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Efficient Analytic Approximation of American
Option Values
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ABSTRACT

This paper provides simple, analytic approximations for pricing exchange-traded Amer-
ican call and put options written on commodities and commodity futures contracts,
These approximations are accurate and considerahly more computationally efficient
than finite-difference, binomial, or compound-option pricing methods.

OPTIONS WRITTEN ON A wide variety of commodities and commodity futures
contracts'’ now trade in the U.8. and Canada. Nearly all these options are
American style? and thus have early exercise premiums implicitly embedded in
their prices. Unlike the European-style option-pricing problems, however, ana-
Iytic solutions for the American option-pricing problems have not heen found,
and the pricing of American options has usually resorted to finite-difference,
binomial, or, more recently, compound-option approximation methods. While
these approximation methods yield accurate American option values, they are
cumbersome and expensive to use.

The purpose of this paper is to provide an accurate, inexpensive method for
pricing American call and put options written on commodities and commodity
futures contracts. The development of the “quadratic” approximation method is
contained in Section 1. Commaodity option and commodity futures option con-
tracts are defined, the underpinnings of commodity option valuation are dis-
cussed, and the solutions to the European call and put option-pricing problems
are presented. Unlike the non-dividend-paying stock aption case, it is shown that
the American call option written on a commodity, as well as the American put
option, may optimally be exercised prior to expiration. The approximation
methods for the American call and put option values are then derived in the
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! Options on physical commodities {i.e., commodity options) were traded in the U.S. as early as
the late 1800°s. (See Mehl [14].) These options convey the right to buy or sell a certain physical
commodity at a specified price within a specified period of time. The Commodity Exchange Act of
1936, however, banned trading in such options. Recently the CFTC introduced a pilot program
allowing the varicus exchanges to reintroduce commodity options. Active trading now occurs not only
in options on physical commaodities such as gold and foreign currenciea but also in options on
commadity futures contracts (i.e., commodity futures options) such as wheat and livestock.

*The Chicage Board Options Exchange now lists European-style options on selected foreign
currencies and the S&P 500 Composite Stock Index.
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manner in which MacMillan [13] approximated the solution to the American put
option on a non-dividend-paying stock pricing problem. In Section II, the
programming of the approximations is considered, and the results of comparisons
of the finite-difference, compound-option, and quadratic approximation methods
are presented and discussed. Comparisons are also made to heuristic option-
pricing methods. Section III contains a summary.

I. Valuation Equations for Commadity Options

In this section, the theory of pricing commodity and commodity futures option
contracts is reviewed, and the approximations for the American call and put
options are presented. At the outset it is useful to clearly define the terms
“commodity option” and “commodity futures option.” In the context in which
the terms will be used here, a commodity option represents the right to buy or
sell a specific commodity at a specified price within a specified period of time.
The exact nature of the underlying commodity varies and may be anything from
a precious metal such as gold or silver to a financial instrument such as a
Treasury bond or a foreign eurrency. Usually the commaodity option is labeled by
the nature of the underlying commadity. For example, if the commadity option
is written on a commeon stock, it is referred to as a “stock option,” and, if the
commodity option is written on a foreign currency, it is referred to as a “foreign
currency option.” If the underlying commodity is a futures contract, the options
are referred to as “commodity futures options” or simply “futures options.”

To begin, the focus will be on a general commaodity option-pricing model. The
assumptions used in the analysis are consistent with those introduced by Black
and Scholes [3] and Merton [15]. First, the short-term interest rate, r, and the
cost of carrying the commodity, b, are assumed to be constant, proportional rates.
For a non-dividend-paying stock, the cost of carry is equal to the riskless rate of
interest (i.e., & = r), but, for most other commaodities, this is not the case. In
Merton's [15] constant, proportional dividend-yield option-pricing models, for
example, the cost of carrying the stock is the riskless rate, r, less the dividend
yield, d (i.e., b = r — d}. In Garman and Kohlhagen’s [9] foreign currency option-
pricing models, the cost of carrying the foreign currency is the domestic riskless
rate, r, less the foreign riskless rate, r* (i.e., b = r — r*). However, that is not to
say that the cost of carry is always below the riskless rate of interest. For the
traditional agricultural commodities such as grain and livestock, the cost of carry
exceeds the riskless rate by costs of storage, insurance, deterioration, etc.

