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SECTION 1

INTRODUCTION

This book aims to help teach network science to an inter-
disciplinary audience. Many of the choices I made in pre-
senting the material were guided by the desire to offer an 
enjoyable, yet systematic introduction to the field. I kept in 
mind that those entering the field are just as interested in 
learning about the genesis of the concepts network science 
introduced, as the tools they can use to study real networks 
and interpret the obtained results.

Several over-arching themes are present in this book, 
helping to offer an effective introduction:

(i) Given the empirical roots of network science, there is 
strong emphasis on empirical data. We have therefore 
assembled a set of ‘canonic’ databases, representing net-
works that are frequently analyzed in network science to 
test various network characteristics. Whenever possible, 
we use these datasets to illustrate the tools we introduce.

(ii) Given the potential diversity of the students interested 
in the field that may be familiar with one domain of inqui-
ry but not other, we devote special sections to each data-
set. The goal is to offer some degree of familiarity with the 
range of datasets explored in network science, and through 
this diversity to learn about the issues pertaining to data 
collection and curation.

This book is not a finished product but a work in progress. 
Hence we continue to update it, adding additional chap-
ters as they are finished.

There is a dedicated website to this project (Image 1.1), 

http://barabasilab.com/networksciencebook 

that contains not only the chapters, but also the slides I 
used in my classes to teach the material. Those who are in-
terested in teaching any part of the book are welcome to 
use these slides. The website also offers tools to provide 
feedback on the material, from comments to suggestions 
for improvement.

Image 1.1     http://barabasilab.com/networksciencebook 
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SECTION 2

FROM SADDAM HUSSEIN TO NETWORK THEORY

American forces encountered relatively little military re-
sistance as they took control of Iraq during the invasion 
that started in March 19, 2003. Yet, many of the regime’s 
high ranking officials, including Saddam Hussein, avoid-
ed capture.
Hussein was last spotted kissing a baby in Baghdad some 
time in April 2003, and then his trace went cold. To aid 
awareness of the officials they sought, the coalition forc-
es designed a deck of cards, each card engraved with the 
image of one of the 55 most wanted. It worked. By May 
1st 15 men on the cards were captured and by the end of 
the month another 12 were under custody. Yet, the ace of 
spades (Image 1.2a), i.e. Hussein himself, remained at 
large.

Intelligence officials hoped that some of the high ranking 
officials would surely know Hussein’s whereabouts. Yet, 
it was not to be. This became painfully obvious after the 
capture of Saddam’s trusted personal secretary and the ace 
of diamonds. Newspapers trumpeted his mid-June cap-
ture as the war’s biggest feat, as this could lead to Sadd-
am’s whereabouts. Yet, the dictator parted ways with his 
ally soon after the invasion, sending a clear signal to the 
investigators: relying on the traditional lines of power was 
of little help in trying to find him. Instead, they decided to 
turn to a tool that had little presence in military thinking 
before: network theory [1].

In 2003 network theory was an already burgeoning re-
search field, but the soldiers in the war zone had little ac-
cess to the exploding advances in this area. Instead, they 
arrived to it through a healthy dose of common sense and 
intuition. Col. James Hickey, in charge of a series of raids 
known as Operation Desert Scorpion, wanted to know the 
relationship between everyone killed or captured. The task 
fell to Lt. Col. Steve Russell, who was in direct charge of the 
raids, and Brian Reed, the operations officer under Hick-
ey, who was exposed to social networks during his studies 
at West Point. Reed started to systematically reconstruct 
the social network of Saddam’s inner circle. He did not rely 
on government documents and decrees, but rather gossip 
and family trees. As they meticulously pieced together an 
extensive diagram of who is related to whom in the Tikrit 
region, where Saddam was from, they started to use net-

work diagrams to guide the raids. In one of those raids they 
found over $8 million in US currency, about $1 million in 
Iraqi currency, jewelry worth over $2 million, rifles, and 
ammunition. Yet, the biggest prize was Saddam’s family 
photo album, providing the faces of those that the family 

Image 1.2a
The network 
of Saddam Hussein.

Ace of Spades. One of the 55 cards 

the US military has handed out to the 

coalition forces in Iraq, each listing a 

top official to be captured following 

the country’s 2003 invasion. The card 

shows the ace of spades, with the im-

age of Saddam Hussein, Iraq’s deposed 

president and dictator, the top prize of 

the hunt.

Image 1.2b
The network of Saddam Hussein.

The Social Network. A small region of the social network reconstructed by 

the US forces in the process of searching for Saddam Hussein. The map 

represents the relationship between individuals in Saddam’s inner circle.
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trusted, filling with intimate details of their growing net-
work diagram.

The maps consistently pointed to two individuals, Rud-
man Ibrahim and Mohammed Ibrahim (Image 1.2b). Not 
high in the government hierarchy, they were Saddam’s sec-
ond-level bodyguards, serving as his driver, cook, or me-
chanic. Yet, Rudman had a heart attack and died within 
a few hours of his capture, without having a chance to re-
veal his secrets. Next the investigators turned to their net-
work diagram to identify individuals who could know the 
whereabouts of Mohammad, dubbed the fat man. He was 
not a major player in the regime’s power structure, hence 
while Saddam’s whereabouts were handled with fear, Mo-
hammed’s social ties were not as protected. Sure enough, 
once they found someone to turn Mohammad Ibrahim in, 
he revealed the spider hole that hid the dictator at a farm 
near the Tigris river. The capture of Saddam Hussein illus-
trates many issues that we will encounter as we delve into 
network theory:

non experts to extract crucial information from them, as 
the soldiers did using Saddam’s social network.

we study, and the often heroic difficulties encountered 
during the mapping process.

-
works: the capture of Hussein was not based on fresh in-
telligence, but rather on his pre-invasion social links, un-
earthed from old photos stacked in his family album.

huge difference: it took months for the military to realize 
that the hierarchical network that described the official or-
ganization of the Iraqi government was of no use when it 
came to Saddam Hussein’s whereabouts.

In many ways the network building exercise by the US mil-
itary, deployed to capture Saddam Hussein, was a primi-
tive one driven more by intuition and guesswork than hard 
science. The purpose of this book is to turn these insights 
into a robust theory and methodology, so that we can fully 
and repeatedly unleash their predictive power.

4 | NETWORK SCIENCE



SECTION 3

VULNERABILITY DUE TO INTERCONNECTIVITY

At a first look the two satellite maps of Image 1.3a/b are 
indistinguishable: lights shining brightly in highly pop-
ulated areas, and dark spaces marking vast uninhabited 
forests and oceans. Yet, upon closer inspection something 
strange becomes apparent. The light in several regions, 
Toronto, Detroit, Cleveland, Columbus, Long Island have 
simply disappeared. This is not a doctored shot from the 
next Armageddon movie but represents a real image of the 
US Northeast on August 14, 2003, the night of a blackout 
that left an estimated 45 million people in eight US states 
and another 10 million in Ontario without power. It illus-
trates a much ignored aspect of networks, one that will be 

an important theme in this book: vulnerability due to in-
terconnectivity.

The 2003 blackout is a typical example of a cascading fail-
ure. When a network acts as a transportation system, a lo-
cal failure shifts loads to other nodes. If the extra load is 
negligible, the rest of the system can seamlessly absorb it, 
and the failure remains effectively unnoticed. If the extra 
load is too much for the neighboring nodes to carry, they 
will either tip or redistribute the load to their neighbors. 
Either way, we are faced with a cascading failure, the mag-
nitude of which depends on the network position and ca-
pacity of the nodes that have been removed in the first and 
subsequent rounds. Case in point is electricity: as it cannot 
be stored, when a line goes down, its power must be shift-
ed to other lines. Most of the time, the neighboring lines 
have no difficulty carrying the extra load. If they do, they 
will also tip and redistribute their increased load to their 
neighbors.

Cascading failures can occur in most complex systems. 
They take place on the Internet, when traffic is rerouted to 
bypass malfunctioning routers, occasionally creating deni-
al of service attacks on routers that do not have the capacity 
to handle extra traffic. We witnessed one in 1997, when the 
International Monetary Fund pressured the central banks 
of several Pacific nations to limit their credit. There was 
a cascading failure behind the 2009-2011 financial melt-
down, when the US credit crisis paralyzed the economy 
of the globe, leaving behind scores of failed banks, corpo-
rations, and even bankrupt states. Cascading failures are 
occasionally our ally, however. The world wide effort to dry 
up the money supply of terrorist organizations is aimed at 
crippling terrorist networks, and doctors and researchers 
hope to induce cascading failures to kill cancer cells.
The Northeast blackout illustrates an important theme of 
this book: we must understand how the network structure 
affects the robustness of a complex system. We will there-
fore develop quantitative tools to assess the interplay be-
tween network structure and dynamical processes on net-
works and their impact on failures. Although such failures 
may appear chaotic and unpredictable, we will learn that 
they follow rather reproducible laws that can be quantified 
and even predicted using the tools of network science.

Image 1.3a, 1.3b
2003 North American blackout.

Uper Panel 
Satellite image of August 13, 2003: 9:29pm EDT 20 hours before.

Lower Panel 
Satellite image of August 14, 2003: 9:14pm EDT 5 hours after.
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“I think the next century will be the century of 
complexity.”

Stephen Hawking

We are surrounded by systems that are hopelessly com-
plicated, from the society, whose seamless functioning 
requires cooperation between billions of individuals, to 
communications infrastructures that integrate billions of 
cell phones with computers and satellites. Our ability to 
reason and comprehend the world around us is guaran-
teed by the coherent activity of billions of neurons in our 
brain. Our very existence is rooted in seamless interac-
tions between thousands of genes and metabolites with-
in our cells. These systems are collectively called complex 
systems. Given the important role they play in our life, in 
science and economy, the understanding, mathematical 
description, prediction, and eventually the control of such 
complex systems is one of the major intellectual and scien-
tific challenges of the 21st century.

The emergence of network theory, at the dawn of the 21st 
century is a vivid demonstration that science can live up to 
this challenge. Indeed, behind each complex system, there 
is an intricate network that encodes the interactions between 
the system’s components: 

The network describing the interactions between 
genes, proteins, and metabolites integrates the pro-
cesses behind living cells. 

The wiring diagram capturing the connections be-
tween neural cells holds the key to our understanding 
of brain functions. 

The sum of all professional, friendship, and family 
ties is the fabric of the society. 

The network describing which communication de-
vices interact with each other, capturing internet 
connections or wireless links, is the heart of the mod-

SECTION 4

NETWORKS AT THE HEART OF COMPLEX SYSTEMS

Bo
x 

1.1

com.plex
[adj., v. kuh m-pleks, kom-pleks; n. kom-pleks]

1) composed of many interconnected parts; compound; 

    composite: a complex highway system

 

2) characterized by a very complicated or involved arrangement 

    of parts, units, etc.: complex machinery

3) so complicated or intricate as to be hard to understand 

    or deal with: a complex problem

Source: Dictionary.com

Image 1.4
The subtle networks behind the economy.

A credit card, selected as the 99th object in the popular exhibition by the 

British Museum, entitled The History of the World in 100 Objects. This 

card is a vivid demonstration of the interconnected nature of the modern 

economy, creating subtle linkages that one normally does not even think 

of. The card was issued in the United Arab Emirates in 2009 by the Hong 

Kong and Shanghai Banking Corporation, commonly known HSBC, a Lon-

don based bank. The card functions through protocols provided by VISA, 

an USA based credit association. Yet, the card adheres to Islamic banking 

principles, which operates in accordance with Fiqhal-Muamalat (Islamic 

rules of transactions), most notably eliminating interest or riba. The card 

is not limited to muslims in the United Arab Emirates, but it is also offered 

to Muslim minorities in non-Muslim countries, and is used by many 

non-Muslims who agree with its strict ethical guidelines.

6 | NETWORK SCIENCE



ern communication system. 

The power grid, a network of generators and trans-
mission lines, supplies with energy virtually all mod-
ern technology. 

Trade networks maintain our ability to exchange 
goods and services, being responsible for the material 
prosperity that an increasing fraction of the world has 
enjoyed since WWII (Image 1.4). They also play a key 
role in the spread of  financial and economic crises. 

Networks are at the heart of some of the most revolutionary 
technologies of the 21st century, empowering everything 
from Google to Facebook, CISCO, and Twitter. At the end, 
networks permeate science, technology, and nature to a 
much higher degree than may be evident upon a casual in-
spection. Consequently, it is increasingly clear that we will 
never understand complex systems unless we gain a deep un-
derstanding of the networks behind them.

The scientific explosion that network science experienced 
during the first decade of the 21st century is rooted in the 
discovery that despite the apparent differences, the emer-
gence and evolution of different networks is driven by a 
common set of fundamental laws and reproducible mecha-
nism. Hence despite the amazing diversity in form, size, 
nature, age, and scope characterizing real networks, most 
networks observed in nature, society, and technology are 
driven by common organizing principles. In other words, 
once we disregard the nature of the components and their 
interactions, the obtained networks are more similar than 
different from each other. In the following sections, we 
discuss the forces that have led to the emergence of this 
new research field and its impact on science, technology, 
and society.

NETWORKS AT THE HEART OF COMPLEX SYSTEMS | 7



SECTION 5

TWO FORCES HELPED THE EMERGENCE
OF NETWORK SCIENCE

Why didn’t network science emerge two hundred years 
earlier? The networks it explores are by no means new: 
metabolic networks date back to the origins of life, with a 
history of four billion years, and the Internet is over four 
decades old. Furthermore, many disciplines, from bio-
chemistry to sociology, and brain science, have been deal-
ing with their notion of networks. Graph theory, a prolific 
subfield of mathematics, has focused on networks since 
1735. Why do we dare to call network science the science 
of the 21st century?

Something special happened at the dawn of the 21st cen-
tury that transcended individual research fields and cat-
alyzed the emergence of a new discipline (Image 1.5). To 
understand why this happened only now, and not two 
hundred years earlier, we need to discuss the forces that 
have contributed to the emergence of network science.

The emergence of network maps: To describe the be-
havior of a system consisting of hundreds to billions of in-
teracting components, we first need a map of the system’s 
wiring diagram. In a social system, this would require 
knowing the list of your friends, your friends’ friends, and 
so on. In the WWW, this map tells us which webpages 
link to each other. In the cell, this corresponds to a detailed 
list of binding interactions and reactions that the genes, 
proteins, and metabolites participate in. In the past, we ei-
ther lacked the tools to map these networks out, or it was 
difficult to keep track of the huge amount of data behind 
these maps. The emergence of the Internet, offering effec-
tive and fast data sharing methods, together with cheap 
digital storage, fundamentally changed this, allows us to 
collect, assemble, share, and analyze data pertaining to 
real networks.
While many of the canonical maps studied today in net-
work science were not collected with the purpose of study-
ing networks (Box 2), we witnessed an explosion of map 
making at the end of the 1990s. These offered detailed 
maps of the networks behind numerous complex system, 
from cell to the economy. Examples include the CAIDA or 
DIMES project aimed at obtaining an accurate map of the 
Internet [8]; the hundreds of millions of dollars spent by 
biologists to systematically map out protein-protein inter-
actions in human cells [6], or the Connectome project of 

the US National Institute of Health that aims to trace the 
neural connection in mammalian brains [7].

The universality of network characteristics: It is easy 
to list the differences between the various networks we 
encounter in nature or society: the nodes of the metabol-
ic network are tiny molecules and the links are chemical 
reactions governed by quantum mechanics; the nodes of 
the WWW are web documents and the links are URLs 
maintained by computer algorithms; the nodes of the so-
cial network are individuals, the links representing fam-
ily, professionals, friendship, and acquaintance ties. The 
processes that shape these networks also differ greatly: 
metabolic networks are shaped by billions of years of evo-

Image 1.5
The emergence of network science.

While the study of networks has a long history from graph theory to 

sociology, the modern chapter of network science emerged only during the 

first decade of the 21st century, following the publication of two seminal 

papers in 1998 [2] and 1999 [3]. The explosive interest in network science 

is well documented by the citation pattern of two classic network papers, 

the 1959 paper by Paul ErdĘs and Alfréd Rényi that marks the beginning 

of the study of random networks in graph theory [4] and the 1973 paper 

by Mark Granovetter, the most cited social network paper [5]. Both papers 

were hardly or only moderately cited before 2000. The  explosive growth 

of citations to these papers in the 21st century documents the emergence 

of network science, drawing a new, interdisciplinary audience to these 

classic publications.
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1.
2

The origins of network maps

Many of the maps studied today by network scientists were not 
generated with the purpose of studying networks: 

The list of chemical reactions that take place in a cell were 
discovered over a 150 year period by biochemists and biolo-
gists. In the 1990s they were collected in central databases, 
offering the first chance to assemble the networks behind 
a cell. 

The list of actors that play in each movie were traditionally 
scattered in books and encyclopedias. With the advent of the 
Internet, these disparate data were assembled into a cen-
tral database by imdb.com, mainly to feed the curiosity of 
movie aficionados. The database offered the first chance for 
network scientists to explore the structure of the affiliation 
network behind Hollywood. 

The detailed list of authors of millions of research papers 
were traditionally scattered in the table of content of thou-
sands of journals, but recently the Web of Science, Google 
Scholar, and other sites assembled them into comprehensive 
databases, easing the search for scientific information. 

In the hands of network scientists these databases turned into the 
first science collaboration maps. Hence, much of the early history of 
network science relied on the investigators’ ingenuity to recognize 
and extract the networks from existing datasets. Network science 
changed that: today well-funded research collaborations focus on 
map making from biology to the Internet.

lution; WWW is collectively built by the actions of mil-
lions of individuals; social networks are shaped by social 
norms whose roots go back thousands of years. Given this 
diversity in size, nature, scope, history, and evolution, one 
would not be surprised if the networks behind these sys-
tems would differ greatly. Yet, a key discovery of network 
science is that the architecture and the evolution of net-
works emerging in various domains of science, nature, and 
technology are rather similar to each other, allowing us to 
use a common set of mathematical tools to explore these 
systems. This universality is one of the guiding principle of 
this book: we will not only seek to uncover specific network 
properties, but we will aim to understand its origins, en-
coding the laws that shape network evolution, as well as its 
consequences in understanding network behavior.

TWO FORCES HELPED THE EMERGENCE OF NETWORK SCIENCE | 9



SECTION 6

THE CHARACTERISTICS OF NETWORK SCIENCE

Network science is distinguished, not only by its sub-
ject matter, but also by its methodology. In the following 
we briefly discuss the key characteristics of the approach 
network science adopted to understand complex systems, 
helping us better understand the domain we are about to 
embark on.

Interdisciplinary nature: Network science offers a lan-
guage through which different disciplines can seamlessly 
interact with each other. Indeed, cell biologists and com-
puter scientists alike are faced with the task of character-
izing the wiring diagram behind their system, extracting 
information from incomplete and noisy datasets, and the 
need to understand their systems’ robustness to failures or 
deliberate attacks. To be sure, each discipline brings along 
a different set of technical details and challenges, which 
are important on their own. Yet, the common character of 
the many issues various fields struggle with have led to a 
cross-disciplinary fertilization of tools and ideas. For ex-
ample, the concept of betweenness centrality that emerged 
in the social network literature in the 1970s, today plays a 
key role in identifying high traffic nodes on the Internet; 
algorithms developed by computer scientists for graph 
partitioning have found novel applications in cell biology.

Empirical, data driven nature: The tools of network 
science have their roots in graph theory, a fertile field of 
mathematics.  What distinguishes network science from 
graph theory is its empirical nature, i.e. its focus on data 
and utility. As we will see in the coming chapters, we will 
never be satisfied with developing the abstract mathemat-
ical tools to describe a certain network property. Each tool 
we develop will be tested on real data and its value will be 
judged by the insights it offers about a system’s structure 
or evolution.

Quantitative and mathematical nature: To contribute 
to the development of network science, it is essential to 
master the mathematical tools behind it. The tools of net-
work science borrowed the formalism to deal with graphs 
from graph theory and the conceptual framework to deal 
with randomness and seek universal organizing principles 
from statistical physics. Lately, the field is benefiting from 
concepts borrowed from engineering, control and infor-

mation theory, statistics and data mining, helping us ex-
tract information from incomplete and noisy datasets.

Computational nature: Finally, given the size of many 
of the networks we explore, and the exceptional amount of 
data behind them, network science offers a series of for-
midable computational challenges. Hence, the field has a 
strong computational character, actively borrowing from 
algorithms, database management and data mining. A se-
ries of software tools help practitioners with diverse com-
putational skills analyze networks.

10 | NETWORK SCIENCE



SECTION 7

THE IMPACT OF NETWORK SCIENCE

The impact of a new research field is measured both by its 
intellectual achievements as well as by the reach and the 
potential of its applications. While network science is a 
young field, its impact is everywhere around us, as we dis-
cuss below.

Economic Impact: From web search to social net-
working.

Some of the most successful companies of the 21st century, 
from Google to Facebook, from Cisco to Apple and Akamai, 
base their technology and business model on networks. 
Indeed, Google is not only the biggest network mapping 
operation, building a comprehensive map of the WWW, 
but its search technology relies on the network characteris-
tics of the Web. Networks have gained particular popular-

Image 1.6
The rise of social networking.

The popularity of the best known social networks, in terms of the number of users they attracted by the end of 2011 (vertical axis) shown as a function 

of their founding year (horizontal axis).

ity with the emergence of Facebook, the company with the 
oft-emphasized ambition to map out the social network of 
the whole planet. While Facebook was not the first social 
networking site, it is likely also not the last: an extensive 
ecosystem of social networking tools, from Twitter to Or-
kut, are attracting an impressive number of users (Image 
1.6). The tools developed by network science fuel these 
sites, aiding everything from friend recommendation to 
advertising.

Health: From drug design to metabolic engineering.

The human genome project, completed in 2001, offered 
the first comprehensive list of all human genes [9, 10]. Yet, 
to fully understand how our cells function, and the origin 
of disease, we need accurate maps that tell us how these 

THE CHARACTERISTICS OF NETWORK SCIENCE | 11



genes and other cellular components interact with each 
other. Most cellular processes, from the processing of food 
by our cells to sensing changes in the environment, rely on 
molecular networks. The breakdown of these networks is 
responsible for most human diseases. This has led to the 
emergence of network biology, a new subfield of biology 
that aims to understand the behavior of cellular networks. 
A parallel movement within medicine, called network 
medicine, aims to uncover the role of networks in human 
disease (Image 1.7a/b). Networks are particularly import-
ant in drug development. The ultimate goal of network 
pharmacology is to develop drugs that can cure diseases 
without significant side effects. This goal is pursued at 
many levels, from millions of dollars invested to map out 
cellular networks to the development of tools and databas-
es to store, curate, and analyze patient and genetic data. 
Several new companies take advantage of these opportuni-
ties, from GeneGo that aims to collect accurate maps of cel-
lular interactions from scientific literature to Genomatica 
that uses the predictive power behind metabolic networks 
to identify drug targets in bacteria and humans. Recently 
most major pharmaceutical companies have made signifi-

Image 1.7a, 1.7b
Networks in biology and medicine.

a) The cover of two issues of Nature Reviews Genetics, the top review 

journal in genetics. The cover from 2004, focuses on network biology [11], 

the cover from 2011 discuses network medicine [12].

b) The prominent role networks play in both cell biology and medical 

research is illustrated by the fact that the 2004 article on network biology 

is the second most cited article in the history of Nature Reviews Genetics. 

Image 1.8
The network behind a military engagement.

This diagram was designed during the Afghan war  to portray the American strategy in Afghanistan. While it has been occasionally ridiculed in the press, 

it portrays well the complexities and the interconnected nature of a military’s engagement.  (Image from New York Times)
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a special role in the history of epidemics: it was the first 
pandemic whose course and time evolution was accurate-
ly predicted months before the pandemic reached its peak 
(Image 1.9) [14]. This was possible thanks to fundamen-
tal advances in understanding the role of networks in the 
spread of viruses. Indeed, before 2000 epidemic model-
ing was dominated by compartment models, assuming 
that everyone can infect everyone else one word the same 
socio-physical compartment. The emergence of a net-
work-based framework has fundamentally changed this, 
offering a new level of predictability in epidemic phenom-
ena.

Today epidemic prediction is one of the most active appli-
cations of network science [15, 16]. It is the source several 
fundamental results, covered in this book, that are used to 
predict the spread of both biological and electronic virus-
es. The impact of these advances are felt beyond biological 
viruses. In January 2010 network science tools have pre-
dicted the conditions necessary for the emergence of virus-
es spreading through mobile phones [17]. The first major 
mobile epidemic outbreak that started in the fall of 2010 
in China, infecting over 300,000 phones each day, closely 
followed the predicted scenario.

Brain Research: Mapping neural network.

The human brain, consisting of hundreds of billions of 
interlinked neurons, is one of the least understood net-
works from the perspective of network science. The reason 
is simple: we lack maps telling us which neurons link to 
each other. The only fully mapped neural map available for 
research is that of the C.Elegans worm, with only 300 neu-
rons. Should detailed maps of mammalian brains become 
available, brain research could become the most prolific 
application area of network science. Driven by the poten-
tial impact of such maps, in 2010 the National Institutes 
of Health has initiated the Connectome project, aimed at 
developing the technologies that could provide an accurate 
neuron-level map of mammalian brains.

Management: Uncovering the internal structure 
                                of an organization.

While traditionally management uses the official chain of 
command to understand the inner structure of an organi-
zation, it is increasingly evident that the informal network, 
capturing who really communicates with whom, matters 
even more for the success of a company. Accurate maps of 
this network can expose lack of communication between 
key units, can identify individuals who play an outsize role 
in bringing different departments and products together, 

Image 1.9
Predicting the H1N1 epidemic.

The  predicted spread of the H1N1 epidemics during 2009, representing 

the first successful prediction of a pandemic. The project, relying on the 

details of the worldwide transportation networks, foresee that H1N1 will 

peak out in October 2009, in contrast with the normal January-February 

peaks of influenza. This meant that the vaccines planned for November 

2009 were too late, which was indeed the case. The success of this project 

shows the power of network science in facilitating advances in areas 

affected by networks.

Movie by D.Balcom, B.Gonçalves, H.Hu, and A.Vespignani.

cant investments in network and systems medicine, seeing 
it as the path towards future drugs.

Security: Fighting Terrorism.

Terrorism is one of the maladies of the 21st century, ab-
sorbing significant resources to combat it worldwide. 
Network thinking is increasingly present in the arsenal of 
various law enforcement agencies in charge of limiting ter-
rorist activities. It is used to disrupt the financial network 
of terrorist organizations, to map terrorist networks, and 
to uncover the role of their members and their capabilities. 
While much of the work in this area is classified, several 
success stories have surfaced. Examples include the use of 
social networks to capture Saddam Hussein or the capture 
of the individuals behind the March 11, 2004 Madrid train 
bombings through the examination of the mobile call net-
work. Network concepts have impacted military doctrine 
as well, leading to the concept of net-war, aimed at fighting 
low intensity conflicts and crime waged by terrorist and 
criminal networks that employ decentralized flexible net-
work structures [13]. One of the first network science pro-
grams at the college level was started at West Point, the US 
Army’s military academy. In 2009 the Army Research Lab 
and the Department of Defense devoted over $300 million 
to support network science centers across the US.

Epidemics: From forecasting 
                         to halting deadly viruses.

While the H1N1 pandemic was not as devastating as it was 
feared at the beginning of the outbreak in 2009, it gained 
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and help higher management diagnose diverse organiza-
tional issues.  Furthermore, there is increasing evidence in 
the management literature that the position of an employ-
ee within this network correlates with his/her productivity 
[18].

Therefore, several dozen consulting companies have 
emerged with expertise to map out the true structure of 
an organization. Established consulting firms, from IBM 
to SAP, have added social networking capabilities to their 
consulting business. These companies offer a host of ser-

vices, from identifying opinion leaders to preventing em-
ployee churn and from identifying optimal groups for a 
task to modeling product diffusion (Image 1.10a/b/c/d). 
Hence lately network science tools are increasingly indis-
pensable in management and business, enhancing pro-
ductivity and boosting innovation within an organization.

Network science can therefore offer a microscope for high-
er management, helping them improve the company’s ef-
fectiveness by uncovering the true network behind any or-
ganization.

Image 1.10a
Understanding the inner workings of an organization.

The workforce of a Hungarian company with three main locations, one on Budapest, whose employees are shown in purple, and two manufacturing 

sites outside of the city, shown in yellow and blue. The company had a major internal communication problem: information that reached the workers 

about the intentions of the higher management often had nothing do to with the management’s real plans. Seeking to understand the source of this 

discrepancy, and looking for ways to embrace information flow within the company, the management turned to Maven 7, a social networking consulting 

company that applies network science in diverse organizational setting.
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Image 1.10b
Understanding the inner workings of an organization.

Having the list of the workers and their role in the company, together with the official hierarchy is not sufficient to understand how an organization 

works. For that we need to know who listens to whom, who is asking for advice from whom, eventually uncovering the paths through which knowledge 

and information travels within the organization. Hence Maven 7 developed an online platform to ask each employee whom do they turn to for advice 

when it comes to decisions impacting the company, from restructuring to advancement. This allowed them to build the map shown above, where two 

individuals are connected if one nominated the other as his/her source of information on organizational and professional issues.

The map identifies several highly influential individuals that are the hubs of the organization. The problem was that none of the hubs were part of the 

leadership.

Image 1.10c
Understanding the inner workings of an organization.

The position of the leadership within the company’s informal network is illustrated on this map, where we colored the nodes based on their company 

rank within the company. None of the company directors, including the CEO, shown in red, are hubs. Nor are the top managers, shown in blue. The hubs 

are managers, group leaders and associates, or workers. The biggest hub, hence the most influential individual, is an associate, shown as a gray node in 

the center.
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Image 1.10d
Understanding the inner workings of an organization.

The image indicates that a significant fraction of employees are one to two links from the biggest hub. It turns out that he is the safety and environmen-

tal expert in the company, whose job is to visit each location and talk with most employees. There is only one part of the company he has no links to: the 

directors or the top management. With little access to the management and their intentions, he passes on information that he collects along his trail, 

effectively running a gossip center. 

How does one remedy this situation? Fire the biggest hub? He is not the problem and firing him would probably make the problem even more acute. 

The real issue is that higher management failed to put in place proper channels of communication, leaving behind a structural hole, which was natural-

ly filled by the environmental and safety manager. Offering him and the few other hubs access to the true information can fundamentally change the 

reliability of information within the company. Network science can therefore offer a potent microscope for higher management, helping them improve 

the company’s effectiveness by uncovering the true network behind an organization.
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SECTION 8

SCIENTIFIC IMPACT

Image 1.11
Complexity and network science.

The impact of network science can be put into perspective by looking at 

the citation patterns of the most cited papers in complexity. The study of 

complex systems in the 70s and 80s was dominated by Edward Lorenz’s 

1963 classic work on chaos [19], Kenneth G. Wilson’s renormalization 

group [20], and Mitchell Feigenbaum’s discovery of the bifurcation dia-

gram [21]. In the 1980s the community has shifted its focus on pattern 

formation, following Benoit Mandelbrot’s book on fractals [22] and 

Thomas Witten and Len Sander’s introduction of the diffusion limited 

aggregation mode [23]. Equally influential was John Hopfield’s paper on 

neural networks [24] and Per Bak, Chao Tang and Kurt Wiesenfeld’s paper 

on self-organized criticality [25]. These papers are continuing to define 

our understanding of complex systems, each of them writing a separate 

chapter in modern statistical mechanics. The video compare their citation 

pattern with the citations of the two most cited papers in this area [2,3].

Nowhere is the impact of network thinking more evident 
than in the scientific community. The most prominent sci-
entific journals, from Nature and Science to Cell and PNAS, 
have devoted special issues, reviews, or editorials address-
ing the impact of networks on various topics from biology 
to social sciences. During the past decade, each year several 
dozen international conferences, workshops, summer and 
winter schools have focused exclusively on network sci-
ence. A successful network science meeting series, called 
NetSci, attracts the field’s practitioners since 2005. Several 
general-interest books, making the bestseller lists in many 
countries, have brought network science to the public. 
Most major universities offer network science courses, at-
tracting a diverse student body. Finally, Science Magazine 

Several other metrics indicate that network science is im-
pacting in a defining manner particular disciplines. For 
example, several research fields witnessed network papers 
become some of the most cited papers in their leading 
journals:

The 1998 paper by Watts and Strogatz in Nature on 
small world phenomena [2] and the 1999 paper by 

has devoted a special issue to networks, marking the ten-
year anniversary of the paper that reported the discovery of 
scale-free networks [3] (Image 1.12).

The relative impact of network science can be put into per-
spective by looking at the citation patterns of the most cited 
papers in the area of complex systems (Image 1.11). Each 
of these papers are citation classics, cumulatively amassing 
anywhere between 2,000 and 5,000 citations, continuing 
to gather anywhere between 50 to 300 citations a year. To 
see how the interest in network science compares to these 
classic discoveries, in Movie 3 we also show the citation 
patterns of the two most cited network science papers: the 
1998 paper on small-world phenomena by Duncan Watts 
and Steve Strogatz [2] and the 1999 Science paper report-
ing the discovery of scale-free networks by Albert-László 
Barabási and Réka Albert [3]. As one can see, the growth in 
citations to these papers unparalleled in the area of com-
plex systems.

Image 1.12
Complex systems and networks.

Special issue of Science magazine 

on Complex Systems and Networks, 

published on July 24, 2009, marking the 

10th anniversary of the 1999 discovery of 

scale-free networks [3].
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a paper on quantum computing.

The paper by Michelle Girvan and Mark Newman 
on community discovery in networks [30] is the most 
cited paper published in 2002 by Proceedings of the 
National Academy of Sciences.

The 2004 review entitled Network Biology, by Barabá-
si and Oltvai [11], is the second most cited paper in 
the history of Nature Reviews Genetics, the top review 
journal in genetics.

Given this extraordinary response by the scientific com-
munity, network science was examined by the Nation-
al Research Council (NRC), the arm of the US National 
Academies in charge of offering policy recommendation 
to the US government. NRC has assembled two panels, 
resulting in two publications [31], defining the field of 
network science (Image 1.13). They not only document the 
emergence of a new research field, but highlight the field’s 
vital importance to national competitiveness and security. 
Following these reports, the National Science Foundation 
(NSF) in the US established a network science directorate 
and a series of network science centers were established by 
the Army Research Labs.

General Audience

The results of network science have excited the public as 
well. This was fueled partly by the success of several gener-
al audience books, like Linked: The New Science of Networks 
by Albert-László Barabási, Nexus by Mark Buchanan, and 
Six Degrees by Duncan Watts, each being translated in 
many of languages. Newer books, like Connected by Nich-
olas Christakis and James Fowler, were also exceptionally 
successful (Image 1.15). An award-winning documenta-
ry, Connected, by Australian filmmaker Annamaria Talas, 
has brought the field to our TV screen, being broadcasted 
all over the world and winning several prestigious prizes 
(Image 1.14). Networks have inspired artists as well, lead-
ing to a wide range of network science research inspired 
art-project, and even an annual symposium series that 

Barabási and Albert in Science on scale-free net-
works [3] were identified by ISI as the top ten most 
cited papers in physics during the decade after their 
publications. Furthermore, currently (2011) the 
Watts-Strogatz paper is the second most cited of all 
papers published by Nature in 1998, and the Barabá-
si-Albert paper is the most cited paper among all pa-
pers published in Science in 1999.

Four years after its publication, the SIAM review of 
Mark Newman on network science became the most 
cited paper of any journal published by the Society of 
Industrial Mathematics [26].

Reviews of Modern Physics, published continuous-
ly since 1929, is the physics journal with the highest 
impact factor. Currently the most cited paper of the 
journal is Chandrasekhar classic 1944 review that 
summarized the author’s work that led to his Nobel 
in physics, entitled Stochastic Problems in Physics and 
Astronomy [27]. During over 60 years since its publi-
cation, the paper gathered over 5,000 citations. Yet, it 
will soon be taken over by a paper published only in 
2001 entitled Statistical Mechanics of Complex Net-
works, the first review of network science [28].

The paper leading to the discovery that in scale-free 
networks the epidemic threshold is zero, by Pas-
tor-Satorras and Vespignani [29], is the most cited 
paper among the papers published in 2001 by Physi-
cal Review Letters, a position the paper is sharing with 

Image 1.13
National Research Council Reports.

The two National Research Council Reports on network science have 

not only documented the emergence of a new discipline, but have also 

explained their long-term impact on a number of research fields, as well 

as national competitiveness and the military. They have urged dedicated 

support for the field, leading to the establishment of a series of network 

science centers in US and the network science program within NSF.

Image 1.14
Connected.

The trailer of the 

award winner docu-

ment Connected, di-

rected by Annamaria 

Talas, focusing on 

network science.
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brings together, on a yearly basis, artists and scientists [32]. 
Fueled by successful movies like The Social Network, and a 
series of novels and short stories, from science fiction to 
novels exploiting the network paradigm, today networks 
have permeated popular culture.

Image 1.15
Wide impact.

Four widely read books are bringing network science to the public.
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SECTION 9

SUMMARY

While the emergence of the scientific interest in networks 
was rather sudden, the enthusiasm for the field was re-
sponding to the emergence of a wider social awareness 
of the importance of networks. This is illustrated in Im-
age 1.16, where we show the usage frequency of the words 
that represent two important scientific revolutions of the 
past two centuries: evolution, capturing the most common 
term to refer to Darwin’s theory of evolution, and quantum, 
the most frequently used term when one refers to quan-
tum mechanics.  The use of evolution increases only after 
the 1859 publication of Darwin’s On the Origins of Species. 
The word quantum, first used in 1902, is virtually absent 
until the 1920s, when quantum mechanics gains promi-
nence. The use of the word network has increased dramat-
ically following the 1980s. While the word has many uses 
(as do evolution and quantum), its dramatic rise captures 
the extraordinary awareness of networks in the society at 
large. Indeed, evolution and quantum mechanics are just 
as important as core scientific fields, as they are as en-
abling platforms: the current revolution in genetics is built 
on evolutionary theory, and quantum mechanics offers a 
platform for a wide range of advances in contemporary 
science, from chemistry to wireless communications. In 
a similar fashion, network science is an enabling science, 
offering new tools and perspective for a wide range of sci-
entific fields from social networking to drug design. Given 
the wide importance and impact of networks, we need to 
develop the tools to study and quantify them. The rest of 
this book is devoted to this worthy subject.

Image 1.16
The rise of networks.

The frequency of the use of the words evolution and quantum represents 

the major scientific advances of the 19th and 20th century, namely Dar-

win’s theory of evolution and quantum mechanics. The plot indicates the 

exploding awareness of networks in the last decades of the 20th century, 

preparing a fertile ground for the emergence of network science. The plots 

were generated by using the ngram platform of Google: http://books.

google.com/ngrams.
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SECTION 1

THE BRIDGES OF KÖNIGSBERG

Few research fields can trace their birth to a single moment 
and place in history. Graph theory, the mathematical scaf-
fold behind network science, can. Its roots go back to 1736 
to Königsberg, the capital of Eastern Prussia and a thriving 
merchant city of its time. The trade supported by its busy 
fleet of ships allowed city officials to build seven bridges 
across the river Pregel that surrounded the town. Five of 
these connected the elegant island Kneiphof, caught be-
tween the two branches of the Pregel, to the mainland; two 
crossed the two branches of the river (Image 2.1). This pe-
culiar arrangement gave birth to a contemporary puzzle: 
Can one walk across all seven bridges and never cross the 
same one twice? Despite many attempts, no one could find 
such path. The problem remained unsolved until 1735, 
when Leonard Euler, a Swiss born mathematician, offered 
a rigorous mathematical proof that such path does not ex-
ist.

Image 2.1
The bridges of Königsberg.

From the contemporary map of Königsberg (now Kaliningrad, Russia) to Euler’s graph. The graph constructed by Euler consists of four nodes (A, B, C, 
D), each corresponding to a patch of land, and seven links, each corresponding to a bridge. Euler showed in 1736 that there is no continuous path that 
would cross seven the bridges while never crossing the same bridge twice. The people of Königsberg agreed with him, gave up their fruitless search and 
in 1875 they built a new bridge between B and C, increasing the number of links of these two nodes to four. Now only one node was left with an odd 
number of links and it became rather straightforward to find the desired path.

Euler represented each of the four land areas separated by 
the river with letters A, B, C, and D. (Image 2.1). Next he 
connected with lines each piece of land that had a bridge 
between them. He thus built a graph, whose nodes were 
pieces of land and links were the bridges. Then Euler made 
a simple observation: if there is a path crossing all bridg-
es, but never the same bridge twice, then nodes with odd 
number of links must be either the starting or the end point 
of this path. Indeed, if you arrive to a node with an odd 
number of links you may eventually have no unused link 
for you to leave it. A continuous path that goes through all 
bridges can have only one starting and one end point. Thus 
such a path cannot exist on a graph that has more than two 
nodes with an odd number of links. The Königsberg graph 
had three nodes with an odd number of links, B, C, and D, 
so no path could satisfy the problem.

Euler’s proof was the first time someone solved a mathe-
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matical problem by turning it into a graph. For us the proof 
has two important messages: the first is that some prob-
lems become simpler and more treatable if they are rep-
resented as a graph. The second is that the existence of the 
path does not depend on our ingenuity to find it. Rather, 
it is a property of the graph. Indeed, given the structure of 
the Königsberg graph, no matter how smart we are, we will 
never find the desired path. In other words, networks have 

properties hidden in their structure that limit or enhance 
their behavior. To fully understand how networks affect the 
properties of a system, we need to become familiar with 
graph theory, a branch of mathematics that grew out of Eu-
ler’s proof, offering a formalism that will be used through-
out this book.
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SECTION 2

NETWORKS AND GRAPHS

If we want to understand a complex system, we first need 
a map of its wiring diagram. A network is a catalog of a 
system’s components often called nodes or vertices and 
the direct interactions between them, called links or edg-
es (Box 2.1).
The network representation offers a common language to 
study systems that may differ greatly in nature, appearance, 
or scope. Indeed as shown in Image 2.3, three rather differ-
ent systems have exactly the same network representation.

Box 2.1

Networks or graphs?

In the scientific literature the terms network and graph are used 
interchangeably. Yet, there is a subtle distinction between the two 
terminologies: the network, node, and link combination often re-
fers to real systems: the WWW is a network of web pages con-
nected by URLs; society is a network of individuals connected by 
family, friendship or professional ties; the metabolic network is the 
sum of all chemical reactions that take place in a cell. In contrast, 
we use the terms graph, vertex, and edge when we talk about the 
mathematical representation of these networks: we talk about the 
web graph, the social graph (a term made popular by Facebook), or 
the metabolic graph. Yet, this distinction is rarely made, so these 
two terminologies are often used as synonyms of each other.

        Network Science Graph Theory
        network graph
             node vertex
               link edge

Image 2.3 also introduces two basic network parameters:
 
 Number of nodes, which we denote with N, represent-
ing the number of components in the system. We will of-
ten call N the size of the network.

 Number of links, which we denote with L, representing 
the total number of interactions between the nodes.

The networks shown in Image 2.1 all have N = 4 and L = 4. 
To distinguish the nodes, we label them i = 1, 2, ..., N. The 
links are rarely labeled, as they can be identified through 
the nodes they connect. For example, the (2, 4) link con-
nects nodes 2 and 4.

Image 2.3
Real systems of quite different nature can have the same 
network representation.

