 85

4.1 Network indices for 13 automobile companies . . . . . . . . . . 136
4.2 Clique of 13 companies belonging to the automobile industry . 140
4.3 Network indices for the whole network, electric machinery, and

automobile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
4.4 Network indices of the pharmaceuticals and steel industries . . 142
4.5 Change of shareholding network . . . . . . . . . . . . . . . . . . 155

5.1 Strategic form game 1 . . . . . . . . . . . . . . . . . . . . . . . 196
5.2 Strategic form game 2 . . . . . . . . . . . . . . . . . . . . . . . 196
5.3 Strategic form game 3 . . . . . . . . . . . . . . . . . . . . . . . 197

6.1 Correspondence between symbols used in corporate finance the-
ory and variables in this book . . . . . . . . . . . . . . . . . . . 207

6.2 Number of creditors and amount of indebtedness for a bankrupt
company . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

6.3 Cases of M&A in Japanese electronic component industry . . . 233

257



258 LIST OF TABLES



Bibliography

Aitchison, J. and J. A. C. Brown, The Lognormal Distribution, Cam-
bridge University Press, 1957.

Albert, R., H. Jeong, and A. L. Barabási, “Internet: Diameter of the
world-wide web,” Nature, 1999, 401, 130–131.

Alligood, K. T., T. Sauer, and J. A. Yorke, Chaos: An Introduction
to Dynamical Systems, Springer-Verlag, New York, 1997.

Amaral, L. A. N., A. Scala, M. Barthelemy, and H. E. Stanley,
“Classes of small-world networks,” Proceedings of the National Academy of
Sciences, 2000, 97 (21), 11149.

, S. V. Buldyrev, S. Havlin, H. Leschhorn, P. Maass, M. A.
Salinger, H. E. Stanley, and M. H. R. Stanley, “Scaling behavior in
economics: I. Empirical results for company growth,” Journal de Physique I
France, 1997, 7 (4), 621–633.

, , , M. A. Salinger, and H. E. Stanley, “Power law scaling for a
system of interacting units with complex internal structure,” Physical Review
Letters, 1998, 80 (7), 1385–1388.

Anderson, C., The Long Tail: Why the Future of Business Is Selling Less
of More, Hyperion Books, 2006.

Aoki, M., Modeling Aggregate Behavior and Fluctuations in Economics:
Stochastic Views of Interacting Agents, Cambridge University Press, New
York, 2002.

and H. Yoshikawa, Reconstructing Macroeconomics: A Perspective from
Statistical Physics and Combinatorial Stochastic Processes, Cambridge Uni-
versity Press, New York, 2007.

Aoyama, H. and H. Kikuchi, “A new valley method for instanton defor-
mation,” Nuclear Physics B, 1992, 369, 219–234.

, , I. Okouchi, M. Sato, and S. Wada, “Valley views: instantons,
large order behaviors, and supersymmetry,” Nuclear Physics B, 1999, 553,
644–710.

259



260 BIBLIOGRAPHY

, H. Yoshikawa, H. Iyetomi, and Y. Fujiwara, “Productivity dis-
persion: Facts, theory, and implications,” Arxiv preprint arXiv:0805.2792,
RIETI discussion paper 08-E, 2008, 35.

, Y. Fujiwara, and W. Souma, “Kinematics and dynamics of Pareto-
Zipf’s law and Gibrat’s law,” Physica A, 2004, 344, 117–121.

, , H. Iyetomi, and A.-H. Sato (eds.), Econophysics —Physical ap-
proach to Social and Economic Phenomena (Progress of Theoretical Physics,
Supplement No.179), Yukawa Institute for Theoretical Physics and The
Physical Society of Japan, 2009.

, Y. Nagahara, M. P. Okazaki, W. Souma, H. Takayasu, and
M. Takayasu, “Pareto’s law for income of individuals and debt of bankrupt
companies,” Fractals, 2000, 8, 293–300.

Arrow, K. J., H. B. Chenery, B. S. Minhas, and R. M. Solow,
“Capital-labor substitution and economic efficiency,” The Review of Eco-
nomics and Statistics, 1961, 43 (3), 225–250.