In the absence of costless arbitrage opportunities, the assumption of a constant,
proportional cost of carry suggests that the relationship between the futures and
underlying commodity prices is

F = Se*7, (1)

where F and § are the current futures and spot prices, respectively, and 7T is the
time to expiration of the futures contract. This relationship will prove useful
later in this section. _

A second common assumption in the option-pricing literature is that the
underlying commodity price-change movements follow the stochastic differential
equation,
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dS/8 = a dt + ¢ dz, 2)

where « is the expected instantaneous relative price change of the commodity, ¢
is the ingtantaneous standard deviation, and z is a Wiener process. It is worth-
while to note that, if the cost-of-carry relationship (1) holds and if equation (2)
describes the movements of the commodity price through time, then the move-
ments of the futures price are described by the equation,

dF/F = (¢ — b) dt + o dz. (3)

That is, the expected instantaneous relative price change of the futures contract
is o« — b and the standard deviation of relative commodity price relatives is equal
to the standard deviation of futures price relatives.?

Finally, assuming that a riskless hedge between the option and the underlying
commaodity may be formed, the partial differential equation governing the move-
ments of the commodity option price (V} through time is

0?8 Ve + bSVs — rV + V, = 0. (4)

This equation, which first appeared in Merton [15], is the heart of the commodity
option-pricing discussion contained herein. Note that, when the cost-of-carry
rate b is equal to the riskless rate of interest, the differential equation {4) reduces
to that of Black and Scholes [3], and, when the cost of carrying the underlying
commodity is 0, the Black [2] commodity futures option differential equation is
obtained. Both the non-dividend-paying stock and the futures option-pricing
problems are special cases of this more general commaodity option-pricing prob-
lem.

A. European Commodity Options

The differential equation (4) applies to calls and puts and to European options
and American options. To derive the European call formula, the terminal bound-
ary condition, max(0, 8y — X), is applied. Merton shows indirectly that, when
this terminal boundary condition is applied to equation (4), the value of a
European call option on a commodity is

(8, T) = Se®"N(d,) — Xe " "N(dy), (5)

where d; = [In(S/X) + (b + 0.5¢*)T]/oVT, dy = d; — ¢vT, and N(.} is the
cumulative univariate normal distribution.* When the lower boundary condition
for the Furopean put, max(0, X — Sy), is applied to the partial differential
equation (4), the pricing equation is

p(S, T) = Xe™"N(~d,) — Se®*""N(~d,), (6)

where all notation is as defined above.

#This result is noted in Black [2].

! It is interesting to note that substitution of the cost-of-carry relationship (1) into the European
commaodity formula (5) yields the Black (2] commodity futures option-pricing equation. This was
first pointed out by Black and then later by Asay [1].
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B. American Commodity Options

The European call formula (5) provides a convenient way of demonstrating
that, under certain conditions, the American call option may be exercised early.
Suppose b < r, as is the case with most of the non-common-stock commodity
options traded. As the commodity price, S, becomes extremely large relative to
the exercise price of the aption, the values of N{d,) and N(d,) approach one and
the European call value approaches Se® 7T — Xe™T. However, the American
option may he exercised immediately for § —~ X, which may be higher than the
European option value when b < r, Thus, the American call option may command
a higher price than the European call option because of the early exercise
privilege. If & = r, as in the case of an option on a non-dividend-paying stock
(i.e., b = r), the lower price bound of the European option will have a greater
value than the exercisable proceeds of the American option for all levels of
commodity price, so there is no possibility of early exercise and the European
call option model (5) will accurately price American call options. For the Amer-
ican puts, there is always some possibility of early exercise, so the European
formula {6} never applies. A more detailed explanation of the conditions for early
exercise of the call and put options written on commodities is provided in Stoll
and Whaley [19].

The valuation of American commodity options therefore involves addressing
the early exercise feature of the options. When the American option boundary
conditions are applied to (4), analytic solutions are not known and approxima-
tions must be used. The most common approach uses finite-difference methods.
The first applications along these lines were by Schwartz [18], who valued
warrants written on dividend-paying stocks, and by Brennan and Schwartz [5],
who priced American put options on non-dividend-paying stocks.’ Recently,
Ramaswamy and Sundaresan [16] and Brenner, Courtadon, and Subrahmanyam
[6] used finite-difference methods to price American options written on futures
contracts.