In the figure we show a small subset of (a) the Internet, where routers 
(specialized computers) are connected to each other; (b) the Hollywood 
actor network, where two actors are connected if they played in the same 
movie; (c) a protein-protein interaction network, where two proteins are 
connected if there is experimental evidence that they can bind to each 
other in the cell. While the nature of the nodes and the links differs wide-
ly, each network has the same graph representation, consisting of N = 4 
nodes and L = 4 links, shown in (d).

The links of a network can be directed or undirected. Some 
systems have directed links, like the WWW, whose uni-
form resource locators (URL) point from one web docu-
ment to the other, or phone calls, where one person calls 
the other. Other systems display undirected links, like ro-
mantic ties: if I date Janet, Janet also dates me, or trans-
mission lines on the power grid, on which the electric cur-
rent can flow in both directions.

A network is called directed (or digraph) if all of its links 
are directed or undirected if all of its links are undirected. 
Some networks simultaneously have directed and undi-
rected links. For example in the metabolic network some 
reactions are reversible (i.e. bidirectional or undirected) 
and others are irreversible, taking place in only one direc-
tion (directed).
Throughout this book we will use ten networks to illustrate 
the tools of network science. These networks, listed in Ta-
ble 2.1, were selected having diversity in mind, spanning 
social systems (mobile call graph or email network), col-
laboration and affiliation networks (science collaboration 
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NETWORK NAME NODES LINKS
DIRECTED/

UNDIRECTED
N L ‹K›

Internet routers Internet Connections Undirected 192,244 609,066 2.67

WWW webpages links Directed 325,729 1,497,134 4.60

Power Grid power plants, transformers cables Undirected 4,941 6,594 2.67

Mobile-Phone Calls subscribers calls Directed 36,595 91,826 2.51

Email email addresses emails Directed 57,194 103,731 1.81

Science Collaboration scientists co-authorships Undirected 23,133 186,936 16.16

Actor Network actors co-acting Undirected 212,250 3,054,278 28.78

Citation Network papers citations Directed 449,673 4,707,958 10.47

E. coli Metabolism metabolites chemical reactions Directed 1,039 5,802 5.84

Yeast Protein Interactions proteins binding interactions Undirected 2,018 2,930 2.90

network, Hollywood actor network), information systems 
(WWW), technological and infrastructural systems (In-
ternet and power grid), biological systems (protein inter-
action and metabolic network), and reference networks 
(citations). They differ widely in their sizes, from as few 
as N =1,039 nodes and L = 5,802 links in the E. coli me-
tabolism, to almost half million nodes and five million 
links in the citation network. They cover several of the ar-

eas where networks are actively applied, representing ‘ca-
nonical’ datasets, often used by researchers in the field of 
network science to illustrate key network properties. In the 
coming chapters we will discuss in detail the nature and 
the characteristics of each of these datasets, turning them 
into the guinea pigs of our journey to understand complex 
networks.

Table 2.1
Network maps and their basic properties.

The basic characteristics of the networks that we use throughout this book to illustrate the use of network science. This table lists the nature of their 
nodes and links, indicating if links are directed or undirected, the number of nodes (N) and links (L), and the network’s average degree. For directed net-
works the average degree equals the average in- and out-degrees as ‹k› = <kin>=<kout>.

Box 2.2

Choosing the proper network representation.

The choices we make when we represent a complex system as a network will determine our ability to use network science successfully. For ex-
ample, the way we define the links between two individuals dictates the nature of the questions we can explore:

 By  connecting individuals that regularly interact with each other in the context of their work, we obtain the professional network, that 
plays a key role in the success of a company or an institution, and it is of major interest to organizational research.

 By linking friends to each other, we obtain the friendship network, that plays an important role in the spread of ideas, products and habits 
and is of major interest to sociology, marketing and health sciences.

 By  connecting individuals that have an intimate relationship, we obtain the sexual network, of key importance for the spread of sexually 
transmitted diseases, like AIDS, and of major interest for epidemiology.

 By  using phone and email records to connect individuals that call or email each other, we obtain the acquaintance network, capturing a 
mixture of professional, friendship or intimate links, of importance to communications and marketing.

While  many links in these four networks overlap (some coworkers may be friends or may have an intimate relationship), these networks are not 
identical. Other networks may be valid from a graph theoretic perspective, but may have little practical utility. For example, by linking all indi-
viduals with the same first name, Johns with Johns and Marys with Marys, we do obtain a well-defined network, yet its utility is questionable. 
Hence in order to apply network theory to a system, careful considerations must precede our choice of nodes and links, ensuring their significance 
to the problem we wish to explore.
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SECTION 3

DEGREE, AVERAGE DEGREE, AND DEGREE DISTRIBUTION

A key property of each node is its degree, representing the 
number of links it has to other nodes. The degree can rep-
resent the number of mobile phone contacts an individual 
has in the call graph (i.e. the number of different individ-
uals the person has talked to), or the number of citations a 
research paper gets in the citation network.
We denote with ki the degree of the ith node in the network. 
For example, for the undirected networks shown in Image 
2.3 we have k1=2, k2=3, k3=2, k4=1.
In an undirected network total number of links, L, can be 
expressed as the sum of the node degrees: 
        
      (1)

Here the 1/2 factor corrects for the fact that in the sum (1) 
each link is counted twice. For example, the link connect-
ing the nodes 2 and 4 in Image 2.3 will be counted once in 
the degree of node 1 (k2 = 3) and once in the degree of node 
4 (k4 = 1).

Brief statistics review.

The  average, the standard deviation, and the distribution of random vari-
ables will play a key role throughout this book. 
For a sample of N values x1, ... , xN  we have:

Average (mean value):

       (2)

nth moment:

       (3)

Standard deviation (fluctuations around the average):

       (4)

Distribution of x (probability that a randomly chosen value is a):

       (5)

which yields

       (6)

An important property of a network is its average degree, 
which for an undirected network is
        
      (7)

In directed networks we distinguish between incoming de-
gree, ki

in, representing the number of links that point node 
i, and outgoing degree, ki

out , representing the number of 
links that point from the node i to other nodes and the total 
degree, ki , given by
        
      (8)

For example, on the WWW the number of pages a giv-
en document points to represents its outgoing degree, kout, 
and the number of other documents that point to it rep-
resents its incoming degree, kin.

The total number of links in a directed network is
        
      (9)

The 1/2 factor in Eq. (1), is absent above, as for directed 
networks the two sums in (9) separately count the outgo-
ing and the incoming degrees. 

The average degree of a directed network is   
 
                  . (10)

The degree distribution, pk, provides the probability that a 
randomly selected node in the network has degree k. Since 
pk

 is a probability, it must be normalized, i.e.                 . For 

a fixed network of N nodes the degree distribution is the 
normalized histogram (see Gallery 2.1),

              ,

where Nk is the number of degree k nodes. Hence the 
number of degree k nodes can be obtained from the degree 
distribution as Nk = Npk. 
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The degree distribution has taken a central role in net-
work theory following the discovery of scale-free networks 
(Barabási & Albert, 1999). Another reason for its impor-
tance is that the calculation of most network properties re-
quires us to know pk. For example, the average degree of a 
network can be written as

      

We will see in the coming chapters that the precise func-
tional form of pk determines many network phenomena, 
from network robustness to the spread of viruses.

∑=
=

∞

k kpk
k 0

Image 2.4a
Degree distribution.

The  degree distribution is defined as the pk = Nk /N ratio, where Nk denotes 
the number of k-degree nodes in a network. For the network in (a) we 
have N = 4 and p1 = 1/4 (one of the four nodes has degree k1 = 1), p2 = 
1/2 (two nodes have k3 = k4 = 2), and p3 = 1/4 (as k2 = 3). As we lack nodes 
with degree k > 3, pk = 0 for any k > 3. Panel (b) shows the degree distri-
bution of a one dimensional lattice. As each node has the same degree k = 
2, the degree distribution is a Kronecker’s delta function pk = H(k - 2).

Image 2.4b
  

In  many real networks, the node degree can vary considerably. For exam-
ple, as the degree distribution (a) indicates, the degrees of the proteins in 
the protein interaction network shown in (b) vary between k=0 (isolated 
nodes) and k=92, which is the degree of the largest node, called a hub. 
There are also wide differences in the number of nodes with different 
degrees: as (a) shows, almost half of the nodes have degree one (i.e. 
p1=0.48), while there is only one copy of the biggest node, hence p92 = 1/
N=0.0005.  (c) The degree distribution is often shown on a so-called log-
log plot, in which we either plot log pk in function of log k, or, as we did in 
(c), we use logarithmic axes. 
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SECTION 4

REAL NETWORKS ARE SPARSE

In real networks the number of nodes (N) and links (L) can 
vary widely. For example, the neural network of the worm 
C. elegans, the only fully mapped brain of a living organ-
ism, has 297 neurons (nodes) and 2,345 synapses (links), 
while a human brain is estimated to have about a hundred 
billion (1011) neurons, each with an average of 7,000 syn-
aptic connections. The genetic network of a human cell has 
about 20,000 genes as nodes; the social network consists 
of seven billion individuals (N ��7×109) and the WWW is 
estimated to have over a trillion webpages (N>1012). These 
wide differences in size are noticeable in Table 2.1 where 
we list N and L for several network maps. Some of these 
maps offer a complete wiring diagram of the system they 
describe (like the actor network or the E. Coli metabolism), 
others are only samples, representing a subset of a real sys-
tem’s nodes (WWW, mobile call graph).

Table 2.1 indicates that the number of links also varies 
widely. In a network of N nodes the number of links is be-
tween L = 0 and Lmax, where Lmax is the total number of links 
present in a complete graph (Image 2.5),

      (11)

a graph in which each node is connected to all other nodes.
In real networks L is much smaller than Lmax, indicating 
that real networks are sparse. For example, the WWW 
graph in Table 2.1 has about 1.5 million links. Yet, if the 
WWW were to be a complete graph, this sample should 
have Lmax ≈ 1012 links according to (11). 
Therefore, the web graph has only a 10-6 fraction of the 
links it could have, making it a sparse network. In fact each 
network in Table 2.1 has only a tiny fraction of the links it 
could have according to (11). As we will see later sparse-
ness has important consequences on the way we explore 
and store real networks.

=





= −L N N N

2
( 1)
2max

�

Image 2.5
Complete graph.

The figure shows a complete graph with N = 16 nodes and Lmax = 120 links, 
as predicted by Eq. (11). The adjacency matrix of a complete graph is Aij = 
1 for all i, j = 1, ....N and Aii = 0. The average degree of a complete graph is 
‹k› = N - 1.

30 | NETWORK SCIENCE



SECTION 5

ADJACENCY MATRIX

A full description of a network requires us to keep track of 
its links. The simplest way to achieve this is to provide a 
complete list of the links. For example, the network of Im-
age 2.1 is uniquely described by the list of its four (i, j) links: 
{(1, 2), (1, 3), (2, 3), (2, 4)}. 

For mathematical purposes we often represent a network 
through its adjacency matrix. The adjacency matrix of a di-
rected network of N nodes has N rows and N columns, its 
elements being:

Aij = 1 if there is a link pointing from node j to node i

Aij = 0 if nodes i and j are not connected to each other.

The adjacency matrix of an undirected  network has two 
entries for each link, e.g. link (1,2) is represented as A12 =1 
and A21 =1. Hence the adjacency matrix of an undirected 
network is symmetric, i.e. Aij = Aij (Image 2.7).

The degree ki of node i can be directly obtained from the el-
ements of the adjacency matrix. For undirected networks a 
node’s degree is a sum over either the rows or the columns 
of the matrix, i.e.

     . (12)

For directed networks the sums over the adjacency matrix’ 
rows and columns provide the incoming and outgoing de-
grees, respectively

                            . (13)

Given that in an undirected network the number of out-
going links equals the number of incoming links, we have

      (14)

The number of nonzero elements of the adjacency matrix 
is 2L, or twice the number of links. Indeed, an undirected 
link connecting nodes i and j appears in two entries: 
Aij = 1, a link pointing from node j to node i, and Aji = 1, and 
a link pointing from i to j (Image 2.7).
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The sparsity of real networks implies that the adjacency 
matrices are also sparse. Indeed, a complete network has 
Aij = 1, for all (i, j), i.e. each of its matrix elements are equal 
to one. In contrast in real networks only a tiny fraction of 
the matrix elements are nonzero. This is illustrated in Im-
age 2.6, where we show the adjacency matrix of the pro-
tein-protein interaction network listed in Table 2.1. One 
can see that the matrix appears nearly empty. One imme-
diate consequence of the sparseness is that when we store 
a large network in our computer, it is better to store only 
the list of links (i.e. elements for which Aij ≠ 0), rather than 
full adjacency matrix, as an overwhelming fraction of Aij 
elements are zero.
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Image 2.6
The adjacency matrix is typically sparse.

The adjacency matrix of the yeast protein-protein interaction network, 
consisting of 2,018 nodes, each representing a yeast protein (Table 2.1). 
A dot is placed on each spot of the adjacent matrix for which Aij = 1, 
indicating the presence of an interaction. There are no dots for Aij = 0. The 
small fraction of dots underlines the sparse nature of the protein-protein 
interaction network.
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Image 2.7
The adjacency matrix.

Top: The  elements of the adjacency matrix. The adjacency matrix of a directed (left column) and an undirected (right column) network. The figure high-
lights the fact that the degree of a node (in this case node 2) can be expressed as the sum over the appropriate column or row of the adjacency matrix. 
It also shows a few basic network characteristics, like the total number of links, (L), and average degree, (‹k›), expressed in terms of the elements of the 
adjacency matrix.

Adjacency matrix

     Undirected network  Directed network
1

3 2

4

1

3 2

4

1

3 2

4

1

3 2

4
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SECTION 6

WEIGHTED AND UNWEIGHTED NETWORKS

So far we discussed only networks for which all links have 
the same weight, i.e. Aij = 1. Yet, in many applications we 
need to study weighted networks, where each link (i, j) has 
a unique weight wij . In mobile call networks the weight can 
represent the total number of minutes two mobile phone 
users talk with each other on the phone; on the power grid 
the weight is the amount of current flowing through a 
transmission line.

"A wij ij

Bo
x 

2.
4

The value of a network: Metcalfe’s Law.

Metcalfe’s law states that the value of a network is proportional to the 
square of the number of its nodes, i.e. N2. Formulated around 1980 in the 
context of communication devices by Robert M. Metcalfe (Gilder, 1993), 
the idea behind Metcalfe’s law is that the more individuals use a network, 
the more valuable it becomes. Indeed, the more of your friends use email, 
the more valuable it is to you as well, as the more individuals you can 
communicate with.

During the Internet boom of the late 1990s Metcalfe’s law was frequently 
used to offer a quantitative valuation for Internet companies, supporting 
a “build it and they will come” mentality (Briscoe et al., 2006). It suggest-
ed that the value of a service is proportional to the square of the number 
of its users, in contrast with the cost that grows only linearly. Hence if 
the service attracts sufficient number of users, it will inevitably become 
profitable, as N2 will surpass N at some sufficiently large N. Hence Met-
calfe’s Law offered credibility to growth over profits, fueling the Internet 
bubble of 2001.

Metcalfe’s law is based on Eq. (11), telling us that if all links of a com-
munication network with N nodes are equally valuable, the total value of 
the network is proportional to N(N - 1)/2, that is, roughly, N2. If a network 
has N = 10 members, there are Lmax = 45 different possible connections 
between them. If the network doubles in size to N = 20, the number of 
connections doesn’t merely double but roughly quadruples to 190, a phe-
nomenon called network externality in economics.

Two issues limit the validity of Metcalfe’s law: (i) most real networks are 
sparse, which means that only a very small fraction of the links are pres-
ent. Hence the total value of the network will not grow like N2, but the 
growth is often only linear in N. (ii) As the links have weights, not all links 
are of equal value; some links are used heavily while the vast majority of 
links are rarely utilized.

Image 2.8

According to Metcalfe’s law the cost of network based services and 
products increases linearly with the number of nodes (users or devices) 
while the benefits or income is driven by the number of links Lmax the 
technology makes possible, growing like N2. Hence once the number of 
devices exceeds some “critical mass crossover”, the technology becomes 
profitable.

For weighted networks the elements of the adjacency ma-
trix carry the weight of the link
        
           .  (15)

Most networks of scientific interest are weighted, but we 
can not always measure the appropriate weights, hence we 
often approximate these networks as unweighted. In this 
book we predominantly focus on unweighted networks, 
but we will devote a separate chapter to network character-
istics that are unique to weighted networks.
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SECTION 7

BIPARTITE NETWORKS

A bipartite graph (or bigraph) is a network whose nodes 
can be divided into two disjoint sets U and V such that each 
link connects a U-node to a V-node. In other words, if we 
color the U-nodes yellow and the V-nodes green, then 
each link must connect nodes of different colors (Image 
2.9a/b).

We can generate two projections for each bipartite net-
work. The first projection connects two U-nodes to each 
other by a link if they are linked to the same V-node in the 
bipartite representation; the second projection connects 
the V-nodes to each other by a link of they connect to the 
same U-node.

In network theory we encounter numerous bipartite net-
works. A well-known example is the Hollywood actor 
network, in which one set of nodes corresponds to movies 
(U), and the other to actors (V), a movie being connected 

Image 2.9a
Bipartite network.

In a bipartite network we have two sets of nodes, U and V, so that nodes 
in the U-set connect directly only to nodes in the V-set. Hence there are 
no direct U-U or V-V links. The figure also shows the two projections 
we can generate from any bipartite network. Projection U is obtained by 
connecting two U-nodes to each other if they link to the same V-node in 
the bipartite representation. Projection V is obtained by connecting two 
V-nodes to each other if they link to the same U-node in the bipartite 
network.

Image 2.9b
Bipartite network.

The human diseaseome is a bipartite network, whose nodes are diseases 
(U) and genes (V), in which a disease is connected to a gene if mutations 
in that gene are known to affect the particular disease [4]. One projection 
of the diseaseome is the gene network, whose nodes are genes, two genes 
being connected if they are associated with the same disease. The second 
projection is the disease network, whose nodes are diseases, two diseases 
being connected if the same genes are associated with them, indicating 
that the two diseases have common genetic origins. The figure shows a 
subset of the diseaseome, focusing on cancers. The full human diseaseome 
map, connecting 1,283 disorders via 1,777 shared disease genes. (After [4])

to an actor if the actor plays in that movie. In this network 
one projection corresponds to the actor network, in which 
two nodes are connected to each other if they played in 
the same movie; this is the network characterized in Table 
2.1. The other projection is the movie network, in which 

two movies are connected if they share at least one actor 
in their cast. Another example of bipartite network emerg-
es in medicine, connecting diseases to the genes whose 
effects can cause or influence the corresponding disease 
(Image 2.9a/b). Finally, one can also define  multipartite 
networks, like the tripartite recipe-ingredient-compound 
network described in Image 2.10 a/b.
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Image 2.10a
Tripartite network.

The tripartite recipe-ingredient-compound network, in which one set of 
nodes are recipes, like Chicken Marsala, the second set corresponds to 
the ingredients each recipe has (like flour, sage, chicken, wine, and butter 
for Chicken Marsala), and the third set captures the flavor compounds, or 
chemicals that contribute to the taste of a particular ingredient.

Image 2.10b
Tripartite network.

A projection of the tripartite network, resulting in the ingredient network, often called the flavor network. Each node denotes an ingredient; the node 
color indicating the food category and node size reflects the ingredient prevalence in recipes. Two ingredients are connected if they share a significant 
number of flavor compounds, link thickness representing the number of shared compounds between the two ingredients (After [12]).
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SECTION 8

PATHS AND DISTANCES IN NETWORKS

In physical systems the components are characterized by 
obvious distances, like the distance between two atoms in 
a crystal, or between two galaxies in the universe. In net-
works distance is a challenging concept. Indeed, what is 
the distance between two webpages on the WWW, or two 
individuals who may or may not know each other? The 
physical distance is not relevant here: two webpages linked 
to each other could be sitting on computers on the opposite 
sides of the globe and two individuals, living in the same 
building, may not know each other. In networks physical 
distance is replaced by path length. A path is a route that 
runs along the links of the network, its length representing 
the number of links the path contains. A path can intersect 
itself and pass through the same link repeatedly (Image 
2.5). In network science paths play a central role, hence 
next we discuss some of their most important properties, 
many more being summarized in Gallery 2.4.

Shortest Path (or geodesic path) between nodes i and j 
is the path with fewest number of links (Image 2.5). The 
shortest path is often called the distance between nodes 
i and j, and is denoted by dij , or simply d. We can often 

find multiple shortest paths of the same length d between a 
pair of nodes (Image 2.5). The shortest path never contains 
loops or intersects itself.

In an undirected network dij = dji, i.e. the distance between 
node i and j is the same as the distance between node j and 
i. In a directed network often dij    dji. Furthermore, in a di-
rected network the existence of a path from node i to node j 
does not guarantee the existence of a path from j to i.

In real networks we frequently need to determine the dis-
tance between two nodes. For a small network, like the one 
shown in Image 2.5, this is an easy task. For a network of 
millions of nodes finding the shortest path between two 
nodes can be rather time consuming. The length of the 
shortest path and the number of such paths can be formal-
ly obtained from the adjacency matrix (Box 2.5). In prac-

|

Image 2.11
The adjacency matrix is typically sparse.

(a) A path between nodes i0 and in is an ordered list of n links Pd = {(i0, i1), 
(i1, i2), (i2, i3), ... ,(in-1, in),}.The length of this path is d. The path shown in (a) 
follows the route 1ĺ2ĺ5ĺ4ĺ2ĺ5ĺ7, hence its length is n = 6.
(b) The shortest paths between nodes 1 and 7, representing the distance 
d17 , is the path with the fewest number of links that connect nodes 1 and 
7. There can be multiple paths of the same length, as illustrated by the 
two paths shown in different colors. The network diameter is the largest 
distance in the network, being dmax = 3 here. 
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Number of shortest paths between two nodes.

The number of shortest paths, Nij , between nodes i and j and the 
distance dij  between them can be determined directly from the 
adjacency matrix, Aij .

dij = 1: If there is a link between i and j, then Aij = 1 (Aij = 0 
otherwise).

dij = 2: If there is a path of length two between i and j, then 
the product of d elements Aik Akj = 1 (Aik Akj = 0 otherwise). 
The number of dij = 2 paths between i and j is

     (16)

where [...]ij denotes the (ij)th element of a matrix.

 dij = d: If there is a path of length d between i and j, then 
Aik ... Alj = 1 (Aik ... Alj = 0 otherwise). The number of paths of 
length d between i and j is

       
        . (17)

Equation (17)  holds for both directed and undirected networks 
and can be generalized to multigraphs as well. The distance be-
tween nodes i and j is the path with the smallest d for which Nij

(d) 
> 0. Despite the mathematical elegancy of Eq. (17), faced with a 
large network, it is more efficient to use the breadth-first-search 
algorithm described in Box 2.6.

∑= =  
=
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N
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tice we most often use the breadth first search (BFS) algo-
rithm discussed in Box 2.6 and Gallery 2.5 to measure the 
distance between two nodes.

Network diameter: the diameter of a network, denot-
ed by dmax, is the maximal shortest path in the network. In 
other words, it is the largest distance recorded between any 
pair of nodes. One can verify that the diameter of the net-
work shown in Image 2.5 is dmax = 3. For larger graphs the 
diameter can also be determined using the breadth first 
search algorithm (Box 2.6).

Average path length, denoted by ‹d›, is the average dis-
tance between all pairs of nodes in the network. For a di-
rected network of N nodes, ‹d› is given by 
        
      (18)

For an undirected network we need to multiply the r.h.s. of 
Eq. (18) by two.

We can use the BFS algorithm to determine the average 
path length for a large network. For this we first determine 
the distance between a node and all other nodes in the net-
work using the algorithm described in Box 2.6. We then 
determine the shortest path between a second node and all 
other nodes but the first one, a procedure that we repeat 
for all nodes. The sum of these shortest paths divided by 
Lmax provides the average path length.

Image 2.12
Pathology.

PATH: A sequence of nodes such 
that each node is connected to 
the next node along the path by 
a link. A path always consists of n 
nodes and n - 1 links. The length of 
a path is defined as the number of 
its links, counting multiple edges 
multiple times.

SHORTEST PATH (geodesic path, d): 
the path with the shortest distance 
d between two nodes. We will call 
it the distance between two nodes.

DIAMETER (dmax): the longest short-
est path in a graph, or the distance 
between the two furthest away 
nodes.

AVERAGE PATH LENGTH (‹d›): 
the average of the shortest paths 
between all pairs of nodes. 

CYCLE: a path with the same start 
and end node.

SELF-AVOIDING PATH: a path that 
does not intersect itself, i.e. the 
same node or link does not occur 
twice along the path. 

EULERIAN PATH: a path that tra-
verses each link exactly once. 

HAMILTONIAN PATH: a path that 
visits each node exactly once.
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Finding the shortest path: breath first search.

BFS is one of the most frequently used algorithms in network 
science. Similar to throwing a pebble in a pond and watching the 
ripples spread from the center, we start from a node and label its 
neighbors, then the neighbors’ neighbors, until we encounter the 
target node. The number of “ripples” needed to reach the target 
provides the distance. To be specific, the identification of the 
shortest path between node i and j follows the following steps 
(Gallery 2.5):

1. Start at node i.

2. Find the nodes directly linked to i. Label them distance “1” and 
put them in a queue.

3. Take the first node, labeled n, out of the queue (n = 1 in the first 
step). Find the unlabeled nodes adjacent to it in the graph. Label 
them with n + 1 and put them in the queue.

4. Repeat step 3 until you find the target node j or there are no 
more nodes in the queue.

5. The distance between i and j is the label of j. If j does not have a 
label, then dij = h.

The time complexity of the BFS algorithm, representing the 
approximate number of steps the computer needs to find dij on a 
network of N nodes and L links, is O (N  + L). It is linear in N and L 
as each node needs to be entered and removed from the queue at 
most once, and each link has to be tested only once.
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Image 2.13
The BFS algo-
rithm applied to 
a small network.

Starting from the 
orange node, labeled 
”0”, we identify all 
its neighbors, label-
ing them ”1”. Then 
we label ”2” the un-
labeled neighbors of 
all nodes labeled ”1”, 
and so on, in each 
iteration increasing 
the labels, until no 
node is left unla-
beled. The length of 
the shortest path 
or the distance d0i 
between node 0 and 
some other node i in 
the network is given 
by the label on node 
i. For example, the 
distance between 
node 0 and the 
leftmost node is 
d03 = 3.
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SECTION 9

CONNECTEDNESS AND COMPONENTS

The phone would be of limited use as a communication 
device if we could not call any valid phone number; the 
email world be rather useless if we could send emails to 
only certain email addresses, and not to others. From a 
network perspective this means that the technology behind 
the phone or the Internet must be capable of establishing 
a path between any two devices or clients, like your phone 
and any other phone on the network or between yours and 
your acquaintance’s email address. This is in fact the key 
utility of most networks: they are built to ensure connect-
edness. In this section we discuss the graph-theoretic for-
mulation of connectedness. 

In an undirected network two nodes i and j are connected 
if there is a path between them on the graph. They are dis-
connected if such a path does not exist, in which case we 
have dij = ∞. This is illustrated in Image 2.14a, which shows 

a network consisting of two disconnected clusters. While 
there are paths between the nodes that belong to the same 
cluster (for example nodes 4 and 6), there are no paths be-
tween nodes that belong to different clusters (for example 
nodes 1 and 6).

A network is connected if all pairs of nodes in the network 
are connected. It is disconnected if there is at least one pair 
with dij = ∞. Clearly the network shown in Image 2.6a is 
disconnected, and we call its two subnetwork components 
(or clusters). A component is a subset of nodes in a net-
work, so that there is a path between any two nodes that 
belong to the component, but one cannot add any more 
nodes to it that would have the same property. If a network 
consists of two components, a properly placed single link 
can connect them, making the network connected (Image 
2.14b). Such a link is called a bridge. In general a bridge is 
any link that, if cut, disconnects the graph. 

While for a small network visual inspection can help us 
decide if it is connected or disconnected, for a network 
consisting of millions of nodes connectedness is a chal-
lenging question. Several mathematical tools help us iden-
tify the connected components of a graph:

For a disconnected network the adjacency matrix can 
be rearranged into a block diagonal form, such that 
all nonzero elements in the matrix are contained in 
square blocks along the matrix’ diagonal and all other 
elements are zero (Image 2.14a). Each square block 
will correspond to a component. We can use the tools 
of linear algebra to decide if the adjacency matrix is 
block diagonal, helping us to identify the connected 
components.

In practice, for large networks the components are 
more efficient identified using the breadth first 
search algorithm (Box 2.7).

Image 2.14
Connected and disconnected networks.

(a) The network consists of two disconnected components, i.e. there is a 
path between any pair of nodes in the (1,2,3) component, as well in the 
(4,5,6,7) component. However, there are no paths between nodes that 
belong to different connected components. The right panel shows the 
adjacently matrix of the network. If the network consists of disconnected 
components, the adjacency matrix can be rearranged into a block diagonal 
form, such that all nonzero elements of the matrix are contained in square 
blocks along the diagonal of the matrix and all other elements are zero. 

(b) The addition of one link, called a bridge, can turn a disconnected 
network into a single connected component. Now there is a path between 
every pair of nodes in the network. Consequently the adjacency matrix 
cannot be written in a block diagonal form.
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Box 2.7

Finding the connected components of a graph.

 1. Start from a randomly chosen node i and perform a 
BFS from this node (Box 2.6). Label all nodes reached this 
way with n = 1. By linking friends to each other, we obtain 
the friendship network, that plays an important role in the 
spread of ideas, products and habits and is of major interest 
to sociology, marketing and health sciences.

 2. If the total number of labeled nodes equals N, then the 
network is connected. If the number of labeled nodes is 
smaller than N, the network consists of several components. 
To identify them, proceed to step 3.

 3. Increase the label n ĺ n + 1. Choose an unmarked node 
j, label it with n. Use BFS to find all nodes reachable from j, 
label them with n. Return to step 2.
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SECTION 10

CLUSTERING COEFFICIENT

The local clustering coefficient captures the degree to 
which the neighbors of a given node link to each other.  For 
a node i with degree ki the local clustering coefficient is de-
fined as [5].
        
      (19)

where Li represents the number of links between the ki 
neighbors of node i. Note that Ci is between 0 and 1:

Ci = 0 if none of the neighbors of node i link to each 
other; 

Ci = 1 if the neighbors of node i form a complete 
graph, i.e. they all link to each other (Image 2.7). 

In general Ci is the probability that two neighbors of a 
node link to each other: C = 0.5 implies that there is a 
50% chance that two neighbors of a node are linked. 

In summary Ci measures the network’s local density: 
the more densely interconnected the neighborhood 
of node i, the higher is Ci.

The degree of clustering of a whole network is captured by 
the average clustering coefficient, <C>, representing the av-
erage of Ci over all nodes i = 1, ..., N [5],
        
                .  (20)

In line with the probabilistic interpretation <C> is the 
probability that two neighbors of a randomly selected node 
link to each other. 

While Eq. (19) is defined for undirected networks, the 
clustering coefficient can be generalized to directed and 
weighted [6,7,8,9]) networks as well. Note that in the net-
work literature one also often encounters the global clus-
tering coefficient, defined in Appendix A.
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Image 2.15
Clustering Coefficient.

The local clustering coefficient, Ci , of the central node with degree ki=4 
for three different configurations of its neighborhood. The clustering 
coefficient measures the local density of links in a node’s vicinity. The 
bottom figure shows a small network, with the local clustering coefficient 
of a node shown next to each node. Next to the figure we also list the 
network’s average clustering coefficient <C>, according to Eq. (20), and 
its global clustering coefficient C, declined in Appendix A, Eq. (21). Note 
that for nodes with degrees ki=0,1, the clustering coefficient is taken to be 
zero. 
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SECTION 11

CASE STUDY AND SUMMARY

The purpose of the crash course in graph theory offered in 
this chapter was to familiarize us with some of the basic 
graph theoretical concepts and tools that network science 
uses. They define a set of elementary network character-
istics, summarized in Image 2.16, that will serve as a lan-
guage through which we can explore real networks. Yet, 
many of the networks we study in network science consist 
of hundreds to millions of nodes and links (Table 2.1). To 
explore them, we need to go beyond the small graphs dis-
cussed in Image 2.16 and use the introduced measures to 
explore large networks. A glimpse of what we are about 
to encounter is offered in Image 2.17a, where we show 
the protein-protein interaction network of baker’s yeast, 
whose nodes are proteins, two proteins being connected 
if there is experimental evidence that they can bind (inter-
act) to each other. The network is obviously too complex 
to understand its properties through a visual inspection of 
its wiring diagram. We therefore need to use the tools of 
network science to characterize its topology. 

Let us use the measures we introduced so far to explore 
some basic characteristics of this network. The undirected 
network of Image 2.8a has N = 2,018 proteins as nodes and 
L=2,930 binding interactions as links. Hence the average 
degree, according to Eq. (7), is ‹k› = 2.90, suggesting that 
a typical protein interacts with approximately two to three 
other proteins. Yet, this number is somewhat misleading. 
Indeed, the degree distribution pk shown in Image 2.17b 
indicates that the vast majority of nodes have only a few 
links. To be precise, in this network 69% of nodes have 
fewer than three links, i.e. for these k < ‹k› . They coexist 
with a few highly connected nodes, or hubs, the largest 
having as many as 91 links. Such wide differences in node 
degrees is a consequence of the network’s scale-free prop-
erty, characterizing many real networks. We will see that 
the precise shape of the degree distribution determines a 
wide range of network properties, from the network’s ro-
bustness to node failures to the spread of viruses. 

The breath-first-search algorithm helps us determine the 
network’s diameter, finding dmax = 14. We might be tempt-
ed to expect wide variations in d, as some nodes are close to 
each other, others, however, may be quite far. The distance 
distribution (Image 2.17c), indicates otherwise: pd has a 

prominent peak around ‹d› =5.61, indicating that most dis-
tances are rather short, being in the vicinity of ‹d›. Also, 
pd decays fast for large ‹d›, suggesting that large distances 
are essentially absent. Instead, the variance of the degrees 
is Wd = 1.64, hence we have d= 5.61 ± 1.64, i.e. most path 
lengths are in the clise vicinity of ‹d› . These are manifes-
tations of the small world property, another common fea-
ture of real networks, indicating that most nodes are rather 
close to each other. 

The breath first search algorithm will also convince us 
that the protein interaction network is not connected, but 
consists of 185 components, shown as isolated clusters in 
Image 2.17a. The largest, called the giant component, con-
tains 1,647 of the 2,018 nodes; all other components are 
tiny compared to it. As we will see in the coming chapters, 
such fragmentation is common in real networks. 

The average clustering coefficient of the network is <C> 
=0.12, which, as we will come to appreciate in the coming 
chapters, is rather large, indicating a significant degree of 
local clustering. A further caveat is provided by the depen-
dence of the clustering coefficient on the node’s degree, 
or the C(k) function (Image 2.17d), which indicates that 
the clustering coefficient of the small nodes is significant-
ly higher than the clustering coefficient of the hubs. This 
suggests that the small degree nodes are locates in dense 
local neighborhoods, while the neighborhood of the hubs 
is much more sparse. This is a consequence of network hi-
erarchy, another widely shared network property. 
Finally, a visual inspection reveals an interesting pattern: 
hubs have a tendency to connect to small nodes, giving the 
network a hub and spoke character. This is a consequence 
of degree correlations, which influence a number of net-
work characteristics, from the spread of ideas and viruses 
in social networks to the number of driver nodes needed to 
control a network. 
Taken together, Image 2.17 illustrates that the quantities 
we introduced in this chapter can help us diagnose several 
key properties of real networks. The purpose of the coming 
chapters is to study systematically these network charac-
teristics, understanding what they tell us about the behav-
ior of a complex system.
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WEIGHTED NETWORK: a network whose links have a predefined weight, 
strength or fow parameter. The elements of the adjacency matrix are Aij = 
0 if i and j are not connected, or Aij = wij if there is a link with weight wij 
between them. For unweighted (binary) networks, the adjacency matrix 
only indicates the presence (Aij = 1) or the absence (Aij = 0) of a link be-
tween two nodes. Examples: Mobile phone calls, email network.

SELF-INTERACTIONS: in many networks nodes do not interact with 
themselves, so the diagonal elements of adjacency matrix are zero, Aii = 0,   
i =1,...,N. In some systems self-interactions are allowed; in such networks, 
representing the fact that node i has a self-interaction. Examples: WWW, 
protein interactions. 

MULTIGRAPH: in a multigraph nodes are permitted to have multiple links 
(or parallel links) between them. Hence Aii  can have any positive integer.

COMPLETE GRAPH: in a complete graph all nodes are connected to each 
other; no self-connections.

Image 2.16
Graphology.

In network science we encounter many networks distinguished by some 
elementary property of the underlying graph. Here we summarize the 
most commonly encountered elementary network types, together with 
their basic properties, and an illustrative list of real systems that share the 
particular property. Note that in many real network we need to combine 
several of these elementary network characteristics. For example the 
WWW is a directed multi-graph with self-interactions. The mobile call 
network is directed and weighted, without self-loops.

DIRECTED NETWORK: a network whose links have selected directions. 
Examples: WWW, mobile phone calls, citation network.

UNDIRECTED NETWORK: a network whose links do not have a predefined 
direction. Examples: Internet, power grid, science collaboration networks, 
protein interactions.
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Image 2.16
Characterizing a real network.

The protein-protein interaction (PPI) network of yeast, a network 
frequently studied not only by biologists, but also by network scien-
tists. The nodes of the network are proteins and links correspond to 
experimentally documented protein-protein binding interactions. 
The figure indicates that the network, consisting of N=2,018 nodes 
and L=2,930 links, has a giant component that connects 81% of 
the proteins, several smaller components, and numerous isolated 
proteins that do not interact with any other node.

The degree distribution, pk, of the PPI network, providing the 
probability that a randomly chosen node has degree k. As Nk= Npk, 
the degree distribution provides the number of nodes with degree 
k. The degree distribution indicates that proteins of widely different 
degrees coexist in the PPI: most nodes have only a few links, a 
few, however, have dozens of links, representing the hubs of the 
network.

The distance distribution, pd for the PPI network, providing the 
probability that two randomly chosen nodes have a distance d be-
tween them (shortest path). The dotted line shows the average path 
length, which is ‹d› =5.61.

The  dependence of the average clustering coefficient on the node’s 
degree, k. The C(k) function is measured by averaging over the local 
clustering coefficient of all nodes with the same degree k.

(a)

(b)

(c)

(d)
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SECTION 12

ADVANCED TOPICS: GLOBAL CLUSTERING COEFFICIENT

In the network literature one often encounters the global 
clustering coefficient, which measures the total number of 
closed triangles in a network. Indeed, Li in Eq. (19) is the 
number of triangles that node i participates in, as each link 
between two neighbors of node i closes a triangle (Image 
2.15). Hence the degree of a network’s global clustering is 
captured by the global clustering coefficient, defined as 

      (21)

where a connected triplet consists of three nodes that are 
connected by two (open triplet) or three (closed triplet) 
undirected links. For example, an A, B, C triangle is made 
of three triples, ABC, BCA and CAB. In contrast a chain of 
connected nodes A, B, C, in which B connects to A and C 
but A does not link to C forms a single open triplet. The 
factor of three in the denominator of Eq. (21) is due to the 
fact that each triangle is counted tree times in the triple 
count. The roots of the global clustering coefficient go back 
to the social network literature of the 1940s [10,11], hence 
C is often called the number of transitive triplets.

Note that the average clustering coefficient <C> defined in 
(20) and the global clustering coefficient defined in (21) 
are not equivalent. 

Indeed, take a network that is a double star consisting of 
N nodes, where nodes 1 and 2 are joined to each other and 
to all other vertices, and there are no other links. Then the 
local clustering coefficient Ci is 1 for i ≥ 3 and 2/(N − 1) 
for i = 1, 2. It follows that the average clustering coefficient 
of the network is <C> = 1−O(1), while the global cluster-
ing coefficient gives C ~ 2/N. In less extreme networks the 
definitions will give more comparable values, but they will 
still differ from each other [13]. For example, in Image 2.15 
we have <C> = 0.31 while C = 0.375 .

= ×C NumberOfTriangles
NumberOfConnectedTriples
3
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SECTION 1

INTRODUCTION

Imagine organizing a party for a hundred guests who ini-
tially do not know each other [1]. Offer them wine and 
cheese and you will soon have dozens of chatting groups 
of two to three. Now mention to Mary, one of your guests, 
that the red wine in the unlabeled dark green bottles is a 
rare vintage, much better than the one with the fancy red 
label. If she shares this information only with her acquain-
tances, you know that your expensive wine is safe, because 
she only had time to meet a few others in the room. How-
ever, the guests will continue to mingle, creating subtle 
paths between individuals that may still be strangers to 
each other. For example, while John has not yet met Mary, 
they have both met Mike, so now there is an invisible path 
from John to Mary through Mike.  As time goes on, the 
guests will be increasingly interwoven by such intangible 
links. With that the secret of the unlabeled bottle will be 
pass from Mary to Mike and from Mike to John, slowly 
escaping into a rapidly expanding group. 
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Image 3.1
From a cocktail party to random networks.

The emergence of an acquaintance network through random encounters at a cocktail party.

To be sure, when all guests had gotten to know each other, 
everyone would be pouring the superior wine. But if each 
encounter took only ten minutes, meeting all ninety-nine 
others would take about sixteen hours. Thus, you could 
reasonably hope that a few drops of the better wine would 
be left for you to enjoy once the party is over.

Yet, you will be wrong.  The purpose of this chapter is to 
show you why. We will see that the party maps into a clas-
sic model in network science called the random network 
model.  And random network theory tells us that we do not 
have to wait until all individuals get to know each other 
for our expensive wine to be in danger. Rather, soon af-
ter each person meets at least one other guest, an invisible 
network will form that will allow the information to reach 
most guests. Hence in no time everyone will be drinking 
the better wine.



SECTION 2

THE RANDOM NETWORK MODEL

An important goal of network science is to build models 
that accurately reproduce the properties of real networks 
observed in real systems. Most networks we encounter in 
nature do not have the comforting regularity of a crystal 
lattice or the predictable radial architecture of a spider 
web. Rather, at first inspection most real networks look 
as if they were spun randomly. Random network theory 
embraces this apparent randomness by constructing net-
works that are truly random. 

From a modeling perspective a network is a relatively sim-
ple object, consisting of only nodes and links. The real 
challenge, however, is to place the links between the nodes 
in a way to reproduce the complexity and apparent ran-
domness of real systems. In this context the philosophy be-
hind a random network is simple:  it assumes that this goal 
is best achieved by placing the links randomly between the 
nodes. With that we arrive to the definition of a random 
network:

A random network consists of N labeled nodes where each 
node pair is connected with the same probability p.

Box 3.1

Two definitions of random networks.

There are two equivalent ways of defining a random network:

s� G(N,L) model: N labeled nodes are connected with L random-
ly placed links. Erdős and Rényi (Erdős & Rényi, 1959) used 
this definition in their string of articles on random networks.

s� G(N,p) model: Each pair of N labeled nodes is connected with 
probability p, a model introduced by Gilbert (Gilbert, 1959).