Auerbach, F., “Das Gesetz der Bevölkerungskonzentration,” Petermanns
Geographische Mitteilungen, 1913, 59, 74–76.

Axtell, R.L., “Zipf distribution of US firm sizes,” Science, 2001, 293 (5536),
1818–1820.

Barabási, A. L., Linked: How Everything Is Connected to Everything Else
and What It Means for Business, Science, and Everyday Life, reissue ed.,
Plume, 4 2003.

and R. Albert, “Emergence of scaling in complex networks,” Science,
1999, 286, 509–512.

and Z. N. Oltvai, “Network biology: understanding the cell’s functional
organization,” Nature Reviews Genetics, 2004, 5 (2), 101–113.

Barrat, A., M. Barthelemy, R. Pastor-Satorras, and A. Vespig-
nani, “The architecture of complex weighted networks,” Proceedings of the
National Academy of Sciences, 2004, 101 (11), 3747–3752.

Berger, S., How We Compete: What Companies Around the World Are
Doing to Make it in Today’s Global Economy, first ed., Broadway Business,
2005.

Bergeron, B., Essentials of XBRL: Financial Reporting in the 21st Cen-
tury, essentials series ed., Johm Wiley & Sons, Inc., 2003.

Black, F. and M. Scholes, “The pricing of options and corporate liabili-
ties,” Journal of political economy, 1973, 81 (3), 637.

Bollobás, B., Random Graphs, Academic Press, 1985.



BIBLIOGRAPHY 261

Bottazzi, G. and A. Secchi, “Why are distributions of firm growth rates
tent-shaped?,” Economics Letters, 2003, 80 (3), 415–420.

Bouchaud, J. P. and M. Mezard, “Wealth condensation in a simple
model of economy,” Physica A: Statistical Mechanics and its Applications,
2000, 282 (3-4), 536–545.

Bouchaud, J.P. and M. Potters, Theory of Financial Risk and Derivative
Pricing: from Statistical Physics to Risk Management, Cambridge Univ Pr,
2003.

Brealey, R., S. Myers, and F. Allen, Principles of Corporate Finance,
McGraw-Hill/Irwin, 2008.

Brin, S. and L. Page, “The anatomy of a large-scale hypertextual Web
search engine,” Computer networks and ISDN systems, 1998, 30 (1-7), 107–
117.

Buchanan, M., Nexus: Small Worlds and the Groundbreaking Science of
Networks, reprint ed., W W Norton & Co Inc, 6 2003.

Caldarelli, G., Scale-free Networks: Complex Webs in Nature and Tech-
nology, Oxford University Press, 2007.

Callen, H. B., Thermodynamics and an Introduction to Thermostatistics,
second ed., John Wiley & Sons, 1985.

Champernowne, D. G., The Distribution of Income between Persons,
Cambridge University Press, 1973.

Chesbrough, H. W., Open Innovation, first ed., Harvard Business School
Press, 2006.

Christensen, L. R., D. W. Jorgenson, and L. J. Lau, “Transcendental
logarithmic production frontiers,” The Review of Economics and Statistics,
1973, 55 (1), 28–45.

Cobb, C. W. and P. H. Douglas, “A theory of production,” The Amer-
ican Economic Review, 1928, 18 (1), 139–165.

Davis, M. D., Game Theory, second ed., Basic Books, New York, 1983.

Delli Gatti, D., E. Gaffeo, M. Gallegati, G. Giulioni, and
A. Palestrini, Emergent Macroeconomics: An Agent-based Approach to
Business Fluctuations, Springer, 2008.

, M. Gallegati, and A. Palestrini, “Agents’ Heterogeneity, Aggregation,
and Economic Fluctuations,” in Delli Gatti, D. and Gallegati, M. and Kir-
man, A., ed., Interaction and Market Structure: Essays on Heterogeneity in
Economics, number 484. In ‘Lecture Notes in Economics and Mathematical
Systems.’, Springer-Verlag, 2000, pp. 133–149.



262 BIBLIOGRAPHY

Dertouzos, M. L., R. K. Lester, and R. M. Solow, Made in America:
Regaining the Productive Edge, first ed., MIT Press, 1989.
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