The most serious limitation of using finite-difference methods to price Amer-
ican options is that they are computationally expensive. To ensure a high degree
of accuracy, it is necessary to partition the commodity price and time dimensions
into a very fine grid and enumerate every possible path the commodity option
price could travel during its remaining time to expiration. This task is cumber-
some and can only be efficiently accomplished with the use of a main-frame
computer.

An alternative approximation method was recently introduced by Geske and
Johnson [10]. Their compound-option approximation method is computationally
less expensive than numerical methods and offers the advantages of being
intuitively appealing and easily amenable to comparative-statics analysis. How-
ever, while being about twenty times more computationally efficient than nu-
americal methods, the compound-option approacﬁ is still not inexpensive since it
requires the evaluation of cumulative bivariate, trivariate, and sometimes higher

® Geske and Shastri [11] provide a comprehensive analysis of the merits of the explicit, implicit,
and binomial finite-differance approzimation methods. Cox, Ross, and Rubinstein [7] and Cox and
Rubinatein [8} provide detaited discussions of the hinomial option-pricing framework.
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order multivariate normal density functions. Needless to say, such integral
evaluations require the assistance of fairly sophisticated programs and are not
practical on anything below the level of a fast microcomputer.

dohnson [12] and others provide heuristic techniques for valuing American put
options on non-dividend-paying stocks. Although these techniques are very fast
computationally, they are specific to the stock option-pricing problem and are
not directly comparable to the general commodity option-pricing approximations
discussed herein. In addition, the accuracy of heuristic techniques is frequently
sensitive to the parameter range used in the option-pricing prohlem, a point that
we will return to in the simulation results of the next sectiomn.

The American commodity option-pricing approximation method derived here
is accurate, is amenable to comparative-statics analysis, and can be programmed
on a hand-held calculator. The method is based on MacMillan’s [13] quadratic
approximation of the American put option on a non-dividend-paying stock
valuation problem. To explain the derivation of our approximation, the problem
of pricing an American call option on a commodity is addressed.

B.1. Queadratic Approximation of the American Call Value

The key insight into the quadratic approximation approach is that, if the
partial differential equation (4) applies to American options as well as European
options, it also applies to the early exercise premium of the American option. For
an American call option written on a commodity, the early exercise premium
£e(S, T) is defined as

ec(8, T) = C(8, T) — ¢(S, T), (7)

where C(S, T) is the American commodity option value and ¢(S, T) is the
European commodity option value as described by equation (5). The partial
differential equation for the early exercise premium is therefore

Yaol82%es — re + bSeg + ¢, = 0. {8)

For ease of exposition, two simplifications are made. First, in place of time ¢
evolving from the present toward the option’s expiration ¢*, time 7T evolving from
the option’s expiration to the present, that is, T'= £* — ¢, is used. Thus, ey = —¢,.
Second, equation (8) is multiplied by 2/42, and, third, the notational substitutions
M = 2r/¢* and N = 2b/s? are made. Equation (8) now reads as

S%css — Me + NSes — (M/r)er = 0. 9)

The early exercise premium is then defined as £(S, K) = K(T)f(S, K). It
therefore follows that ess = Kfss and e+ = Kyf + KKrfx. Substituting the partial
derivative expressions into (9), factoring K, and gathering terms on M{f yield

8*fss + NSfs — Mf[1 + (Ko/rK)(1 + Kfe/f1] = 0. (10)
Choosing K(T) = 1 — e™*7, substituting into (10), and simplifying give
8%fss + NSfs — (M/K)f — (1 — K)Mfy = 0. (11)

Up to this point, the analysis has been exact, and no approximation has been
made. The approximation will be made in equation (11); the last term on the
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left-hand side will be assumed to be equal to 0. For commodity options with very
short (long) times to expiration, this assumption is reasonable since, as T
approaches 0 (), fx approaches 0 (K approaches 1}, and the term, (1 — K)Mf,
disappears. As an approximation, therefore, the last term is dropped, and the
approximation of the early exercise premium differential equation is

8%fss + NSfs — (M/K) f = 0. (12)