Hence the G(N,p) model fixes the probability p that two nodes are 
connected and the G(N,L) model fixes the total number of links L.  
While in the G(N,L) model the average degree of a node is simply 

‹k› = 2L / N, other network characteristics are easier to calculate in 
the G(N, p) model. Throughout this book we will explore the G(N,p) 
model, not only for the ease that it allows us to calculate key net-
work characteristics, but also because its construction is closer to 
the way real systems develop. Indeed, in real networks the number 
of links is rarely fixed, but we can instead determine the probability 
that two nodes link to each other.

To construct a random network, denoted with G(N, p) 
(Box 3.1):  

1. Start with N isolated nodes. 

2. Select a node pair, and generate a random number be-
tween 0 and 1. If the random number exceeds p, con-
nect the selected node pair with a link, otherwise leave 
them disconnected.

3. Repeat step (2) for each of the N(N-1)/2 node pairs. 

The network obtained through this procedure is called a 
random graph or a random network. Two mathematicians, 
Pál Erdős and Alfréd Rényi, have played an important role 
in understanding the properties of random networks. In 
their honor a random network is often called the Erdős-
Rényi network (Box 3.2).
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A brief history of random networks.

Anatol Rapoport (1911-2007), a Russian immigrant to the United 
States, was the first to explore the properties of a random 
network. Trained as a pianist, Rapoport’s interests turned to 
mathematics after realizing that a successful career as a concert 
pianist would require a wealthy patron. He became interested 
in mathematical biology at a time when mathematicians and 
biologists hardly spoke to each other. In a paper written with Ray 
Solomonoff in 1951 [28], Rapoport demonstrated that if we in-
crease the average degree of a network, we will observe an abrupt 
transition from a collection of disconnected nodes to a state in 
which the graph contains a giant component. Despite its pioneer-
ing ideas, Rapoport’s paper remains relatively unknown.

The study of random networks reached prominence thanks to the 
fundamental work of Pál Erdős and Alfréd Rényi. In a sequence 
of eight papers published between 1959 and 1968 [8-15], they 
merged probability theory and combinatorics with graph theory, 
establishing random graph theory, a new branch of mathematics 
[5]. 

The random network model was independently introduced by 
Gilbert [18] the same year Erdős and Rényi published their first 
paper on the subject. Yet, the impact of Erdős and Rényi’s work is 
so overwhelming that they are rightly considered the fathers of 
random networks. 
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Image 3.2a
Pál Erdős (1913-1996)

Hungarian mathematician known for both his eccentricity and exceptional 
scientific output, having published more papers than any other mathema-
tician in the history of mathematics. His productivity had its roots in his 
fondness for collaboration: he co-authored papers with over five hundred 
mathematicians, inspiring the concept of Erdős number. His legendarily 
personality and profound professional impact has inspired two biographies 
[19, 27] and a documentary [7].

Image 3.2b
Alfréd Rényi (1921-1970)

Hungarian mathematician with fundamental contributions to combina-
torics, graph theory, and number theory. His impact goes beyond mathe-
matics: the Rényi entropy is widely used in chaos theory and the random 
network model he co-developed is at the heart of network science. He is 
remembered through the hotbed of Hungarian mathematics, the Alfréd 
Rényi Institute of Mathematics in Budapest. He once said, “A mathemati-
cian is a device for turning coffee into theorems”, a quote often attributed 
to Erdős.
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SECTION 3

THE NUMBER OF LINKS IS VARIABLE

Each random network we generate with the same param-
eters N, p will look slightly different (Image 3.3). Not only 
the detailed wiring diagram will vary between realizations, 
but so will the number of links L. It is useful, therefore, to 
determine how many links we expect for a particular reali-
zation of a random network with fixed N and p.

The probability that a random network has exactly L links 
is the product of three terms:

1. The probability that L of the attempts to connect the 
N(N-1)/2 pairs of nodes have resulted in a link, which 
is p L.

2. The probability that the remaining N(N-1)/2 - L  at-
tempts have not resulted in a link, which is (1-p)N(N-1)/2-L

3. A combinational factor,         counting the number of 
different ways we can place L links among N(N-1)/2 
node pairs.

Hence the probability that a particular realization of a ran-
dom graph has exactly L links is

      (1)

As Eq. (1) is a binomial distribution (Box 3.3), the expected 
number of links in a random graph can be calculated as

      (2)

Hence ‹L› is the product of the probability p that two nodes 
are connected and the number of pairs we attempt to con-
nect, which is Lmax = N(N - 1)/2  (Chapter 2).
Using Eq. (2) we obtain the average degree of a random 
network as
                 
      (3)

Hence ‹k› is the product of the probability p that two nodes 
are connected and (N-1), representing the maximum 
number of links a node can have in a network of size N.

In summary the number of links in a random network is 
not fixed, but varies between realizations. Its expected val-
ue is determined by N and p. If we increase p from p = 0 to 
p = 1 the random network becomes denser and the average 
number of links increase linearly from ‹L› = 0  to Lmax and 
the average degree of a node increases from ‹k› = 0  to 
‹k› = N-1.
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Image 3.3
Random networks are truly random.

Top row: Three realizations of a random network generated with the same 
parameters N = 12 and p =1/6. Despite the identical parameters, the net-
works not only look different, but they differ in the number of links they 
have (L  = 8, 10, 7) and in the degree of the individual nodes. 
Bottom row: Three realizations of a random network with N = 100 and 
p  = 1/6.
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Box 3.3

Binomial distribution:  Mean and variance.

If we toss a fair coin N times, tails and heads should occur with 
the same probability p = 1/2. The binomial distribution provides 
the probability px that we obtain exactly x heads in a sequence of 
N throws. In general, the binomial distribution describes the num-
ber of successes in N independent experiments with two possible 
outcomes, in which the probability of one outcome is p, and of the 
other is 1-p.

The binomial distribution has the form 

   
The mean of the distribution (first moment) is

      (4) 
      

Its second moment is

      (5)

providing its standard deviation as

      (6)
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SECTION 4

DEGREE DISTRIBUTION

As Image 3.3 illustrates, in a given realization of a random 
network some nodes are lucky, gaining numerous links, 
while others have only a few or no links. These differenc-
es are captured by the degree distribution pk providing the 
probablity that a randomly chosen node has degree k. 

In a random network the probability that node i has exactly 
k links is the product of three terms [5]:

The probability that k of its links are present, or pk.

The probability that the remaining (N - 1 - k) links are 
missing, or (1-p)N-1-k.

The number of ways we can select k links from N - 1 

potential links a node can have, or        .

Hence the degree distribution of a random network fol-
lows the binomial distribution

      (7)

The shape of this distribution depends on the system size 
N and the probability p (Image 3.4). Using the properties 
of the binomial distribution (Box 3.3), from the degree dis-
tribution (7) we can calculate the network’s average degree 
‹k›, recovering Eq. (3). We can also determine the second 
moment ‹k2› and the variance σk of the degree distribution 
(Image 3.4), quantities that will play an important role lat-
er.

Most real networks are sparse, hence ‹k› « N (Table 3.1, Im-
age 3.4b). In this limit the degree distribution (7) is well 
approximated by the Poisson distribution (Advanced Top-
ics 3. A)
                  
      (8)

which is often called, together with (7), the degree distri-
bution of a random network.
The binomial and the Poisson distribution describe the 
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same quantity, hence they have several common properties 
(Image 3.4a):

Both distributions have a peak around ‹k›. If we keep N 
constant and increase p, the network becomes denser, 
increasing ‹k› and moving the peak to the right. 

The width of the distribution (dispersion) is also con-
trolled by p or ‹k›. The denser the network, the wider is 
the distribution, hence the larger are the differences in 
the degrees.

 
As we use the Poisson form in Eq. (8), we need to keep in 
mind that:

The exact result for the degree distribution is the bi-
nomial form in Eq. (7), thus Eq. (8) represents only an 
approximation to (7) valid in the k « N limit. For most 
networks of practical importance this condition is eas-
ily satisfied.

The advantage of the Poisson form is that key network 
characteristics, like ‹k›, ‹k2› and σk , have a much sim-
pler form (Image 3.4a), depending on a single param-
eter, ‹k›.

The Poisson distribution in Eq. (8) does not explicit-
ly depend on the number of nodes N . Therefore, Eq. 
(8) predicts that the degree distributions of networks 
of different sizes but the same average degree ‹k› are 
indistinguishable from each other (Image 3.4b).

Despite the fact that the Poisson distribution is only an 
approximation to the degree distribution of a random net-
work, thanks to its analytical simplicity, it is the preferred 
form for pk. Hence throughout this book, unless noted oth-
erwise, we will refer to the Poisson form in Eq. (8) as the 
degree distribution of a random network.
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Image 3.4a
Anatomy of a binomial and a Poisson degree distribution.

The exact form of the degree distribution of a random network is the 
binomial distribution (left). For N  » ‹k›, the binomial can be well approx-
imated by a Poisson distribution (right). As both distributions describe 
the same quantity, they have the same properties, which are expressed in 
terms of different parameters: the binomial distribution uses p and N as 
its fundamental parameters, while the Poisson distribution has only one 
parameter, ‹k›.

Image 3.4b
Degree distribution is independent of the network size.

The degree distribution of a random network with average degree ‹k› = 50 
and sizes N = 102 , 103 , 104. For N = 102 the degree distribution deviates 
significantly from the Poisson prediction (8), as the condition for the 
Poisson approximation, N » ‹k›, is not satisfied. Hence for small networks 
one needs to use the exact binomial form of Eq. (7) (dotted line). For N = 
103 and larger networks the degree distribution becomes indistinguishable 
from the Poisson prediction, (8), shown as a continuous line, illustrating 
that for large N the degree distribution is independent of the network size. 
In the figure we averaged over 1,000 independently generated random 
networks to decrease the noise in the degree distribution.
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SECTION 5

REAL NETWORKS DO NO NOT HAVE 
A POISSON DEGREE DISTRIBUTION

The degree of a node in a random network can vary be-
tween 0 and N-1, raising an important question: How big 
are the differences between the node degrees in a particular 
realization of a random network? That is, can highly con-
nected nodes, or hubs, coexist with small degree nodes? 
We address answer these questions by estimating the size 
of the largest and the smallest node in a random network. 

Let us assume that the world’s social network is described 
by the random network model. This may not be as far 
fetched hypothesis as it first sounds: there is significant 
randomness in whom we meet and whom we choose to 
become acquainted with. Sociologists estimate that a typ-
ical person knows about 1,000 individuals on a first name 
basis, suggesting that ‹k›1,000ݍ. Using the results obtained 
so far about random networks, we arrive to a number of 
surprising conclusions about a random society (see Ad-
vanced Topics 3.B):

The most connected individual (the largest degree 
node) in a random society is expected to have degree 
kmax = 1,185.

The least connected individual is expected to have de-
gree kmin = 816.

The dispersion of a random network is σk=‹k›1/2 , which 
for ‹k›=1,000 is σk = 31.62. This means that the number 
of friends of a typical individual should be mainly in 
the ‹k› ± σk range, or between 970 and 1,030, a rather 
narrow range.

In other words, in a random society everyone would have 
a comparable number of friends.  We would lack outliers, 
or highly popular individuals, and no one would be left be-
hind, having only a few friends. This calculation illustrates 
that in a large random network the degree of most nodes is in 
the narrow vicinity of  ‹k› (Box 3.4).  

This prediction blatantly conflicts with reality. Indeed, 
there is extensive evidence of individuals who have con-
siderably more than 1,018 acquaintances. For example, US 
president Franklin Delano Roosevelt’s appointment book 
had about 22,000 names in it, individuals he met person-

ally [17, 26]. Similarly, a study of the social network behind 
Facebook has documented numerous individuals with 
5,000 Facebook friends, the maximum allowed by the so-
cial networking platform [4]. The reason behind these sys-
tematic discrepancies can be understood by comparing the 
degree distribution of real and random networks. 

In Image 3.5 we show the degree distribution of three real 
networks, together with the corresponding Poisson fits. 
The figure documents considerable differences between 
the random network predictions and the real data:

The Poisson form significantly underestimates the 
number of high degree nodes. For example, according 
to the random network model the maximum degree 
for the Internet is expected to be around 20, while the 
data indicates the existence of nodes with degrees close 
to 103.
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Why hubs are absent in random network.

To understand why hubs are absent in random networks, we turn to 
the degree distribution (8). We first realize that the 1/k! term in (8) 
significantly decreases the chances of observing large degree nodes. 
Indeed, the Stirling approximation

allows us rewrite Eq. (8) as

      (9)

For degrees k > e ‹k› the term in the parenthesis is smaller than one, 
hence for large k both k-dependent terms in (9), i.e. 1/�k and 

(e‹k› /k)k decrease rapidly with increasing k. Overall Eq. (9) predicts 
that in a random network the chance of observing a hub decreases 
faster than exponentially.
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Image 3.5
Degree distribution of real networks.

The degree distribution of the Internet, science collaboration network, and the protein interaction network of yeast (Table 2.1). The dashed line corre-
sponds to the Poisson prediction, obtained by measuring ‹k› for the real network and then plotting Eq. (8). The significant deviation between the data and 
the Poisson fit indicates that the random network model underestimates the size and the frequency of highly connected nodes, or hubs. 
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The spread in the degrees of real networks is much 
wider than expected in a random network. This differ-
ence is captured by the dispersion σ k (Image 3.4a). For 
example, if the Internet were to be random, we would 
expect σ k = 2.52, while the measurements indicate      

         σ internet = 14.14, significantly higher than predicted.

These differences are not limited to the networks shown 
in Image 3.5, but all networks listed in Table 2.1 share this 
property. Hence the comparison with the real data indi-
cates that the random network model does not capture the 
degree distribution of real networks. While in a random 
network most nodes have comparable degrees, forbidding 
hubs, in real networks we observe a significant number of 
highly connected nodes and large differences in node de-
grees. We will resolve these differences in Chapter 4.



SECTION 6

THE EVOLUTION OF A RANDOM NETWORK

The cocktail party we encountered at the beginning of the 
chapter captures a dynamical process: starting with N iso-
lated nodes, the links are added gradually through random 
encounters between the guests. Within the random net-
work model this corresponds to a gradual increase of p, 
with striking consequences on the network topology (Mov-
ie 3.1). To quantify this process, we first inspect how the 
size NG of the giant component, which is the largest cluster 
within the network, varies with ‹k›. The two extreme cases 
are easy to understand:

For p = 0 we have ‹k› = 0, hence we observe only isolat-
ed nodes. Therefore NG = 1  and  NG  / N J0 for large N.

For p = 1 we have ‹k›= N-1, hence the network is a com-
plete graph and all nodes belong to a single cluster. 
Therefore NG = N and NG / N = 1.

One would expect that the giant component will grow 
gradually from NG = 1 to NG = N if we increase ‹k› from 0 
to N-1. Yet, as Image 3.6a indicates, this is not the case: 
NG / N remains zero for small ‹k›, indicating the lack of 
a giant component for a range of ‹k› values. Once ‹k› ex-

ceeds a critical value, NG  / N increases rapidly, signaling 
the emergence of a giant component. Erdős and Rényi in 
their classical 1959 paper predicted that the condition for 
the emergence of the giant component is 
        (10)
      
In other words, we have a giant component if and only if 
when each node has on average one link (Advanced Topics 
3.C). 

The fact that at least one link per node is necessary for a gi-
ant component is not unexpected. Indeed, for a giant com-
ponent to exist, each of its nodes must be linked to at least 
one other node. It is somewhat counterintuitive, however 
that one link is sufficient for its emergence.

If we wish to express Eq. (10) in terms of p, using Eq. (3) 
we obtain 

                            
        (11)

indicating that the larger a network, the smaller p is suffi-
cient  for the giant component.  

The emergence of the giant component is only one of the 
important transitions displayed by a random network. 
Changes in ‹k› allow us to distinguish four topologically 
distinct regimes (Image 3.6), each with its unique charac-
teristics:

(a) Subcritical regime: 0 < ‹k› < 1, (p < ). 

For ‹k› = 0 the network consists of N isolated nodes. In-
creasing ‹k› is equivalent with adding N‹k› = pN(N-1)/2 
links to the network.  Yet, given the small number of links 
in the network in this regime, these links will mainly form 
clusters of size two (Image 3.6b).  Upon increasing ‹k› fur-
ther, some of the new links will join these pairs, forming 
tiny clusters. While we can designate at any moment the 
largest such cluster to be the giant component, in this re-
gime the relative size of the largest cluster, NG / N, remains 
zero. The reason is that for ‹k› < 1 the largest cluster is a tree 

Movie 3.1
Evolution of a random graph.

Changes in the structure of a random graph with increasing p, illustrating 
the absence of a giant component for small p and its sudden emergence 
once p exceeds a critical value.
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with size NG ~ lnN. Therefore NG / N ݍ lnN / NJ0 in the 
NJ∞ limit, indicating that the largest component is tiny 
compared to the size of the network. 

In summary, in the subcritical regime the network con-
sists of numerous tiny components, whose size follows an 
exponential distribution. Hence these components have 
comparable sizes, lacking a clear winner that we could 
designate as a giant component (Advanced Topics 3.D).

(b) Critical Point: ‹k› = 1, (p = ). 

The critical point separates the regime where there is not 
yet a  giant component (‹k› < 1) from the regime where 
there is one (‹k› > 1).  While it signals the emergence of 
the giant component, the relative size of the largest com-
ponent in this point is still zero (Image 3.6c). Indeed, the 
calculations indicate that the size of the largest component 
is NG ~ N2/3, so its relative size decreases as NG / N~ N -1/3, in-
dicating that NG is still tiny compared to the network’s size. 

In absolute terms there is a significant increase in the size 
of the largest component at ‹k› = 1. For example, for a ran-
dom network of N = 7 ×109 nodes, the size of the globe’s 
social network, for ‹k› < 1 the largest cluster is of the order 
of NG ݍ�lnN = ln (7 ×109)22.7 ݍ. In contrast at ‹k› = 1 we ex-
pect NG ~ N2/3 = (7 ×109)2/3 ݍ� 3 ×106, a jump of about five 
orders of magnitude. Yet, both in the subcritical regime (‹k› 
< 1) and at the critical point (‹k› = 1) the largest component 
contains a vanishing fraction of the total number of nodes in 
the network.

Therefore most nodes are located in numerous small com-
ponents, whose size distribution follows Eq. (36), a pow-
er law form indicating that components of rather differ-
ent sizes coexist. These numerous small components are 
mainly trees, while the giant component may  contain 
loops. Note that many properties of the network at the crit-
ical point resemble the properties of a physical system un-
dergoing a phase transition (Advanced Topics 3.F). 

(c) Supercritical regime: ‹k› > 1, (p > ).

This regime has the most relevance to real systems, as for 
the first time we have a giant component that looks like a 
network. In the vicinity of the critical point the size of the 
giant component varies as

                                                                  (12)

or

                                                                  (13)

where pc  is given by Eq. (11). In other words, the giant 
component contains a finite fraction of all nodes in the net-
work. The further we move from the critical point, a larger 
fraction of nodes will belong to it. Note that Eq. (12) is val-
id only in the vicinity of ‹k› = 1, and for large ‹k› the depen-
dence between NG  and ‹k› is nonlinear (Image 3.6d).  
In the supercritical regime there are still numerous iso-
lated components that coexist with the giant component, 
their size distribution being given by Eq. (35). These small 
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Image 3.6
Evolution of a random network.

(a) The relative size of the giant component in function of the average 
degree ‹k› in the Erdős-Rényi model. 
(b)-(e) The main network characteristics in the four regimes that charac-
terize a random network. 
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components are trees, while the giant component contains 
numerous loops and cycles.  The supercritical regime lasts 
until all nodes are absorbed by the giant component.

(d) Connected regime: ‹k› ≥ lnN, (p ≥    ).

For sufficiently large p the giant component will absorb 
all nodes and components, hence NGݍN. In the absence 
of isolated nodes the network becomes connected. The av-
erage degree at which this happens depends on N as (Ad-
vanced Topic 3.E)

                                                                          (14)

Note that when we enter the connected regime the net-
work is still relatively sparse, as lnN / N q 0 for large N. 
The network turns into a complete graph only at ‹k› = N - 1.

In summary, the emergence of a network within the ran-
dom network model is not a smooth process: the isolated 
nodes and tiny components observed for small ‹k› orga-
nize themselves into a giant component rather sudden-
ly,  through a process called phase transition (Advanced 
Topics 3.F). Along the way we encounter four topologi-
cally distinct regimes (Image 3.6). The discussion offered 
above follows an empirical perspective, fruitful if we wish 
to compare the observed networks to real systems.  A dif-
ferent prospective, leading to it own rich behavior, is dis-
cussed in the mathematical literature (Box 3.5).

k N~ ln .〈 〉
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x 

3.
5

Network evolution in graph theory.

In the random graph literature it is often assumed that the con-
nection probability p(N) scales as Nz, where z is a tunable param-
eter between -h and 0. The greatest discovery of Erdős and Rényi 
was that as we vary z, key properties of random graphs appear 
quite suddenly. To be precise, a graph has a given property Q if the 
probability of having Q approaches 1 as N J h. That is, for a given 
probability either almost every graph has the property Q or, almost 
no graph has it. For example, for z less than -3/2 almost all graphs 
contain only isolated nodes and edges. 

Image 3.7
Evolution of random graph.

The threshold probabilities at which different subgraphs appear 
in a random graph, as defined by exponent z in the p(N) ~ Nz 
relationship. For z < -3/2 the graph consists of isolated nodes 
and edges. When z passes -3/2 trees of order 3 appear, while at 
z = -4/3 trees of order 4 appear. At z = 1 trees of all orders are 
present, together with cycles of all orders. Complete subgraphs 
of order 4 appear at z =-2/3, and as z increases further, complete 
subgraphs of larger and larger order emerge.
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SECTION 7

REAL NETWORKS ARE SUPERCRITICAL

Two predictions of random network theory are of special 
importance for real networks:  

1. Once the average degree exceeds ‹k› = 1, a giant com-
ponent emerges that contains a finite fraction of all 
nodes. Hence only for ‹k› > 1 the nodes organize them-
selves into a recognizable network. 

2. For ‹k› > lnN all components are absorbed by the giant 
component, resulting in a single connected network.

But, do real networks satisfy the criteria for the existence 
of a giant component, i.e. ‹k› › 1? And will this giant com-
ponent contain all nodes, i.e. is ‹k› › lnN , or do we expect 
some nodes and components to remain disconnected? 
These questions can be answered by comparing the mea-
sured ‹k› with the theoretical thresholds uncovered above. 

The measurements indicate that real networks extrava-
gantly exceed the ‹k› = 1 threshold. Indeed, sociologists es-
timate that an average person has around 1,000 acquain-
tances; a typical neuron is connected to dozens of other 
neurons, some to thousands; in our cells, each molecule 
takes part in several chemical reactions, some, like water, 
in hundreds. This conclusion is supported by Table 3.1, 
listing the average degree of several undirected networks, 

in each case finding ‹k› > 1. Hence the average degree of 
real networks is well beyond the ‹k› = 1 threshold, implying 
that they all have a giant component.

Let us now inspect if we have single component (if ‹k› > 
lnN), or we expect the network to be fragmented into 
multiple components (if ‹k› < lnN ). For social networks 
this would mean that ‹k› ≥ ln(7 ×109) �22.7ݍ. That is, if the 
average individual has more than two dozens acquain-
tances, then a random society would have a single com-
ponent, leaving no node disconnected. With ‹k› ݍ� 1,000 
this is clearly satisfied. Yet, according to Table 3.1 most real 
networks do not satisfy this criteria, indicating that they 
should consist of several disconnected components. This 
is a disconcerting prediction for the Internet, as it suggests 
that we should have routers that, being disconnected from 
the giant component, are unable to communicate with 
other routers. This prediction is at odd with reality, as these 
routers would be of little utility. 

Table 3.1
Are real networks connected?
The number of nodes N and links L for several undirected networks, 
together with ‹k› and lnN.  A giant component is expected for ‹k› > 1 and 
all nodes should join the giant component for ‹k›  v lnN.  While for all 
networks ‹k› > 1, for most ‹k› is under the lnN threshold.

Image 3.8
Most real networks are supercritical.
The four regimes predicted by random network theory, marking with a 
cross the location of several real networks of Table 3.1. The diagram indi-
cates that most networks are in the supercritical regime, hence they are 
expected to be broken into numerous isolated components. Only the actor 
network is in the connected regime, meaning that all nodes are expected 
to be part of a single giant component. Note that while the boundary be-
tween the subcritical and the supercritical regime is always at ‹k› = 1, the 
boundary between the supercritical and the connected regimes is at lnN, 
hence varies from system to system. 
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Taken together, we find that most real networks are in the 
supercritical regime (Image 3.8). This means that these 
networks have a giant component, but it coexists with 
many disconnected components and nodes. This is true, 
however, only if real networks are accurately described by 
the Erdős-Rényi model, i.e. if real networks are random. In 
the coming chapters, as we learn more about the structure 
of real networks, we will understand why real networks 
can stay connected despite failing the k > lnN criteria.
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SECTION 8

SMALL WORLD PROPERTY

Small world phenomena, also known as six degrees of sepa-
ration, has long fascinated the general public. It states that 
if you choose any two individuals anywhere on earth, you 
will find a path of at most six acquaintances between them 
(Image 3.9). The fact that individuals who live in the same 
city are only a few handshakes from each other is by no 
means surprising. The small world concept goes further, 
however, stating that even individuals who are on the op-
posite side of the globe are six or fewer hand-shakes from 
us. 

In the language of network science small world phenom-
ena implies that the distance between two randomly chosen 
nodes in a network is surprisingly short. This statement rais-
es two questions: 

SarahRalph

Jane

Peter

w
qq

q
q

q

q

w

w

w

Image 3.9
Six degrees of separation.
According to six degrees of separation any two individuals, anywhere in 
the world, can be connected through a chain of six or fewer acquaintanc-
es. This means that while Sarah does not know Peter, she knows Ralph, 
who knows Jane and who in turn knows Peter. Hence Sarah is three 
degrees from Peter. In the language of network science six degrees, also 
called the small world property, states that the distance between any two 
nodes in a network is unexpectedly small.

What does short (or small) mean, i.e. short compared 
to what?

How do we explain the existence of these short dis-
tances?

Both of these questions are answered by a simple calcula-
tion within the context of random networks. Consider a 
random network with average degree ‹k›.  A node in this 
network has on average:

 ‹k› nodes at distance one (d=1).
 ‹k›2 nodes at distance two (d=2).
 ‹k›3 nodes at distance three (d=3).
 ...
 ‹k›d nodes at distance d.

For example, if  ‹k› 1,000 ݍ, we expect 106 individuals at 
distance two and about a billion individuals, i.e. almost 
the whole earth’s population, at distance three from us.
 
To be precise, the expected number of nodes up to distance 
d from our starting node is

      (15)

Yet, N(d) must not exceed the total number of nodes, N, in 
the network. Therefore the distances cannot take up arbi-
trary values. We can identify a maximum distance dmax   or 
the network’s diameter at which N(d) reaches N. By setting 
            
      (16)

and assuming that ‹k› » 1, we can neglect the (-1) term in 
both the nominator and denominator of Eq. (15), obtain-
ing
        
      (17)

Therefore the diameter of a random network follows
        
      (18)
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which represents the quantitative formulation of the small 
world phenomena. The key, however is its interpretation:

As derived, Eq. (18) predicts the scaling of the network 
diameter, dmax .  Yet, for most networks Eq. (18) offers a 
better approximation to the average distance between 
two randomly chosen nodes, ‹d›, than to dmax (Table 
3.2). This is because dmax is often dominated by a few 
extreme paths, while ‹d› is averaged over all node pairs, 
a process that diminishes the fluctuations. Hence typi-
cally the small world property is defined by 

      (19)

describing the dependence on N and ‹k› of the average 
distance in a network.

d
N
k

log
log

,〈 〉 ∝
〈 〉

Network Name N L ‹k› ‹d› dmax

Internet 192,244 609,066 6.34 6.98 26 6.59

WWW 325,729 1,497,134 4.60 11.27 93 8.32

Power Grid 4,941 6,594 2.67 18.99 46 8.66

Mobile Phone Calls 36,595 91,826 2.51 11.72 39 11.42

Email 57,194 103,731 1.81 5.88 18 18.4

Science Collaboration 23,133 186,936 8.08 5.35 15 4.81

Actor Network 212,250 3,054,278 28.78 - - -

Citation Network 449,673 4,707,958 10.47 11.21 42 5.55

E Coli Metabolism 1,039 5,802 5.84 2.98 8 4.04

Yeast Protein Interactions 2,018 2,930 2.90 5.61 14 7.14

In general log N « N, hence the dependence of ‹d› on 
logN implies that the distances in a random network 
are orders of magnitude smaller than the size of the net-
work. Consequently small world phenomena implies 
that the average path length or the diameter depends 
logarithmically on the system size. Hence, “small” 
means that ‹d› is proportional to log N, rather than N 
or some power of N (Image 3.10).

The 1 / log ‹k› term implies that the denser the network, 
the smaller is the distance between the nodes.

In real networks there are systematic corrections to Eq. 
(18), rooted in the fact that the number of nodes at dis-
tance d > ‹d› drops rapidly (Advanced Topics 3.F).

Table 3.2
Six degrees of separation.
The average distance ‹d› and the maximum distance dmax  of the ten networks explored in this book. The last column provides ‹d› predicted by Eq. (19), 
indicating that it offers a reasonable approximation to ‹d›. Yet, the agreement is not perfect - we will see in the next chapter that for many real networks 
Eq. (19) needs to be adjusted. For directed networks we list the average out-degree ‹kout› and the path lengths are measured only along the direction of 
the links.
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Image 3.10
Why are small worlds surprising?
Much of our intuition about distance is based on our experience with reg-
ular lattices, which do not display the small world phenomenon. Indeed, 

s� For a one-dimensional lattice (a line of length N) the diameter and 
the average path length scale linearly with N: dmax~‹d› ~N. 

s� For a square lattice dmax~‹d› ~ N1/2.  

s� For a cubic lattice dmax~‹d› ~ N1/3. 

s� In general, for a d-dimensional lattice we have dmax ~ ‹d› ~ N1/d.

Such polynomial dependence predicts a much faster increase with N than 
Eq. (19), indicating that in regular lattices the path lengths are signifi-
cantly longer than in a random network. The figure shows the predicted 
N-dependence of ‹d›  for regular and random networks on a linear (left) 
and on a log-log (right) scale. If the social network would form a regular 
2d lattice, where each individual knows only its nearest neighbors, the 
average distance between two individuals would be roughly (7 ×10 9)1/2 = 
83,666. Even if we correct for the fact that a person has about 1,000 ac-
quaintances, not four, the average separation will be orders of magnitude 
larger than predicted by Eq. (19).

Image 3.11
Six degrees? Facebook finds only four.
Milgram’s experiment could not detect the true distance between his 
study’s participants, as he lacked an accurate map of the full social 
network. Today Facebook has the most extensive social network map ever 
assembled. Using Facebook’s social graph of May 2011, consisting of 721 
million active users and 68 billion symmetric friendship links, the average 
distance between the users was 4.74. The figure shows the distance 
distribution, pd , for all pairs of Facebook users worldwide (full dataset) and 
within the US only. Therefore, instead of ‘six degrees’ researchers detected 
only ‘four degrees of separation’ [4], closer to the prediction of Eq. (20) 
than to Milgram’s six degrees [23]. Using Facebook’s N and L Eq. (19) 
predicts the average degree to be approximately 3.90, not far from the 
reported four degrees.

Let us illustrate the implications of Eq. (19) for social net-
works. Using N109× 7 ݍ and ‹k›103ݍ, we obtain   
         
      (20)

Therefore, all individuals on Earth should be within three 
to four handshakes of each other, about a half of “six de-
grees”. The estimate (20) is probably closer to the real val-
ue given by Eq. (7) than the frequently quoted six degrees 
(Image 3.11).

While discovered in the context of social systems, the 
small world property applies beyond social networks. In 
Table 3.2 we compare the prediction of Eq. (19) with the 
average path length ‹d› for several real networks, finding 
that despite the diversity of these systems and the signif-
icant differences between them in terms of N and ‹k›, Eq. 
(19) offers a reasonable approximation to the empirically 
observed ‹d›.

The small world property has not only ignited the public’s 

imagination, but plays an important role in network sci-
ence as well. It affects most network characteristics, from 
the spread of ideas in social networks to search on net-
works. The small world phenomena can be reasonably well 
understood in the context of the random network model: 
it is rooted in the fact that the number of nodes at distance 
d from a node increases exponentially with d. While in 
the coming chapters we will see that in real networks we 
encounter systematic deviations from Eq. (19), forcing us 
to replace it with more accurate predictions, the intuition 
offered by the random network model on the origin of the 
phenomenon remains valid.

d
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Box 3.6a

The first description of small world phenomena goes back to a 
1929 story collection entitled Minden másképpen van (Everything 
is Different) by the Hungarian writer Frigyes Karinthy [21]. In 
Láncszemek (Chains), a short story in the volume, Karinthy sug-
gests that one could name any person among earth’s one and a 
half billion inhabitants (estimated population in 1929) and through 
at most five acquaintances, one of which he knew personally, he 
could link to him. To demonstrate his thesis Karinthy links a Nobel 
Prize winner to himself, noting that the Nobelist must know King 
Gustav, the Swedish monarch who hands out the Nobel Prize, who 
in turn is a consummate tennis player and occasionally plays with a 
tennis champion who is one of Karinthy’s good friends. Remarking 
that finding a chain of acquaintances to celebrities, like a Nobelist, 
is easy, he next links a worker in Ford’s factory to himself: 
“The worker knows the manager in the shop, who knows Ford; Ford 
is on friendly terms with the general director of Hearst Publications, 
who last year became good friends with Árpád Pásztor, someone I 
not only know, but to the best of my knowledge a good friend of 
mine.”
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3.
6b

The first experimental study of small world phenomena took place 
four decades after Karinthy, in 1967, when Stanley Milgram turned 
the idea into an experiment probing the structure of social net-
works [23]. Milgram chose a stock broker in Boston and a divinity 
student in Sharon, Massachusetts as “targets”. Randomly select-
ed residents of  Wichita, Kansas and Omaha, Nebraska received 
a letter containing a short summary of the study’s purpose, a 
photograph, the name, address and information about the target 
person. They were asked to forward the letter to a friend, relative 
or acquaintance, who is more likely to know the target person.
Milgram wrote in 1969: “I asked a person of intelligence how 
many steps he thought it would take, and he said that it would 
require 100 intermediate persons, or more, to move from Nebraska 
to Sharon.”  Yet, within a few days the first letter arrived, passing 
through only two links. Eventually 42 of the 160 letters made 
it back, some requiring close to a dozen intermediates. These 
completed chains allowed Milgram to determine the number of 
individuals required to get the letter to the target. He found that 
the median number of intermediates was 5.5, a relatively small 
number and remarkably close to Karinthy’s 1929 insight. 
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Image 3.12
Frigyes Karinthy (1887-1938)

Hungarian writer, journalist and playwright, the first to describe 
the small world property. He remains one of the most popular 
writers in Hungary. English translation of Chains, the 1929 short 
story describing the small world phenomena, is available in [25].

Image 3.13
Stanley Milgram (1933-1984)

American social psychologist known for his experiments on obe-
dience and authority. He designed and carried out the small world 
experiment in 1967 as part of his Harvard dissertation.
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Box 3.6c

The phrase “six degrees of separation” was introduced in 1991 by 
the playwright John Guare, who used it as the title of his Broad-
way play, later turned into a movie. The play’s lead character, Ousa, 
musing about the world’s interconnectedness, tells her daughter:
 
“Everybody on this planet is separated by only six other people. Six 
degrees of separation. Between us and everybody else on this plan-
et. The president of the United States. A gondolier in Venice. It’s not 
just the big names. It’s anyone.  A native in a rain forest.  A Tierra del 
Fuegan. An Eskimo. I am bound to everyone on this planet by a trail 
of six people. It’s a profound thought.  How every person is a new 
door, opening up into other worlds.” 

Milgram’s study was confined to the United States, linking indi-
viduals in Wichita and Omaha to Boston. Guare, however, with 
the sweep of a writer’s imagination, generalized six degrees to the 
whole planet, bringing it closer in spirit to Karinthy’s 1929 descrip-
tion. As more people watch movies than read sociology papers, 
Guare’s version prevailed in popular thought.
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3.
6d

A new wave of interest in small worlds emerged following 
the 1998 study of Duncan Watts and Steven Strogatz, applied 
mathematicians working at Cornell [30]. They analyzed three real 
systems, the actor network of Hollywood, the neural network 
of the worm C. elegans, and the North American power grid, in 
each case finding that the average distance between the nodes is 
comparable to the random network prediction Eq. (19). Hence they 
found that the small world property applies to networks appearing 
in natural and technological systems as well.  Watts and Strogatz 
also noted that these networks have a much higher clustering 
coefficient than expected for a random network, prompting them 
to propose a model to account for the coexistence of small path 
lengths and large clustering (Image 3.15). The model’s properties 
are discussed in detail in the chapter devoted to social networks. 

Image 3.14
Six Degrees of Separation.

Cover of John Guareís Six Degrees of Separation play, that helped 
turn six degrees into a catch phase of popular culture.

Image 3.15
Watts-Strogatz model.

The model starts from a ring of nodes, each node connected to 
their immediate and next neighbors, a configuration in which 
each node has clustering coefficient C = 3/4 (left, p = 0). With 
probability p each link is rewired to a randomly chosen node. 
For small p the network maintains a high average clustering 
coefficient but the random long-range links drastically decrease 
the distances between the nodes, inducing the small world effect 
(middle). For large p (right, p = 1) the network turns into a random 
network. (After [30]).
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SECTION 9

CLUSTERING COEFFICIENT

The local clustering coefficient Ci captures the density of 
links in node i’s immediate neighborhood: C = 0 means 
that there are no links between i’s neighbors; C = 1 implies 
that each of the i’s neighbors link to each other (Sect. 2.10). 
To calculate Ci for a node in a random network we need 
to estimate the expected number of links Li between the 
node’s ki neighbors. In a random network the probability 
that two of i’s neighbors link to each other is p.  As there are 
ki(ki - 1)/2 possible links between the ki neighbors of node i, 
the expected value of Li is 

         
Thus the local clustering coefficient of a random graph is 
         
   
      (21)

Equation (21) makes two predictions:

(a) For fixed ‹k›, the larger the network, the smaller is a 
node’s clustering coefficient. Consequently the net-
work’s average clustering coefficient <C> is expected to 
decrease as  1 / N.

 
(b) The local clustering coefficient of a node is indepen-

dent of the node’s degree.

To test the validity of Eq. (21) we plot <C>/‹k› in function 
of N for several undirected networks (Image 3.16a). We 
find that <C>/‹k› does not decrease as N-1, but it is largely 
independent of N, in violation of Eq. (21) . In Image 3.16b-
d we also show the dependency of C on the node’s degree 
ki for three real networks, finding that C(k) systematically 
decreases with the degree, again in violation of Eq. (21) . 

Taken together, we find that the random network model 
does not capture the local clustering of real networks. In-
stead real networks have a much higher clustering coeffi-
cient than expected for a random network of similar N and 
L, and high-degree nodes tend to have a smaller clustering 
coefficient than low-degree nodes. 
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Image 3.16
Clustering in real networks.

(a) Comparison between the average clustering coefficient of real net-
works and the prediction Eq. (21) for random networks. Each circle corre-
sponds to a network from Table 3.2. Directed network were made undirect-
ed to calculate C. The dashed line corresponds to Eq. (21), predicting that 
for random networks the average clustering coefficient should decrease as 
N-1. In contrast, for real networks ‹C› has only a weak dependence on N.

(b)-(d) The dependence of the local clustering coefficient, C(k), on the 
node’s degree for (b) the Internet, (c) science collaboration network and 
(d) protein interaction network. C(k) is measured by averaging the local 
clustering coefficient of all nodes with the same degree k. The dashed line 
corresponds to the prediction of Eq. (21) of the random network model, 
for which C(k) is independent of k. In many real networks, the clustering 
coefficient decreases with k.
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SECTION 10

REAL NETWORKS ARE NOT RANDOM

For about four decades following its introduction in 1959 
the random network model has dominated mathematical 
approaches to complex networks. The model suggests that 
if a network is not as regular as a square lattice, we should 
describe it as random. With that it equated complexity 
with randomness.  We must therefore ask: 

Do we really believe that real networks are random? 

The answer is clearly no. The interactions between our 
proteins are governed by the strict laws of biochemistry so 
for the cell to function its chemical architecture can not be 
random. Similarly, in a random society an American stu-
dent would be more likely to have among his friends Chi-
nese factory workers than one of her classmates. In reality 
we suspect the existence of a deep order behind most com-
plex systems. That order must be reflected in the structure 
of the network that describes their architecture, resulting 
in systematic deviations from a pure random configura-
tion.

The degree to which random networks describe (or fail to 
describe) real systems must not be decided by epistemo-
logical arguments, but by a systematic quantitative com-
parison. This is possible because random network theory 
makes a number of quantitative predictions that can be 
tested on real networks:

Degree distribution: The degrees of a random network 
follow a binomial distribution, well approximated by a 
Poisson distribution in the k « N limit. Yet, as shown in 
Image 3.5, the Poisson distribution fails to capture the de-
gree distribution of real networks. Instead in real systems 
we have more highly connected nodes than the random 
network model could account for.

Connectedness: Random network theory predicts that 
for ‹k› > 1 we should observe a giant component, a condi-
tion satisfied by all networks we examined. Most networks 
do not satisfy the ‹k› > ln N condition, which implies that 
these networks should be broken into isolated clusters (Ta-
ble 3.1). Some networks are indeed fragmented, most are 
not.

Average path length: Random network theory predicts 
that the average path length scales as ‹d› ~ logN / log‹k›, a 
prediction that captures the order of magnitude of the path 
lengths. Hence the random network model can account 
for the fundamental features of small world phenomena.

Clustering coefficient: In a random network the local 
clustering coefficient is independent of the node’s degree 
and ‹C› depends on the system size as 1 / N. In contrast, 
measurements indicate that for real networks C decreas-
es with the node degrees and is largely independent of the 
system size (Image 3.16).

Taken together, it appears that the small world phenom-
ena is the only property reasonably explained by the ran-
dom network model. All other network characteristics, 
from the degree distribution to the clustering coefficient, 
are significantly different in real and random networks. In 
fact, the more we learn about real networks, the more we 
will arrive at the startling conclusion that we do not know of 
any real network that is accurately described by the random 
network model.

This conclusion begs a legitimate question: If real net-
works are not random, why did we devote a full chapter 
to the random network model? The answer is simple: the 
model serves as a fundamental reference as we try to un-
derstand the properties of real networks. Each time we ob-
serve some network property we will have to ask if it could 
have emerged by chance. For this we turn to the random 
network model as a guide: if the property is present in the 
model, it means that randomness can account for it. If the 
property is absent in random networks, it may represents 
some signature of order, requiring a deeper explanation. 
So, the random network model may be the wrong model 
for most real systems, yet, it remains quite relevant for net-
work science (Box 3.8).
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Random networks and network science.

The lack of agreement between random and real networks raises 
an important question: how could a theory survive so long given 
its poor agreement with reality? The answer is simple: random net-
work theory was never meant to serve as a model of real systems. 
True Erdős and Rényi did write in their first paper [9] that “This 
may be interesting not only from a purely mathematical point of 
view. In fact, the evolution of graphs may be considered as a rath-
er simplified model of the evolution of certain communication nets 
(railways, road or electric network systems, etc.) of a country or 
some unit.” Yet, this is the only mention of the potential practical 
value of their approach. The subsequent development of random 
graphs was driven by inherent mathematical challenges. 

It is tempting to follow Thomas Kuhn and view network science 
as a paradigm change from random graphs to a theory of real 
networks [22]. In reality, there was no network paradigm before 
the end of 1990s. This period is characterized by a lack of interest 
in the problem, without systematic attempts to compare the prop-
erties of real networks with graph theoretical models. The work of 
Erdős and Rényi has gained prominence outside mathematics only 
after the emergence of network science (see Image 3.17). 

Network theory does not lessen the contributions of Erdős and 
Rényi, but demonstrates the unintended importance of their work. 
When we point out the disrepacies between the predictions of the 
random network model and real networks, we do so only to offer a 
proper ground on which we can understand the properties of real 
systems. 

Image 3.17
Network science and random networks.

While today we perceive the Erdős-Rényi model as the cornerstone 
of network theory, the model was hardly known outside a small 
segment of mathematics.  This is illustrated by the yearly citations 
of the first two papers by Erdős and Rényi, published in 1959 and 
1960. For four decades after their publication the papers gathered 
less than 10 citations per year. The number of citations exploded 
after the first papers on scale-free networks [2, 3, 20] have turned 
Erdős and Rényi’s work into the reference model of network 
theory.
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At a glance: Random networks

s� Definition:  N nodes, where each node pair is connected with 
probability p.

s� Average degree:  

s� Average number of links:  

s� Degree distribution:  

For sparse networks (k « N), Pk has the Poisson form

 

s� Giant component  (NG) :

‹k› < 1: no giant component  (NG~ lnN)

1 < ‹k› < lnN: one giant component and disconnected clusters

‹k› > lnN: all nodes join the giant component 

s� Average distance:     

s� Clustering coefficient:     
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SECTION 11

SUMMARY:
THE FIRST LAW OF NETWORKS

Network science has distilled a small number of funda-
mental organizing principles that govern the structure and 
evolution of real networks. We call these network laws as 
just like the laws of physics, they encode generic principles 
obeyed by many real networks. A network property quan-
tifies as a law if 

(A) it has a unique quantitative, testable and falsifiable 
formulation; 

(B) it is obeyed by a large number of real networks; 

(C) it does not emergence by chance, hence it cannot be 
explained within the context of the random network 
model.

The results of this chapter allow us to formulate the fist of 
these laws:

The First Law: Small World Property
In complex networks there are short 
distances between any pair of nodes.

Evidence for the first law is provided in Sect. 3.8. To recap 
in the context of the criteria A-C:

A. Equation (19) offers the quantitative formulation of the 
First Law, predicting that the average distance between 
two randomly chosen nodes scales as a logarithm of 
the system size. Hence node-to-node distances are 
small compared to the network size. 

B. Table 3.2 offers evidence that most real networks obey 
the first law. 

C. As the small world property is present in random net-
works, the First Law apparently fails criterion C. Yet, 
we will see in the next chapter that in real networks 
distances are different from those expected in random 
networks, forcing us to modify Eq. (19). 



SECTION 12

ADVANCED TOPICS 3.A: 
DERIVING THE POISSON DEGREE DISTRIBUTION

We start from the exact binomial distribution (7)
         

      (22)

that characterizes a random graph, and we rewrite the first 
term on the r.h.s. as
        
      (23)

The last term of  Eq. (22) can be simplified as
   

and using the series expansion
  

we obtain
 

which is valid if N » k, representing the small degree ap-
proximation at the heart of this derivation. Therefore the 
last term of Eq. (22) becomes
       
 
       (24)

Combining  Eqs. (22), (23), and (24) we obtain the Poisson 
form of the degree distribution
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SECTION 13

ADVANCED TOPICS 3.B: 
MAXIMUM AND MINIMUM DEGREES

To determine the expected degree of the largest node in a 
random network, called the network’s upper cutoff, we de-
fine the degree kmax such that in a network of N nodes we 
have at most one node with degree higher than kmax . Math-
ematically this means that the area behind the Poisson dis-
tribution pk for k ≥ kmax should be approximately one (Im-
age 3.18). Since the area is given by 1- P(kmax), where P(k) 
is the cumulative degree distribution of pk, the network’s 
largest node satisfies: 
        
      (26)

We write    instead of =, because kmax is an integer, so in 
general the exact equation does not have a solution. For a 
Poisson distribution
      (27)

where in the last term we approximate the sum with its 
largest (leading) term. 

For N = 109, and ‹k› = 1,000 corresponding to roughly the 
size and average degree of the globe’s social network, we 
obtain kmax = 1,185, indicating that a random network lacks 
extremely popular individuals, or hubs.

We can use a similar argument to calculate the degree of 
the smallest node kmin , or the natural smallest cutoff. In-
deed, by requiring that there should be at most one node 
with degree smaller than kmin we can write
               
      (28)

If P(0) > 1 the equation has no solution and kmin = 0. For the 
ER network we have 
         
      (29)

Solving Eq. (28) with N = 109 and ‹k› = 1,000 we obtain  kmin 
= 816.

�

N P k1 ( )  1.max−  ≈

P k e
k
k

e
k
k

e
k
k

1 ( ) 1
! ! ( 1)!

,max
k

k

k

k
k

k

k k

k
k

max0 1

1max

max

max

∑ ∑− = − 〈 〉 = 〈 〉 ≈ 〈 〉
+

−〈 〉

=

−〈 〉

= +

∞
−〈 〉

+

NP k( ) 1.min ~

P k e
k
k

( )
!min

k
k

k

k

0

min

∑= 〈 〉−〈 〉

=

p(
k
)

k kmax

��	���������������
���������
�����
����
����������������1/N

Image 3.18
Approximating the minimum and the maximum degree.

The maximum degree kmax is chosen so that there is at most one node 
whose degree is higher than kmax . This is often called the natural upper 
cutoff of a degree distribution. To calculate it, we need to set kmax such 
that the area under the degree distribution pk for k v kmax is exactly equal 
to 1/N, hence this area multiplied by N, capturing the total number of 
nodes expected in the regime, is exactly one.  We follow a similar argu-
ment to determine kmin, or the expected smallest degree.
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SECTION 14

ADVANCED TOPICS 3.C: 
GIANT COMPONENT

Our aim here is to reproduce the argument, put forward 
independently by Solomonoff and Rapoport [28], and by 
Erdős and Rényi [8], on the emergence of giant component 
at ‹k›= 1 (see also [24]).

Let us denote with u = 1 - NG / N the fraction of nodes that 
are not in the giant component (GC), whose size we take to 
be NG . If node i is part of the GC, it must link to another 
node j, which is also part of the GC. Hence if i is not part of 
the GC, that could happen for two reasons: 

There is no link between i and j (probability for this is 
1- p).

There is a link between i and j, but j is not part of the 
GC (probability for this is pu).

Therefore the total probability that i is not part of the GC 
via node j is 1 - p + pu. The probability that i is not linked 
to the GC via any other node is therefore (1 - p + pu)N - 1, as 
there are N - 1 nodes that could serve as a potential links 
to the GC for node i.  As u is the fraction of nodes that do 
not belong to the GC, for any p and N the solution of the 
equation 
        
      (30)

provides the size of the giant component via NG  = N(1 - u). 
Using p = ‹k› / (N - 1) and taking the log of both sides, for 
‹k› « N we obtain

      (31)

Taking an exponential of both sides leads to u = exp[- ‹k›(1 
- u)]. If we denote with S the fraction of nodes in the giant 
component, S = NG / N, then S = 1 - u and Eq. (31) provides

           
      (32)

This simple looking equation provides the size of the giant 
component S in function of ‹k› (Image 3.19).  Yet, Eq. (32) 

does not have a closed solution. We can solve it graphically 
by plotting  the right hand side of Eq. (32) as a function of 
S for various values of ‹k›.  To have a nonzero solution, the 
obtained curve must intersect with the dotted diagonal, 
representing the left hand side of Eq. (32). For small ‹k› the 
two curves intersect each other only for S = 0, indicating 
that for small ‹k›, the size of the giant component is zero.  
Only when ‹k› exceeds a threshold value, does a non-zero 
solution emerge.

To determine the value of ‹k› at which we start having a 
nonzero solution we take a derivative of Eq. (32), as the 
phase transition point is when the r.h.s. of Eq. (32) has the 
same derivative as the l.h.s. of Eq. (32), i.e.

        
      (33)

Setting S = 0, we obtain that the phase transition point is 
at ‹k› = 1.
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Image 3.19
Graphical solution for the size of the giant component.

(a) The three curves in the left panel show y = 1-exp[ -‹k› S ] for various 
‹k›. The diagonal dashed line corresponds y = S, and the intersection of the 
dotted and continuous lines provides the solution to Eq. (32), 
S = 1-exp[ -‹k›S ]. For the bottom curve there is only one intersection, at 
S = 0, indicating the absence of a giant component. The top curve a solu-
tion at S = 0.583... (vertical dashed line). The middle curve is precisely at 
the threshold between the regime where a non-zero solution for S exists 
and the regime where there is only the solution S = 0. 
(b) The size of the giant component in function of ‹k› as predicted by 
Eq. (32) [24].
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SECTION 15

ADVANCED TOPICS 3.D: 
COMPONENT SIZES

In Image 3.5 we focused only on the size of the giant com-
ponent, leaving an important question open: how many 
smaller components do we expect for a given ‹k›, and what 
is their expected sizes? The aim of this section is to discuss 
these topics. 

Component size distribution: For a random network 
the probability that a randomly chosen node belongs to a 
component of size s (different from the giant component 
G ) is [24]
         
      (34)

Replacing ‹k›s-1 with exp[(s-1) ln‹k›]  and using the 

Stirling-formula 

for large s we obtain
              
      (35)

Therefore the component size distribution has two contri-
butions: a slowly decreasing power law term s-3/2 and a rap-
idly decreasing exponential term e-(‹k›-1)s+(s-1)ln‹k›. Given that 
an exponential dominates for large s, Eq. (35) predicts that 
large components are prohibited.  The only exception is at 
the critical point, ‹k›=1, where all terms in the exponential 
cancel, hence ps follows the power law
        
      (36) 

As a power law decreases relatively slowly, at the critical 
point we expect to observe clusters of widely different 
sizes, a property consistent with the behavior of a system 
during a phase transition (Advanced Topics 3.E). These 
predictions are supported by numerical simulations in 
Image 3.20, that shows ps for three ‹k› values.

Average component size: The calculations also indicate 
that the average component size  (once again, excluding 

the giant component) follows [24]

      
     . (37)

For ‹k› < 1 we lack a giant component (NG = 0), hence 
Eq. (37) becomes 
                                   
           ,  (38)

which diverges when the average degree approaches the 
critical point ‹k› = 1.  Therefore as we approach the criti-
cal point, the clusters are becoming bigger, signaling the 
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Image 3.20
Component size distribution.

Component size distribution in a random network, ps, excluding the giant 
component. (a)-(c) shows ps for different ‹k› values and N, indicating that 
ps converges for large N to the prediction (34). In (d) we show the results 
for N = 104, plotting together ps for different ‹k›. The plot clearly shows 
that while for ‹k› < 1 and ‹k› > 1 the ps has a exponential form, right at the 
critical point ‹k› = 1 the distribution follows the power law (36). The dotted 
line in each image correspond to the theoretical prediction (35). The first 
numerical study of the component size distribution in random networks 
was carried out in 1998, preceeding the exploding interest in complex 
networks.
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Image 3.21
Average component size.

a. Upper curve: the average size <s> of a component to which a ran-
domly chosen node belongs to as predicted by Eq. (39). Lower curve: 
the overall average size <s’> of a component as predicted by Eq. (37). 
The dotted vertical line marks ‹k› = 1 (Redrawn after Newman, 2010).

b. The average cluster size in a network measured in by numerical 
simulations, where we picked a node in the network and determined 
the size of the cluster it belongs to. This measure is biased, as each 
component of size s’ will be counted s’ times. The larger N becomes, 
the more closely the numerical data follows the prediction of Eq. (37). 
As predicted, <s> diverges at the ‹k›=1, critical point, supporting the 
existence of a phase transition in the system (Advanced Topics 3.F).

c. The average cluster size in a network, where we corrected for the bias 
in (b) by selecting each component only once.The larger N becomes, 
the more closely the numerical data follows the prediction of Eq. (39). 

emergence of the giant component at ‹k› = 1. Once again, 
numerical simulation support these predictions for large 
N (Image 3.21).

To determine the average component size for ‹k› > 1 using 
Eq. (37), we need to first determine the size of the giant 
component. This can be done in a self-consistent manner, 
obtaining that the average cluster size decreases for 
‹k› > 1, as most of the clusters are gradually absorbed by the 
giant component.

Note that Eq. (37) predicts the size of the component to 
which a randomly chosen node belongs to. This is a biased 
measure, as the chance of belonging to a larger cluster is 
higher than the chance of belonging to a smaller one. The 
bias is linear in the cluster size, s. If we correct for this bias, 
we obtain the average size of the small components that we 
would get if we were to inspect each cluster one by one and 
measuring their average size [24]

           
      (39)

Image 3.21 again offers numerical support for Eq. (39).
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SECTION 16

ADVANCED TOPICS 3.E: 
SUPERCRITICAL REGIME.

To determine the value of ‹k› at which most nodes became 
part of the giant component, we calculate the probability 
that a randomly selected node does not have a link to the 
giant component, which is                             , as in this re-
gime NG ݍ N. The expected number of such isolated nodes 
is

      (40)

where we used                           , an approximation valid for

 large n. If we make p sufficiently large, we arrive to the 
point where only one node remains disconnected from the 
giant component.  At this point IN = 1, hence according to 
Eq. (40) p needs to satisfy                . Consequently, the 
value of p at which we are about to enter the fully connect-
ed regime is
        
      (41)

which leads to Eq. (14) in terms of ‹k›.
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SECTION 17

ADVANCED TOPICS 3.F: 
PHASE TRANSITIONS.

The emergence of the giant component at ‹k›=1 in the ran-
dom network model is reminiscent of a phase transition, a 
much studied phenomenon in physics and chemistry [29]. 
Consider two examples:

i. Water-Ice Transition (Image 3.22a): At high tempera-
tures the H2O molecules engage in a diffusive dance, 
forming small groups and then breaking apart to group 
up with other molecules. If cooled, at 0˚C the mole-
cules suddenly form a perfectly ordered ice crystal. 

ii. Magnetism (Image 3.22b): In ferromagnetic metals like 
iron at high temperatures the spins point in randomly 
chosen directions. Under some critical temperature Tc, 
however, all atoms orient their spins in the same direc-
tion and the metal becomes a magnet.

The freezing of a liquid and the emergence of magneti-
zation are examples of phase transitions, representing 
transitions from disorder to order. Indeed, relative to the 
perfect order of the crystalline ice, liquid water is rather 
disordered. Similarly, the randomly oriented spins in a 
ferromagnetic take up the highly ordered common orien-
tation under Tc. 

Many properties of a system undergoing a phase transition 
are universal, that is, they are the same in a wide range of 
systems, from magma freezing into rock to a ceramic ma-
terial turning into a superconductor. Furthermore, near 
the phase transition point, called the critical point, many 
quantities of interest follow power-laws.  The phenomena 
observed near the critical point ‹k›=1 in a random network 
in many ways is similar to such a phase transition:

The similarity between Image 3.6a and the magneti-
zation diagram of Image 3.22b is not accidental: they 
both show transition from disorder to order, man-
ifested as the emergence of a giant component as ‹k› 
exceeds ‹k›=1 in a random network. 

As we approach the freezing point, ice crystals of wide-
ly different sizes are observed, and so are domains of 
atoms with spins pointing in the same direction. The 
size distribution of the ice crystals or magnetic do-

mains follows a power law. Similarly, while for 
‹k› < 1 and ‹k› > 1 the cluster sizes follow an exponen-
tial distribution, in a random network right at the 
phase transition point, ps follows a power law given 
by Eq.(36), implying the coexistence of components of 
widely different sizes.

At the critical point the average size of the ice crystals 
or of the magnetic domains diverges, assuring that the 
whole system turns into a single frozen ice crystal or 
that all spins point in the same direction. Similarly in 
a random network the average cluster size <s> diverges 
as we approach ‹k› = 1 (Advanced Topics 3.D).
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Image 3.22a
Water-Ice phase transition.

The hydrogen bonds that hold the water molecules together (dotted lines) are weak, constantly breaking up and re-forming, maintaining partially 
ordered local structures (left panel). The temperature-pressure phase diagram indicates (center panel) that by lowering the temperature, the water 
undergoes a phase transition, moving from a liquid (orange) to a frozen solid (red). In the solid phase each water molecule binds rigidly to four other 
molecules, forming an ice lattice (right panel). After http://www.lbl.gov/Science-Articles/Archive/sabl/2005/February/ water-solid.html; phase diagram 
after http://stevengoddard.wordpress.com/2010/09/02/the-ideal-world-phase-diagrams-part-deux/ 

Image 3.22b
Magnetic phase phase transition.

In magnetic materials the magnetic moments of the individual atoms (spins) can point in two different directions.  At high temperatures they choose 
randomly their direction (right panel), hence the system’s total magnetization, m =  ∆M / N, where ∆M is the number of up spins minus the number of 
down spins, is zero. The phase diagram (middle panel) indicates that by lowering the temperature X, the system undergoes a phase transition at T = Tc  
when a nonzero magnetization emerges, hence m = M / N converges to one. In this ordered phase all spins point in the same direction (left panel).
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      (44)

Hence if ‹k› increases, the second and the third terms van-
ish and the solution (42) converges to the result (18). 

SECTION 18

ADVANCED TOPICS 3.G: 
CORRECTION TO SMALL WORLDS

Equation (18) offers only a rough approximation to the 
network diameter, valid for very large N and small d. In-
deed, as soon as ‹k›d approaches the system size N the ‹k›d  

scaling must break down, as we are hitting the boundary 
of the network and there are not enough nodes to continue 
the ‹k›d expansion. Such finite size effects result in correc-
tions to Eq. (18). 

For a random network with average degree ‹k›, the network 
diameter is better approximated by (Fernholz & Ramach-
andran, 2007)

      (42)

where  the Lambert W-function W(z) is the principal in-
verse of  f(z) = z exp(z). The first term on the r.h.s is Eq. 
(18), while the second is the correction that depends on the 
average degree. The correction increases the diameter, ac-
counting for the fact that when we approach the network’s 
diameter the number of modes must grow slower than ‹k› . 
The magnitude of the correction becomes more obvious if 
we consider the various limits of Eq. (42).

In the ‹k› q 0 limit, i.e. when the network approaches 
the phase transition point, we can determine the Lambert 
W-function and the diameter becomes 

       (43)

Hence in the moment when the giant component emerg-
es the network diameter is three times our prediction (18). 
This is due to the fact that at the critical point ‹k› = 1 the 
network has a tree-like structure, consisting of long chains 
with hardly any loops, a configuration that significantly 
increases dmax .

In the ‹k› q ∞ limit, corresponding to a very dense net-
work, Eq. (42) becomes
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THE SCALE-FREE PROPERTY

CHAPTER 4

Figure 4.0 (next page)
Art and Networks: Tomás Saraceno

Tomás Saraceno creates art work inspired by 
spider webs and neural networks. Trained as 
an architect, Saraceno deploys theoretical 
frameworks and insights from engineering, 
physics, chemistry, aeronautics, and materi-
als science usingnetworks as a source of in-
spiration and metaphor. The image shows his 
work displayed in the Miami Art Museum, an 
example the artist’s take on a complex net-
work.





3

SECTION 4.1

THE SCALE-FREE PROPERTY

As difficult it is to overstate the importance of the World Wide Web in 
our daily life, it is equally hard to exaggerate the role the Web played in 
the development of network theory. It aided the discovery of a number of 
fundamental network properties and became a standard testbed for many 
network measures. As its name states, the WWW is a “web” whose nodes 
are documents and the links are the uniform resource locators (URLs) that 
allow us to move with a click from one web document to the other. With 
an estimated size of over one trillion documents (N1012ݍ), the Web is the 
largest network humanity has ever built. It exceeds in size even the human 
brain (N 1011 ݍ neurons).

We can use a software called a crawler to map out the Web’s wiring di-
agram. A crawler can start from any web document, identifying the links 
(URLs) on it. Next it downloads the documents these links point to and 
identifies the links on these documents, and so on. This process iteratively 
returns a local map of the Web. Search engines like Google or Bing operate 
such crawlers that constantly index new documents, along the way provid-
ing a detailed map of the WWW. 

The first map of the WWW obtained with the explicit goal of under-
standing the structure of the network behind it was generated by Hawoong 
Jeong at University of Notre Dame. He mapped out the nd.edu domain [1], 
consisting of about 300,000 documents and 1.5 million links. The purpose 
of the map in Fig. 4.1 was to compare the properties of the Web graph to 
the random network model. Indeed, in 1998 there were reasons to believe 
that the WWW could be well approximated by a random network. The con-
tent of each document reflects the personal and professional interests of 
its creator, from individuals to organizations. Given the diversity of these 
interests, the links on these documents might appear to point to randomly 
chosen documents.  A quick look at the map in Fig. 4.1  supports this view: 
there is a high degree of randomness behind the Web’s wiring diagram. 
Yet, a closer inspection reveals some puzzling differences between this 
map and a random network. In a random network highly connected nodes, 
or hubs, are effectively forbidden. 

INTRODUCTION
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A visualization of the web sample that led to 
the discovery of the scale-free property. The 
sequence of images shows an increasingly 
magnified local region of the network. The 
first panel displays all 325,725 nodes, offer-
ing a global view of the full dataset. Nodes 
with more than 50 links are shown in red and 
nodes with more than 500 links in purple. The 
increasingly magnified closeups reveal the 
presence of a few highly connected nodes, 
called hubs, that accompany scale-free net-
works (Image by M. Martino).

Figure 4.1
The topology of the WWW

In contrast in Fig. 4.1 numerous small-degree nodes coexist with a few 
hubs, nodes with an exceptionally large number of links. The purpose of 
this chapter is to show that these hubs are not unique to the Web, but we 
encounter them in many real networks. They represent a signature of a 
deeper organizing principle that we call the scale-free property.



THE SCALE-FREE PROPERTY 5

If the WWW were to be a random network, its degrees should follow a 
Poisson distribution. Yet, as Fig. 4.1 indicates, the Poisson form offers a poor 
fit for the WWW’s degree distribution. Instead we find that on a log-log 
scale the data points form an approximate straight line, suggesting that 
the degree distribution of the WWW is best approximated with

Eq. 4.1 is called a power law distribution and the exponent� ਠ� is its degree 
exponent. If we take a logarithm of Eq. 4.1, we obtain

Therefore, if Eq.  4.1 holds, logpk is expected to depend linearly on logk, the 
slope of this line being the degree exponent ਠ, as observed in Fig. 4.2.

POWER LAWS AND 
SCALE-FREE NETWORKS

SECTION 4.2

(4.1)

(4.2)

The incoming (left panel) and outgoing (right 
panel) degree distribution of the WWW sam-
ple mapped in the 1999 study of Albert et al. 
[1]. The degree distribution is shown on double 
logarithmic axis (log-log plot), in which a pow-
er law is expected to follow a straight line. The 
symbols correspond to the empirical data and 
the dotted line corresponds to the power-law 
fit, with degree exponents ਠin= 2.1 and ਠout = 
2.45. The degree distribution predicted by a 
Poisson function with average degree ຊkin = 
ຊkout = 4.60, representing the observed values 
for the WWW sample, is shown as a dotted 
line.

Figure 4.2
The degree distribution of the WWW

p k~ .k
γ−

p klog ~ log .k γ−



As the WWW is a directed network, each document is characterized by 
an out-degree kout , representing the number of links that point from a doc-
ument to other documents, and an in-degree kin, representing the num-
ber of other documents that point to a given document. We must therfore 
distinguish two different degree distributions: the probability that a ran-
domly chosen document points to kout other web documents, or p      , and 
the probability that a randomly chosen node has kin other web documents 
pointing to it, or p     . In the case of the WWW both p    and p       can be ap-
proximated by a power law

where ਠin and ਠout are the degree exponents for the in- and out-degrees, re-
spectively Fig. 4.2. In general ਠin can differ from ਠout. For example, for the 
WWW sample of Fig. 4.1 we have ਠin ݍ� 2.1 and ਠout ݍ� 2.45. The empirical 
evidence discussed above leads to the concept of a scale-free network [2]: 
Networks whose degree distribution follows a power law are called scale- 
free networks. As Fig. 4.2 indicates, for the WWW the power law persists for 
almost four orders of magnitude, prompting us to call the network behind 
the Web scale-free. In this case the scale-free property applies to both in 
and out-degrees. To explore the consequences of the scale-free property, we 
have to define the power-law distribution in more precise terms. For this 
we introduce the discrete and the continuum formalisms used throughout 
this book.

DISCRETE FORMALISM

As node degrees are always positive integers, k = 0, 1, 2, 3, ..., N, the dis-
crete formalism captures the probability pk that a node has exactly k links

The constant C is determined by the normalization condition

Using Eq. 4.4 we obtain,                      , hence

where�ਣ߶ਠ߷�is the Riemann-zeta function. Thus for k  > 0 the discrete pow-
er-law distribution has the form

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)
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Note that Eq. 4.8 diverges at k=0. We therefore need to separately speci-
fy p0, representing the fraction of nodes that have no links to other nodes 
(isolated nodes).

CONTINUUM FORMALISM

In analytical calculations it is often convenient to assume that the de-
grees can take up any positive real value. In this case the power-law degree 
distribution is written as:

Using the normalization condition:

we obtain the constant:

Therefore in the continuum formalism the degree distribution has the 
form:

Here kmin is the smallest degree for which the power law Eq. 4.8 holds. 
Note that pk encountered in the discrete formalism has a precise meaning: 
it provides the probability that a randomly selected node has degree k. In 
contrast, only the integral of p(k) encountered in the continuum formal-
ism has a physical interpretation:

provides the probability that a randomly chosen node has degree between 
k1 and k2. In summary, networks whose degree distribution follows a power 
law are called scale-free networks. If a network is directed, the scale-free 
property can apply separately to the in- and the out-degrees.

To mathematically study the properties of scale-free networks, we 
can use the discrete or the continuum formalism. Note, however, that the 
scale-free property is independent of the formalism we use to describe the 
degree distribution.

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)
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BOX 4.1
The 80/20 rule and the top one percent

Vilfredo Pareto, a 19th century economist, noticed that in It-
aly a few wealthy individuals earned most of the money, while 
the majority of the population earned rather small amounts. He 
connected this disparity to the observation that incomes follow 
a power law, representing the first known report of a power-law 
distribution [3]. His finding entered the popular literature as the 
80/20 rule: roughly 80 percent of money is earned by only 20 per-
cent of the population.

The 80/20 emerges in many areas, like management, stating that 
80 percent of profits are produced by only 20 percent of the em-
ployees or that 80 percent of decisions are made during 20 per-
cent of meeting time.  

They are present in networks as well: 80 percent of links on the 
Web point to only 15 percent of webpages; 80 percent of citations 
go to only 38 percent of scientists; 80 percent of links in Holly-
wood are connected to 30 percent of actors [4]. Typically all quan-
tities obeying the 80/20 rule follow a power law distribution.

During the 2009 economic crisis power laws have gained a new 
meaning: the Occupy Wall Street Movement highlighted the fact 
that in the US 1% of the population earns a disproportionate 15% 
of the total US income. This 1% effect, a signature of a profound 
income disparity, is again a natural consequence of the pow-
er-law nature of the income distribution.

Italian economist, political scientist, and phi-
losopher, who had important contributions 
to our understanding of income distribution 
and to the analysis of individuals choices. A 
number of fundamental principles are named 
after him, like Pareto efficiency, Pareto distri-
bution (another name for a power-law distri-
bution), the Pareto principle (or 80/20 law).

Figure 4.3
Vilfredo Federico Damaso Pareto (1848 – 1923)

POWER LAWS AND SCALE-FREE NETWORKS
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Poisson vs. power-law distributions
Figure 4.4

a

c

b

d

SECTION 4.3

HUBS

The main difference between a random and a scale-free network comes 
in the tail of the degree distribution, representing the high-k region of pk. 

Fig. 4.4 compares a power law with a Poisson function, indicating that:

• For small k the power law is above the Poisson function, hence a scale-
free network has a large number of small degree nodes that are virtually 
absent in a random network.

• For k the vicinity of ຊk the Poisson distribution is above the power law, 
indicating that in a random network most nodes have degree k ݍ�ຊk.

• For large k the power law is again above the Poisson curve. The differ-
ence is particularly visible if we show pk on a log-log plot Fig. 4.4b, indicating 
that the probability of observing a high-degree node, or hub, is several or-
ders of magnitudes higher in a scale-free than in a random network.

Let us use the WWW to illustrate the properties of the high-k regime.
The probability to have a node with k �100ݍ is about p100 30−�10ݍ in a Pois-
son distribution while it is about p100 4−�10ݍ if pk follows a power law. Con-
sequently, if the WWW were to be a random network with

                                

and N �1012ݍ Table 4.1, we would expect nodes with more than 100 links, or 
effectively none. In contrast, given the WWW’s power law degree distribu-
tion, with�ਠin = 2.1, we have Nk > 100 = 109 nodes with degree k >100.

HUBS

All real networks are finite. The size of the WWW is estimated to be N ݍ 
1012 nodes; the size of the social network is the Earth’s population, about N 
-These numbers are huge, but finite. Other networks pale in com .109 × �7ݍ
parison: the genetic network in a human cell has approximately 20,000 
genes while the metabolic network of the E. Coli bacteria has only about a 

(a) A Poisson function and a power-law 
function with�ਠ= 2.1. Both distributions have 
.10  =ࢮkࢭ
(b) The curves in (a) shown on a log-log plot, 
offering a better view of the difference be-
tween the two functions in the high-k regime. 
(c) A random network with ࢭk3 =ࢮ and N = 50, 
illustrating that most nodes have comparable 
degree k ࢭݍkࢮ. 
(d) A scale-free network with ࢭk3 =ࢮ, illustrat-
ing that numerous small-degree nodes coexist 
with a few highly connected hubs.

(4.14)N
k
e k
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thousand metabolites. This prompts us to ask: how does the network size 
affect the size of its hubs? 

For an arbitrary degree distribution pk we can calculate the expected 
maximum degree, kmax, often called natural cutoff. It represents the ex-
pected size of the largest hub.

It is instructive to perform the calculation first for the exponential dis-
tribution pk = Ce−ਨk. Assuming that the network’s minimum degree is k , the 
normalization  condition                    

provides C = ਨeਨkmin. To calculate kmax we assume that in a network of N 
nodes we expect at most one node in the (kmax, ∞) regime. In other words 
the probability to observe a node whose degree exceeds kmax is 1 / N:

Equation Eq. 4.14 yields

As ln N is a slow function of the system size, Eq. 4.17 tells us that the 
maximum degree will not be very different from kmin. For a Poisson degree 
distribution the calculation is a bit more involved, but the obtained depen-
dence of kmax on N is even slower than the logarithmic dependence predict-
ed by Eq. 4.17.

For a scale-free network, according to Eq. 4.16 and Eq. 4.17 the natural cut-
off follows

Hence the larger a network, the larger is the degree of its biggest hub.
The polynomial dependence of kmax on N implies that in a large scale-free 
network there can be orders of magnitude differences in size between the 
smallest node, kmin, and the biggest hub, kmax Fig. 4.5 .

To illustrate the difference in the maximum degree of an exponential 
and a scale-free network let us return to the WWW sample of Fig. 4.1 consist-
ing of N 105 × 3 ݍ nodes. As kmin = 1, if the degree distribution were to follow 
an exponential, Eq. 4.17 predicts that the maximum degree should be kmax�
 In a scale-free network of similar size and ਠ=2.1, Eq. 4.18 predicts kmax .13 ݍ
 a remarkable difference. Note that the largest in-degree of this ,85,000 ݍ
WWW map of Fig. 4.1 is 10,721, which is comparable to the predicted kmax.

This reinforces our conclusion that in a random network hubs are for-
bidden, while in scale-free networks they occur naturally.

(4.16)

(4.15)

(4.17)

(4.18)
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The expected degree of the largest node (natu-
ral cutoff) in scale-free and random networks 
with the same average degree ࢭk3 =ࢮ. For the 
scale-free network we chose ਠ�= 2.5. For com-
parison, we also show the linear behavior, 
kmax Ȯ N − 1, expected for a complete network. 
Overall, hubs in a scale-free network are sev-
eral orders of magnitude larger than the big-
gest node in a random network with the same 
N and ࢭkࢮ.

Figure 4.5
Hubs are large in scale-free networks
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In summary the key difference between a random and a scale-free 
network comes in the different shape of the Poisson and of the power-law 
function: in a random network most nodes have comparable degrees and 
hence hubs are forbidden. Hubs are not only tolerated, but are expected in 
scale-free networks Fig. 4.5.

The more nodes a scale-free network has, the larger are its hubs. The 
hubs grow polynomially with the network size, hence their size can be con-
siderable in large networks. In contrast in a random network the size of the 
largest node grows logarithmically or slower with N, implying that hubs 
will be tiny even in a very large network.

THE SCALE FREE PROPERTY HUBS11

Left column: the degrees of a random network 
follow a Poisson distribution, which is rather 
similar to the Bell curve shown in the figure. 
This indicates that most nodes have compara-
ble degree. Hence nodes with a large number 
of links are absent (top panel). Consequently 
a random network looks a bit like a national 
highway network in which nodes are cities 
and links are the major highways connecting 
them (bottom panel). Indeed, there are no ma-
jor cities with hundreds of highways and no 
city is disconnected from the highway system. 

Right column: In a network with a power-law 
degree distribution most nodes have only a 
few links. These numerous small nodes are 
held together by a few highly connected hubs 
(top panel). Consequently a scale-free net-
work looks a bit like the air-traffic network, 
whose nodes are airports and links are direct 
flights between them. Most airports are tiny, 
with only a few flights linking them to other 
airports. Yet, we can also have few very large 
airports, like Chicago or Atlanta, that hold 
hundreds of airports together, acting as major 
hubs (bottom panel). 

Once hubs are present, they change the way 
we navigate the network. For example, if we 
travel from Boston to Los Angeles by car, we 
must drive through many cities (nodes). On 
the airplane network, however, we can reach 
most destinations via a single hub, like Chica-
go.

After [4].

Figure 4.6
Random versus scale-free networks
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What is behind the “scale-free” name? The term is rooted in a branch of 
statistical physics called the theory of phase transitions SECTION 3.F, that 
extensively explored power laws in the 1960s and 1970s. To best under-
stand the meaning of the scale-free term, we need to familiarize ourselves 
with the moments of the degree distribution. The nth moment of the degree 
distribution is defined as:

The lower moments have important interpretation:
• n=1: the first moment is the average degree, ࢭkࢮ.
• n=2: the second moment, ࢭk2ࢮ, provides the variance ਯ2 = ࢭk2ࢭ − ࢮk2ࢮ, 

measuring the spread in the degrees. Its square root, ਯߺ is the standard 
deviation.

• n=3: the third moment, ࢭk3ࢮ, determines the skewness of a distribu-
tion, telling us how symmetric is pk around the average ࢭkࢮ. Symmet-
ric distributions have zero skewness. For a scale-free network the nth 
moment of the degree distribution is

While typically kmax is fixed, the degree of the largest hub, kmax, increas-
es with the system size, following Eq. 4.18. 

Hence to understand the behavior of ࢭknࢮ we need to take the asymptot-
ic limit kmax ̹ ∞ in Eq. 4.20, probing the properties of very large networks. 
In this limit Eq. 4.20 predicts that the value of ࢭknࢮ depends on the interplay 
between n and ਠ:

• If n −ਠ + 1 ≤ 0 then the first term on the r.h.s. of Eq. 4.20, kn−ਠ+1, goes to 
zero as kmax increases. Therefore all moments that satisfy n ≤ ਠ−1 will 
be finite.

SECTION 4.4

THE MEANING OF 
SCALE-FREE

(4.19)

(4.20)
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• If n−ਠ+1≥0 then ࢭknࢮ� goes to infinity as kmax̹∞. Therefore all mo-
ments satisfying n ≥ ਠ−1 diverge. 

For most real scale-free networks the degree exponent ਠ� is between 2 
and 3 Table 4.1. Hence for these in the N ̹ ∞ limit the first moment ࢭkࢮ is 
finite, but the second and higher moments, ࢭk2ࢭ ,ࢮk3ࢮ, go to infinity. This 
divergence helps us understand the origin of the “scale-free” term:

• If the degrees follow a normal distribution, then the degree of a ran-
domly chosen node is

For a random network with a Poisson degree distribution  
which is always smaller than ࢭkࢮ. Hence the degrees are in the range k = 
 indicating that nodes in a random network have comparable ,1/2ࢮkࢭ ± ࢮkࢭ
degrees. Therefore the average degree ࢭkࢮ serves as the “scale” of a random 
network.

• For a network with a power-law degree distribution and ਠ < 3 the first 
moment is finite but the second moment is infinite. The divergence 
of ࢭk2ࢮ, and hence of� ਯk for large N indicates that the fluctuations 
around the average could be arbitrary large. That is, when we ran-
domly choose a node, we do not know what to expect, as the chosen 
node’s degree could be tiny or arbitrarily large. Hence networks with 
ਠ < 3 do not have a meaningful internal scale. They are “scale-free” 
Fig. 4.7. For example the average degree of the WWW sample is ࢭkࢮ = 
4.60 Table 4.1. Given that ਠ �2.1ݍ, the second moment diverges, which 
means that our expectation for the in-degree of a randomly chosen 
WWW document is ࢭk4.60=ࢮ ± ∞ in the N ̹ ∞ limit. That is, a ran-
domly chosen webpage could easily yield a document of degree one 
or two, as 74.02% of nodes have in-degree less than ࢭkࢮ. Yet, it could 
also yield a node with hundreds of millions of links, like google.com 
or facebook.com.

Strictly speaking ࢭk2ࢮ diverges only in the N ̹ ∞ limit. Yet, the diver-
gence is relevant for finite networks as well. To illustrate this, Table 4.1 and 
Figure 4.8 show the standard deviation ���������������������for ten real networks. 
For most of these networks ਯ�is significantly larger than ࢭkࢮ, documenting 
large variations in node degrees. For example, the degree of a randomly 
chosen node in the studied WWW sample is kin = 4.60 ± 39.05, indicating 
once again that the average is not informative in this case. In summary, 
the scale-free name captures the lack of an internal scale, a consequence of 
the fact that nodes with widely different degrees coexist. This feature dis-
tinguishes scale-free networks from lattices, in which all nodes have exact-
ly the same degree (ਯ�= 0), or from random networks, whose degrees vary 
in a narrow range (ਯk = ࢭk1/2ࢮ). As we will see in the coming chapters, this 
divergence is the origin of some of the most interesting properties of scale-
free networks, from their robustness to random failures to the anomalous 
spread of viruses.

(4.21)
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For any bounded distribution (e.g. a Poisson or 
a Gaussian distribution) the degree of a ran-
domly chosen node will be in the vicinity of 
 .serves as the network’s scale ࢮkࢭ Hence .ࢮkࢭ
In a scale-free network the second moment 
diverges, hence the degree of a randomly 
chosen node can be arbitrarily different from�
 As a scale-free network lacks an intrinsic .ࢮkࢭ
scale, is it scale-free.

Random network
Randomly chosen node: 
Scale: 

Scale-free network
Randomly chosen node: 
       is meaningless as ‘scale’

Figure 4.7
Scale-free networks lack an internal scale
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For a random network the standard deviation 
follows         shown as a dashed line on the 
figure. The symbols show ਯ�for ten reference 
networks Table 4.1, indicating that for each ਯ�
is larger than expected for a random network 
with similar ࢭkࢮ. The only exception is the 
power grid, which is not scale-free. While the 
phone call network is scale-free, it has a large 
ਠ, hence it behaves like a random network.

The table shows the standard deviation of the degree distribution                                       (ਯin and ਯout for directed networks) for our ten ref-
erence networks. It indicates that for most networks ਯ is much larger than ࢭkࢮ, consequence of their scale-free nature. It also lists the 
estimated degree exponent, ਠ, for each network, determined using the procedure discussed in ADVANCED TOPICS 4.A. The stars next to 
the reported values indicate the statistical confidence for a particular fit to the degree distribution. That is, * means that the fit shows 
statistical confidence for a power-law k−ਠ fit; while ** marks datasets that display statistical confidence for a                               fit. Those 
with no stars do not show statistical confidence for any of the two forms; the reasons for this are discussed later in the next chapter 
and in ADVANCED TOPICS 4.C. Note that the power grid is not considered scale-free. For this network a degree distribution of the 
form e−ਨk offers a statically significant fit.

Figure 4.8

Table 4.1

Standard deviation is large in real networks

The characteristics of several real network

σ = −k kk
2 2

k k2 2σ = −

NETWORK

Internet

WWW

Power Grid

Mobile Phone Calls

Email

Science Collaboration

Actor Network

Citation Network

E. Coli Metabolism

Yeast Protein Interactions

192,244

325,729

4,941

36,595

57,194

23,133

702,388

449,673

1,039

2,018

609,066

1,497,134

6,594

91,826

103,731

93,439

29,397,908

4,689,479

5,802

2,930

6.34

4.60 

2.67

2.51

1.81

8.08

83.71

10.43

5.58

2.90

-

39.05

-

2.39

9.56

-

-

29.37

22.46

-

-

21.48

-

2.32

34.07

-

-

9.49

19.12

-

14.14

-

1.79

-

-

10.63

200.86

-

-

4.88

-

2.31

-

4.69*

3.43*

-

-

3.03**

2.43

-

-

2.00

-

5.01*

2.03

-

-

4.00

2.90

-

3.42*

-

Exp.

-

-

3.35

2.12

-

-

2.89*
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k
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UNIVERSALITY
SECTION 4.5

While the terms ‘WWW’ and ‘Internet’ are often used interchangeably 
in the popular press, they refer to rather different systems. The WWW is an 
information network, with Web documents as nodes and URLs as links. In 
contrast the Internet is an infrastructural network, whose nodes are rout-
ers and links correspond to physical connections, like copper or optical ca-
bles. 

This difference has important consequences: while the cost of linking 
to a web document residing on the same computer or on a different con-
tinent is the same, establishing a direct Internet link between routers in 
Boston and Budapest would require us to lay a new cable between the two 
continents, which would be prohibitively expensive. Despite these differ-
ences, the degree distribution of both networks is well approximated by a 

Figure 4.9
The topology of the Internet

An iconic representation of the Internet to-
pology at the beginning of the 21st century. 
The image was produced by CAIDA, an orga-
nization based at University of California in 
San Diego, devoted to collect, analyze, and 
visualize Internet data. The map offers a visu-
al demonstration of the Internet’s scale-free 
nature: a few highly connected hubs hold to-
gether numerous small nodes.



power law [1, 5, 6]. We have discussed the scale-free property of the WWW 
in the previous sections. The signatures of the Internet’s scale-free nature 
are visible in Fig. 4.9, showing that a few high-degree routers hold together 
a large number of routers with only a few links.