Equation (12} is a second-order ordinary differential equation with two linearly
independent solutions of the form aS9 They can be found by substituting
[=aS%into (12):

aS g%+ (N — 1)g — M/K] = 0. (13}

The roots of (13) are ¢ = [-(N — 1) — (N —-1%+ 4M/K])/2 and
g2 =[—(N—1) + V(N — 1)? + 4M/K]/2. Note that, because M/K >0, g, < 0 and
qs >0,

The general solution to (12) is

f(8) =, 8% + a,8%, (14)

With ¢; and g; known, a, and @, are left to be determined. With ¢, < 0 and
a; # 0, the function f approaches o as the commodity price 8 approaches 0. This
is unacceptable since the early exercise premium of the American call becomes
worthless when the commodity price drops to zero. The first constraint to be
imposed is, therefore, @; = 0, and the approximate value of the American call
option written on a commodity will be written as

C(8, Ty=1c(S8, T) + Ko, S (15)

To find an appropriate constraint on a,, consider equation (15). As § = Q,
C(8, T) = 0 since hoth ¢(8, T') and Ka,S* are equal to 0. As S rises, the value of
C(8, T) rises for two reasons; ¢(8, T') rises and Ka,S? rises, assuming a, > 0. In
order to represent the value of the American call, however, the function on the
right-hand side of {15) should touch, but not intersect, the boundary imposed by
the early exercise proceeds of the American call, § — X. Below the eritical
commodity price S* implied by the point of tangency, the American call value is
represented by equation (15). Above S*, the American call value is equal to its
exercisable praceeds, S — X, and the fact that a,S% rises at a faster and faster
rate above S* is not of concern.

To find the critical commodity price 8*, the exercisable valué of the American
call is set equal to the value of C(8*, T) as represented hy (15), that is,

8* — X =¢(8% T) + Ka,5*%, (16)

and the slope of the exercisable value of the call, one, is set equal to the slope of
C(S*, T), that is,

1 = ¢®TN[d,(8%)] + KgyaS*"7", (17)

where e "TN[d,(S*)] is the partial derivative of ¢(S*, T) with respect to S*
and where d,(S*) = [In(S*/X) + (b + 0.5¢2)T]/avT. Thus, there are two
equations, (16) and (17), and two unknowns, a, and S*. Isolating a, in (17) yields
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a = {1 — e“""N[d,\ (S*)]}/KqS**7". (18)

Substituting (18) into (16) and simplifying results in a critical commodity price,
S*, that satisfies

§* — X =¢(8* T) + {1 — e "N[d (S*)]1S*/gs. (19)

Although 8* is the only unknown value in equation {19), it must be determined
iteratively. An efficient algorithm for finding S* is presented in the next section.
With §* known, equation {16) provides the value of a;. Substituting (18) into
(15) and simplifying yields

C(S, T) = ¢(S, T) + Ax(S/S*)%, when S < S*, and
CS, T =8 - X, when 8 = S*, (20)

where A; = (8*/g,){1 — e®7TN[d,(5§*)]}. Note that A, > 0 since S*, g,, and 1
— e®1TN[d, (S8*}] are positive when b < r. Equation (20) is therefore an efficient
analytic approximation of the value of an American call option written on a
commodity when the cost of carry is less than the riskless rate of interest. When
b = r, the American call will never be exercised early, and valuation equation (5)
applies.®

In equation (20), it is worthwhile to note that the early exercise premium of
the American call option on a commodity approaches 0 as the time to expiration
of the option approaches 0. As T gets small, N[d,(S*)] approaches 1,
f1 — e®7TN[d;(S*)]} approaches 0, A; approaches 0, and, thus, A,(S/S*)%
approaches 0.

B.2. Quadratic Approximation of the American Put Value

Before proceeding with a discussion of how to use this quadratic approximation,
it is useful to note how the approximation would change for the American put
option on a commeodity. Since the partial differential equation (8) applies to the
early exercise premium of the American put

ep(ss T} = P(S; T) _p(Sa T}s (21)

equations (9) through (14) of the analysis remain the same. In (14), it is now the
term a,8 % that is of interest since the early exercise premium of the American
put must approach 0 as 8 approaches positive infinity. The term, a, 8%, violates
this boundary condition, so a, is set equal to zero and the approximate value of
the American put option becomes

P, T)=p(8 T) + Ka,S7. (22)

Again, the values of the coefficient a, and the critical commodity price §**
must be determined, and the necessary steps pattern those used in determining
a, and S*. The value of @, is

¢ In coding the American call option-pricing algorithm, first check whether the cost of carry b is
less than the riskleas rate of intedest r. If not, then price the call using the European pricing formuta.