In the past decade many real networks of major scientific, technologi-
cal and societal importance were found to display the scale-free property.
This is illustrated in Fig. 4.10, where we show the degree distribution of an 
infrastructural network (Internet), a biological network (protein-protein 
interactions) and a professional affiliation network (Hollywood actors). 
For each network the degree distribution significantly deviates from a 
Poisson distribution, being better approximated with a power law.

 The diversity of the systems that share the scale-free property is re-
markable. Indeed, the WWW is a man-made network with a history of lit-
tle more than two decades, while the protein interaction network is the 
product of four billion years of evolution. In some of these networks the 
nodes are molecules, in others they are computers. It is this diversity that 
prompts us to call the scale-free property a universal network character-
istics. 

From the perspective of a researcher, a crucial question is the follow-
ing: how do we establish the scale-free nature of a network? One one end, 
a quick look at the degree distribution will immediately reveal whether the 
network could be scale-free: in scale-free networks we observe orders of 
magnitude differences between the degrees of the smallest and the largest 
nodes. In contrast most nodes have comparable degrees in a random net-
work. Yet, as the value of the degree exponent plays an important role in 
predicting various network properties, we need tools to fit the pk distribu-
tion and to estimate ਠ. This prompts us to address several issues:

PLOTTING THE DEGREE DISTRIBUTION

The degree distributions shown in this chapter are all plotted on a dou-
ble logarithmic scale, often called a log-log plot. The main reason is 
that when nodes with widely different degrees coexist, a linear plot is 
unable to display them all. We also use logarithmic binning to obtain 
the clean-looking degree distributions shown throughout this book, en-
suring that each datapoint has proper statistical significance. The prac-
tical tips for plotting a network’s degree distribution are discussed in 
ADVANCED TOPICS 4.B.

MEASURING THE DEGREE EXPONENT

A quick estimate of the degree exponent is often obtained by fitting a 
straight line to pk on a log-log plot.Yet, this approach can be affected by 
systematic biases, resulting in an incorrect ਠ�The statistical tools avail-
able to estimate ਠ are discussed in ADVANCED TOPICS 4.C. We used these 
tools to determine the degree exponents listed in Table 4.1.

THE SHAPE OF pk FOR REAL NETWORKS

Most degree distributions observed in real networks display clear devi-
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ations from a pure power law. These can be attributed to data incomplete-
ness or data collection biases, but the deviations also carry important in-
formation about processes that contribute to the emergence of a particular 
network. In ADVANCED TOPICS 4.B we discuss some of these deviations, and 
in CHAPTER 6  we explore their origins.

Since the discovery of the scale-free nature of the WWW, an amazing 
number of real networks of major scientific and technological interest 
have been found to be scale-free Fig. 4.10 from biological to social and even 
linguistic networks. This does not mean that all networks are scale-free. 
Indeed, many important networks, from the power grid to networks ob-
served in materials science BOX 4.2 do not display the scale-free property. 

Yet, the prevalence of the scale-free property have prompted the re-
search community to devote special attention to this class of networks. 
Uncovering the reasons why some networks are scale-free while others are 
not, and understanding the consequences of the scale-free property, help 
us better understand real networks.

Figure 4.9b
Many real networks are scale-free

The degree distribution of three of the net-
works listed in Table 4.1.

(a) The degree distribution of the Internet at 
the router level.
(b) The degree distribution of the protein-pro-
tein interaction network of yeast.
(c) The degree distribution of the email net-
work of a European university.

In each panel, the dotted line shows the Pois-
son distribution with the same ຊk as the real 
network, indicating that the random network 
model cannot account for the observed pk.



THE SCALE-FREE PROPERTY 18 UNIVERSALITY

Metabolic (11)

WWW (1, 10)

Internet (5)

actors (2)

Software (20)
energy Landscape (22)

Citations (7, 8)
Linguistics (17, 18)
Electric Circuits (19)

other

social

biological

informational

infrastructural

SCALE-FREE HISTORY
The timeline of the discoveries reporting
the scale-free nature of various real networks

FIG. 4.10

Twitter (23, 24) Facebook (25)
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Many biological, social, and technological networks 
display the scale-free property. The figure shows the 
timeline of the discoveries reporting the scale-free 
nature of various real networks. While there is a clear 
burst of reports following the 1999 discovery of 
scale-free networks, in hindsight it is clear that several 
early papers have reported characteristics that are 
consistent with what we call today a scale-free 
topology. For example, Etel de Solla Price reported in 
1965 that citations to scientific papers follow a 
power-law distribution [7], a property independently 
discovered by Redner in 1998 [8]. This is a consequence 
of the scale-free nature of citation networks. 

A common feature of these early works is that they 
viewed the observed quantities as scalar events, not as 
a manifestation of some network phenomena. It 
wasn’t until the 1999 that it was understood that 
power laws are also a fundamental network property. 
Indeed, Barabási and Albert, in their 1999 Science 
paper argued that “we expect that the scale-invariant 
state observed in all systems for which detailed data 
has been available to us is a generic property of many 
complex networks, with applicability reaching far 
beyond the quoted examples.” The ‘scale-free network’ 
term was also first used in 1999 [2, 9].

Proteins (13)

Email (21)

Coauthorships (14, 15)
Sexual contacts (16)Phone calls (12)
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BOX 4.2
Not all network are scale-free

The ubiquity of the scale-free property does not mean that all real 
networks are scale-free. Indeed, several important networks do 
not share this property:

• Networks appearing in material science, like the network de-
scribing the bonds between the atoms in crystalline or amor-
phous materials, where each node has exactly the same degree.

• The neural network of the C. elegans worm.

• The power grid, consisting of generators and switches connect-
ed by transmission lines.

For the scale-free property to emerge the nodes need to have the 
capacity to link to an arbitrary number of other nodes. These 
links do not need to be simultaneous: we do not constantly chat 
with each of our acquaintances and a protein in the cell does not 
simultaneously bind to each of its potential interaction partners. 
In general the scale-free property is absent in systems that have a 
limitation in the number of links a node can have, as such limita-
tions limit the size of the hubs. As illustrated in the image, such 
limitations are common in materials, explaining why they can-
not develop a scale-free topology.

Figure 4.11
The material network

A carbon atom can share only four electrons 
with other atoms, hence no matter how we 
arrange these atoms relative to each other, 
in the resulting network a node can never 
have more than four links. Hence, hubs are 
forbidden and the scale-free property cannot 
emerge.  The figure shows several carbon al-
lotropes, each characterized by a different 
“network”, resulting in materials with differ-
ent physical characteristics, like (a) diamond; 
(b) graphite; (c) lonsdaleite; (d) C60 (buckmin-
sterfullerene); (e) C540 (a fullerene) (f) C70 
(another fullerene); (g) amorphous carbon; (h) 
single-walled carbon nanotube. 

Source: http://www.thenanoage.com/Figures/
Eight_Allotropes_of_Carbon.png
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ULTRA-SMALL PROPERTY
SECTION 4.6

The presence of hubs in scale-free networks raises an interesting ques-
tion: how do hubs affect the small world property? 

Figure 4.4  suggests that they do: airlines build hubs precisely to decrease 
the number of hops between two airports. The calculations support this ex-
pectation, finding that distances in a scale-free network are either smaller 
or equal to the distances observed in an equivalent random network. The 
precise dependence of the average distance ࢭdࢮ on the system size N and 
the degree exponent�ਠ are captured by the expression [26, 27]. 

In the following we discuss the behavior of ࢭdࢮ in the four regimes pre-
dicted by Eq. 4.22, Fig. 4.12:

ANOMALOUS REGIME ਠ�= 2

According to Eq. 4.19 for ਠ = 2 the degree of the biggest hub grows linear-
ly with the system size, i.e. kmax Ȯ N. This forces the network into a hub 
and spoke configuration in which all nodes are at a short distance from 
each other. In this regime the average path length does not depend on 
N.

ULTRA-SMALL WORLD 2  <  ਠ�<  3

As several real networks have degree exponent between two and three 
Table 4.1, this regime is of particular practical interest. Eq. 4.22 predicts 
that the average distance increases as lnlnN, a significantly slower de-
pendence than the lnN we derived earlier for random networks. We call 
networks in this regime ultra-small, as the hubs radically reduce the 
path length [27]. They do so by linking to a large number of small-de-
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gree nodes, creating short distances between them.

To see the implication of the ultra-small property let us consider again 
the social network with N 7 ݍx109. If the society were to be random, the 
N-dependent term is lnN = 22.66. In contrast for a scale-free network 
the N-dependent term is lnlnN = 3.12 according to Eq. 4.22, supporting 
our conclusion that hubs radically shrink the distance between the 
nodes.

CRITICAL POINT ਠ�= 3

This value is of particular theoretical interest, as the second moment 
of the degree distribution does not diverge any longer, prompting us 
to call� ਠ = 3 the “critical point.” At this critical point the lnN depen-
dence encountered for random networks returns. Yet the calculations 
indicate the presence of a double logarithmic correction lnlnN [27, 28], 
which shrink slightly the distances compared to a random network of 
similar size.

SMALL WORLD ਠ�> 3

In this regimeࢭ�k2ࢮ is finite and the average distance follows the small 
world result derived for random networks. While hubs continue to be 
present, for ਠ > 3 they are not sufficiently large and numerous to have a 
significant impact on the distance between the nodes.

Taken together, Eq. 4.22 indicates that the more pronounced the hubs 
are, the more effectively they shrink the distances between the nodes. This 
conclusion is supported by Fig. 4.11a, which shows the scaling of the average 
path length for scale-free networks with different ਠ. 

The figure indicates that while for small N the distances in the four re-
gimes are comparable, for large N the differences are remarkable. Further 
support for this conclusion is provided by the path length distribution for 
scale-free networks with different ਠ and N Fig. 4.11b-d. For N = 102 the path 
length distributions largely overlap, indicating that at this size differenc-
es in ਠ result in insignificant differences in the path length. For N = 106, 
however, pd observed for different ਠ are well separated. Fig. 4.11d also shows 
that the larger the degree exponent, the larger are the distances between 
the nodes. In summary the scale-free property has two effects on network 
distances:

• Shrinks the average path lengths.

• Changes the dependence of ࢭdࢮ on the system size, as predicted
by Eq. 4.21.  The smaller ਠ, the shorter are the distances between
the nodes.

Therefore, most scale-free networks of practical interest are not only 
“small”, but are “ultra-small”. This is a consequence of the hubs, that act as 
bridges between the many small nodes. Only for  ਠ > 3 we recover the small-
world property encountered in random networks Fig. 4.12.
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BOX 4.3
WE ARE ALWAYS CLOSE TO THE HUBS

Frigyes Karinthy in his 1929 short story [30] that introduced the 
small world concept writes that “it’s always easier to find some-
one who knows a famous or popular figure than some run-the-
mill, insignificant person”.

In other words, we are typically closer to hubs than to less con-
nected nodes. This effect is particularly pronounced in scale-free 
networks as shown in the figure below. The implications are obvi-
ous: there are always short paths linking us to famous individuals 
like well known scientists or to the president of the United States, 
as they are hubs with an exceptional numbers of acquaintances. 
It also means that many of the shortest paths go through these 
hubs. 

In contrast with this expectation, recent measurements designed 
to replicate the six degrees concept in the online world find that 
the paths that individuals used to reach their target node involve 
rather few hubs [31]. That is, individuals involved in successful 
chains (those that reached their target) were less likely to send a 
message to a hub than individuals involved in incomplete chains.
The reason may be self-imposed, we perceive hubs as busy, hence 
we contact them only in real need. We therefore avoid them in 
online experiments of no perceived value to us. Figure 4.11b

Closing on the hubs

The distance ࢭdtargetࢮ of a node with degree 
kࢭݍkࢮ, to a target node with degree ktarget 
in a random and a scale-free network. In 
scale-free networks our distance to the 
hubs is shorter than in random networks. 
The figure also documents that in a ran-
dom network the largest-degree nodes are 
considerably smaller and hence the path 
lengths are visibly longer than in a scale-
free network. Both networks have ࢭk2 = ࢮ 
and N = 1,000 and for the scale-free net-
work�ਠ�= 2.5.
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(a) The scaling of the average path length 
in the four scaling regimes characterizing a 
scale-free network: lnN (scale-free networks 
with�ਠ�> 3 and random networks), lnN/lnlnN 
߶ਠ = 3) and lnlnN (2 < ਠ< 3). The dotted lines 
mark the approximate size of several real net-
works of practical interest. For example, given 
their modest size, in biological networks the 
differences in the node to node distances are 
relatively small in the four regimes. The dif-
ferences become quite relevant for networks 
of the size of the social network or the WWW. 
For these the small-world formula consider-
ably underestimates the real value of ࢭdࢮ.

(b)(c)(d) Distance distribution for networks 
of size N = 102, 104, 106, illustrating that while 
for small N ( = 102) the distance distributions 
is not too sensitive to ਠ, for large N ( = 106) pd 
and ࢭdࢮ�changes visibly with ਠ. As (d) shows, 
the smaller ਠ, the shorter are the distances be-
tween the nodes. The networks were generat-
ed using the static model [29] with ࢭk3 = ࢮ.

Figure 4.12
Distances in scale-free networks
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THE ROLE OF THE
DEGREE EXPONENT

SECTION 4.7

Many properties of a scale-free network depend on the value of the de-
gree exponent ਠ. A close inspection of Table 4.1 indicates that:

• ਠ� varies from system to system, prompting us to explore how the 
properties of a network change with�ਠ

• For many real systems the degree exponent is between 2 and 3, 
prompting us to ask: why don’t we see systems with ਠ < 2 and why are 
so few systems with ਠ�> 3? To address these questions next we discuss 
how the properties of a scale-free network change with�ਠ�Fig. 4.13

ANOMALOUS REGIME (ਠ≤ 2)

According to Eq. 4.18, for�ਠ< 2 the exponent 1/(ਠ�− 1) is larger than one, 
hence the fraction of links connected to the largest hub grows faster than 
the size of the network. This means that for sufficiently large N the degree 
of the largest hub must exceed the total number of nodes in the network, 
running out of nodes to connect to. Similarly, for ਠ < 2 the average degree 
 �diverges in the N ̹ ∞ limit. These odd predictions are only two of theࢮkࢭ
many anomalous features of scale-free networks in this regime. They rep-
resent signatures of a deeper problem: large scale-free network with�ਠ < 2, 
that lack self-loops or multi-links, cannot exist BOX 4.4. Hence one needs to 
inspect with caution any research reporting networks with�ਠ< 2. Such net-
works can only exist if the hubs have many self-loops or if multiple links 
can connect the same pair of nodes.

SCALE-FREE REGIME ( 2 < ਠ< 3)

In this regime the first moment ࢭkࢮ of the degree distribution is finite 
but the second and higher moments diverge as N ̹∞. Consequently scale-
free networks in this regime are ultra-small (see SECTION 4.6). Eq. 4.18 pre-
dicts that kmax grows with the size of the network with exponent 1/(ਠ - 1), 
which is smaller than one. Hence the market share of the largest hub, kmax 
/N, representing the fraction of nodes that connect to it, decreases as kmax 
/N�Ȯ N(2-ਠ)/(ਠ-1) . 



As we will see in the coming chapters, many interesting features 
of scale-free networks, from their robustness to failures to anomalous 
spreading phenomena, are linked to this regime. 

RANDOM NETWORK REGIME (ਠ > 3)

According to Eq. 4.20 for ਠ� > 3 both the first and the second moments 
are finite. For all practical purposes the properties of a scale-free network 
in this regime are difficult to distinguish from the properties a random 
network of similar size. For example Eq. 4.21 indicates that the average dis-
tance between the nodes converges to the small-world formula derived for 
random networks.The reason is that for large ਠ� the degree distribution 
pk decays sufficiently fast to make the hubs smaller and less numerous. 
The larger ਠ, the smaller are the hubs (see Eq. 4.18), hence the more indistin-
guishable is the structure and the behavior of a scale-free network from 
that of a random network.

Table 4.1 and Fig. 4.12 also indicate that there are fewer networks with�ਠ�
> 3, prompting us to ask: does this imply that networks with ਠ�> 3 cannot 
exist? A quick calculation indicates that they may exist, but it is hard to 
distinguish them from a random network. To document the presence of a 
power-law degree distribution we ideally need 2-3 orders of magnitude of 
scaling, which means that kmax should be at least 102 - 103 times larger than 
kmin. By inverting Eq. 4.18 we can calculate the network size necessary to ob-
serve the desired scaling regime between kmin and kmax, obtaining

For example, in order to document the scale-free nature of a network 
with�ਠ�= 5 with kmin Ȯ 1 and kmax 102 ݍ, according to Eq. 4.23 the size of the 
network must exceed N ɝ 108. There are very few network maps of this size 
available for research. Therefore, there may be many real networks with 
exponent larger than 3, but given their limited size, it is difficult to obtain 
convincing evidence of their scale-free nature. Hence they are mistakenly 
classified as networks with an exponential degree distribution.

In summary, we find that the behavior of scale-free networks depends 
on the value of the degree exponent ਠ. Theoretically the most interesting 
regime is 2 < ਠ�< 3, where scale-free networks are ultra-small and ࢭk2ࢮ di-
verges. Interestingly, many networks of practical interest, from the WWW 
to protein interaction networks, are in this regime.

(4.23)
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BOX 4.4
SCALE-FREE NETWORK WITH�ਠ�< 2 DO NOT EXIST

To see why networks with ਠ�< 2 are problematic, we need to at-
tempt to build one. A degree sequence that can be turned into 
simple graph (i.e. a graph lacking multilinks or self-loops) is called 
graphical [32]. Yet, not all degree sequences are graphical: if for 
example the number of stubs is odd, then we will always have an 
unmatched stub, as shown in Fig. 4.13b. 

The graphicality of a degree sequence can be tested with an al-
gorithm proposed by ErdĘs and Gallai [32, 33, 34, 35]. If we apply 
the algorithm to scale-free networks we find that the number of 
graphical degree sequences drops to zero for ਠ < 2. Hence degree 
distributions with ਠ < 2 cannot be turned into a network. Indeed, 
for networks in this regime the largest hub grows faster than N. If 
we do not allow self-loops and multi-links, then the degree of the 
largest hub cannot exceed N − 1.

THE ROLE OF THE DEGREE EXPONENT

(a-b) Two degree distributions and the 
corresponding degree sequences. The dif-
ference is limited to the degree of a single 
node. While we can build a network con-
sistent with the degree distribution (a), it 
is impossible to build one from (b), as one 
stub always remains unmatched.  Hence 
(a) is graphical, while (b) is not.

(c) Fraction of networks with a given� ਠ 
that are graphical. A large number of de-
gree sequences with degree exponent� ਠ 
and N = 105 were generated, testing the 
graphicality of each network. 

While virtually all networks with�ਠ > 2 are 
graphical, it is impossible to find graphi-
cal networks with 0 <�ਠ�< 2.

Figure 4.13
Networks with ਠ < 2 are not graphical
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DEPENDENT PROPERTIES
A summary of the γ dependent properties
of scale-free networks

FIG. 4.14

The degree exponents shown in the figure were taken 
from Table 4.1. Note that not all listed γ values show 
statistical significance, as we lack the proper fitting 
function. Case in point are the Internet and the email 
datasets, for which earlier studies reported γ < 3.  To 
determine the precise value of γ, we need proper 
models, a topic discussed in Chapter 6.
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GENERATING NETWORKS
WITH A PRE-DEFINED
DEGREE DISTRIBUTION

SECTION 4.8

The ErdĘs-Rényi model generates networks with a Poisson degree dis-
tribution. The empirical results discussed in this chapter indicate, howev-
er, that the degree distribution of most real networks significantly devi-
ates from a Poisson form. This raises an important question: how do we 
generate networks with an arbitrary pk? In the following we discuss the 
three most frequently used algorithms for this purpose.

CONFIGURATION MODEL

The configuration model helps us build a network with a pre-defined 
degree sequence Fig. 4.15a. In the obtained network each node has a pre-de-
fined degree ki, but otherwise the network is wired randomly. Consequent-
ly the obtained network is often called a random network with a pre-de-
fined degree sequence. By repeatedly applying this procedure to the same 
degree sequence we can generate different networks with the same pk Fig. 

4.14, panels (2a)-(2c). A couple of a caveats to consider:

• The probability to have a link between nodes of degree ki and kj is

Indeed, a stub starting from node i can connect to 2L - 1 other stubs. Of 
these, kj are attached to node j. So the probability that a particular stub is 
connected to a stub of node j is kj /(2L - 1). As node i has ki stubs, it will have 
kj attempts to link to j, resulting in Eq. 4.24.

• The obtained network will contain self-edges and multi-edges. We can 
choose to reject stub pairs that lead to these, but if we do so, we may not 
be able to complete the network. Rejecting self- or multi-edges means 
that not all possible matchings appear with equal probability. Hence 
Eq. 4.24 will not be valid any longer, making analytical calculations dif-
ficult. The number of self- and multi-edges goes to zero for large net-
works, so in most cases we do not need to exclude them [39]. The con-
figuration model is frequently used in analytical calculations, as Eq. 4.24 
and its inherently random character helps us calculate numerous net-
work measures.

Figure 4.15a
The configuration model

(4.24)

The configuration model allows us to build a 
network where each node has some pre-de-
fined degree [37, 38]. It consists of the follow-
ing steps:

(1) Degree sequence: Assign a degree to each 
node, represented as stubs or half-links. The 
degree sequence is either generated analyti-
cally from a preselected pk distribution BOX 
4.5, or it is extracted from the adjacency matrix 
of a real network. We must start from an even 
number of stubs, otherwise we will be left with 
unpaired stubs.

(2) Network assembly: Randomly select a stub 
pair and connect them. Then randomly choose 
another pair from the remaining 2L - 2 stubs 
and connect them. This procedure is repeat-
ed until all stubs are paired up. Depending 
on the order in which the stubs were chosen, 
we obtain different networks. Some networks 
include cycles (2a), others self-edges (2b) or 
multi-edges (2c). Yet, the expected number of 
self- and multi-edges goes to zero in the N ̹ 
∞ limit.

=
−

p k k
L2 1j
i j



DEGREE PRESERVING RANDOMIZATION

As we explore the properties of a real network, we often need to ask if 
a certain network property is predicted by its degree distribution alone, or 
if it represents some additional property not contained in pk. To answer 
this question we need to generate networks that are wired randomly, but 
whose pk is identical to the original network.

This can be achieved through the degree-preserving randomization 
[40] described in Fig. 4.14. The idea behind the algorithm is simple: we ran-
domly choose two links in the network and swap them, so that the degree 
of each of the four involved nodes in the swap remains unchanged. Hence, 
hubs will stay hubs and small-degree nodes will retain their small degree, 
but the wiring diagram of the generated network will be randomized. Note 
that degree-preserving randomization is different from full randomiza-
tion, where we swap links without preserving the node degrees Fig. 4.14. 
Complete randomization turns any network into an ErdĘs-Rényi network, 
hence independent of the original pk, the randomized version will have a 
Poisson degree distribution.

THE SCALE FREE PROPERTY GENERATING NETWORKS WITH A PRE-DEFINED
DEGREE DISTRIBUTION
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Figure 4.15b
Hidden parameter model

We start with N isolated nodes and assign to 
each node a “hidden parameter” Și, which can 
be randomly selected from a ȡ�Ș� distribution 
or it is provided by a deterministic sequence 
{Și}. We next connect each node pair with prob-
ability

For example, the figure shows the probability 
to connect nodes (1,3) and (3,4). After connect-
ing the nodes, we end up with the networks 
shown in (b) or (c), representing two inde-
pendent realizations generated by the same 
hidden parameter sequence (a). The expected 
number of links in the obtained network is

Just like in the random network model, L will 
differ from network to network, following 
a bounded distribution. If we wish to control 
precisely the average degree ࢭkࢮ we can add 
the L links to the network one by one. The end 
points i and j of each link are then chosen ran-
domly with a probability proportional to Și and 
Șj, following. In this case we connect i and j 
only if they were not connected previously.

η η
ηη
η
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Full randomization Original network Degree preserving
randomization

a

b

BOX 4.5
GENERATING A DEGREE SEQUENCE WITH POWER-LAW  DISTRIBUTION

The degree sequence of an undirected network is a non-increas-
ing sequence of the node degrees. For example, the degree se-
quence of each of the networks shown in Fig. 4.15a is {3, 2, 2, 1}. 
As Fig. 4.15a illustrates, the degree sequence in general does not 
uniquely identify a graph. There can be multiple graphs with the 
same degree sequence. We often need to generate a degree se-
quence from a pre-defined degree distribution. Our purpose here 
is to provide the tools to achieve this. We start from an analyti-
cally pre-defined degree distribution, like pkȮkਠ, shown in panel 
(a). Our goal is to generate a degree sequence {k1, k2, ..., kN} of N 
degrees that follow the distribution pk. We start by calculating the 
complementary cumulative distribution function

shown in (b). D(k) is between 0 and 1, and the step size at any k 
equals pk. Therefore, to generate a sequence of N random num-
bers following a pre-defined pk distribution, we generate N ran-
dom numbers ri, i = 1, ... , N, chosen from the (0, 1) interval. For 
each ri we use the plot in (b) to assign a degree ki. The obtained ki 
= D-1(ri) set will follow the desired pk distribution. Note that the 
degree sequence assigned to a pk is not unique - we can generate 
multiple sets of {k1, ..., kN} sequences compatible with the same pk.

Figure 4.16

(4.25)D k p( ) ,k
k k

'
'
∑=
≥
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Figure 4.17
Degree preserving randomization

Two randomization methods are used to generate random references to a given network [40]. Full randomization generates a random 
(ErdĘs–Rényi) network with the same N and L as the original network. For this we select randomly a source node (S1) and two target 
nodes, where the first target is linked directly to the source node (T1) and the second target is unconnected to it (T2). We then rewire the 
S1-T1 link, turning it into an S1-T2 link. As a result the degree of the target nodes T1 and T2 changes. We perform this procedure once for 
each link in the network.

Degree-preserving randomization generates a network in which each node has exactly the same degree as in the original network, but 
the network’s wiring diagram has been randomized. We select two source (S1, S2) and two target nodes (T1, T2), such that initially there 
is a link between S1 and T1, and a link between S2 and T2. We then swap the two links, creating an S1-T2 and an S2-T1 link. This swap leaves 
the degree of each node unchanged.We repeat this process until we rewire at least once each link.

Bottom panels: Starting from a scale-free network (middle panel), full randomization eliminates the hubs and turns the network into 
a random network (left panel). In contrast, degree-preserving randomization leaves the hubs in place and hence the network remains 
scale-free (right panel).



HIDDEN PARAMETER MODEL

In their most general (and most useful) form the configuration and the 
rewiring model generate loops and multi-links. Loops and multi-links are 
absent, however, from many real networks. We can use the hidden param-
eter model, described in Fig. 4.15b, to generate networks with a pre-defined 
pk but without multi-links and self-loops [41, 42, 43]. In the model we start 
from N isolated nodes and assign each node i a hidden parameter ਤi, cho-
sen from a distribution ਭ(ਤ). The nature of the network generated by the 
hidden parameter model depends on the selection of a {Și} hidden param-
eter sequence.

There are two ways to generate the appropriate hidden parameters:

(i) Și can be a sequence of N random number chosen from a pre-defined 
ਭ(n) distribution. In this case the degree distribution of the obtained 
network is

(ii) Ș can come from a deterministic sequence {ਤ1, ਤ2, ..., ਤ3}. In this case 
the degree distribution of the obtained network is

The hidden parameter model offers a particularly simple method to 
generate a scale-free network. Indeed, using

as the sequence of hidden parameters, according to Eq. 4.27 the obtained 
network will have the degree distribution

for large k. We can use ࢭਤࢮ to tune ࢭkࢮ as Eq. 4.26 and Eq. 4.27 imply ࢭkࢭ =�ࢮਤࢮ 
The three methods discussed above for creating networks with a pre-de-
fined pk raise the following question: how do we decide which one to use? 
Our choice depends on whether we start from a degree sequence {ki} or a 
degree distribution pk and whether we can tolerate self-loops and multiple 
links between two nodes. The decision tree involved in this choice is pro-
vided in Fig. 4.18.

In summary, the configuration model, degree-preserving randomiza-
tion and the hidden parameter model are attractive because they generate 
networks with a pre-defined degree distribution and allow us to analytical-
ly calculate several network properties.

We will turn to these each time we explore if a certain network proper-
ty is a consequence of the network’s degree distribution, or it represents 
some emerging property of the modeling network BOX 4.6. Yet, these mod-

(4.26)

(4.27)

(4.28)

(4.29)
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The choice of the appropriate generative 
model depends on our starting point as well 
as our tolerate towards self-loops and multi-
links. If we start from the analytical form of 
the degree distribution, pk, then the goal is to 
generate networks whose degree distribution 
is consistent with pk. In this case if we allow 
self-loops and multi-links, we should use the 
configuration model; if we forbid them, then 
the hidden parameter model is a better choice.

If we start from a real network or known de-
gree sequence our goal is often to generate 
networks with the degree sequence identical 
to the original network. Again if we allow self-
loops and multi-links, the configuration mod-
el is an appropriate choice; if we wish to forbid 
them, we can use degree-preserving random-
ization.

Figure 4.18
Choosing the proper generative model

els also have a number of limitations:

• These algorithms do not tell us why a network has a certain degree 
distribution

• Several important network characteristics, present in real networks, 
from clustering to degree correlations, are lost during randomization

Hence the networks generated by these algorithms are a bit like a pho-
tograph of a painting: at first look they appear to be the same as the origi-
nal. But upon closer inspection we realize that many details, from the tex-
ture of the canvas to the brush strokes, are lost.

GENERATING NETWORKS WITH A PRE-DEFINED
DEGREE DISTRIBUTION



THE SCALE FREE PROPERTY 35 GENERATING NETWORKS WITH A PRE-DEFINED
DEGREE DISTRIBUTION

BOX 4.6
TESTING THE SMALL-WORD PROPERTY

A common practice in the network literature is to compare the 
distances observed in a real network to the small-world formula 
Eq. 4.19 from CHAPTER 3. Yet, Eq. 4.19 was derived for random net-
works, while most real networks do not have a Poisson degree 
distribution. If the network is scale-free, then Eq. 4.22 offers the 
appropriate formula. That, however, provides only the scaling 
of the distance with N, and not its absolute value. Hence instead 
of trying to fit the average distance, we often ask the following 
question: are the distances observed in the real network compa-
rable with the distances observed in a randomized network with 
the same degree distribution? We can use degree preserving ran-
domization to answer this. We illustrate the procedure on the 
protein interaction network (PIN) of yeast.

(i) Original pk: we start by measuring the distance distribution 
pd of the original network, obtaining ࢭd5.61 =�ࢮ (red curve).

(ii) Full randomization: next we generate a random network 
with the same N and L as the original network. The obtained 
pd (blue curve) is visibly shifted to the right, providing ࢭdࢮ = 
7.13, much larger than the originalࢭ�d5.61 = ࢮ. It is tempting to 
conclude that the protein interaction network is affected by 
some unknown organizing principle that keeps the distances 
shorter than expected in a random configuration. The result 
(iii) shows that this would be a flawed conclusion, as the dif-
ference is explained by the degree distribution.

(iii) Degree preserving randomization: as the original network is 
scale-free, the proper random reference is a network with the 
same degree distribution as the original. Hence we determine 
pd after degree-preserving randomization, finding that it is 
comparable to the original pd (green curve).

This indicates that a random network overestimates the distanc-
es between the nodes, as it is missing the hubs presented in the 
original network. The network obtained by degree preserving 
randomization preserves these hubs, and its distances are com-
parable to the original network. This example illustrates the im-
portance of choosing the proper random reference frame.

The distance distribution pd (red symbols) 
between each node pair in S. Cerevisae pro-
tein-protein interaction network Table 4.1. 
The purple symbols provide the path-length 
distribution obtained under full randomiza-
tion, which turns the original network into an 
ErdĘs-Rényi network with the same N and L as 
the original network Fig. 4.17. 

The green symbols correspond to pd of the net-
work obtained after degree-preserving ran-
domization, which keeps the degree of each 
node unchanged. 

We have: ࢭd1.64±5.61=ࢮ (original), ࢭd7.13=ࢮ ± 
1.62 (full randomization), ࢭd1.34 ± 5.08=ࢮ de-
gree-preserving randomization.

Figure 4.19
Randomizing real networks
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SECTION 4.9

There are two main reasons why the scale-free property played a key 
role in the emergence of network science.  

First, many networks of scientific and practical interest, from the 
WWW to the cell, are scale-free. 

Second, once the hubs, that accompany the scale-free property, are 
present, they have an enormous impact on the system’s behavior. The ul-
tra-small property offers a first hint of the hubs’s impact on a network’s 
properties; we will encounter many more in the coming chapters.

As we continue exploring the consequences of the scale-free property, 
we must keep in mind that the power-law form Eq. 4.1 is rarely seen in this 
pure form in real systems. The reason is simple: a host of processes affect 
the topology of real networks, which also influence the shape of the degree 
distribution. We will discuss these processes in the coming chapters. The 
diversity of these processes and the complexity of the resulting pk confuses 
those who approach these networks through the narrow perspective of the 
quality of fit to a pure power law. Instead the scale-free property tells us 
that we must distinguish between two rather different classes of networks:

• Bounded networks are networks whose degree distribution decrease 
exponentially or faster for high k. Examples of pk in this class include 
the Poisson, Gaussian, or the simple exponential distribution. The 
ErdĘs-Rényi network is the best known example of the networks be-
longing to this class. Bounded networks lack outliers, consequently 
most nodes have comparable degrees. Real networks in this class in-
clude highway networks, the power grid or the atomic networks ob-
served in crystalline or amorphous materials.

• Unbounded networks are networks whose degree distribution has a 
fat tail in the high-k region. Networks with a power-law degree distri-
bution Eq. 4.1 offer a representative example of this class. A common 
property of these networks is that the node degrees span several orders 

SUMMARY
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BOX 4.7
At a glance
Scale-free networks

DEGREE DISTRIBUTION

Discrete form:

SUMMARY

of magnitude, differences that are difficult to explain using a bound-
ed distribution. Outliers, or exceptionally high-degree nodes, are not 
only allowed but expected in these networks. Networks in this class 
include the WWW, the Internet, the protein interaction networks, and 
many social and online networks. While it would be desirable to fit 
and statistically validate the precise form of the degree distribution, 
often it is sufficient to decide the class to which a given network be-
longs: bounded or unbounded (see ADVANCED TOPICS 4.A). If the degree 
distribution is bounded, the random network model offers a reason-
able starting point to understand its topology. If the degree distribu-
tion is unbounded, a scale-free network offers a better approximation.

In summary, to understand the properties of real networks, it is often 
sufficient to remember that in scale-free networks a few highly connected 
hubs coexist with a large number of small nodes. In contrast in random 
networks most nodes have comparable degrees and hubs are absent. The 
presence or absence of the hubs plays an important role in the system’s be-
havior. The purpose of this chapter was to explore the basic characteristics 
of scale-free networks. We are left, therefore, with an important question: 
why are networks scale-free? The next chapter will provide the answer. 
Keeping up with the framework established in the previous chapter, the re-
sults discussed in this chapter allow us to formulate our next network law:

Let us recap the validity of this law in the context of the three criteria 
established in CHAPTER 3:

A. Quantitative formulation: Eq. 4.1 offers the quantitative formulation 
of the Second Law, indicating that the degree distribution of such networks 
can be approximated by a power law.

B. Universality: as discussed in SECTION 4.5, the scale-free property is 
a common feature of many real networks, from the WWW to the protein 
interaction network in the cell.

C. Non-random origins: the scale-free property represents a dramat-
ic deviation from the Poisson degree distribution characterizing random 
networks, hence it can not be explained in the context of the random net-
work model.

The Second Law: scale-free property

Many real networks are characterized by
a fat-tailed degree distribution. This means
that many small-degree nodes are held 
together by a few hubs.

Continuous form: 

SIZE OF THE LARGEST HUB
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Power laws have a convoluted history in natural and social sciences, 
being interchangeably called fat-tailed, heavy-tailed, long-tailed, Pareto, 
or Bradford distributions. They also have a series of close relatives, like 
log-normal, Weibull, or Lévy distributions. The purpose of this section is to 
discuss the properties of some of the most frequently encountered distri-
butions in network science and their relationship to the power law func-
tion discussed in this chapter.

Many quantities in nature, from the height of individuals to the proba-
bility of being in a car accident, follow bounded distributions. A common 
property of these is that pk decays either exponentially (e-x), or faster than 
exponentially (e-x2/ਯ2) for high x. Consequently events with high x are ex-
tremely rare, the largest expected x being unable to exceed some upper 
value xmax that is not too different from ࢭxࢮ (it is “bounded”). The high-x 
regime is often called the tail of the distribution, and given the absence of 
numerous events in the tail, these distributions are also called thin tailed. 
Well known examples of such bounded distributions are the Poisson, 
Gaussian (normal), or the exponential distribution Table 4.2.

In contrast the terms “fat tailed”,“heavy tailed”,“long tailed”, or “un-
bounded” refer to pk whose decay at large x is slower that exponential. 
In these distributions one often encounters events characterized by very 
large x values, unusually called outliers or rare events. The power-law dis-
tribution of Eq. 4.1 represents the best known example of such unbounded 
distributions. In the following we will discuss the basic properties of the 
most commonly encountered bounded and unbounded distributions in 
network science Table 4.2. 

BOUNDED DISTRIBUTIONS (EXPONENTIALS)

Analytically the simplest bounded distribution is the exponential dis-
tribution e-ਨx. Within network science the most prominent bounded dis-
tribution is the Poisson distribution, capturing the degree distribution of a 
random network. Outside of network science the most frequently encoun-
tered member of this class is the normal (Gaussian) distribution.

ADVANCED TOPICS 4.A
POWER LAWS

SECTION 4.10
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A common property of bounded distributions comes in their tail: for 
high x they decay exponentially or faster. Consequently, the expected larg-
est x obtained after we draw N numbers from a bounded px grows as xmax 
Ȯ log(N) or slower. This means that outliers, representing unusually high 
x-values, are rare. They are so rare that they are effectively forbidden, 
meaning that they do not occur with any meaningful probability. Instead, 
most events drawn from a bounded distribution are not too far from ࢭxࢮ.

UNBOUNDED DISTRIBUTIONS (POWER LAWS)

An instantly recognizable feature of an unbounded distribution is that 
the magnitude of the events x drawn from it vary widely, spanning several 
orders of magnitude. The most prominent member of this class is the pow-
er-law distribution discussed in SECTION 4.2. Its relevance to networks is 
provided by several factors:

• Many quantities occurring in networks science, like degrees, link 
weights and betweenness centrality, follow a power-law distribution 
in many real and model networks.

• The power-law form is analytically predicted by some of the most fun-
damental network models CHAPTER 5.

In contrast with bounded distributions, in unbounded distributions the 
size of the largest event after N trials scales as xmax Ȯ Nਣ�where�ਣ�is some 
integer related to the exponent ਠ characterizing the px distribution. As Nਣ 

grows fast, rare events or outliers occur with a noticeable frequency, often 
dominating the properties of the system.

CROSSOVER DISTRIBUTION (LOG-NORMAL, STRETCHED EXPONENTIAL)

Several functions interpolate between bounded and unbounded distri-
butions. This means that depending on their parameters, they can be used 
to fit unbounded distributions, but technically speaking they are bounded, 
as their tail for large x decays exponentially or faster. In the following we 
discuss the properties of the most frequently encountered crossover dis-
tributions. 

A power law with exponential cut-off is often used in network theory 
to fit the degree distribution of real networks. Its density function has the 
form:

where x > 0 and� ਠ� > 0. The analytical form of Eq. 4.30 directly captures 
its crossover nature: it combines a power-law term, a key component of 
unbounded distributions, with an exponential term, responsible for its 
bounded tail. We can explore its crossover characteristics by taking the 
logarithm of Eq. 4.30,

(4.30)

(4.31)

(4.32)
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For x ɜ 1/ਨ the second term on the r.h.s dominates, suggesting that the 
distribution follows a power law with exponent ਠ. Once x ≥ 1/ਨ,the ਨx term 
overcomes the lnx term, resulting in an exponential cutoff for high x.

Stretched exponential (Weibull distribution) is similar to Eq. 4.30 except 
that we have a fractional power law in the exponential. Its density function 
has the form

In most applications x varies between 0 and +Ȑ. In Eq. 4.32� ਟ is the 
stretching exponent, determining the properties of px:

• For�ਟ = 1 we recover a simple exponential function

• If ਟ is between 0 and 1, the graph of log px versus x is “stretched”, 
meaning that it spans several orders of magnitude in x. This is the re-
gime where a stretched exponential is difficult to distinguish from a 
pure power law. The closer ਟ is to 0, the more similar is px to the power 
law x-1

• By taking a logarithm of Eq. 4.32,

we can see why the stretched exponential is often used to approximate 
a power law distribution. Indeed, for small ਟ�and not too large x the 
function will be indistinguishable from a power law withslope (ਟ-1).
For large x the term Ȝxȕ becomes dominant, generating an exponential 
cutoff in px.

• If ਟ > 1 we observe a “compressed” exponential function, meaning that 
x varies in a very narrow range.

• For�ਟ = 2 Eq. 4.32 reduces to the normal distribution.

As we will see in CHAPTERS 5 and 6, several important network models 
predict a streched exponential degree distribution.

A log-normal distribution (Galton or Gibrat distribution) emerges if lnx 
follows a normal distribution. Typically a variable follows a log-normal dis-
tribution if it is the product of many independent positive random num-
bers.We encounter log-normal distributions in finance, representing the 
compound return from a sequence of trades, where the compound return 
is the product of the individual trades. The probability density function of 
a log-normal distribution is

(4.32)

(4.33)

(4.34)

(4.35)
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Hence a log-normal is like a normal distribution except that its variable 
in the exponential term is not x, but lnx . To understand why a log-normal 
is occasionally used to fit a power law distribution, let us take the loga-
rithm of Eq. 4.35,

If lnx ɜ µ then the last term is negligible and the distribution follows a 
power law with slope -1 due to the second term ln x-1. 

Therefore, for distributions that appear to follow a power law with slope 
-1, a log-normal function will likely offer a reasonable fit. For large�ਯ the 
log-normal distribution may resemble power laws with other exponents 
too (see dashed line in Fig. 4.20 with slope 2.5). Note that for reasons that are 
discussed in BOX 4.4, a degree distribution with ਠ=1 is forbidden in most 
real networks, hence log-normal distributions are rarely used to approx-
imate a network’s degree distribution. In summary, in most areas where 
we encounter fat-tailed distributions, there is an ongoing debate about the 
form of the distribution that offers the best fit to the data. Common candi-
dates include a simple power law, a stretched exponential, or a log-normal 
function. In many systems it is impossible to distinguish these distribution 
based on empirical data only. Hence as long as there is empirical data to be 
fitted, the debate surrounding the best fit will never die out.

The debate can be best resolved by developing accurate mechanistic 
models, which analytically predict the expected degree distribution.We 
will see in the coming chapters that the distributions that are analytically 
predicted by network theory are the Poisson, simple exponential, stretched 
exponential, and power law. The remaining distributions in Table 4.2 are oc-
casionally used to fit the degrees of some networks, despite the fact that 
we lack theoretical backing to support their relevance for network science.