" The term N[4,{S*)] approaches 1 rather than 0 as T approaches 0 because the critical commodity
ptice S* is always greater than or equal to the exercise price X,
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a = ~{1 — e*"N[-di (S**)]}/Kq 5** 47, (23)

where —e® "TN[—d,(8**)] is the partial derivative of p(S**, T) with respect to
8§** and where a; > 0 since ¢, < 0 and since all other terms are positive. The
critical commodity price $** is determined by solving

X — 8% =p(S8*, T) — {1 — e®TN[-d (S**)]}S**/q:. (24)

With §** known, the approximate value of an American put option written on a
commodity (22) becomes

P8, T) = p(S, T) + A(S/8**)%, when § > S** and
PSS, TY=X-38, when S = §%% (28)

where A, = —(8**/g,){1 — e®"TN[-d,(S**)]}. Note that A, > O since
@ < 0, 8% > 0, and N[—d,(S**)] < e~*T.

C. American Commodity Futures Options

Up to this point, the focus of the discussion has been on the valuation of
commodity options where the cost of carrying the underlying commodity is a
constant, proportional rate b. If b is set equal to certain specific values, however,
specific commadity option-valuation equations are obtained. For example, the
cost of carrying any futures position is equal to 0. Thus, to obtain the commodity
futures option-valuation results, simply set b equal to zero in the approximation
just described. The approximate value of an American call option on a futures
contract is given by equation (20), where the futures price, F, is substituted for
the commodity price, S, and where the cost of carry, b, is set equal to zero. The
approximate value of an American put option on a futures contract is given by
equation (25}, where similar substitutions are made. Both of these American
futures option-price approximations are used in Whaley [21].

D. American Stock Options

Another special case of the commodity option-valuation framework is the non-
dividend-paying stock option. The cost of carrying the underlying stock is
assumed to he equal to the riskless rate of interest; in other words, b is set equal
to r in the above approximation. It is worthwhile to point out that, since b = r
for this option-pricing problem, the American call will be valued using the
European formula (5). The resulting approximation for the American put is that
of MacMillan [13].

E. Summary

The quadratic approximation techniques for pricing the American call and put
aptions on a commodity have now heen derived. Before presenting some simu-
lation results intended to show the accuracy of the techniques, it is worthwhile
to reiterate that they are useful in a wide range of option-pricing problems. The
futures option and the stock option cases are only two examples. American
options on foreign currencies, on stock indexes with continuous dividend yields,
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on precious metals such as gold and silver, and on long-term debt instruments
with continuous coupon yields can be accurately priced within this framework.

IL. Implementation and Simulation of Approximation Method

In the approximation procedure outlined in the last section, only one step, the
determination of the critical commaodity price §*%, is not straightforward. In this
section, an efficient algorithm for determining S* is presented, and then simu-
lated results from the quadratic approximation method are compared with results
for the finite-difference and compound-option approximation methods.

A. An Algorithm for Determining S*

To find the critical commodity price 8%, it is necessary to solve equation (18).
Since this cannot be done directly, an iterative procedure must be developed.? To
begin, evaluate hoth sides of equation (19) at some seed value, S,, that is,

LHS(S)=8,— X, and (26a)
RHS(S:) = ¢(S;, T) + {1 — e®*""N[d:i(S)1|S:/qz, (26h)

where d(8;) = [In(S/X) + (b + 0.50'2)T]/aﬁ and { = 1. Naturally, it is unlikely
that LHS(S;) = RHS(S)) on the initial guess of §,, and a second guess must he
made. To develop the next guess Siy,, first find the slope b; of the RHS at S,
that is,

by = e®N[d, (S)](1 — 1/g2) + [1 — e*"n[di(S)]/aVT]/ge,  (27)
where n{.) is the univariate normal density function. Next, find where the line
tangent to the curve RHS at S; intersects the exercisable proceeds of the American
call, 8 — X, that is,
RHS(S,) + b,(8S — 89,) =8 - X,
and then isolate S to find S,..,
Sy = [X + RHS(S)) — b:S:]/(1 — b). (28)