(4.36)
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The table lists several frequently encountered 
distributions in network science. For each dis-
tribution we show the density function px, the 
appropriate normalization constant C such 
that               

for the continuous case or                    

for the discrete case. Given that ࢭxࢮ and ࢭx2ࢮ�
play an important role in network theory, we 
list the analytical form of these two quantities 
for each distribution. As many of these distri-
butions diverge at x = 0, ࢭxࢮ and ࢭx2ࢮ�are cal-
culated assuming that there is a small cutoff 
xmin in the system. In networks xmin  often 
corresponds to the smallest positive degree, 
kmin-1, or could reflect the smallest degree kmin 
for which the appropriate distribution offers 
a good fit.

Distributions in network science
Table 4.2
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Each figure shows the linear and the log-log 
plot for the most frequently encountered dis-
tributions in network science. For definitions 
see Table 4.2.

Distributions in network science
Figure 4.20
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SECTION 4.11

ADVANCED TOPICS 4.B
PLOTTING A POWER-LAW
DEGREE DISTRIBUTION

Plotting degree distributions
Figure 4.21

Plotting the degree distribution is an integral part of analyzing the 
properties of a network. The process starts with obtaining Nk, the number 
of nodes with degree k. This can be provided by direct measurement or by a 
model. From Nk we determine pk = Nk /N. The question is, how to plot pk to 
best extract its properties.

USE A LOG-LOG PLOT

 In a scale-free network numerous nodes with one or two links coexist 
with a few hubs, representing nodes with thousands or even millions of 
links. Using a linear k-axis will compress the numerous small degree nodes 
in the small-k region, rendering them invisible. Similarly, as there are or-
ders of magnitude differences in pk for k = 1 and for some large k, if  we plot 
pk on a linear vertical axis, its value for large k will appear to be zero (see Fig.  

4.21). The use of a log-log plot avoids these problems. We can either use log-
arithmic axes, with powers of 10 (used throughout this book) or we can plot 
log pk in function of logk (equally correct, but slightly harder to read). Note 
that points with Nk =0 or (pk =0) are not shown on a log-log plot as log 0=-∞.

AVOID LINEAR BINNING

The most flawed method (yet frequently seen in the literature) is to sim-
ply plot pk = Nk/N on a log-log plot Fig. 4.21b.This is called linear binning, 
as each bin has the same size ∆k = 1. For a scale-free network linear bin-
ning results in an instantly recognizable plateau at large k, consisting of 
numerous data points that form a horizontal line Fig. 4.21b. This plateau has 
a simple explanation: as typically we have only one copy of each high de-
gree node, for high k we either have Nk=0 (no node with degree k) or Nk=1 
(a single node with degree k). Consequently linear binning will either give 
pk=0, not visible on a log-log plot, or pk = 1/N, which effectively applies to 
all hubs, generating a plateau at pk = 1/N. This plateau affects our ability to 
estimate the degree exponent ਠ For example, if we attempt to fit a power 
law to the data shown in Fig. 4.21b using linear binning, the fit provides ਠ 
that is quite different from real value ਠ=2.5. The reason is that under linear 
binning we have a large number of nodes in small k bins, hence in this re-
gime we can confidently fit pk. We have too few nodes in the large k bins for 

(a-d) The degree distribution of the form pk Ȯ 
(k + k0)-ਠߺ with k0=10 and ਠ=2.5, plotted using 
the three procedures described in the text:

(a) linear binning. It is impossible to see the 
distribution on a lin-lin scale. This is the rea-
son why we always use log-log plots for scale-
free networks.

(b-d): The degree distribution shown on a log-
log plots using (b) linear binning, (c) logarith-
mic binning, and (d) plotting the cumulative 
distribution.
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(4.38)

a proper statistical estimate of pk, hence the plateau biases our fit.Yet, it is 
precisely this high-k regime that plays a key role in determining ਠ. Increas-
ing the bin size will not solve this problem. It is therefore recommended to 
avoid linear binning for fat tailed distributions.

USE LOGARITHMIC BINNING

Logarithmic binning aims to correct for the non-uniform sampling ob-
served for linear binning. For log-binning we let the bin sizes increase with 
the degree, making sure that each bin has a comparable number of nodes. 
For example, we can choose the bin sizes to be multiples of 2, so that the 
first bin has size b0=1 , containing all nodes with k=1; the second has size 
b1=2, containing nodes with degrees k=2, 3; the third bin has size b2=4 con-
taining nodes with degrees k=4, 5, 6, 7. In general, the nth bin has size 2n-1 

and contains all nodes with degrees  k=2n-1, 2n-1+1, ..., 2n-1-1. Note thatthe bin 
size can increase with arbitrary increments, bn = cn, where c > 1. The degree 
distribution is given by pࢭknࢮ

=Nn/bn, where Nn is the number of nodes found 
in the bin n of size bn, and ࢭknࢮ is the average degree of the nodes in bin bn. 
The logarithmically binned pk is shown in Fig. 4.21c. Note that now the scal-
ing extends into the high-k plateau, previously invisible under linear bin-
ning. This indicates that logarithmic binning extracts useful information 
from the high degree nodes as well BOX 4.8. 

USE CUMULATIVE DISTRIBUTION

Another way to extract information from the tail of pk is to plot the cu-
mulative distribution 

which again enhances the statistical significance the high-degree re-
gion. If pk follows the power law, then the cumulative distribution will 
scale as

The cumulative distribution will again eliminate the plateau observed 
for linear binning and leads to an extended scaling region Figure 4.21d, al-
lowing for a more accurate estimate of the degree exponent.

In summary, plotting the degree distribution to fully extract its fea-
tures requires special attention. Mastering the tools of the process can help 
us better explore the properties of real networks BOX 4.9.

(4.37)
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Figure 4.2
Art and Networks: Tomás Saraceno
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BOX 4.8
The impact of log-binning

To illustrate the rationale for log-binning. we compare three bin-
ning strategies: linear binning, log-binning, and variable bins, 
when the bin lengths were chosen such that each bin contains 
exactly the same number of events. As the figure shows, for loga-
rithmic binning the bin sizes decrease exponentially with the bin 
number.

Indeed, choosing the bin sizes to vary between 2n-1 and 2n , we ob-
tain that the number of events in each bin decreases as 2-(ਠ-1)n. Yet, 
the bin size in case of linear binning decreases even faster, effec-
tively running out of events. 

The impact of log-binning is most visible in (b) where we show 
the obtained degree distribution. As one can see, both the variable 
binning and the linear binning considerably limits the scaling re-
gime compared to the log-binning strategy. 

Note that to compare the three methods we set the total number 
of bins to 10 in all cases.

Figure 4.22
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BOX 4.9
The degree distribution of real networks

In real systems we rarely observe a degree distribution that fol-
lows a pure power law. Instead, for most real systems pk has the 
shape shown schematically in (a), with some recognizable fea-
tures:

• Low-degree saturation is a common deviation from the pow-
er law behavior. Its signature is a flattened pk for k < ksat .This 
indicates that we have fewer small degree nodes than expect-
ed for a pure power law. The origin of the saturation will be 
explained in CHAPTER 6.

• High-degree cutoff appears as a rapid drop in pk for k > kcut, 
indicating that we have fewer high-degree nodes than expect-
ed in a pure power law. This also limits the size of the largest 
hub, making it smaller than predicted by Eq. 4.23. High-degree 
cutoffs emerge if there are inherent limitations in the number 
of links a node can have. For example, in social networks in-
dividuals have difficulty maintaining a meaningful relation-
ship with an exceptionally large number of acquaintances. 

Given the widespread presence of such cutoffs we often fit the 
degree distribution to

where ksat accounts for the degree saturation, and the exponential 
term accounts for the high-k cutoff. To extract the full extent of 
the scaling we plot

in function of                               According to Eq. 4.40                , correcting 
for the two cutoffs, as shown in (b). One occasionally encounters 
the claim that the presence of low-degree or high-degree cutoffs 
implies that the network is not scale-free. This is a misunder-
standing of the scale-free property: most properties of scale-free 
networks are insensitive to the low-degree saturation. Only the 
high- degree cutoff affects the system’s properties by limiting 
the divergence of the second moment ࢭk2ࢮ. The presence of such 
cutoffs means that additional phenomena take place in the sys-
tem, that need to be understood.

(4.39)

(4.40)

Rescaling the degree distribution
Figure 4.23

(a) The frequently observed form of a de-
gree distribution in real data, character-
ized by low and high degree cutoffs.

(b) By plotting the rescaled ���in function 
of (k + kmin),  as suggested by Eq. 4.39, the 
degree distribution follows a power law 
for all degrees.
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As discussed in SECTION 4.7, the properties of scale-free networks de-
pend on ਠ, raising the need to accurately estimate the degree exponent ਠ. 
We face several difficulties, however, when we try to fit a power law to real 
data. The most important one is the fact that the scaling is rarely valid for 
the full range of the degree distribution. 

Rather we observe so called small- and high- degree cutoffs BOX 4.9, de-
noted by k and k , within which we can min max observe a clear scaling 
region. Note that kmin and kmax are different from Kmin and Kmax, which cor-
respond to the smallest and largest degrees in a network.  Here we focus on 
estimating the small degree cutoff Kmin, as the high degree cutoff can be 
approximated in a similar fashion. Before implementing this procedure, 
the reader is advised to consult the discussion on systematic problems pro-
vided at the end of this section. 

FITTING PROCEDURE

As the degree distribution typically comes as a list of positive integers 
k=0, 1, 2 , ..., kmax, we aim to estimate ਠ from a discrete set of data points. 
We follow [44] and the algorithmic tools to perform the fits are available 
at http://tuvalu.santafe.edu/~aaronc/powerlaws/. We use the degree distri-
bution of citation networks to illustrate the procedure. The network con-
sists of N=384,362 nodes, each representing a research paper published 
between 1890 and 2009 in the family of journal published by the American 
Physical Society. The network has L=2,353,984 links, each representing a 
citation from a published research paper to some other publication in the 
dataset (outside citations are ignored). See [45] for an overall characteriza-
tion of the full dataset Figure 4.24a. The steps of the fitting process are:

1. Pick a value of kmin between kmin and kmax. Estimate the value of the 
degree exponent corresponding to this kmin using

SECTION 4.12

ADVANCED TOPICS 4.C
ESTIMATING THE DEGREE
EXPONENT

(4.41)∑γ = +
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2. With the obtained (ਠ, kmin) parameter pair assume that the degree 
distribution has the form

hence the associated cumulative distribution function (CDF) is

3. Use the Kormogorov-Smirnov test to determine the maximum dis-
tance D between the CDF of the data S(k) and the fitted model pro-
vided by Eq. 4.43 with the selected (ਠ, kmin) parameter pair,

Eq. 4.44 identifies the degree for which the difference D between the em-
pirical distribution S(k) and the fitted distribution Eq. 4.43 is the largest.

4. Repeat steps (1-3) by scanning the whole kmin range from kmin to kmax.
We aim to identify the kmin value for which D provided by Eq. 4.44 is mini-
mal. To illustrate the procedure, we plot D in function of kmax for the cita-
tion network Fig. 4.24b. The plot indicates that D is minimal for kmin= 49, and 
the corresponding�ਠ�estimated by Eq. 4.41, representing the optimal fit, is 
ਠ=2.79. The standard error for the obtained degree exponent is

which implies that the best fit is for exponent ਠ��ıȖ. For the citation net-
work we obtain ıȖ=0.003, hence ਠ=2.79 (3). 

Note that Eq. 4.45 represents an approximation, but typically the results 
provided by it is within 1% of the real value as long as kmin >6. Furthermore, 
in order to obtain a reasonable estimate for ਠ, we need N >50. Smaller data-
sets should be treated with caution.

GOODNESS-OF-FIT

Just because we obtained a (ਠ, kmin) pair that represents an optimal fit 
to our dataset, does not mean that the power law itself is a good model for 
the studied distribution.We therefore need to use a goodness-of-fit test, 
which generates a ਭ-value that quantifies the plausibility of the power law 
hypothesis. The most often used procedure [12] consists of the following 
steps:

(i) Use the cumulative distribution Eq. 4.43 to estimate the KS distance 
between the real data and the best fit, that we denote by Dreal. This is 
step 3 above, taking the value of D for kmin that offered the best fit 

(4.42)

(4.43)

(4.44)

(4.45)

Maximum likelihood estimation
Figure 4.24

(a) The degree distribution pk of the citation 
network, where the straight line represents 
the best based on model Eq. 4.39.

(b) The values of Kormogorov-Smirnov test vs. 
kmin, where the red lines indicate the min-
imum value of D and the corresponding kmin. 

(c) ਭ� (Dsynthetic) for M=10,000 synthetic data, 
where the red line corresponds to the D value 
from the citation network (a-b).
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to the data. For the citation data we obtain Dreal  = 0.01158 for kmin= 
49 Fig. 4.24.

(ii) Use Eq. 4.42 to generate a degree sequence of N degrees (i.e. the same 
number of random numbers as the number of nodes in the original 
dataset) and substitute the obtained degree sequence for the empiri-
cal data, determining Dsynthetic for this hypothetical degree sequence. 
Hence Dsynthetic represents the distance between a synthetically gen-
erated degree sequence, consistent with our degree distribution, 
and the real data.

iii. The goal is to see if the obtained Dsynthetic is comparable to Dreal. For 
this we repeat step (ii) M times (M ɝ1), and each time we generate 
a new degree sequence and determine the corresponding Dsynthetic, 
eventually obtaining the p             distribution. Plot p        and show as 
a vertical bar Dreal Fig. 4.24c.  If Dreal is within the p        distribution, 
it means that the distance between the model providing the best fit 
and the empirical data is comparable with the distance expected 
from random degree samples chosen from the best fit distribution. 
Hence the power law is a reasonable model to the data. If, however, 
Dreal falls outside the (p       ) distribution, then the power law is not 
a good model - some other function is expected to describe the orig-
inal pk.

While the distribution shown in Figure 4.20 may be in some cases useful 
to offer a visual illustration, in general is better to assign a p-number to 
the fit, given by

The closer p is to 1, the more likely that the difference between the 
empirical data and the model can be attributed to statistical fluctuations 
alone; if ਭ is small, the model is not a plausible fit to the data.

Typically, the model is accepted if p > 1%. For the citation network we 
obtai p < 10-4, indicating that a pure power law is not a suitable model for 
the original degree distribution.This outcome is somewhat surprising, as 
the power-law nature of citation data has been documented repeatedly 
since 1960s [7, 8]. This failure offers a lesson on the limitation of the blind 
application of the fitting procedures.

FITTING REAL DISTRIBUTIONS

To correct the problem, we note that the fitting model Eq. 4.44 eliminates 
all the data points with k < kmin. As the citation network is fat tailed, choos-
ing kmin = 49 forces us to discard over 96% data points. Yet, there is sta-
tistically useful information in the k < kmin regime, that is ignored by the 
previous fit.We therefore introduce an alternate model that resolves this 
problem.

ESTIMATING THE DEGREE EXPONENT

(4.46)∫=
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synthetic synthetic

Dsynthetic Dsynthetic
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As we discussed in BOX 4.9, the degree distribution of many real net-
works, like the citation network, can not be described by a pure power law, 
but has the form

and the associated CDF is 

where ksat and kcut correspond to low-k saturation and the large-k cutoff, 
respectively. The difference between our earlier procedure and Eq. 4.47 is 
that we now do not discard the points that deviate from a pure power law, 
but we use a function that may offer a better fit to the whole degree distri-
bution, from kmin to kmax.

Our goal is to find the fitting parameters ksat, kcut, and ਠ of the model Eq. 

4.47, which we achieve through the following steps:

A. Pick a value for ksat and kcut between kmin and kmax. Estimate the val-
ue of the degree exponent ਠ using the steepest descend method that 
maximizes the log-likelihood function

That is, for fixed (ksat, kcut) we vary ਠ�until we find the maximum of L. 
The steepest descent method provides ਠ�(kmin, kcut) for which Eq. 4.48 
is maximal.

B. With the obtained ਠ(ksat, kcut) assume that the degree distribution has 
the form. Calculate the Kormogorov Smirnov parameter D Eq. 4.47 be-
tween the cumulative degree distribution (CDF) of the original data 
and the fitted model provided by Eq. 4.47.

C. Change ksat and kcut, and repeat steps (1-3), scanning with k0 from 
kmin= 0 to kmax and with kcut from kmin= k0 to kmax. The goal is to identify 
k and k values for which D is minimal. We illustrate this by plotting 
D in function of ksat for serval kcut values in Fig. 4.25a for our citation 
sample. The (ksat,, kcut) for which D is minimal, and the corresponding 
ਠ is provided by Eq. 4.41, will represent the optimal parameters of the 
fit. For our dataset the optimal fit is obtained for ksat= 12 and kcut= 
5691, providing the degree exponent� ਠ� = 3.028. We find that now 
D for the real data is within the generated p(D) distribution Fig.4.25c, 
and the associated p-value is 69%.

SYSTEMATIC FITTING ISSUES

The procedure described above may offer the impression that deter-
mining the degree exponent is a cumbersome but straight forward process. 
In reality the existing fitting methods have some well known limitations:

(4.49)

(4.48)

ESTIMATING THE DEGREE EXPONENT
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1. A pure power law is really an idealized distribution that emerges 
in its form (1) only in simple models CHAPTER 5. In reality, a whole 
range of processes contribute to the topology of real networks, af-
fecting the precise shape of the degree distribution. These processes 
will be described in CHAPTER 6. If pk does not follow a pure power 
law, the methods described above, designed to fit a power law to the 
data, will inevitably fail to detect statistical significance. That does 
not necessarily mean that the network is not scale-free (but it could 
also mean that). Most often it means that we have not yet gained a 
proper understanding of the precise form of the degree distribution, 
hence we are fitting the wrong functional form of pk to the dataset.

2. The statistical tools used above to test the goodness of the fit rely on 
the Kolmogorov-Smirnov criteria, which measures the maximum 
distance between the fitted model and the dataset. If all data points 
follow a perfect power law, but a single point for some reason devi-
ates from the curve, we will loose the fit’s statistical significance. In 
real systems there are numerous reasons for such local deviations, 
that have little impact on the system’s overall behavior. Yet, remov-
ing these “outliers” could be seen as data manipulation; if kept, how-
ever, one cannot detect the statistical significance of the power law 
fit. A good example is provided by the actor network, whose degree 
distribution follows a power law for most degrees. There is a single 
outlier, at k = 1,287, thanks to the 1956 movie, Around the World in 
Eighty Days.

This is the only movie, where IMDB lists all the uncredited extras in 
the cast. Hence the movie appears to have 1,288 actors. The second 
largest movie in the dataset has only 340 actors. Since the extras are 
only listed for this movie, each of them have links only to the 1,287 
extras that played in the same movie, leading to a local peak in pk 
at k=1,287. Thanks to this peak, the degree distribution, fitted to a 
power law fails to pass the Kolmogorov-Smirnov criteria. Indeed, as 
indicated in Table 4.3, neither the pure power law fit, nor a power law 
with high-degree cutoff offers a statistically significant fit.

3. Thanks to the issues discussed above, the methodology described 
above often predicts a small scaling regime, forcing us to remove 
a huge fraction of the nodes (often as many as 99%, see Table 4.4), to 
obtain a statistically significant fit. Once plotted next to the original 
dataset, the obtained fit can be at times ridiculous, even if the meth-
od indicates statistical significance. The bottom line, estimating the 
degree exponents is still not an exact science. We continue to lack 
methods that would estimate the statistical significance of a proper 
fit in a manner that would be acceptable to a practitioner. The blind 
application of the tools describe above often leads to either fits that 
obviously do not capture the trends in the data, or to a false rejec-
tion of the power-law hypothesis. An important improvement will 
be provided by our ability to derive the expected form of the degree 
distribution, discussed in CHAPTER 6.

ESTIMATING THE DEGREE EXPONENT
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(a) The Kormogorov-Smirnov parameter D vs. 
k0 for  kcut = 3.000,  6.000,  9.000, respectively, 
showing that ksat= 12 corresponds to the min-
imal D. Inset: D vs. kcut for ksat= 12, indicating 
that kcut =5.691 minimizes D. 

(b) Degree distribution pk where the straight 
line represents the best fitting estimated from 
(a). 

(c) pDsynthetic for M = 10.000 synthetic data, 
where the red line corresponds to the D value 
from the citation network (a-b).

For the power grid a power law does not offer 
a statistically significant fit as the underlying 
network is not scale-free. We used the fitting 
procedure described in this section to now fit 

the exponential function e-ਨk to the degree dis-
tribution of the power grid, obtaining a sta-
tistically significant fit in this case. The table 
shows the obtained ਨ� parameters, the kmin 
over which the fit is valid, the obtained p-val-
ue, and the percentage of data points included 
in the fit.

Figure 4.25

Table 4.3

Estimating the scaling parameters for citation 
networks

Exponential Fitting

a b c

NETWORK 
NAME

P-VALUE PERCENTAGE

Power Grid 0.5174 0.91 12%

kmin
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The estimated degree exponents and the ap-
propriate fit parameters for several networks 
studied in this book. We implemented two fit-
ting strategies, the first aiming to fit a pure 
power law in the region (kmin, ∞) and the sec-
ond fits a power law with saturation and ex-
ponential cutoff to the whole dataset. In the 
table we show the obtained ਠ� exponent and 
kmin for the fit with the best statistical signif-
icance, the p-value for the best fit and the 
percentage of the data included in the fit. In 
the second case we again show the exponent 
ਠ, the two fit parameters, ksat and kcut, and the 
p-value of the obtained fit. Note that p > 0.01 
is considered to be statistically significant.

Table 4.4
Fitting parameters for real networks

ESTIMATING THE DEGREE EXPONENT

kmin ksat kcut

NETWORK NAME                                                                             

P-VALUE PERCENT P-VALUE

Internet 3.42 72 0.13 0.6% 3.55 88 500 0.00

WWW-ND (in)2 .001 0.00 100% 1.970 660 0.00

WWW-ND (out)2 .317 0.00 15%2 .828 8500 0.00

Power Grid 4.00 50 .001 2% 8.561 91 40 .00

Mobile Phone Calls 
(in)

4.69 90 .342 .6%6 .951 51 00 .00

Mobile Phone Calls 
(out)

5.01 11 0.77 1.7% 7.23 15 10 0.00

Email-PRE (in)3 .438 80 .11 0.2% 2.27 08 500 0.00

Email-PRE (out)2 .033 0.00 1.2%2 .550 8500 0.00

Science Collaboration3 .352 50 .0001 5.4% 1.501 71 20 .00

Actor Network2 .12 54 0.00 33% -- -0 .00

Citation Network (in)2 .79 51 0.00 3.0% 3.03 12 5691 0.69

Citation Network 
(out)

4.00 19 0.00 14%- 0.16 51 00 .00

E.coli Metabolism 
(in)

2.43 30 .00 57% 3.851 91 20 .00

E.coli Metabolism 
(out)

2.90 50 .00 34% 2.56 15 10 0.00

Yeast Protein 
Interactions

2.897 0.67 8.3%2 .952 90 0.52

WWW-stanford (in)2 .15 30 .00 44.9% 2.86492 4 222 0.00

WWW-stanford (out)3 .976 20 .000 .6%3 .96102 17 128 0.00

Email-PNAS (in)2 .811 90 .0005 22.2% 0.54 02 50 .00

Email-PNAS (out)2 .272 60 .929 .3%0 .920 36 0.00

k ;[kmin , ] (k 
 ksat ) e k /kcut
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SECTION 5.0

Hubs represent the most striking difference between a random and a 
scale-free network. Their very existence raises several fundamental ques-
tions:

• Why does the random network model of ErdĘs and Rényi fail to
reproduce the hubs and the power laws observed in many real
networks?

• Why do so different systems as the WWW or the cell converge
to a similar scale-free architecture?

The last question is particularly puzzling given the fundamental dif-
ferences in the nature, origin, and scope of the systems that display the 
scale-free property:

• The nodes of the cellular network are proteins or metabolites,
while the nodes of the WWW are documents, representing
information without a physical manifestation.

• The links within the cell are binding interactions and chemical
reactions, while the links of the WWW are URLs, or small
segments of computer code.

• The history of these two systems could not be more different: the
cellular network is shaped by 4 billion years of evolution, while
the WWW is a few decades old.

• The purpose of the metabolic network is to chemically build the
basic chemical components the cells need for life, while the
purpose of the WWW is information access and delivery. 

To understand why so different systems converge to a similar architec-
ture we need to first understand the mechanism responsible for the emer-
gence of the scale-free property. This is the main topic of this chapter. Giv-

INTRODUCTION
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en the major differences between the systems that display the scale-free 
property, the explanation must be simple and fundamental. The answers 
will change the way we view and model networks, forcing us to move from 
describing a network’s topology to modeling the evolution of complex sys-
tems.

Figure 5.1
Scale-free sonata

Composed by Michael Edward Edgerton in 
2003, 1 sonata for piano was inspired by scale-
free networks. The music obeys the principles 
of a growing network, incorporating growth 
and preferential attachment. The interplay 
between the music and networks is explained 
by the composer:

“6 hubs of different length and procedure 
were distributed over the 2nd and 3rd move-
ments. Musically, the notion of an airport was 
utilized by diverting all traffic into a limited 
landing space, while the density of procedure 
and duration were varied considerably be-
tween the 6 differing occurrences.“ 

The Image shows the beginning of what Edg-
erton calls Hub #5.
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GROWTH AND PREFERENTIAL
ATTACHMENT

SECTION 5.1

Our journey towards understanding the origin of the scale-free prop-
erty by asking: why are hubs and power laws absent from the model? The 
answer emerged in 1999, highlighting two hidden assumptions of the 
ErdĘs-Rényi model, each of which are violated in real networks [1]. Next we 
discuss these two assumptions separately.

NETWORKS EXPAND THROUGH THE ADDITION OF NEW NODES

The random network model assumes that we have a fixed number of 
nodes, N. The role of the modeler is to connect these nodes, while keeping 
N unchanged. Yet, in most real networks the number of nodes is not fixed, 
but continually grows thanks to the addition of new nodes. Let us consider 
a few examples:

• In 2001 the WWW had a single node, the first webpage build by Tim 
Berners-Lee, the creator of the Web. Today the Web has over a trillion 
(1012) documents, an extraordinary number that was reached through 
the continuous addition of new documents by millions of individuals 
and institutions Fig. 5.2a.

• The collaboration and citation networks continually expand through 
the publication of new research papers Fig. 5.2b.

• The Hollywood actor network continues to expand through the release 
of new movies Fig. 5.2c.

• At first the protein interaction network within our cells may appear 
to be static, as we inherit our genes (and hence our proteins) from our 
parents. Yet, it is not: the number of genes grew from a few to the over 
20,000 genes present today in a human cell over four billion years.

Consequently, if we wish to model these networks, we cannot resort to 
a static model. Rather our approach must acknowledge that networks are 
the product of a steady growth process.
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NODES PREFER TO LINK TO THE MORE CONNECTED NODES

The random network model assumes that we randomly choose the in-
teraction partners of a node. In most real networks, however, new nodes 
prefer to link to the more connected nodes, a process called preferential 
attachment. Consider a few examples:

• We are familiar with only a tiny fraction of the trillion or more doc-
uments available on the WWW. The nodes we know are not entirely 
random, but we all heard about Google and Facebook, but we rarely 
encounter the billions of less-prominent nodes that populate the Web. 
As our knowledge is biased towards the more connected nodes, we are 
more likely to link to a high-degree node than to a node with only few 
links.

• With more than a million scientific papers published each year, no 
scientist can attempt to read them all. The more cited is a paper, the 
more likely that we will notice it. Therefore, our citations are biased 
towards the more cited publications, representing the high-degree 
nodes of the citation network.

• The more movies an actor has played in, the more familiar is a casting 
director with her skills. Hence, the higher the degree of an actor in the 
actor network, the higher are the chances that she will be considered 
for a new role.

In summary, the random network model differs from real networks in 
two important characteristics:

GROWTH

While the random network model assumes that the number of nodes, 
N, is fixed (time invariant), real networks are the result of a growth pro-
cess that continuously increases N.

PREFERENTIAL ATTACHMENT

While nodes in random networks randomly choose their interaction 
partner, in real networks new nodes prefer to link to the more connect-
ed nodes.

There are many other differences between real and random networks, 
some of which will be discussed in the coming chapters. Yet, as we show 
next, growth and preferential attachment have a particularly important 
role shaping a network’s degree distribution.

(a) The evolution of the number of WWW 
hosts, documenting the Web’s rapid growth. 
After http://www.isc.org/solutions/survey/
history.

(b) The number of scientific papers published 
in Physical Review journals since the journal’s 
funding in 1893. The observed growth drives 
the growth of both the science collaboration 
network as well as the citation network. Over 
the century the Physical Review portfolio has 
split several times, responding to the expo-
nential growth of the number of research 
papers and to specialization. Today the cor-
pus features Physical Review Letters, Physical 
Review A, B, C, D, E, X and Reviews of Modern 
Physics.

(c) Number of movies listed in IMDB.com, re-
flecting the growth of the Hollywood movie 
enterprise, and with that the growth of the 
actor network.

Figure 5.2
The growth of networks

GROWTH AND PREFERENTIAL ATTACHMENT
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Figure 4.2
Art and Networks: Tomás Saraceno

(a) The evolution of the number of WWW 
hosts, docume

a

b

BOX 5.1
PREFERENTIAL ATTACHMENT: A BRIEF HISTORY

Preferential attachment has emerged repeatedly in mathematics and 
social sciences. Consequently today we can encounter it under differ-
ent names in the scientific literature:

•  It made its first appearance in 1923 in the celebrated urn model of the 
Hungarian mathematician György Pólya (1887-1985) [2], proposed to 
explain the nature of certain distributions. Hence, in mathematics 
preferential attachment is often called a Pólya process.

•  George Udmy Yule (1871-1951) in 1925 used preferential attachment 
to explain the power-law distribution of the number of species per 
genus of flowering plants [3]. Hence, in statistics preferential attach-
ment is often called a Yule process.

• Rober Gibrat (1904-1980) in 1931 proposed that the size and the 
growth rate of a firm are independent. Hence, larger firms grow 
faster [4]. Called proportional growth, this is a form of preferential 
attachment.

• George Kinsley Zipf (1902-1950) in 1941 used preferential attach-
ment to explain the fat tailed distribution of wealth in the society [5].

•  Modern analytical treatments of preferential attachment use of the 
master equation approach pioneered by the economist Herbert Al-
exander Simon (1916-2001). Simon used preferential attachment in 
1955 to explain the fat-tailed nature of the distributions describing 
city sizes, word frequencies in a text, or the number of papers pub-
lished by scientists [6].

•  Building on Simon’s work, Derek de Solla Price (1922-1983) used pref-
erential attachment to explain the citation statistics of scientific 
publications, referring to it as cumulative advantage [7].

•  In sociology preferential attachment is often called the Matthew ef-
fect, named by Robert Merton (1910-2003) [8] after a passage in the 
Gospel of Matthew: “For everyone who has will be given more, and 
he will have an abundance. Whoever does not have, even what he has 
will be taken from him.”

• The term preferential attachment was introduced in the 1999 paper 
by Barabási and Albert [1] to explain the ubiquity of power laws in 
networks.

7THE BARABÁSI-ALBERT MODEL GROWTH AND PREFERENTIAL ATTACHMENT

Note that the distributions character-
ized from Pólya to Merton describe scalar 
quantities, like the number of individuals 
with the same income or the size of cit-
ies. In contrast the Barabási-Albert model 
aims to describe networks. Networks have 
a wide array of topological characteristics 
that are absent from scalar distributions, 
but which are deeply affected by the pow-
er-law nature of the degree distribution.



THE BARABÁSI-ALBERT
MODEL

SECTION 5.2

The recognition that growth and preferential attachment coexist in 
real networks has lead to the introduction of a minimal model capable of 
generating networks with power-law degree distribution [1]. The model is 
defined as follows:

We start with m0 nodes, the links between which are chosen arbitrarily, 
as long as each node has at least one link. The network develops following 
two steps Fig. 5.3:

(A) GROWTH

At each timestep we add a new node with m (≤ m0) links that connect 
the new node to m nodes already in the network.

(B)  PREFERENTIAL ATTACHMENT

The probability ʌ(k) that one of the links of the new node connects to 
node i depends on the degree ki of node i as

Preferential attachment is a probabilistic rule: a new node is free to 
connect to any node in the network, whether it is a hub or has a single 
link. Eq. 5.1 implies, however, that if a new node has a choice between a de-
gree-two and a degree-four node, it is twice as likely that it connects to 
the degree-four node. The model defined by steps (A) and (B) is called the 
Barabási-Albert model after the authors of the paper that introduced it in 
1999 [1]. One may also encounter it in the literature as the BA model or the 
scale-free model. After t timesteps the Barabási-Albert model generates a 
network with N = t + m0 nodes and m0 + mt links.  As Fig. 5.4 shows, the net-
work generated by the model has a power-law degree distribution, a with a 
degree exponent�ਠ=3. 

As Fig. 5.3 indicates, while most nodes in the network have only a few 
links, a few gradually turn into hubs. The hubs are the result of a rich-gets-
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Figure 5.3 
Time evolution of the Barabási-Albert model

The sequence of images shows the gradual 
emergence of a few highly connected nodes, 
or hubs, through growth and preferential at-
tachment. White circles mark the newly add-
ed node to the network, which decides where 
to connect its two links (m=2) through prefer-
ential attachment Eq. 5.1. After [9].

(5.1)
k k

k
( ) .i

i

j
j∑

Π =



The degree distribution of a network gen-
erated by the Barabási-Albert model. The 
plot shows pk for a single network of size 
N=100,000 and m=3. It shows both the lin-
early-binned (red symbols) as well as the 
log-binned version (green symbols) of pk. The 
straight line is added to guide the eye and has 
slope ਠ=3, corresponding to the resulting net-
work’s degree distribution.

Figure 5.4
The degree distribution

richer phenomenon: due to preferential attachment new nodes are more 
likely to connect to the more connected nodes than to the smaller degree 
nodes. Hence, the more connected nodes will acquire links at the expense 
of the less connected nodes, eventually turning into hubs.

In summary, the Barabási-Albert model indicates that two simple 
mechanisms, growth and preferential attachment, are responsible for the 
emergence of networks with a power-law degree distribution. The origin 
of the power law and the associated hubs is a rich-gets-richer phenomena 
induced by the coexistence of these two ingredients. Yet, to understand the 
model’s behavior and to quantify the emergence of the scale-free proper-
ty, we need to describe the model’s mathematical properties, which is the 
subject of the next section.

9THE BARABÁSI-ALBERT MODEL THE BARABÁSI-ALBERT MODEL



INTRODUCTION10THE BARABÁSI-ALBERT MODEL



INTRODUCTION11THE BARABÁSI-ALBERT MODEL

The discovery of the Barabási-Albert model is 
recounted in Linked [9] describing a workshop 
in Porto, Portugal, that the author attended: 

“During the summer of 1999 very few people 
were thinking about networks, and there were
no talks on the subject during this workshop. 
But networks were very much on my mind. I 
could not help carrying with me on the trip 
our unresolved questions: Why hubs? Why 
power-laws? […] Before I left for Europe, Réka
Albert and I agreed that she would analyze 
these networks. On June 14, a week after my 
departure, I received a long email from her de-
tailing some ongoing activities. At the end of 
the message there was a sentence added like 
an afterthought: “I looked at the connectivi-
ty distribution too, and in almost all systems 
(IBM, actors, power grid), the tail of the distri-
bution follows a power law.”

Réka’s email suddenly made it clear that the 
Web was by no means special. I found my-
self sitting in the conference hall paying no 
attetion to the talks, thinking about the im-
plications of this finding. If two networks as 
different as the Web and the Hollywood act-
ing community both display power-law de-
gree distribution, then some universal law or 
mechanism must be responsible. If such a law 
existed, it could potentially apply to all net-
works. During the first break between talks I 
decided to withdraw to the quiet of the semi-
nary where we were housed during the work-
shop. I did not get far, however. During the fif-
teen-minute walk back to my room a potential
explanation occurred to me, one so simple 
and straightforward that I doubted it could be 
right. I immediately returned to the university 
to fax Réka, asking her to verify the idea using 
the computer. A few hours later she emailed 
me the answer. To my great astonishment, the 
idea worked.”

The Figure is a reproduction of the two-page 
fax sent on June 14, 1999 from Porto to Réka 
Albert, describing the model that we call today 
the Barabási-Albert model.

Figure 5.5
The scale-free fax
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BOX 5.2
THE MATHEMATICAL DEFINITION OF THE BARABÁSI-ALBERT MODEL

The definition of the Barabási-Albert model provided in this chap-
ter leaves many mathematical details of the model unspecified:

• It does not specify the precise initial configuration of the first 
m0 nodes.

• It does not specify whether the m links assigned to a new node 
are added one by one, independent of each other, or simultane-
ously. These problems were recognized by Riordan and Bollobás 
[10], who offered a definition that addresses these shortcom-
ings. In contrast with the original model, Riordan and Bollobás 
allows for multiple edges and loops, showing later that their 
number will be negligible. The resulting model, called the Lin-
earized Chord Diagram (LCD), is defined as follows:

Consider a fixed sequence of nodes v1, v2, ..., where the degree of 
the node vi is ki. We build a graph (G1  )t ≥ 0 so that G(t) is a graph on 
vi , 1 ≤ i ≤ t as follows: start with G1    corresponding to an empty 
graph with no nodes, or with G1  graph with one node and one 
loop. Given G1

         generate G1   by adding the node vt together with 
a single link between vt and vi, where i is chosen with probability

That is, we place a link from node vt to node vi, where the prob-
ability that node i is chosen as the target of this new link is pro-
portional to its degree ki at the time, the new link already contrib-
uting to the degree of vt. Hence, the new node vt can also link to 
itself with probability 1/(2t - 1). For m > 1, we add m links from vt 
one by one, counting the previous links together with the outward 
half of the newly added link as contributing to the degrees.

pr (i = s)=
k
G( t�1)1

k(vs )
(2t �1)

, if 1� s � t �1

1
(2t �1)

, if s = t

�

�

�
�

�

�
�

(5.2)

(t)

(t)(t-1)

(0)

(1)
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DEGREE DYNAMICS

SECTION 5.3

To understand the time evolution of the Barabási-Albert model, we first 
focus on the time-dependent degree of a node [11]. In the model a node has 
a chance to increase its degree each time a new node enters the network. 
When a new node joins the network, it will link to m of the N(t) nodes pres-
ent in the system. The probability that it chooses node i is given by Eq. 5.1. 
Assuming that ki is a time-dependent continuous real variable, the rate at 
which node i acquires links follows the equation

The coefficient m describes that each new node arrives with m links. 
Hence, node i has m chances to be chosen. The sum in the denominator of 
Eq. 5.3 goes over all nodes in the network except the newly added node, thus

Therefore Eq. 5.4 becomes

For large t the term (-1) can be neglected in the denominator, obtaining

By integrating Eq. 5.6 and using the fact that ki (ti)=m, meaning that node 
i joins the network at time ti with m links, we obtain

k
t m k m k

k
( ) .i

i
i

j

N

j
1

1
∑

∂
∂

= Π =

=

− (5.3)

(5.4)

(5.5)

(5.6)

(5.7)

k mt m2 .
j

N

j
1
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∑ = −
=

−

k mt m2 .
j
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j
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k
t
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∂
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The exponent�ȕ is the network’s dynamical exponent and has the value
     . Eq. 5.7 offers a number of predictions:

• The degree of each node increases following a power-law with the 
same dynamical exponent�ȕ�=1/2 Fig. 5.6, implying that all nodes follow 
the same growth law.

• The growth in the degrees is sublinear (i.e. ȕ < 1). In contrast in the 
ErdĘs-Rényi model ຊk increases as ki Ȯ t if we add links one by one to 
the network. The sublinear nature of Eq. 5.7 is a consequence of the 
growing nature of the Barabási-Albert model: each new node has more 
nodes to link to than the previous nodes. Hence, with time each node 
competes for links with an increasing pool of nodes.

• The earlier node i was added, the higher is its degree ki (t). Hence, hubs 
are large not because they grow faster, but because they arrived earli-
er, a phenomenon called first-mover advantage in marketing and busi-
ness.

• The growth rate of a node (i.e. the rate at which the node i acquires new 
links) is given by the derivative of Eq. 5.7

indicating that older nodes acquire more links in a unit time (as they 
have smaller ti), as well as that the rate at which a node acquires links 
decreases with time as t−1/2. Hence, less and less links go to a node. 

Taken together, the Barabási-Albert model offers a dynamical descrip-
tion of a network’s evolution, capturing the fact that in real networks 
nodes arrive one after the other, connecting to the earlier nodes. This sets 
up a competition for links during which the older nodes have an advantage 
over the younger nodes, eventually turning into hubs.

1
2β =

dk t
dt

m
t t

( )
2

1 .i

i
� (5.8)

DEGREE DYNAMICS

,
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(a) Time dependence of the degrees of nodes 
added at time t =1, 10, 102, 103, 104, 105 (con-
tinuous lines from left to right). One can see 
that each node increases its degree following 
the same law Eq. 5.7. Also, at any moment the 
older nodes have higher degrees. The dotted 
line corresponds to the analytical prediction 
Eq. 5.7 with ȕ�= 1/2.

(b) Degree distribution of the network after 
the addition of N = 102, 104, and 106 nodes, i.e. 
at time t = 102, 104, and 106 (illustrated by ar-
rows in (a)). The larger the network, the more 
obvious is the power-law nature of the degree 
distribution. Note that pk is plotted using lin-
ear binning, to better show the gradual emer-
gence of the scale-free state.

Figure 5.6
Degree dynamics
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BOX 5.3 
THE MATHEMATICAL DEFINITION OF THE BARABÁSI-ALBERT MODEL

As we compare the predictions of the various network models 
with real data, we often have to decide how to measure time in 
networks. Real networks have evolved over rather different time 
scales: the first webpage was created in 1991, giving the WWW a 
history of a few decades at most. Given its trillion documents, this 
means that on average the WWW added more than a thousand 
nodes each second. In contrast the human cell is the result of 4 
billion years of evolution; hence with roughly 20,000 genes, the 
cellular network added a node every 200,000 years. Given these 
enormous time-scale differences it seems impossible to use real 
time to compare the dynamics of these networks. Therefore, in 
network theory we use event time, that is, we advance time each 
time there is a change in the network topology. For example, in 
the Barabási-Albert model the addition of each new node cor-
responds to a new time step. Consequently in the model t=N. In 
more complicated models a distinct time step is assigned to each 
event—like the addition of a new node, the arrival of a new link, 
or the deletion of a node, any attempt to change the network to-
pology. Obviously, if needed, we can establish a direct mapping 
between event time and the physical time.
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DEGREE DISTRIBUTION
SECTION 5.4

The distinguishing feature of networks generated by the Barabási-Al-
bert model is their power-law degree distribution Fig. 5.4. In this section 
we calculate the functional form of pk, helping us understand its origin. 
A number of analytical tools are available to calculate the model’s degree 
distribution. The simplest is the continuum theory that we started devel-
oping in the previous section [1, 11]. It predicts that the degree distribution 
follows BOX 5.4,

with

Eq. 5.9 tells us that the degree distribution follows a power law with expo-
nent Ȗ=3, in agreement with the numerical results shown in Fig. 5.4 and Fig. 

5.7. In turn Eq. 5.10 links the degree exponent, Ȗ, a quantity characterizing 
the network topology, to the dynamical exponent, ȕ, that characterizes a 
node’s temporal evolution. While the continuum theory predicts the cor-
rect degree exponent (Ȗ=3), it fails to accurately predict the pre-factors of 
Eq. 5.9. This is why we use a proportional sign in Eq. 5.9, rather than equality. 
The exact degree distribution, with the correct pre-factors, can be obtained 
using a master [12] or rate equation [13] approach or calculated exactly us-
ing the LCD model [10] BOX 5.2. As we show in ADVANCED TOPICS 5.A, the 
exact form of the degree distribution of the Barabási-Albert model is

Eq. 5.11 has several notable implications:

• For large k, Eq. 5.11 reduces to pk~ k--3, or Ȗ = 3, in line with Eq. 5.9 and Eq. 

5.10.

• The degree exponent Ȗ is independent of m, a prediction that agrees 
with the numerical results Fig. 5.7a.

(5.9)

(5.10)

(5.11)

p k m k( ) ~ 2 1/β γ−

1 1 3.γ
β

= + =

p m m
k k k

2 ( 1)
( 1)( 2)k =

+
+ +

(a) To show that pk is independent of the pa-
rameters m and m0, we generated networks 
with N=100,000 and m0=m=1 (red), 3 (green), 
5 (blue), and 7 (purple). The fact that the 
curves are parallel to each other indicates 
that�Ȗ�is independent of m and m0. The slope 
of the dashed line is -3.  Inset: Eq. 5.11 predicts 
pk~2m2, hence pk/2m2 should be independent 
of m. Indeed, by plotting pk/2m2 vs. k all curves 
in the main plot collapse into a single curve.

(b) The Barabási-Albert model predicts that 
pk is independent of N. To test this we plot 
pk for N = 50,000 (red), 100,000 (green), and 
200,000 (blue), with m0=m=3. The obtained pk 
are practically indistinguishable, indicating 
that the degree distribution is time invariant.

Figure 5.7
Probing the analytical predictions

.
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• The power-law degree distribution observed in real networks de-
scribes systems of rather different age and size. Hence, a proper mod-
el should lead to a time-independent degree distribution. Indeed, Eq. 

5.11 predicts that the degree distribution of the Barabási-Albert model 
is time independent, resulting in the emergence of a stationary scale-
free state. Numerical simulations support this prediction, indicating 
that pk observed for different t (or N) fully overlap Fig. 5.7b.

• Eq. 5.11 predicts that the coefficient of the power-law distribution is 
proportional to m(m + 1) (or m2 for large m), again confirmed by nu-
merical simulations Fig. 5.7, inset).

In summary, the analytical calculations confirm that the Barabási-Al-
bert model generates a power-law degree distribution, predicting the val-
ue of the degree exponent as Ȗ=3. The exponent is independent of the pa-
rameters m and m0. The calculations predict that the degree distribution 
is stationary (i.e. time invariant), explaining why networks with different 
history, size and age develop a similar degree distribution.

BOX 5.4 
CONTINUUM THEORY

To calculate the degree distri-
bution of the Barabási-Albert 
model we first determine the 
probability that the degree ki(t) 
of node i is smaller than a value 
k, i.e. P(ki(t) < k). Using Eq. 5.7, we 
can write

In the model we add the nodes at 
equal time intervals BOX 5.3. To 
capture this temporal uniformi-
ty we write the probablity that a 
node arrives at time ti as a ran-
dom variable with a constant 
probability density

Substituting Eq. 5.13 into Eq. 5.12 
we obtain the cumulative distri-
bution

We obtain the degree distribu-
tion p(k) by taking the derivative 
of the cumulative function, i.e.

which for t ɝm0 reduces to Eq. 5.9.

P(ki (t)< k)= P ti >
m1/�t
k1/�

�

�
�

�

�
�.

P t m t( ) 1
i

0
=

+

P(k)= P ti �
m1/�t
k1/�

�

�
�

�

�
�=1�

m1/�t
k1/� (t +m0 )

(5.12)

(5.13)

(5.14)

(5.15)
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THE ABSENCE OF GROWTH
OR PREFERENTIAL ATTACHMENT

SECTION 5.5

The coexistence of growth and preferential attachment in the Barabá-
si-Albert model raises an important question: are they both necessary for 
the emergence of the scale-free property? In other words, could we gener-
ate a scale-free network with only one of the two ingredients? To address 
these questions, next we discuss two limiting cases of the model, each con-
taining only one of the two ingredients [1, 11].

MODEL A

To test the role of preferential attachment we keep the  growing charac-
ter of the network (ingredient A) and eliminate preferential attachment 
(ingredient B). Hence, Model A starts with m0 nodes and evolves follow-
ing these steps:

(1) Growth 
At each time step we add a new node with m(≤m0) links that links to 
m previous nodes.

(2) Random attachment 
The probability that a new node links to a node with degree ki is

That is, ʌ(ki) is independent of ki, indicating that the new nodes 
choose randomly the nodes they link to. The continuum theory pre-
dicts that for Model A ki(t) increases logarithmically with time, i.e.

a much slower increase than the power law Eq. 5.7 derived earlier. 
Consequently the degree distribution becomes exponential Fig. 5.8a

k m t( ) 1
( 1) .i

0
Π =

+ −
(5.16)

(5.17)

(5.18).

k(t)= m ln e m0 + t +1
m0 + ti +1

�

�
�

�

�
�

pk =
e
m
exp �

k
m

�

�
�

�

�
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As an exponential function decays much faster than a power law, it does 
not support hubs. Therefore the lack of preferential attachment elimi-
nates the network’s scale-free character and the hubs. 

MODEL B

To test the role of growth we next keep preferential attachment (ingre-
dient B) and eliminate growth (ingredient A). Hence, Model B starts with 
N nodes and evolves following this step:

Preferential Attachment:
At each time step a node is selected randomly and connects to a node i 
with degree ki already present in the network, where i is chosen with 
probability Eq. 5.1.

In Model B, the number of nodes remains constant during the network’s 
evolution, but the number of links increases linearly with time. As a re-
sult the degree of each node also increases linearly with time Fig. 5.8b, 
inset

Indeed, in each time step we add a new link, without changing the num-
ber of nodes. At early times, when there are only a few links in the net-
work (i.e. L ɜ N), each new link connects previously unconnected nodes. 
In this stage the model’s evolution is indistinguishable from the Barabá-
si-Albert model with m=1. Numerical simulations show that in this re-
gime the model develops a degree distribution with a power-law tail Fig. 

5.8b. Yet, pk is not stationary, as after roughly T ݍ�N2 time steps the net-
work converges to a complete graph. Consequently, after a transient pe-
riod (t�ɜ N) the node degrees start to converge to the average degree Eq. 

5.19 and the degree distribution becomes peaked Fig. 5.8b. For t ̹ N(N-1)/2 
the degree distribution becomes pk= į�(N-1), i.e. the network turns into 
a complete graph in which all nodes have degree kmax=N-1. Therefore, in 
the absence of growth the network is not stationary, becoming a com-
plete graph with time.

In summary, the failure of Models A and B to reproduce the empirically 
observed scale-free distribution indicates that growth and preferential at-
tachment are simultaneously needed for the emergence of the scale-free 
property.

(5.19)

Numerical simulations of Model A and B, prob-
ing the role of growth andpreferential attach-
ment.

(a) Degree distribution for Model A, that in-
corporates growth but lacks preferential 
attachment. The symbols correspond to 
m0=m=1 (circles), 3 (squares), 5 diamonds), 
7 (triangles) and N=800,000.

Inset: Time evolution of the degree of 
two vertices added at t1=7 and t2=97 for 
m0=m=3. The dashed line follows ki(t)=m 
ln(m0+t-1) as predicted by Eq. 5.16 for large 
t.

(b) Degree distribution for Model B, that lacks 
growth but incorporates preferential at-
tachment, shown for N=10,000 and t=N 
(circles), t=5N (squares), and t=40N (dia-
monds).

Inset: Time dependence of the degrees of 
two vertices for system size N=10,000, 
indicating that ki(t) grows linearly, as pre-
dicted by Eq. 5.19. After [14].

Figure 5.8
Model A and Model B
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MEASURING PREFERENTIAL
ATTACHMENT IN REAL
NETWORKS

SECTION 5.6

In the previous sections we showed that growth and preferential attach-
ment are responsible for the scale-free property. The presence of growth in 
real systems is obvious: all large networks arrived to their current size by 
continuously adding new nodes. But to convince ourselves that preferen-
tial attachment is also present in real networks, we need to detect it exper-
imentally. In this section we show how to detect preferential attachment 
by measuring the ʌ(k) function in real networks. We start by noting that 
preferential attachment incorporates two hypotheses:

HYPOTHESIS 1

The likelihood to connect to a node depends on the node’s degree k. This 
is in contrast with the random network model, for which ʌ(k) is inde-
pendent of k.

HYPOTHESIS 2

The functional form of ʌ(k) is linear in k.

Both hypotheses can be tested by measuring ʌ(k). To be specific, we 
can determine ʌ(k) for networks for which we [14, 15] know the time at 
which each node joined the network, or we have at least two network 
maps collected at not too distant moments in time. 

Consider a network for which we have two different maps, the first tak-
en at time t and the other at time t + ∆t Fig. 5.9. During the ∆t time frame 
some nodes did not change their degree, so for these k(t+∆t) = k(t) . For 
nodes that did alter their degree we measure the change ∆ki=ki (t+∆t )−ki(t) . 
According to Eq. 5.1, the relative change ∆ki/∆t should follow

providing the functional form of preferential attachment. For Eq. 5.20 to be 
valid we must keep ∆t small, so that the changes in ∆k are relatively small. 
But it must not be too small so that there are still detectable differences 
between the two networks.

Figure 5.9
Detecting preferential attachment

If we have access to two maps of the same 
network, taken at time t and t+∆t, comparing 
them allows us to measure the ʌ(k) function 
that governs preferential attachment. Specif-
ically we look at nodes that have gained new 
links thanks to the arrival of new nodes, like 
the two new red nodes at t+∆t. The blue lines
correspond to links that connect previous-
ly disconnected nodes, called internal links. 
Their role is discussed in CHAPTER 6. 

(c) In the presence of preferential attachment 
∆k/∆t will depend linearly on a node’s de-
gree at time t. 

(d) The scaling of the cumulative preferential 
attachment function helps us detect the 
presence or absence of preferential attach-
ment.
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In practice the obtained ∆ki/∆t curve is typically noisy, particularly for 
small networks. To reduce this noise we often measure the cumulative 
function

In the absence of preferential attachment we expect π(ki)=constant, 
hence, π(k)�Ȯ�k according to Eq. 5.21. If preferential attachment is present, 
i.e. π(ki)=ki, we expect π(k)�Ȯ�k2. Fig. 5.10 shows the measured π(k) for four real 
networks. For each system we observe a faster than linear increase in π(k), 
indicating the presence of preferential attachment. Fig. 5.10 also suggests 
that π(k) can be approximated with

For the Internet and citation networks we have Į 1 ݍ, indicating that π(k) 
depends linearly on k, as assumed in Eq. 5.2. This is in line with Hypotheses 
1 and 2. For the co-authorship and the actor network the best fit provides 
Į=0.9±0.1 indicating the potential presence of a sublinear preferential at-
tachment. 

In summary, Eq. 5.20 helps us detect the presence (or absence) of prefer-
ential attachment in real networks. The measurements show that the at-
tachment probability depends on the node degree, in line with Hypothesis 
1. Yet, we also find that while in some systems preferential attachment is 
linear, in others it can be sublinear, hence, Hypothesis 2 is occasionally vi-
olated. The implications of this non-linearity is discussed in the next sec-
tion.

(5.21)

(5.22)

The figure shows the cumulative preferential 
attachment function π(k), defined in Eq. 5.21, 
for several real systems: 

(a) A citation network
(b) The Internet
(c) Neuroscience scientific collaboration net-

work
(d) Actor network

In each panel we have two lines to guide the 
eye: the dashed line corresponds to linear 
preferential attachment (π(k)Ȯk2) and the 
continuous line indicates the absence of pref-
erential attachment (π(k)Ȯk). In line with Hy-
pothesis 1 we detect a k-dependence in each 
dataset. Yet, in (c) and (d) π(k) grows slower 
than k2, indicating that for these two systems 
preferential attachment is sublinear, violat-
ing Hypothesis 2. Note that these measure-
ments only consider links added through the 
arrival of new nodes, ignoring the addition of 
internal links. After [14].

Figure 5.10
Evidence of preferential attachment

MEASURING PREFERENTIAL
ATTACHMENT IN REAL NETWORKS
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NON-LINEAR PREFERENTIAL
ATTACHMENT

SECTION 5.7

(5.23)

(5.24)

k klim 1 ln
1

1

α−
=

α

α

→

−

The observation of sublinear preferential attachment in Fig. 5.9 raises an 
important question: what is the impact of this nonlinearity on the network 
topology? To answer this we replace the linear preferential attachment Eq. 

5.1 with Eq. 5.21 and re-calculate the degree distribution of the Barabási-Al-
bert model. The behavior for� Į=0 is clear: in the absence of preferential 
attachment, the model reduces to Model A discussed in SECTION 5.4. Conse-
quently the degree distribution will follow the simple exponential function 
Eq. 5.17. For Į�= 1 we recover the Barabási-Albert model, obtaining a scale-
free network with degree distribution Eq. 5.14. We next focus on the case 
when Į�≠ 0 and Į ≠ 1. The calculation, providing pk for an arbitrary�Į, is 
presented in ADVANCED TOPICS 5.B, predicting several scaling regimes [13]:

SUBLINEAR PREFERENTIAL ATTACHMENT (0 < Į < 1)

For any Į > 0 new nodes favor the more connected nodes over the less
connected nodes. Yet, for Į�< 1 the bias is not sufficient to generate
a scale-free degree distribution. Instead, in this regime the degrees
follow the stretched exponential distribution SECT. 4.10

where µ(Į) is a function that depends only weakly on Į� For�Į�ĺ�1 Eq. 5.22 
reduces to the degree distribution of the BA model. Indeed for Į=1 we 
have µ=2, and                        . Therefore  pk ~ k−1 exp(−2lnk)=k−3. The expo-
nential cutoff in Eq. 5.22 implies that sublinear preferential attachment 
limits the size and the number of the hubs.

Sublinear preferential attachment also affects the size of the largest 
degree, kmax. In CHAPTER 4 we showed that for a scale-free network the 
degree of the largest node scales polynomially with time Eq. 4.14. For sub-
linear preferential attachment we have

a logarithmic dependence that predicts a much slower growth of the 
maximum degee than the polynomial. This slower growth is the reason 

pk � k
�� exp 2µ(�)

�k�(1��)
k1��

�

�
�

�

�
�

kmax � (ln t)
1/(1�� )



why the hubs are smaller for�Į < 1 Fig. 5.10.

SUPERLINEAR PREFERENTIAL ATTACHMENT (Į�> 1)

For Į > 1 the tendency to link to highly connected nodes is enhanced, 
accelerating the rich-gets-richer process. The consequence of this is most 
obvious for Į > 2, when the model predicts a winner-takes-all phenom-
enon: almost all nodes connect to a single or a few super-hubs. Hence, 
we observe the emergence of a hub-and-spoke network, in which most 
nodes link directly to a few central nodes. The situation for 1 < Į < 2 is 
less extreme, but similar. This winner-takes-all process impacts the time 
dependence of the largest hub as well, finding that Fig. 5.12.

Hence for Į�> 1 the largest hub links to a finite fraction of nodes in the 
system.

In summary, nonlinear preferential attachment introduces deviations 
from the power law degree distribution, either limiting the size of the hubs 
(Į < 1), or leading to super-hubs (Į�> 1, Fig. 5.12). Hence, π(k) needs to depend 
strictly linearly on the degrees for the resulting network to have a pure 
power law pk. While in many systems we do observe such a linear behavior, 
in others, like the scientific collaboration network and the actor network, 
preferential attachment is sublinear, limiting the size of the hubs. This 
sublinear form of π(k) could be responsible for the systematic deviations 
from a pure power-law degree distribution observed in the previous chap-
ter. Hence for these systems a stretched exponential Eq. 5.22 should offer a 
better fit to the degree distribution.

(5.25)

23

The nature of preferential attachment af-
fects the degree of the largest node. While 
in a scale-free network (Į=1) the biggest hub 
grows as t1/2 (green curve) Eq. 4.14, for sublin-
ear preferential (Į<1) attachment this depen-
dence becomes logarithmic (red curve, Eq. 
5.24. For superlinear preferential attachment 
the biggest hub grows linearly with time, al-
ways grabbing a finite fraction of all links 
(blue curve), Eq. 5.25. The symbols are provid-
ed by a numerical simulation; the dotted lines 
represent the analytical predictions.

Figure 5.11
The growth of the hubs
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The scaling regimes characterizing networks 
drivenby non-linear preferential attachment. 
The three toppanels show pk for different 
Į� values (N=104). The network maps under 
them show the obtained topologies for N=100 
nodes. The theoretical results indicate the ex-
istence of four scaling regimes: 

No preferential attachment (Į=0)
The network has a simple exponential degree 
distribution following Eq. 5.18. Hubs are ab-
sent and the resulting network behaves like a 
random network. 

Sublinear preferential attachment (0<Į<1)
The degree distribution follows the stretched 
exponential Eq. 5.23, resulting in fewer and 
smaller hubs than in a scale-free network. As 
Į�ĺ 1 the cutoff length increases, hence pk fol-
lows a power law over an increasing range of 
degrees. 

Linear preferential attachment (Į=1)
This corresponds to the Barabási-Albert mod-
el, hence the degree distribution follows a 
power law. 

Superlinear preferential attachment (Į>1)
The high-degree nodes are disproportionate-
ly attractive and the network follows a win-
ner-takes-all dynamics, developing a hub-
and-spoke topology. In this configuration the 
earliest nodes become super hubs and all sub-
sequent nodes link to them. Hence pk, shown 
for Į=1.5 (top panel), indicates the coexistence 
of many small nodes with a few super hubs in 
the vicinity of k=104.

Figure 5.12

Nonlinear preferential attachment

NON-LINEAR PREFERENTIAL ATTACHMENT
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THE ORIGINS OF PREFERENTIAL
ATTACHMENT

SECTION 5.8

Given the key the role preferential attachment plays in the evolution 
of real networks, we must ask, Where does preferential attachment come 
from? The question can be broken down to two narrower issues:

Why does π(k) depend on k?
Why is the dependence of π(k) linear in k?

In the past decade we witnessed the emergence of two philosophically 
different approaches to these questions. In the first class belong models 
that view preferential attachment as a result of an interplay between ran-
dom events and some structural property of a network. These mechanisms 
do not require global knowledge of the network and rely on random ac-
tions, hence we will call them local or random mechanisms. A second class 
of models assume that each new node or link is preceeded by a cost-benefit 
analysis, balancing various needs with the available resources. These mod-
els assume familiarity with the whole network and rely on optimization 
principles, prompting us to call them global or optimized mechanisms. The 
purpose of this section is to discuss these two approaches.

LOCAL MECHANISMS

The link selection model offers perhaps the simplest example of a local 
or random mechanism capable of generating preferential attachment 
[16]. It is defined as follows:

• Growth
At each time step we add a new node to the network.

• Link selection
We select a link at random and connect the new node to one of the 
two nodes at the two ends of the selected link. This procedure is inher-
ently local and random, as one does not need to know anything about 
the overall network topology to connect the new node. To show that 
this simple mechanism generates linear preferential attachment, we 
write the probability qk that the node at the end of a randomly chosen 
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link has degree k as

Eq. 5.26 captures two effects:
(i) The higher the degree of a node, the higher the chance that it
will be located at the end of the chosen link.

(ii) The more degree-k nodes are in the network (i.e., the higher is
pk), the more likely that a degree k node will be at the end of the link.

In Eq. 5.26 the value of C can be calculated using the normalization con-
dition Ȉqk = 1, obtaining C=1/ࢭkࢮ. Hence the probability that we find a de-
gree-k node at the end of a randomly chosen link is

a quantity called excess degree. Eq. 5.27 also represents the probability that 
a new node connects to a node with degree k in the link selection model, 
hence it plays the role of the preferential attachment π(k). Therefore Eq. 5.26 
indicates that random link selection generates preferential attachment 
that is linear in then degree. While link selection is perhaps the simplest 
mechanism for preferential attachment, it is neither the first nor the most 
popular in the class of models relying on local mechanisms. That distinc-
tion goes to is the copying model, described in Fig. 5.13. 

OPTIMIZATION

A longstanding assumption of economics is that humans make ratio-
nal decisions, balancing cost against benefits. Innother words, each in-
dividual aims to maximize its personal advantage. This is the starting 
point of rational choice theory in economics [21] and it is a hypothesis 
central to modern political science, sociology and philosophy. As we 
discuss below, such rational decisions can lead to preferential attach-
ment as well [22, 23, 24]. 

Consider the Internet, whose nodes are routers or autonomous systems 
(AS), connected to each other via cables. Establishing a new Internet con-
nection between two routers requires laying down a cable between them. 
As this can be costly, each new link is preceded by careful cost-benefit 
analysis. Each new router must agree with the nodes it links to that they 
will transmit the data packets leaving from or arriving to the new node 
(peering relationship). Therefore each new node will choose its link to bal-
ance access to good network performance (like proper bandwith) with the 
cost of laying down a new cable i.e. physical distance). This can be a con-
flicting desire, as the closest node does not always offer the best network 
performance. For simplicity let us assume that the nodes are all located on 
a unit square. At each time step we add a new node by randomly choosing 
a point within the square. When deciding where to connect the new node i 
to the existing nodes, we calculate the cost function [22]

qk =
kpk
�k�

When building a new webpage, authors tend to 
borrow links from webpages covering similar 
topics, a process captured by the copying mod-
el [17, 18]. In the model, in each time step a new 
node with a single link is added to the network. 
To choose the target node we randomly select a 
node u and follow a two-step procedure:

(a) Random Connection: With probability p the 
new node links to u.

(b) Copying: With probability 1-p we randomly 
choose an outgoing link of node u and link the 
new node to the link’s target. Hence, the new 
node copies one of the links of an earlier node. 
For step (a) the probability of selecting a par-
ticular node is 1/N. Step (b) is equivalent with 
selecting a node linked to a randomly selected 
link. The probability of selecting a degree-k node 
through the copying process of step (b) is k/2L 
for undirected networks. That is, the likelihood 
that the new node will connect to a degree-k 
node follows preferential attachment π(k) = p / 
N+(1− p)k/(2L) , which is linear in k. The popular-
ity of the copying model lies in its adaptability 
to real systems:

• Social networks: The more acquaintances 
an individual has, the higher is the chance 
that she will be introduced to new individu-
als by her existing acquaintances. Without 
friends, it is difficult to make new friends.

• Citation Networks: No scientist can be fa-
miliar with all papers published on a certain 
topic. If we assume that authors decide what 
to cite by randomly selecting references from 
the papers they have already read, then pa-
pers with more citations are more likely to be 
cited again.

• Protein interaction networks: Gene dupli-
cation, a common mechanism leading to next 
genes in a cell, can be mapped into the copy-
ing model, explaining the scale-free nature of 
protein interactions networks [19, 20].

Figure 5.13
Copying model

THE ORIGINS OF PREFERENTIAL ATTACHMENT
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for each node j already in the network, where dij is the Euclidean distance 
between i and j, and hj is the network-based distance of node j to the first 
node in the network, designated as the “center “ of the network Fig. 5.14. 
Hence hj captures the “resources” offered by node j, in the form of its dis-
tance to the network’s center. The calculations indicate the emergence of 
three distinct network topologies, depending on the value of the parameter 
į in Eq. 5.28 and Fig. 5.15:

STAR NETWORK  į < (1/2)1/2                         
For į = 0 the Euclidean distances are irrelevant, hence each node will 
simply link to the central node, turning the network into a star. This 
star configuration persist for any į�< (1/2)1/2, guaranteeing that the hij 
term dominates over the įdij term in Eq. 5.28.

RANDOM NETWORK į ≥ N1/2 

For very large į the contribution provided by the distance term įdij over-
whelms  hj in Eq. 5.27. In this case each new node will connect to the node 
closest to it. The resulting graph is a dynamic version of the Euclidean 
minimum spanning tree. The resulting network will have a bounded 
degree distribution, like a random network Fig. 5.15.

SCALE-FREE NETWORK 4 ≤ į ≤ N1/2

Numerical simulations and analytical calculations [22] indicate that 
for intermediate į�values the network develops a scale-free topology. 

The origin of the power law is rooted in two competing mechanisms:

(i) Optimization: Each node has a basin of attraction, so that nodes land-
ing in this basin will always link to it Fig. 5.14. The size of each basin cor-
relate with hj of node j at its center, which in turn correlates with the 
node’s degree kj Fig 5.14f.

(ii) Randomness: We choose randomly the position of the new node, 
ending in one of the N basins of attraction. The node with the largest de-
gree largest basin of attraction, will gain the most new nodes and links. 
This leads to preferential attachment, documented in Fig. 5.15d.

In summary, the microscopic mechanisms responsible for preferential 
attachment can have two fundamentally different origins BOX 5.5: it can 
be rooted in random processes, like link selection or copying, or in optimi-
zation process, when new nodes balance conflicting criteria as they decide 
where to connect. These results help us understand why preferential at-
tachment is present in so different systems as the cell or the Internet. The 
diversity of the mechanisms discussed in this section suggest that pref-
erential attachment is so widespread precisely because it can come from 
both rational choice and random actions [25]. Most complex systems are 
driven by processes that have a bit of both. Hence luck or reason, preferen-
tial attachment wins either way.

(a) A small network configuration, where the 
hj term in the cost function of Eq. 5.28 is shown 
for each node. Here hj represents the net-
work-based distance of node j from node i=0. 
Hence h0=0 and h3=2.

(b) A new node, shown in orange, will choose 
the node j to connect to by minimizing cj of Eq. 
5.28 . If į�=0 or į� is small the new node will 
connect to the central node with hj =0.

(c)-(e) As we increase į, the balance in Eq. 5.28  
changes, forcing the new node to connect to 
different nodes. The panels (c)-(e) show the 
choice of the new node (orange) for a differ-
ent values of į for the given network config-
uration.

(f) The basin of attraction for each node for 
į=10. A new node arriving inside a particular 
basin will always link to the node at the center 
of the basin. The size of each basin depends on 
the degree of the node at its center. Indeed, 
the smaller is hj, the larger can be the distan-
cento the new node while still minimizing the 
cost Eq. 5.28. Yet, the higher the degree of node 
j, the smaller is its expected distance to the 
central node hj.

Figure 5.14
Optimization Model

(5.28)C d hmin [ ]i j ij jδ= +

THE ORIGINS OF PREFERENTIAL ATTACHMENT
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(a) A schematic diagram, describing the three 
main classes of networks generated by the op-
timization model: star topology, scale-free to-
pology and exponential networks. The struc-
ture of the network in the unmarked area is 
unknown. The boundary of the star configu-
ration is given by s=(1/2)1/2. Indeed, the maxi-
mum distance between two nodes on a square 
lattice with unit length, over which the model 
is defined, is the diagonal 21/2. Therefore if į < 
1/21/2, for any new node į di<1. In this case the 
cost of connecting to the central node is ci = 
įdij+0 , which is always lower than connecting 
to any other node at the cost of f (i, j) = į dij+1. 
Therefore for į < (1/2)1/2 all nodes connect to 
node 0, resulting in a network dominated by a 
single hub (star network, see (c)). The oblique 
line making the boundary of the scale-free 
regime is į = N1/2. Indeed, if nodes are placed 
randomly on the unit square, then the typical 
distance between neighbors decreases as N−1/2. 
Hence, if dij~N−1/2 then į�dij≥hij for most node 
pairs. Typically the path length to the central 
node hj grows slower than N (in small-world 
networks hj ~log N, is scale-free networks net-
works hj~lnlnN). Therefore Ci is dominated by 
the į dij term and the smallest Ci is achieved 
by minimizing the distance-dependent term. 
Note that strictly speaking the transition only 
occurs in the N�ĺ�∞.

(b) Degree distribution for networks emerging 
in the three phases discussed above for N=104.

(c) Typical topologies generated by the opti-
mization model for the selected į values. The 
node size is chosen to be proportional to its 
degree.

(d) We used the method described in SECT. 
5.7 to measure the preferential attachment 
function π(k). Starting from a network with 
N=10,000 nodes we added a new node and 
measured the degree of the node that it con-
nected to. We repeated this procedure 10,000 
times, obtaining π(k). The plots indicate the 
presence of a linear preferential attachment 
in the scale-free phase, but its absence in the 
star and the exponential phases.

Figure 5.15
Scaling in the optimization model

THE ORIGINS OF PREFERENTIAL ATTACHMENT
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BOX 5.5
LUCK OR REASON: AN ANCIENT DEBATE

The tension between randomness and optimization, two appar-
ently antagonistic explanations for power laws, is by no means 
new: in the 1960s Herbert Simon and Benoit Mandelbrot have en-
gaged in a fierce public dispute over this very topic. Simon pro-
posed that randomness is responsible for the power-law nature 
of word frequencies. Mandelbrot, however, fiercely defended an 
optimization-based framework. 

The debate spanned seven papers and several years and is one of 
the most vicious scientific disagreement on record. It is hard to 
know what set it off—it may have been Simon’s brief note in his 
1955 paper [26], dismissing Mandelbrot’s explanation that power 
laws observed in linguistics are routed in an optimization pro-
cess [27]. Mandelbrot responded with a comment [28] stating that 
‘Simon’s model is analytically circular.’ The essence of Simon’s 
lengthy reply a year later is well summarized in its abstract: ‘Dr. 
Mandelbrot’s principal and mathematical objections to the mod-
el are shown to be unfounded’ [29]. This prompted a 19 page re-
sponse by Mandelbrot entitled ‘Final Note […]’, stating that ‘most 
of Simon’s (1960) reply was irrelevant’ [30] and, ensuring that 
this will not be the final note. Sure enough, Simon’s subsequent 
reply states that ‘this present “Reply” refutes the almost entirely 
new arguments introduced by Dr. Mandelbrot’ [31]. 

That inspired a paper creatively entitled a “Post Scriptum to “Fi-
nal Note,”” by Mandlebrot [32], stating that ‘My criticism has 
not changed since I first had the privilege of commenting upon 
a draft of Simon,’ Simon’s final note ends but does not resolve 
the debate: “Dr. Mandelbrot has proposed a new set of objections 
to my 1955 models of Yule distributions. Like earlier objections, 
these are invalid.” [33].

In the context of networks the argument titled in Simon’s favor 
the power laws observed in complex networks appear to be driv-
en by randomness and preferential attachment. Yet, as we seek 
to explain the origins of preferential attachment, the optimiza-
tion-based ideas proposed by Mandelbrot play an important role.

Figure 5.15a

Figure 5.15b

Herbert Simon

Benoit Mandelbrot
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DIAMETER AND CLUSTERING
COEFFICIENT

SECTION 5.9

To complete the characterization of the Barabási-Albert model we need 
to discuss the behavior of two additional measures: the network diameter 
and the clustering coefficient. Both quantities play an important role in 
comparing the model predictions to the properties of real systems. 

DIAMETER

The network diameter, representing the maximum distance in the 
Barabási-Albert network, is predicted to follow

a result obtained independently by Cohen and Havlin [34] and Bollobás 
and Riordan [35], the latter also offering an exact proof. Eq. 5.29 tells us 
that the network diameter grows slower than log N, hence the distances 
in the Barabási-Albert model are smaller than the distances observed in 
a random graph of similar size. The difference is particularly relevant 
for large N. Note that while Eq. 5.29 is derived for the diameter, we expect 
that the average distance ຊd scales in a similar fashion. The impact of 
the log log N the log N term captures the scaling of ຊd�with N, but for 
large N(≥104) the impact of the logarithmic correction becomes notice-
able.

CLUSTERING COEFFICIENT

The clustering coefficient of the Barabási-Albert model follows AD-

VANCED TOPICS 5.C. 

a result obtained by Klemm and Eguiluz [36], and proved by Bollobás 
[37]. The prediction Eq. 5.30 is quite different from the 1/N dependence 
obtained for the random network model Fig. 3.20. The difference comes 
in the (lnN)2 term, that increases the clustering coefficient for large N. 
Consequently the clustering coefficient of the Barabási-Albert model 
decays slower than expected for a random network, indicating that the 
obtained network is locally more clustered.

Figure 5.16

Figure 5.17

Average distance

Clustering coefficient

The dependence of the average distance on the 
system size in the Barabási-Albert model. The 
continuous line corresponds to the exact result 
Eq. 5.29, while the dotted line corresponds to 
the prediction obtained in CH. 3 for a random 
network. Note that the analytical predictions 
do not provide the exact perfactors, hence the 
lines are not fits, but indicate only the predict-
ed N dependent trends. The results were aver-
aged for ten independent runs for m = 2.

The dependence of the average clustering co-
efficient on the system size N  for the Barabá-
si-Albert model. The continuous line corre-
sponds to the analytical prediction Eq. 5.30, 
while the dotted line corresponds to the pre-
diction for a random network, for which ࢭCࢮ�
Ȯ1/N. The results were averaged for ten inde-
pendent runs for m = 2. The dashed and con-
tinuous curves are only drawn to indicate the 
N dependent trends. Hence, they do not repre-
sent a precise fit.
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SUMMARY
SECTION 5.10

The most important message of the Barabási-Albert model is that net-
work structure and evolution are inseparable. Indeed, in the ErdĘs-Rényi, 
configuration or the hidden parameter models the role of the modeler is to 
place the links between a fixed number of nodes. Returning to our earlier 
analogy, the networks generated by these models relate to real networks 
like a photo of a painting relates to the painting itself: it may look like the 
real one, but the process of generating a photo is drastically different from 
the process of painting the original painting. The aim of the Barabási-Al-
bert model is to capture the processes that assemble a network in the first 
place. Hence, it aims to paint the painting again, coming as close as feasi-
ble to the original brush strokes. consequently, the modeling philosophy of 
the Barabási-Albert model is simple: to understand the topology of a com-
plex system, we first need to describe how it came into being. 

Dynamics and network assembly take the driving role and the struc-
tural characteristics of the network, like the degree distribution, is a by-
product of this modeling philosophy. Random graphs, the configuration 
and the hidden parameter models will continue to play an important role 
as we try to understand how certain network properties deviate from our 
expectations. Yet, if we want to explain the origin of a particular  network 
property, we will have to use models that capture the system’s genesis. In 
its current form the Barabási-Albert model cannot describe the wide range 
of network characteristics observed in real systems. This is illustrated by 
the model’s notable limitations:

• If predicts 3=ڜ while the degree exponent of real networks varies be-
tween 2 and 5 Table 4.2.

• Many networks, like the WWW or citation networks, are directed, 
while the model generates undirected networks.

• Many processes known to occur in networks, from linking already ex-
isting nodes to the disappearance of links and nodes, are absent from 
the model.
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• The model does not allow to distinguish between nodes based on some 
intrinsic characteristics, like the novelty of a research paper or the util-
ity of a webpage. While the Barabási-Albert model is occasionally used 
as a model of the Internet or the cell, in reality is not designed to cap-
ture the details of any particular real network systems. It is a minimal, 
proof of principle model whose main purpose is to capture the basic 
mechanisms responsible for the emergence of the scale-free property. 

Therefore, if we want to understand the evolution of systems like the 
Internet, the cell or the WWW, we need to incorporate the important de-
tails that contribute to the time evolution of these systems, like the direct-
ed nature of the WWW, the possibility of internal links and node and link 
removal. As we show in CHAPTER 6, these limitations can be systematically 
resolved. Finally, the results discussed in this chapter allow us to formulate 
the next law:

The Third Law of Networks: Growth and Preferential Attachment.

Hubs and power laws are a joint consequence 
of growth and preferential attachment.

Let us revisit the three criteria we used earlier to establish the validity 
of a network law:

(a) Quantitative formulation of the third law is provided by the Barabá-
si-Albert model, together with its documented ability to generate 
scale-free networks based on growth and preferential attachment.

(b) Universality: SECTION 5.7 offers direct empirical evidence that real 
networks that exhibit the scale-free property are characterized by 
preferential attachment; SECTION 5.2 offers evidence of growth.

(c) Non-random origin: Preferential attachment is obviously absent 
from random networks, which is the main reason why random net-
works do not develop hubs and power laws.

BOX 5.6 
AT A GLANCE:
BARABÁSI-ALBERT MODEL

Number of nodes

N = t

Number of links

N = mt

Average Degree

2m = ࢮkࢭ

Degree dynamics

ki(t) = m (t/ti)
ȕ

Dynamical exponent

ȕ�= 1/2

Degree distribution

pk Ȯ�k-ڜ

Degree exponent

3 =�ڜ

Average distance

�Ȯ�logN/log logNࢮdࢭ

Clustering coefficient

�Ȯ (lnN)2/NࢮCࢭ



THE BARABÁSI-ALBERT MODEL 33

HOMEWORK
SECTION 5.11

1.  Calculate the degree distribution of the directed Barabási-Albert 
model. That is, in each time a new node arrives, that connects with 
a directed link to a node chosen with preferential attachment Eq. 5.1, 
where π(kin ) depends only the node’s in-degree. Discuss both the in 
and out-degree distribution of the resulting network.

2.  Use the rate equation approach described above that the directed copy-
ing model leads to a scale-free network with the incoming degree ex-
ponent�Ȗin = (2 − p) / (1− p), hence the degree exponent varies between 
Ȗin = 2 for pĺ0 and Ȗin = ∞ for pĺ1.
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ADVANCED TOPICS 5.A
DERIVING THE DEGREE 
DISTRIBUTION

SECTION 5.12

A number of analytical techniques are available to calculate the exact 
form of the degree exponent provided in Eq. 5.11. Next we derive it using the 
rate equation approach [12, 13]. The method is rather general, allowing us 
to explore the properties of a wide range of growing networks. Consequent-
ly, the calculations described here will be of direct relevance for many sys-
tems, from the WWW to protein interaction networks. Let us denote with 
N(k, t) the number of nodes with degree k at time t. The degree distribution 
pk(t) relates to this quantity via pk(t) = N(k,t)/N . 

Since at each time-step we add a new node to the network, we have N = 
t. That is, at any moment the total number of nodes equals the number of 
timesteps BOX 5.3. We write preferential attachment as

where the 2m term captures the fact that that in an undirected network 
each link contributes to the degree of two nodes. Our goal is to calculate the 
changes in the number of nodes with degree k after a new node is added to 
the network. For this we inspect the two events that alter N(k, t) (and hence 
pk(t)) following the arrival of a new node:

(i)  A new node can link to a degree-k node, turning it into a degree (k+1
node, hence decreasing N(k, t).

(ii) A new node can link to a degree (k-1) node, turning it into a degree k 
node, hence increasing N(k, t).

The number of links that are expected to connect to degree k nodes after 
the arrival of a new node is

where the first term captures the probability that the new node will link to 
a degree-k node (preferential attachment); the second term provides the 

(5.31)

(5.32)

k k
k

k
mt( ) 2

j
j∑

Π = =

k
mt Np t m k p t2 ( ) 2 ( ),k k× × =

.
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total number of nodes with degree k, as the more nodes are in this category, 
the more likely that a new node will attach to one of them; the third term 
is simply the degree of the incoming node, as the higher m, the higher the 
chance that the new node will link to a degree-k node. We next apply Eq. 5.32 
to cases (i) and (ii) above:

(i’)  The number of degree k nodes that acquire a new link becoming (k+1) 
degree nodes, is

(ii’) The number of degree (k-1) nodes that acquire a new link, increasing 
their degree to k is

Combining Eq. 5.32 and Eq. 5.33 we obtain the expected number of degree-k
nodes after the addition of a new node

This equation applies to all nodes with degree k>m. As we lack nodes 
with degree k=0,1, ... , m-1 in the network (each new node arrives with de-
gree m) we need a separate equation for degree m modes. Following the 
arguments we used to derive Eq. 5.35, we obtain

Eq. 5.35 and 5.36 are the starting point of the recursive process that pro-
vides pk. Let us use the fact that we are looking for a stationary degree dis-
tribution, supported by numerical simulations Fig. 5.6. This means that in 
the N = t ĺ ∞ limit, pk(∞)= pk. Using this we can write the l.h.s. of Eq. 5.35 and 

5.36 as  (N+1)pk (t+1)−Npk (t)ĺNpk (∞)+pk (∞)−Npk (∞)=pk (∞)=pk (N+1) pmk (t 
+1) − Npm(t)ĺpm . Therefore the rate equations Eq. 5.35 and 5.36 take the form:

Note that Fig. 5.37 can be rewritten as

via a kĺk+1 variable change. To obtain the degree distribution, we use a re-
cursive approach. That is, we write the degree distribution for the smallest 
degree, k=m, using Eq.. 5.38 and then use Eq. 5.39 to calculate pk for the higher 
degrees:

ADVANCED TOPICS 5.A: DERIVING
THE DEGREE DISTRIBUTION

(5.33)

(5.34)

(5.35)

(5.36)

(5.37)

(5.38)

(5.39)

(5.40)
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At this point we notice a simple recursive pattern: by replacing m+3 
with k we obtain the probability to observe a node with degree k

which represents the exact form of the degree distribution for the Barabá-
si-Albert model. Note that:

• For large k this becomes pk~ k-3, in agreement with the numerical re-
sult.

• The prefactor of Eq. 5.11 or Eq. 5.41 is different from the prefactor de-
rived in Eq. 5.9.

This form was derived independently in [12] and [13], and the mathe-
matical proof of its validity is provided in [10]. Note that the rate equation 
formalism offers an elegant continuum equation satisfied by the degree 
distribution of the Barabási-Albert model [16]. Starting from the equation

we can write

obtaining

One can check that the solution of Eq. 5.45 is

ADVANCED TOPICS 5.A: DERIVING
THE DEGREE DISTRIBUTION
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ADVANCED TOPICS 5.B
NONLINEAR PREFERENTIAL
ATTACHMENT

SECTION 5.13

The purpose of this section is to derive the degree distribution of an 
evolving networks governed by a nonlinear preferential attachment. We 
follow Krapivsky et al. [13]. As the results of Ref. [13] were derived for un-
directed networks, here we adjusted the calculation to cover undirected 
networks. 

Strictly speaking the degree distribution only exists for�Į�≤ 1. For Į�> 1 
a few nodes attract a finite fraction of links, as explained in SECT. 5.7, and 
we do not have a stationary pk. Therefore, we limit ourself to the�Į�≤ 1 case. 
We start with the Barabási-Albert model, in which at each time step a new 
node is added with m new links. We connect each new link to an existing 
node with probability

where ki is the degree of node i, 0 < Į�≤ 1 and

is the normalization factor. Note that                                          and
                                                                is the average degree. Since 0 <�Į�≤ 1,

Therefore in the long time limit

                                                      constant

whose precise value will be calculated later. For simplicity, we adopt
the notation                                

Following the rate equation approach introduced in Advanced TOPICS 

5.A, we write the rate equation for the network’s degree distribution as

(5.47)

(5.48)

(5.49)

(5.50)

� ki( ) = ki
�

µ �( )

µ(�,t)=�
k

k� pk (t)

µ 0,t( ) =�
k

pk (t)=1
µ 1,t( ) =�

k

kpk (t)= �k� = 2mt / N

µ 0,t( ) � µ �,t( ) � µ 1,t( )

µ(�,t��)=

µ � µ(�,t��)

.