Equation (28) will provide the second and subsequent guesses of 8, with new
values of (26a), (26b}, (27), and (28} computed with each new iteration. The
iterative procedure should continue until the relative absolute error falls within
an acceptable tolerance level; for example,

| LHS(S8;} — RHS(S:)|/X < 0.00001. 29
B. Seed Value

The iterative technique outlined here converges reasonably quickly by setting
the seed value S, equal to the option’s exercise price X and by imposing the

# Iterative solution to (19} for each of the options on a single underlying commadity is unnecessary.
The eritical commodity price in (19} is proportional in X; thus, if the critical commodity price 5S¢ is
computed for an option with exercise price X, the critical commodity price for a second option with
a different exercise price X, is simply 8§ = (S}/X,)1X;.
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tolerance criterion (29), The speed with which the algorithm finds the eritical
commodity price, however, can be improved by using a starting point closer to
the solution.

To arrive at an approximate value of the critical commodity price, consider
the information contained in equation (19). If the time to expiration of the call
option is equal to 0, the critical commodity price above which the option will be
exercised is the exercise price of the option, X. At the other extreme, if the time
remaining to expiration is infinite, the critical commodity price may be solved
exactly by substituting T = + in (19), that is,

S*(@) = X/[1 — 1/gqa()], (30)

where g3(®) = [—(N — 1) + V(N — 1)* + 4M1/2. Equation (19) also shows that
the critical commodity price is an increasing function of time to expiration of
the option.

With this and other information from the call option-pricing problem in hand,
it is possible to derive an approximate analytic solution to finding the critical
commaodity price. Such a derivation is provided in the Appendix. The final form
of the approximation is

8* = X + [S* () — X][1 — €™, (31)

where h, = —(bT + 2avVT){X/[S*() — X]}. Note that (31) satisfies the critical
commodity-price restrictions when T=0 and T' = +,

For the put option-pricing problem, the critical commodity price must satisfy
equation {(24}. At T = 0, the critical price is again the exercise price of the option,
and, at T = +c0,

§** (@) = X/[1 — 1/qu ()], (32

where ¢, (»)} = [-(N — 1) — V(N — 1) + 4M]/2. It is worthwhile to point out
that, when the cost of carry b is equal to the riskless rate of interest r, this result
is exactly the same as Merton’s [15]. In equation (24), the critical commodity
price is a decreasing function of time to expiration, and an approximate analytic
expression for the critical commodity price is

§** = §** () + [X — S**(o0}]e™, (33)

where by = (bT — 20 VT) [X/[X — S** (0} ]}.2

Equations (31) and (33) provide the seed values for the iterative procedures
that determine the critical commodity price in the American call and the
American put option algorithms. Both are straightforward computations, and
their use usually ensures convergence in three iterations or less.

C. Simulation Results

Tables I through IV contain a sensitivity analysis of the theoretical European
and American commodity option values for a variety of cost-of-carry parameters.

? For very large values of b and 7, the influence of b must be bounded in the put exponent to
ensure ctitical prices monotonically decreasing in 7. A reasonsble upper bound on b is 0.6a/+T, 80
the critical commodity price declines at least with a velocity e~ V7.
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In Tables I and I, for example, the cost-of-carry parameter (b} is set equal to
—0.04 and 0.04, respectively. Thus, the values in these tables may be thought of
as heing American foreign currency option prices, where the foreign riskless rate
of interest is greater than and less than the domestic interest rate, respectively.
In Table III, the cost-of-carry parameter is set equal to 0, so the resulting option
values are for American commodity futures options. Finally, in Table IV, the
cost of carry is set equal to the riskless rate of interest. Since this is the non-
dividend-paying stock option case, only American put option values are re-
ported.”

In the first three tables, three methods for pricing the American commodity
options are used: (a) the implicit finite-difference approximation method with
commodity-price steps of (.10 and time steps of 0.20 days or 0.0005479 years, (h)
the compound-option approximation method using a three-point extrapolation,
and (¢} the quadratic approximation method. The European model values are
included to provide an indication of the magnitude of the early exercise premium
on American options. In the fourth table, the values of Johnson’s [12] heuristic
technique are also provided.

C.1. Commaodity Option Results

Judging by the results reported in Tables I and II, the quadratic approximation
is very accurate. The option prices for this method are within pennies of the
implicit finite-difference method.! The most extreme errors accur for the in-the-
money options where the volatility parameter is set equal to 0.40 and where the
cost of carry is —0.04 for the calls and 0.04 for the puts (see Tables I and II), but
even there the degree of mispricing, when compared with the finite-difference
method, is less than three tenths of one percent. Considering that the quadratic
approximation costs roughly 2000 times less, this result is impressive.

The compound-option valuation method appears to do about as well as the
quadratic approximation at pricing American options, For options at or out of
the money, both techniques provide accurate option values. In-the-money options
have minor mispricing errors, but on a proportionate basis the errors are trivial.
The overwhelming advantage of using the quadratic approximation, however, lies
in the fact that its computational cost is approximately 100 times less than the
compound-option approximation.

C.2. Commodity Futures Option Values

In Table III, the simulation results for futures options are reported. With the
cost-of-carry parameter set equal to 0, the quadratic approximation shows even
more precision across the parameter ranges considered. The largest etrots are on
the order of one tenth of one percent.

C.3. Stock Option Values

Table IV contains the simulation results for the special case where the cost of
carry is equal to the riskless rate of interest, that is, for American options written

¥ Recall that, when the cost of carry is greater than or equal to the riskless rate of interest, the
American call option will not be exercised early.

" Here, the finite-difference method is assumed to provide the “true” value of the American
commodity option.
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on non-dividend-paying stocks. Since the call will not rationally be exercised
early, only put option values appear in the table. The quadratic approximation
method used here is that of MacMillan [13],

With respect to the quadratic approximation and the compound-option ap-
proach, the results are qualitatively similar to the previous tables, Slightly larger
mispricing errors occur for in-the-money options, but, even in the case where the
volatility parameter is set equal to 0.40, the degree of mispricing is less than four
tenths of one percent.

Unlike the previous tables, Table IV contains an additional eolumn of values
under the heading “Johnson Method.” Johnson [12] provides a heuristic tech-
nique for valuing American put options on non-dividend-paying stocks.'® His
technique is slightly faster than the quadratic approximation; however, its validity
appears to break down for put options that are slightly in the money. Consider
the put option values for the first set of parameters. When the stoek price is 80,
all techniques yield an option value equal to 20.00. This is because the current
stock price is below the critical stock price, so that the value of the American put
is simply equal to its exercisable proceeds. However, if the stock price is 90, as
seen in the second row of the table, the current stack price is in excess of the
critical stock price and the approximation methads are invoked. While the
quadratic approximation produces an absolute mispricing error of 0.03 (or 0.3
percent) relative to the finite-difference value, the Johnson technique produces
a 0.52 (or 5.18 percent) error.

For the second and third set of option-pricing parameters, the Johnson tech-
nique produces reasonable values, but, for the fourth set of parameters, the first
in-the-money put option again has a large mispricing error. This is indicative of
the problems one faces when using heuristic procedures. While the aption prices
may be well behaved in general, they may lead to serious mispricing errors for
arbitrary combinations of parameters.

C.4. Long-Term Option Values

The parameters of the options in Tables I through IV were chosen so as to
represent typical exchange-traded options with times to expiration of less than
six months. The most actively traded options, in fact, have maturities of less
than three months. In the interest of completeness, however, it is worthwhile to
point out that over-the-counter markets for long-term options are slowly devel-
oping, particularly in the area of U.S. Treasury obligations, and the impact of
the time-to-expiration parameter on the accuracy of the approximation methods
is of particular importance. For this reason, simulations are performed using
times to expiration of up to three years. Table V contains the three-year time-
to-expiration results.

The results in Table V show that all the approximation method results are
weakened considerably. In some cases, the three-point extrapolation compound-

> When the undetlying stock pays known discrete dividends, both the American call and put
options written on the stock may be optimally exercised early. Roll [17] and Whaley [20] provide the
analytic solution to the American call option-pricing problem where the stock pays known discrete
dividends. Analytic sotutions to the American put option-pricing problem have nat been found;
however, Geske and Johnson {10] and Blomeyer [4] provide heuristic technigues for approximating
the put aption values,
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option method does better than the quadratic approximation, and in other cases
vice versa, The Johnson technique produces the largest mispricing errors for the
American put option on a non-dividend-paying stock.

Based on the results of Table V and the other simulation results {not reported
here) using time-to-expiration parameters of between 0.5 and 3 years, it is
reasonable to use either the three-point compound-option extrapolation method
or the quadratic approximation method for pricing commodity options with less
than one year to expiration, with the obvious preference being for the quadratic
approximation method because of its computational expediency. For times to
expiration beyond one year, finite-difference or binomial option-pricing methods
should be used to ensure pricing accuracy.

HI, Summary

More than thirty commodity option and commaodity futures option contracts now
trade in a variety of markets in the U.S. and Canada. These options are, in
general, American style and, as such, are exercisable at any time up to and
including the expiration day of the aption. Previous attempts at pricing these
options have heen accurate but computationally expensive. This paper provides
simple, inexpensive approximations for valuing exchange-traded American call
and put options written on commodities as well as commodity futures contracts.

Appendix

Derivation of Analytic Approximation of Critical Commodity Price 8*: Equation
{19) shows that the critical commodity price is an increasing function of time to
expiration of the option bounded by the exercise price when T' = 0 and by

S*(w) = X/[1 - 1/ga(x)], (A1)

where ¢o(®) = [—-(N — 1} + V(N — 1)* + 4M]/2 when T = +w, To derive an
approximate analytic equation for the critical commodity price as a function of
time, consider the call option holder’s dilemma when the time to expiration of
the option is some arbitrarily small time increment, A. If the call is exercised at
time A, the exercisable proceeds are S{A) — X, which will earn interest to become
[S(A) — X](1 + rA) at T = 0. On the other hand, if the option haolder chooses to
leave the call position open, the worth of the call is equal to the expected terminal
value of the option, E[S(0) — X | S(0) > X]. Thus, the critical commodity price
above which the call option holder will choose to exercise early is determined by

[S*(A) — XK1 + ra) = E[S8*(Q) — X | 8%(0) > X]. (A2)

To evaluate the right-hand side of (A2), represent the commodity price at the
expiration of the option using the Cox-Ross-Rubinstein [7] risk-neutral binomiat
approach, that is,

S*(0) = S*(A)(L + bA * gVA). (A3)

Equation (A3) says that, in a risk-neutral world, the expected rate of return on
commodity S is equal to its cost of carry, BA, plus or minus the stochastic
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component, ¢vA, with equal probabilities. Thus, the expected value of holding
the call to expiration is

E[S*(0) — X|S*(0) > X] = 0.5[S*(1 + ba + oVA) — X], (A4)

and, if (A4) is substituted into (A2), the critical commodity price is determined
by

(S*(A) — X)(1 + ra) = 0.5[S*(1 + bA + ovVA) — X). (A5)
Rearranging equation (A5) to isolate S*(A}) provides
S*(A) = [X(1 + 2A9]/[1 + (2r — b)A — av/A), (A6)

which, in turn, provides the approximations
S*(A) = X(1 + 2Ar)[1 — (2r — b)A + av/A]
~ X(1 + bA + avA). (A7)

Equation (A7) ignores terms of order higher than A. Moreaver, A is assumed to
be small enough to make opportunities of exercising the call at intermediate
tires before expiration negligible. Therefore, equation (A7) holds exactly only
in the case where A approaches 0.

To approximate S* for arbitrary times to expiration, expand $*(0) around
S*(A), that is,

S*(0) = S*(A) + (88*/8T )=, (A8)

(The reason for choosing T = A in lieu of 7' = 0 as the origin of the expression
(A8) is that at T = 0 the slope is discontinuous.} Substituting (A7) for $*(A)
and recalling that $*(0) = X, it follows that the critical cornmodity price satisfies
the differential equation

§8*/8T = S*(0)(b + a/VAB) (A9}

in a neighborhood of T = 0, with boundary condition $*(0) = X. The general
solution of (A9) is of the exponential form, with exponent (3T + 2aVT).

Now, drawing the results together, the critical commadity price function is
bounded at 7' = 0 and at T = + and has a slope described by the differential
equation (A9). An appropriate final form for the critical commodity price of an
American call option is therefore

§* = X + [S8*(x) — X][1 — e*], (A10)

where , = —(bT + 20VT){X/[S*(0) — X]}. A parallel analysis can be made in
deriving an approximate analytical critical commaodity price equation for the
American put option.
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