.

.

.

.



38THE BARABÁSI-ALBERT MODEL

The first term on the r.h.s. describes the rate at which nodes with de-
gree (k-1) gain new links; the second term describes the loss of degree-k 
nodes when they gain new links, turning into (k+1) degree nodes; the last 
term represents the newly added nodes with degree m. Asymptotically, in 
the tĺ∞ limit we can write pk=pk(t + 1)=pk(t). Substituting k=m in Eq. 5.51 we 
obtain:

For k > m

Solving Eq. 5.53 recursively we obtain

To determine the large k behavior of  pk we take the logarithm of (52):

Using the series expansion                                                      we obtain

We approximate the sum over j with the integral

which in the special case of nĮ =1 becomes

ADVANCED TOPICS 5.B
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Hence we obtain

Consequently the degree distribution has the form

where

The vanishing terms in the exponential do not influence the k ĺ�∞ asymp-
totic behavior, being relevant only if 1−nĮ ≥ 1 . Consequently the precise 
form of pk depends on�Į�as:

That is, for 1/2 <�Į�< 1 the degree distribution follows a stretched exponen-
tial. As we lower Į, new corrections start contributing each time Į becomes 
smaller than 1/n, where n is an integer. For Įĺ1 the degree distribution 
scales as k−3, as expected for the Barabási-Albert model. Indeed for Į = 1 we 
have µ=2, and

Therefore pk ~ k−1exp(−2lnk) = k−3.

Finally we need to calculate                               . For this we sum Eq. 5.58:

We obtain µ(Į) by solving Eq. 5.52 numerically.
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ADVANCED TOPICS 5.C
THE CLUSTERING COEFFICIENT

SECTION 5.14

The purpose of this section is to derive the average clustering coeffi-
cient, Eq. 5.30, for the Barabási-Albert model. The derivation follows the an 
argument proposed by Klemm and Eguiluz [36], that was supported by the 
exact calculation of Bollobás [37]. We aim to calculate the number of trian-
gles expected in the model, as the number of triangles can be linked to the 
clustering coefficient SECT. 2.10. We denote the probability to have a link 
between node i and j with P(i, j). Therefore, the probability that three nodes 
i, j, l form a triangle is P(i, j) P(i, l) P(j, l). The expected number of triangles 
in which node l with degree kl participates is thus given by the sum of the 
probabilities that node l participates in triangles with an arbitrary chosen 
node i and j in the network. This can be written as

To proceed we need to calculate P(i,j), which requires us to consider how 
the Barabási-Albert model evolves. Let us denote the time when node j ar-
rived with tj =j, which we can do as in each time step we added only one new 
node. Hence the probability that at its arrival node j links to node i with 
degree ki is given by preferential attachment:

Using Eq. 5.7, we can write

where we used the fact that the arrival time of node j is tj =j and the arrival 
time of node is ti = i. Hence Eq. 5.70 now becomes 
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Using this result we can calculate the number of triangles in Eq. 5.62, writing

The clustering coefficient can be written as                                     , hence we obtain

To simplify Eq. 5.74, we note that according to Eq. 5.7 we have

which is the degree of node l at time t = N. Hence, for large kl we have

allowing us to write the clustering coefficient of the Barabási-Albert model 
as

Eq. 5.78, apart from a factor 2, is the result Eq. 5.30.
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SECTION 6.0

Founded six years after birth of the World Wide Web, Google was a 
latecomer to search. By the late 1990s Alta Vista and Inktomi, two search 
engines with an early start, have been dominating the search market. Yet 
Google, the third mover, soon not only became the leading search engine, 
but acquired links at such an incredible rate that by 2000 became the most 
connected node of the Web as well [1]. But its status didn’t last: in 2011 
Facebook, with an even later start, took over as the Web’s biggest hub.

This competition for the top spot is by no means unique to the online 
world: the history of business is full of companies whose consumers were 
hijacked by a more successful latecomer. Take Apple, whose ingenious 
Newton handheld, introduced in 1987, was wiped off the market by Palm. 
A decade later Apple engineered a dramatic comeback, creating the iPad, 
that changed the concept of a handheld computer. If we view the market 
as a bipartite network whose nodes are products and whose links are pur-
chasing decisions, we can say that Apple’s links in the 1990s were rewired 
to Palm, only to be re-captured by Apple again a decade later. This competi-
tive landscape highlights an important limitation of our current modeling 
framework: the network models we encountered so far cannot account for 
it. Indeed, in the ErdĘs-Rényi model the identity of the biggest node is driv-
en entirely by chance. The Barabási-Albert model offers a more realistic 
picture, predicting that each node increases its degree following k(t)�Ȯ t1/2 

Eq. 5.6. This means that the oldest node always has the most links, a phe-
nomena called the “first mover’s advantage” in the business literature. It 
also means that late nodes can never turn into the largest hubs. 

In reality a node’s growth does not depend on the node’s age only. In-
stead webpages, companies, or actors have intrinsic qualities that influ-
ence the rate at which they acquire links. Some show up late and neverthe-
less grab most links within a short timeframe. Others rise early yet never 
quite make it. The goal of this chapter is to understand how the differences 
in the node’s ability to acquire links, and other processes not captured by 
the Barabási-Albert model, like node and link deletion or aging, affect the 
network topology.

INTRODUCTION

EVOLVING NETWORKS
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THE BIANCONI-BARABÁSI
MODEL

SECTION 6.1

Some people have a knack for turning each random encounter into a 
lasting social link; some companies turn each consumer into a loyal part-
ner; some webpages turn visitors into addicts. A common feature of these 
successful nodes is some intrinsic property that propels them ahead of the 
other nodes. We will call this property fitness. Fitness is an individual’s 
skill to turn a random encounter into a lasting friendship; it is a compa-
ny’s competence in acquiring consumers relative to its competition; a web-
page’s ability to bring us back on a daily basis despite the many other pages 
that compete for our attention. Fitness may have genetic roots in people, 
it may be related to management quality and innovativeness in companies 
and may depend on the content offered by a website. In the Barabási-Al-
bert model we assumed that a node’s growth rate is determined solely by 
its degree. To incorporate the role of fitness we assume that preferential 
attachment is driven by the product of a node’s fitness, Ș, and its degree k. 

The resulting model consists of the following two steps [2, 3]:

• Growth: In each timestep a new node j with m links and fitness Șj is 
added to the system, where Șj is a random number chosen from a dis-
tribution ȡ�Ș�. Once assigned, a node’s fitness does not change.

• Preferential Attachment: The probability that a link of a new node 
connects to a pre-existing node i is proportional to the product of 
node i’s degree ki and its fitness Și

In Eq. 6.1 the dependence of ∏i on ki captures the fact that higher-degree 
nodes are easier to encounter, hence we are more likely to link to them. 
The dependence of ∏i on Și implies that between two nodes with the same 
degree, the one with higher fitness is selected with a higher probability. 
Hence, Eq. 6.1 assures that even a relatively young node with initially only 
a few links can acquire links rapidly if it has larger fitness than the rest of 

EVOLVING NETWORKS

The movie shows a growing network in which 
each new node acquires a randomly chosen 
fitness parameter at birth, represented by the 
color of the node. Each new node chooses the 
nodes it links to following generalized prefer-
ential attachment, making each node’s growth 
rate proportional to its fitness. The node size is 
shown proportionally to its degree, illustrating 
that with time the nodes with the highest fit-
ness turn into the largest hubs.

Video courtesy of D. Wang.

Movie 6.1

The evolution of the Bianconi-Barabási model

→

(6.1)
k
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the nodes. We will call the model introduced above the Bianconi-Barabási 
model after the authors of the paper that introduced it [2, 3]. In the litera-
ture one may also account it as the fitness model.

DEGREE DYNAMICS

We can use the continuum theory to predict a node’s temporal evolu-
tion in the model defined above. According to Eq. 6.1, the degree of node 
i changes at the rate

Let us assume that the time evolution of ki follows a power law with a 
fitness-dependent exponent ȕ(Și ) Fig. 6.1,

Inserting Eq. 6.3 into Eq. 6.2 we find that the dynamic exponent satisfies 
ADVANCED TOPICS 6.A

with

In the Barabási-Albert model we have ȕ = 1/2, indicating that the degree 
of each node increases as a square root of time. In contrast, according 
to Eq. 6.4, in the Bianconi-Barabási model the dynamic exponent is pro-
portional to the node’s fitness, Ș, hence each node has its own dynam-
ic exponent. Consequently, a node with a higher fitness will increase 
its degree faster. Given sufficient time, the fitter node will leave be-
hind each node that has a smaller fitness BOX 6.1. Facebook is a poster 
child of this phenomenon: a latecomer with an addictive product, it 
acquired links faster than its competitors, eventually becoming the 
Web’s biggest hub.

(a) In the Barabási-Albert model all nodes in-
crease their degree at the same rate, hence the 
earlier a node joins the network, the larger will 
be its degree. The figure shows the time de-
pendence of the degree for nodes that arrived 
at different times, indicating that the later 
nodes are unable to pass the earlier nodes.

(b) Same as in (a) but in a log-log plot, demon-
strating that each node follows the same 
growth law with identical dynamical expo-
nents�ȕ = 1/2.

(c) In the Bianconi-Barabási model nodes in-
crease their degree at a rate that is determined 
by their individual fitness. Hence a latecomer 
node (blue symbols) can overcome the earlier 
nodes.

(d) Same as in (c) but on a log-log plot, demon-
strating that each node follows a growth curve 
with its own fitness-dependent dynamical ex-
ponent ȕ, as predicted by Eq. 6.3 and Eq. 6.4.

In (a)-(d) each curve corresponds to average 
over several independent runs using the same 
fitness sequence.

Figure 6.1
Competition in the Bianconi-Barabási model
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DEGREE DISTRIBUTION

The degree distribution of the network generated by the Bian-
coni-Barabási model can be calculated using the continuum theory AD-

VANCED TOPICS 6.A, predicting that

Eq. 6.6 is a weighted sum of multiple power-laws, indicating that pk de-
pends on the precise form of the fitness distribution, ȡ�Ș�. To illustrate 
the properties of the model we apply Eq. 6.4 and Eq. 6.6 to calculate�ȕ�Ș��
and pk  for two different fitness distributions:

•  Equal fitnesses
When all fitnesses are equal, the Bianconi-Barabási model should 
reduce to the Barabási-Albert model. Indeed, let us use ȡ(Ș) = į(Ș − 
1), capturing the fact that each node has the same fitness Ș = 1. In 
this case, Eq. 6.5 predicts C = 2. Using Eq. 6.4 we obtain ȕ�= 1/2 and Eq. 

6.6 predicts pk Ȯ k−3, the known scaling of the degree distribution in 
the Barabási-Albert model. 

•  Uniform fitness distribution
The model’s behavior is more interesting when nodes have differ-
ent fitnesses. Let us choose Ș� to be uniformly distributed in the 
[0,1] interval. In this case C is the solution of the transcendental 
equation Eq. 6.5

whose numerical solution is C* = 1.255. According to Eq. 6.4, each node 
i has a different dynamic exponent, ȕ(Și) = Și /C*. Using Eq. 6.6 we ob-
tain

predicting that the degree distribution follows a power law with de-
gree exponent Ȗ = 2.255, affected by an inverse logarithmic correc-
tion 1/lnk.

Numerical support for these predictions is provided in Fig. 6.1 and Fig. 6.2. 
The simulations confirm that ki (t) follows a power law for each Ș and 
that the dynamical exponent ȕ(Ș) increases with the fitness Ș. As Fig. 6.2 

a indicates, the measured dynamical exponents are in excellent agree-
ment with the prediction of Eq. 6.4. Fig. 6.2b also documents an agreement 
between Eq. 6.8 and the numerically obtained degree distribution.

In summary, the Bianconi-Barabási model can account for the different 
rate at which nodes with different internal characteristics acquire links. It 
predicts that a node’s growth rate is directly determined by its fitness� Ș�
and allows us to calculate the dependence of the degree distribution on the 
fitness distribution ȡ�Ș�.

EVOLVING NETWORKS THE BIANCONI-BARABÁSI MODEL

(6.7)

(6.8)

C Cexp( 2 / ) 1 1 /− = −

(a) The measured dynamic exponent� ȕ�Ș� 
shown in function of Ș in the case of a uni-
form ȡ�Ș� distribution. The squares were ob-
tained from numerical simulations while the 
solid line corresponds to the analytical predic-
tion ȕ�Ș��= Ș/1.255. 

(b) Degree distribution of the fitness model 
obtained numerically for a network with m= 
and N = 106 and for fitnesses chosen uniform-
ly from the� Ș� Ǻ [0, 1] interval. The solid line 
corresponds to the theoretical prediction Eq. 
6.8 with Ȗ�= 2.255. The dashed line corresponds 
to a simple fit pk Ȯ k−2.255 without the logarith-
mic correction, while the long-dashed curve 
correspond to pk Ȯ� k-3, expected if all fitness 
are equal. Note that the best fit is provided by 
Eq. 6.8.

Figure 6.2
Characterizing the Bianconi-Barabási model
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MEASURING FITNESS
SECTION 6.2

Measuring the fitness of a node could help us identify web sites that are 
poised to grow in visibility, research papers that will become influential, 
or actors on their way to stardom. Yet, our ability to determine the utility 
of a webpage is prone to errors: while a small segment of the population 
might find a webpage on sumo wrestling fascinating, most individuals are 
indifferent to it and some might even find it repulsive. Hence, different 
individuals will inevitably assign different fitnesses to the same node. Yet, 
according to Eq. 6.1 fitness reflects the network’s collective perception of a 
node’s importance relative to the other nodes. Thus, we can determine a 
node’s fitness by comparing its time evolution to the time evolution of oth-
er nodes in the network. In this section we show that if we have dynamical 
information about the evolution of the individual nodes, the conceptual 
framework of the Bianconi-Barabási model allows us to determine the fit-
ness of each node.

To relate a node’s growth rate to its fitness we take the logarithm of  Eq. 

6.3,

where Bi = log(m/ti     ) is a time-independent parameter. Hence, the slope 
of logkȘ (t, ti) is a linear function of the dynamical exponent ȕ(Și), which de-
pends linearly on Și according to Eq.6.4. Therefore, if we can track the time 
evolution of the degree for a large number of nodes, the distribution of the 
obtained growth exponent�ȕ(Și) will be identical with the fitness distribu-
tion ȡ(Ș). Such measurement were first carried out in the context of the 
WWW, relying on a dataset that crawled the links of about 22 million web 
documents per month for 13 months [9]. While most nodes (documents) 
did not change their degree during this time frame, 6.5% of nodes showed 
sufficient changes to allow the determination of their growth exponent via 
Eq. 6.9. The obtained fitness distribution ȡ(Ș) has an exponential form Fig. 6.3, 
indicating that high fitness nodes are exponentially rare. This is somewhat 
unexpected, as one would be tempted to assume that on the web fitness 
varies widely: Google is probably significantly more interesting to Web 

EVOLVING NETWORKS

(6.9)

ȕ(Ș�)i

β β= +k t t n tlog ( , ) ( ) logn i i ii

BOX 6.1
THE GENETIC ORIGINS OF FITNESS

Could fitness, an ability to ac-
quire friends in a social network, 
have genetic origins? To answer 
this researchers examined the 
social network characteristics 
of 1,110 school-age twins [6, 7], 
using a technique previously 
developed to identify the heri-
tability of a variety of traits and 
behaviors. The measurements 
indicate that:

• Genetic factors account for 
46% of the variation in a stu-
dent’s in-degree (i.e. the num-
ber of students that name a 
given student as a friend).

• Generic factors are not sig-
nificant for out-degrees (i.e. 
the number of students a giv-
en student names as friends).

This suggests that an individu-
al’s ability to acquire links, i.e. 
its fitness, is heritable. Hence, 
fitness may have genetic ori-
gins. This conclusion is also sup-
ported by research that associat-
ed a particular genetic variation 
with variation in popularity [8].

.

i



8EVOLVING NETWORKS MEASURING FITNESS

surfers than my personal webpage. Yet the exponential form of ȡ�Ș� indi-
cates that most Web documents have comparable fitness. Consequently, 
the observed large differences in the degree of various web documents is 
the result of the system’s dynamics: growth and preferential attachment 
amplifies the small fitness differences, turning nodes with slightly higher 
fitness into much bigger nodes. To illustrate this amplification, consider 
two nodes that arrived at the same time, but have different fitnesses Ș2 > Ș1. 
According to Eq. 6.3 and Eq. 6.4, the relative difference between their degrees 
grows with time as

while the difference between Ș2 and Ș1 may be small, far into the future 
(large t) the relative difference between their degrees can become quite 
significant.

CASE STUDY: MEASURING THE FITNESS OF A SCIENTIFIC PUBLICATION

Eq. 6.9 assumes that Eq. 6.3 fully captures a Web document’s temporal 
evolution. In some systems nodes follow a more complex dynamics, that 
we must account for when we try to measure their fitness. We illustrate 
this by determining the fitness of a research publication, allowing us to 
predict its future impact [11]. While most research papers acquire only a 
few citations, a small number of publications collect thousands and even 
tens of thousands of citations. These differences capture the considerable 
impact disparity characterizing the scientific enterprise BOX 6.3. These 
impact differences mirror differences in the novelty and the content of 
various publications. In general, we can write the probability that paper i is 
cited at time t after publication as [11]

where Și is the paper’s fitness, accounting for the perceived noveltyand 
importance of the reported discovery; ct is the cumulative number of ci-
tations acquired by paper i at time t after publication, accounting for the 
fact that well-cited papers are more likely to be cited again than less-cited 
contributions. The last term in Eq. 6.11 captures the fact that new ideas are 
integrated in subsequent work, hence the novelty of each paper fades with 
time [11, 12]. The measurements indicate that this decay has the log-nor-
mal form

By solving the master equation behind Eq. 6.11, we obtain

where

(6.10)

(6.11)

(6.12)

(6.13)

(6.14)

k2 � k1
k1

� t
�2��1
C

The fitness distribution obtained from Eq. 
6.9 by comparing the degree evolution of a 
large number of Web documents. The mea-
surements indicate that each node’s degree 
has a power law time dependence, as predict-
ed by Eq. 6.3. The slope of each curve is ȕ(Șj), 
which corresponds to the node’s fitness Și 
up to a multiplicative constant according to 
Eq. 6.4. The plot shows the result of two mea-
surements based on datasets recorded three 
months apart, demonstrating that the fitness 
distribution is time independent. The dashed 
line indicates that the fitness distribution fol-
lows an exponential form. After [9].

Figure 6.3
The fitness distribution of the WWW
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BOX 6.2
ULTIMATE IMPACT

Citation counts offer only the 
momentary impact of a re-
search paper. Therefore, they 
represent an inherently weak 
measure of long-term impact, 
as we do not know if a paper that 
acquired a hundred citations in 
two years has already had its 
run, or will continue to grow in 
impact, acquiring thousands 
more. Ideally we would like to 
predict how many citations will 
a paper acquire during its life-
time, or its ultimate impact. The 
citation model Eq. 6.11 and Eq. 6.14 

allows us to determine the ulti-
mate impact by taking the t ĺ�∞ 
limit in Eq. 6.13, finding [11] 

(6.15)ci
� = m(e� 'i �1)

.

,

,

.
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is the cumulative normal distribution and m, ȕ, and A are global parame-
ters. Eq. 6.13 and Eq. 6.14 predict that the citation history of paper i is charac-
terized by three fundamental parameters: the relative fitness Șiƍ Ł�Și ȕ/A, 
measuring a paper’s importance relative to other papers; the immediacy 
µi, governing the time for a paper to reach its citation peak and the longev-
ity ıi, capturing the decay rate. 

We fit Eq. 6.13 to the citation history of individual papers published by 
a given journal to obtain the journal’s fitness distribution Fig. 6.4. We find 
that Cell has a fitness distribution shifted to the right, indicating that Cell 
papers tend to have high fitness. By comparison the fitness of papers pub-
lished in Physical Review are shifted to the left, indicating that the journal 
publishes fewer high impact papers. 

In summary, the framework offered by the Bianconi-Barabási model 
allows us to experimentally determine the fitness of individual nodes and 
the shape of the fitness distribution ȡ�Ș�. The fitness distribution is typical-
ly bounded, meaning that differences in fitness between different nodes 
are small. With time these differences are magnified however, resulting 
in an unbounded (power law) degree distribution in incoming links in the 
case of the WWW or broad citation distribution in citation networks.

MEASURING FITNESS

The fitness distribution of papers published in 
six journals in 1990. Each paper’s fitness was 
obtained by fitting Eq. 6.13 to the paper’s ci-
tation history for a decade long time interval 
following 1990. Two journals are from physics 
(Physical Review B and Physical Review Let-
ters), one from biology (Cell) and three are in-
terdisciplinary, meaning that they publish pa-
pers from different areas of science (Nature, 
Science, and PNAS). 

The obtained fitness distributions are shift-
ed relative to each other, indicating that Cell 
publishes papers with the highest fitness, fol-
lowed by Nature and Science, PNAS, Physical 
Reviews Letters and Physical Review B. After 
[11].

Figure 6.4
Fitness distribution of research papers

Eq. 6.15 predicts that despite the 
myriad of factors that contrib-
ute to the success and the cita-
tion history of a research paper, 
its ultimate impact is deter-
mined only by its fitness Șƍi. As 
fitness can be determined by fit-
ting Eq. 6.13 to a paper’s existing 
citation history, we can use Eq. 

6.15 to predict the ultimate im-
pact of a publication.



Figure 4.2
Art and Networks: Tomás Saraceno

(a) The evolution of the number of WWW 
hosts, docume
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a

b

BOX 6.3
THE TOP ONE PERCENT

The “one percent” phrase has dominated the discourse during the 2012 
US presidential election, reminding everyone that one percent of the 
population earns a disproportional 17.42% of the total US income. To 
those familiar with power laws this is hardly surprising: it is a conse-
quence of the fat-tailed nature of the income distribution. Therefore, 
the “one percent” phenomenon is present in any quantity that follows 
a power law, from the links of the WWW to scientific impact [10]. 

The “one percent” debate is not as much about the magnitude of the in-
come disparity, but its trends: income disparity dropped between 1940 
and 1970, only to skyrocket again in the past decades (see black line). As 
models explaining the distribution of income predict a time-invariant 
distribution, the observed changes offer evidence of endogenous shifts 
in the share of the top one percent. As the red line indicates, the impact 
disparity in physical sciences has also been rising steadily over the past 
century. Indeed, while in 1930 a year after publication the top 1% of 
papers got only about 5% of the citations, today the magnitude of this 
impact disparity is comparable to the income disparity. 

This shift of the bulk of the citations to a few of publications may re-
flect the fact that while the number of research papers exploded, the 
time we devote to reading them has not. Hence, we increasingly rely 
on crowdsourcing to discover relevant work, a process that favors the 
highly cited publications.

10 GROWTH AND PREFERENTIAL ATTACHMENTEVOLVING NETWORKS

The share of citations in a given year re-
ceived by the top 1% of all papers published 
during the previous year in Physical Re-
view. The data captures the citation history 
of 463,348 papers published between 1893 
and 2009 (red line). Also shown is the frac-
tion of income earned by the top 1% of the 
population in US (black dashed line).

Figure 6.5
The 1% of Science
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BOSE-EINSTEIN
CONDENSATION

SECTION 6.3

In the previous section we found that the Web’s fitness distribution 
follows a simple exponential Fig. 6.3, while the fitness of research papers 
follows a peaked distribution Fig. 6.4. The diversity of the observed fitness 
distributions raises an important question: how does the network topology 
depend on the precise shape of ȡ�Ș�? Technically, the answer is provided 
by Eq. 6.6 that links pk to ȡ�Ș�. Yet, the true impact of the fitness distribution 
was realized only after the discovery that some networks can undergo a 
Bose-Einstein condensation BOX 6.5, with significant consequences on the 
network topology [13]. We start by establishing a formal link between the 
Bianconi-Barabási model and a Bose gas, whose properties have been ex-
tensively studied in physics Fig. 6.5:

• Fitness ĺ Energy: to each node with fitness Și we assign an energy İi 
using

In physical systems ȕT plays the role of the inverse temperature. 
Hence, we use the subscript T to distinguish ȕT from the dynamic ex-
ponent ȕ. According to Eq. 6.16, each node in a network corresponds to 
an energy level in a Bose gas. The larger the node’s fitness, the lower 
is its energy.

• Links ĺ Particles: for each link between nodes i and j we add a parti-
cle at the energy levels İi and İj, respectively.

• Nodes ĺ Energy levels: the arrival of a new node with m links corre-
sponds to adding a new energy level İj and 2m new particles to the 
Bose gas. Half of these particles land on level İj, corresponding to 
the links that start from the node j; the remaining m particles are 
distributed between the energy levels that correspond to the nodes 
to which the new node links to.

If we follow the mathematical consequences of this mapping, we find 
that in the resulting gas the number of particles on each energy level fol-

EVOLVING NETWORKS

The movie shows the time evolution of a grow-
ing network in which one node (purple) has a 
much higher fitness than the rest of the nodes.
Consequently this high fitness node attracts 
most links, forcing the system to undergo a 
Bose-Einstein condensation. 

Video courtesy of D. Wang.

Movie 6.2
Bose-Einstein condensation in networks

→

(6.16)ε
β

η= 1 logi
T

i .
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lows a Bose statistics, a formula derived by Satyendra Nath Bose in 1924, 
representing a fundamental result in quantum statistics BOX 6.6. Conse-
quently, the links of the fitness model behave like subatomic particles in 
a quantum gas. This mapping to a Bose gas is exact and predicts the exis-
tence of two distinct phases [13, 14]:

SCALE-FREE PHASE

For most fitness distributions the network displays a fit-gets-rich 
dynamics, meaning that the degree of each node is ultimately deter-
mined by its fitness. While the fittest node will inevitably become 
the largest hub, in the scale-free phase the fittest node is not signifi-
cantly bigger than the next fittest node.

BOSE-EINSTEIN CONDENSATION

Left: A network of six nodes, each node charac-
terized by a unique fitness, Și, indicated by the 
color of the node. The individual fitnesses are 
chosen from the distribution ȡ�Ș�.

Right: The mapping assigns an energy level� İ�
to each fitness Ș, resulting in a Bose gas with 
random energy levels. A link from node i to 
node j corresponds to two particles, one at level 
İi and the other at level İj.

Growth: The network grows by adding a new 
node, like the node with fitness� Ș6, at each 
time step. The new node connects to m=1 other 
nodes (dashed link), chosen randomly follow-
ing Eq. 6.1. In the Bose gas this results in the 
addition of a new energy level İ6 (dashed line), 
populated by two particles, and the deposition
of another particle at İ1, the energy level to 
which Ș6 connects to.

In a Fermi gas (a, c) only one particle is allowed 
on each energy level, while in a Bose gas (b,d) 
there is no such a restriction. At high tem-
peratures it is hard, to notice the difference 
between the two gases. At low temperatures, 
however, particles want to occupy the lowest 
possible energy and the difference between 
the two gasses becomes significant.

Figure 6.6

Figure 6.7

Mapping networks to a Bose gas

Bose and Fermi statistics

BOX 6.4 
BOSE-EINSTEIN CONDENSATION

In classical physics atoms can be distinguished and individually
numbered, like the numbered balls used to pick the winning 
number in lottery. In the subatomic world particles differ in our 
ability to distinguish them: Fermi particles, like electrons, can be 
distinguished; in contrast Bose particles, like photons, are indis-
tinguishable. Distinguishability impacts the energy of a particle. 
In classical physics the kinetic energy of a moving particle, E= 
mv2 /2, can have any value between zero (at rest) and an arbitrari-
ly large E, when it moves very fast. In quantum mechanics energy 
is quantized, which means that it can only take up discrete (quan-
tized) values. This is where distinguishability matters: the distin-
guishable Fermi particles are forbidden to have the same energy. 
Hence, only one electron can occupy a given energy level Fig. 6.7a. 
As Bose particles cannot be distinguished, many can crowd on the 
same energy level Fig. 6.7b. 

At high temperatures, when thermal agitation forces the parti-
cles to take up different energies, the difference between a Fermi 
and a Bose gas is negligible Fig. 6.7a, b. The difference becomes sig-
nificant at low temperatures when all particles are forced to take 
up their lowest allowed energy. In a Fermi gas at low tempera-
tures the particles fill the energy levels from bottom up, just like 
pouring water fills up a vase Fig. 6.7c. However, as any number of 
Bose particles can share the same energy level, they can all crowd 
at the lowest energy Fig. 6.7d. Hence, no matter how much “Bose 
water” we pour into the vase, it will stay at the bottom of the ves-
sel, never filling it up. This phenomenon is called a Bose-Einstein 
condensation and it was first proposed by Einstein in 1924. Exper-
imental evidence for Bose-Einstein condensation emerged only 
in 1995 and was recognized with the 2001 Nobel prize in physics.
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Indeed, at any moment the degree distribution follows a power law, in-
dicating that the largest hub is closely followed by a few slightly smaller 
hubs, with almost as many links as the fittest node Fig. 6.8a. The uniform 
fitness distribution discussed in the previous section results in a scale-free 
network. 

BOSE-EINSTEIN CONDENSATION

The unexpected outcome of the mapping to a Bose gas is the possibility 
of a Bose-Einstein condensation for some fitness distributions�ȡ�Ș� BOX 

6.7. In a Bose-Einstein condensate all particles crowd to the lowest en-
ergy level, leaving the rest of the energy levels unpopulated BOX 6.5. In 
a network this means that the fittest node grabs a finite fraction of the 
links, turning into a super-hub Fig. 6.8b, and the network  develops a hub-
and-spoke topology. In these networks the rich-gets-richer process is so 
dominant that becomes a winner takes-all phenomenon. Consequently, 
the network will loose its scale-free nature.

In summary, the precise shape of the fitness distribution,� ȡ�Ș�, plays 
an important role in shaping the topology of a growing network. While 
most fitness distributions (like the uniform distribution) lead to a power 
law degree distribution, some ȡ�Ș� allow for Bose-Einstein condensation. 
If a network undergoes a Bose-Einstein condensation, then one or a few 
nodes grab most of the links.  Hence, the rich-gets-richer process that gen-
erates the scale-free state, turns into a winner-takes-all phenomenon. The 
Bose-Einstein condensation has such an obvious impact on a network’s 
structure that, if present, it is hard to miss: it destroys the hierarchy of 
hubs characterizing a scale-free network, turning it into a star-like topol-
ogy BOX 6.8.

BOSE-EINSTEIN CONDENSATION

BOX 6.5
FROM FITNESS TO A BOSE GAS

In the context of the Bose gas of 
Fig. 6.6 the probability that a par-
ticle lands on level i is given by

Hence, the rate at which the en-
ergy level İi accumulates parti-
cles is [13]

where ki(İi, t, tj) is the occupation 
number of level i Fig. 6.6 and

is the partition function. The 
solution of Eq. 6.18 is

where f(İ) = e−ȕT (İ−µ) and µ is the 
chemical potential satisfying

Here, deg(İ) is the degenera-
cy of the energy level İ. Eq. 6.20 
suggests that in the limit t ĺ ∞ 
the occupation number, repre-
senting the number of particles 
with energy İ, follows the well-
known Bose statistics

This concludes the mapping of 
the fitness model to a Bose gas, 
indicating that the node degrees 
in the fitness model follow Bose 
statistics.

(6.17)

(6.18)

(6.18a)

(6.19)

(6.20)

(6.21)

�i =
e��T�i ki

j
�e��T� j ki

�ki (�i ,t,ti )
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= m e��T�i ki (�i ,t,ti )
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t
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�

�
�
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� deg(�) 1
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n(�) 1
e�T (��µ ) �1

.

Zt ��
j=1
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BOX 6.6 
FITNESSES DISTRIBUTION LEADING TO BOSE-EINSTEIN
CONDENSATION

In physical systems Bose-Einstein condensation is induced by 
lowering the temperature of the Bose gas below some critical tem-
perature. In networks, the temperature ȕT in Eq. 6.16 is a dummy
variable, disappearing from all topologically relevant quantities, 
like the degree distribution pk. Hence, the presence or absence of 
Bose-Einstein condensation depends only on the form of the fit-
ness distribution ȡ�Ș�. In order for a network to undergo Bose-Ein-
stein condensation, the fitness distribution needs to satisfy the 
following conditions:

(a) ȡ�Ș� must have a maximum Șmax.This means that Ș needs to 
have a clear upper bound.

(b) ȡ(Șmax )=0, i.e. the system requires an infinite time to reach 
Șmax.

The uniform distribution, Ș�Ǻ [0, 1] satisfies (a), as it is bounded, 
having Șmax=1. It fails, however, the criteria (b), as it can reach 
Șmax= 1 with a finite probability. Consequently, we cannot observe 
a Bose-Einstein condensation in this case. A fitness distribution 
that can lead to a Bose-Einstein condensation is

satisfying both (a) and (b). Indeed, Șmax = 1 and Ș(1) = 0, which is 
the reason why, upon varying ȗ, we can observe Bose-Einstein 
condensation Fig. 6.8. Indeed, the existence of the solution of Eq. 

6.20 depends on the functional form of the energy distribution, 
g(İ), determined by the� ȡ�Ș� fitness distribution. Specifically, if 
Eq. 6.22 has no non-negative solution for a given g(İ), we observe 
a Bose-Einstein condensation, indicating that a finite fraction of 
the particles agglomerate at the lowest energy level.

�(�)= (1��)� (6.22)

BOX 6.7
MICROSOFT AND BOSE-EINSTEIN 

CONDENSATION

Think of the operating systems 
(OS) that run on each computer 
as nodes that compete for links 
in terms of users or computers. 
Each time a user installs Win-
dows on his or her computer, a 
link is added to Microsoft. If a 
fit-gets-rich behavior of scale-
free networks prevails in the 
marketplace, there should be a 
hierarchy of operating systems, 
such that the most popular node 
is followed closely by several 
less popular nodes. 

In the OS market, however, 
such hierarchy is absent. True, 
Windows is not the only avail-
able operating system. All Apple 
products run Mac OS; DOS, the 
precursor of Windows, is still 
installed on some PCs; Linux, a 
free operating system, contin-
ues to gain market share and 
UNIX runs on many computers 
devoted to number crunching. 

But all these operating systems 
are dwarfed by Windows, as in 
2010 its different versions were 
humming on a whopping 86 
percent of all personal comput-
ers. The second most popular 
operating system had only a 5 
percent market share. Hence 
the OS market carries the sig-
natures of a network that has 
undergone Bose-Einstein con-
densation [1].
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Left panels: (a) A scale-free network and (b) a 
network that has undergone a Bose-Einstein 
condensation generated by the fitness model 
with�ȡ�Ș� following Eq. 6.22.

Middle panels: the energy levels (black lines) 
and the deposited particles (red dots) for a 
network with m=2 and N=1,000. Each energy 
level corresponds to the fitness of a node on 
the network shown in the left. Each link con-
nected to a node is represented by a particle 
on the corresponding energy level.

Right panels: the fitness distribution ȡ�Ș�, 
given by Eq. 6.22, illustrating the difference in 
the shape of the two�ȡ�Ș� functions. The differ-
ence is determined by the parameter ȗ�

Figure 6.8
Bose Einstein Condensation in Networks
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EVOLVING NETWORKS
SECTION 6.4

The Barabási-Albert model is a minimal model, its main purpose be-
ing to capture the core mechanisms responsible for the emergence of the 
scale-free property. Consequently, it has several well-known limitations:

(i)  It predicts Ȗ�= 3 while the experimentally observed degree exponents 
vary between 2 and 4 Table 4.1.

(ii) It predicts a pure power-law degree distribution, while real sys-
tems are characterized by various deviations from a power law, like 
small-degree saturation or high-degree cutoff BOX 4.18.

(iii) It ignores a number of elementary processes that are obviously 
present in many real networks, like the addition of internal links 
and node or link removal.

These limitations have inspired considerable research in the network 
science community, clarifying how various elementary processes influ-
ence the network topology. The purpose of this section is to systematically 
extend the Barabási-Albert model to capture the wide range of phenomena 
shaping the structure of real networks.

INITIAL ATTRACTIVENESS

In the Barabási-Albert model an isolated node cannot acquire links, as 
according to preferential attachment Eq. 4.1 the likelihood that a new 
node attaches to a k=0 node is strictly zero. In real networks, however, 
even isolated nodes acquire links. Indeed, each new research paper has 
a finite probability of being cited or a person that moves to a new city 
will quickly acquire acquaintances. In growing networks zero-degree 
nodes can acquire links if we add a constant to the preferential attach-
ment function  Eq. 4.1, obtaining

In Eq. 6.23 the parameter A is called initial attractiveness. As ∏(0)� Ȯ A, 

EVOLVING NETWORKS

(6.23)�(k) � A+ k .
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initial attractiveness represents the probability that a node will acquire 
its first link. We can detect the presence of initial attractiveness in real 
networks by measuring ∏(k) Fig 6.9. Once present, initial attractiveness 
has two immediate consequences:

•  Increases the degree exponent: If in the Barabási-Albert model we 
place Eq. 4.1 with Eq. 6.23, the degree exponent becomes [15, 16]

By increasing Ȗ, initial attractiveness makes a network more homo-
geneous and reduces the size of the hubs. Indeed, initial attractive-
ness adds a random component to the probability of attaching to a 
node. This random component favors the numerous small-degree 
nodes, weakening the role of preferential attachment. For high-de-
gree nodes the A term in Eq. 6.23 is negligible.

• Generates a small-degree cutoff: The solution of the continuum 
equation indicates that the degree distribution of a network gov-
erned by Eq. 6.23 does not follow a pure power-law, but has the form

Therefore, initial attractiveness induces a small-degree saturation at 
k<A. This saturation is again rooted in the fact that initial attractive-
ness enhances the probability that new nodes link to the small-degree 
nodes, which decreases the number of nodes with small k. For high de-
grees (k ɝ�A), where initial attractiveness loses its relevance, the degree 
distribution continues to follow a power law.

INTERNAL LINKS

In many networks most new links are added between pre-existing 
nodes. For example, the vast majority of new links on the WWW are 
internal links, corresponding to newly added URLs between existing 
web documents. Similarly, virtually all new social/friendship links 
form between individuals that already have other acquaintances and 
friends. Measurements show that in collaboration networks internal 
links follow double preferential attachment, i.e. the probability for 
a new internal link to connect two nodes with degree k and k’ is [18]

We explore several limiting cases to understand the impact of inter-
nal links:

•  Double preferential attachment (A=Aƍ=0): In this case both ends of 
a new link are chosen proportional to the degree of the nodes they 
connect. Consider an extension of the Barabási-Albert model, where 
in each time step we add a new node with m links, followed by n in-
ternal links, each selected with probability Eq. 6.26 with A=Aƍ=0. The 

Cumulative preferential attachment function 

for the citation network, capturing the cita-
tion patterns of research papers published 
from 2007 to 2008. The π(k) curve was mea-
sured using the methodology described in 
SECTION 5.7. The continuous line corresponds 
to C(k+A)−Ȗ with initial attractiveness A�Ȯ�7.0. 
The dashed line corresponds to A = 0, i.e. the 
case without attractiveness. After [17].

Figure 6.9
Initial Attractiveness

(6.24)

(6.25)

(6.26)

� = 3+ A
m

� (k)=
k '�k
�� ( �k )

pk =C(k + A )
��

�(k,k ') � (A+ Bk)(A '+ B 'k ')
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degree exponent of the resulting network is [19, 20]

indicating that Ȗ varies between 2 and 3. This means that double
preferential attachment lowers the degree exponent from 3 to 2, 
hence increasing the network’s heterogeneity. Indeed, by prefer-
entially connecting the hubs to each other, it simultaneously helps 
both hubs to grow faster than they do in the Barabási-Albert model.

• Random attachment (B=Bƍ=0): In this case the internal links are 
blind to the degree of the nodes they connect, implying that they 
are added between randomly chosen node pairs. Let us again con-
sider the Barabási-Albert model, where after each new node we 
add n randomly selected links. In this case the degree exponent be-
comes [20]

Hence,�Ȗ�≥ 3 for any n, indicating that the resulting network will be 
more homogenous than the network generated by the Barabási-Al-
bert model. Indeed, randomly added internal links mimic the pro-
cess observed in random networks, making the node degrees more 
similar to each other.

NODE DELETION

In many real systems nodes and links systematically disappear, lead-
ing to node or link deletion. For example, nodes are deleted from an 
organizational network when employees leave the company or from 
the WWW when web documents are removed. At the same time in 
some networks node removal is virtually impossible Fig. 6.10.

To explore the impact of node removal, let us start again from the 
Barabási-Albert model. In each time step we add a new node with m 
links and with probability r we remove a node. The observed topolo-
gies depend on the value of r [23, 24, 25, 26, 27, 28]:

• Scale-free phase: For r< 1 the number of removed nodes is small-
er than the number of new nodes, hence the network continues to 
grow. In this case the degree exponent has the value

Hence, random node removal increases Ȗ, homogenizing the net-
work.

• Exponential phase: For r=1 the network has fixed size, as nodes ar-
rive and are removed at the same rate (i.e. N=constant). In this case 
the network will loose its scale-free nature. Indeed, for rĺ1 we have 
Ȗ�ĺ ∞ in Eq. 6.29.

The citation history of a research paper by 
Jan Hendrik Schön published in Science [21]. 
Schön rose to prominence after a series of ap-
parent breakthroughs in the area of semico 
ductors. Schön’s findings were published by 
prominent scientific journals, like Science and 
Nature. His productivity was phenomenal: in 
2001 he has coauthored one research paper 
every eight days. However, research groups 
around the world had difficulty reproducing 
some of his results. 

Soon after Schön published a paper reporting 
a groundbreaking discovery on single-mole-
cule semiconductors, researchers noticed that 
two experiments carried out at very different 
temperatures had identical noise [22]. 

The ensuing questions prompted Lucent 
Technologies, which ran the storied Bell Labs 
where Schön worked, to start a formal investi-
gation. Eventually, Schön admitted falsifying 
some data to show more convincing evidence 
for the behavior that he observed. Several doz-
ens of his papers, like the one whose citation 
pattern is shown in this figure, were retract-
ed and the University of Konstanz revoked his 
PhD degree for “dishonorable conduct.”

While the papers’ retraction lead to a dramat-
ic drop in citations, his papers continue to be 
cited even after their official “removal” from 
the literature, as shown in the figure above. 
This indicates that in the citation network it is
virtually impossible to remove a node.

Figure 6.10
The impossibility of node removal

EVOLVING NETWORKS

(6.27)

(6.28)

(6.29)
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• Declining networks: For r > 1 the number of removed nodes ex-
ceeds the number of new nodes, hence the network declines BOX 

6.10. Declining networks are important in several areas: Alzhei-
mer’s research focuses on the progressive loss of neurons with age 
and ecology focuses on the role of gradual habitat loss [29, 30, 31]. A 
classical example of a declining network is the telegraph, that dom-
inated long distance communication in the second part of the 19th 
century and early 20th century. It was once a growing network: in 
the United States the length of the telegraph lines grew from 40 
miles in 1846 to 23,000 in 1852. Yet, following the second World 
War, the telegraph gradually disappeared.

Note that node removal is not always random but can depend on the 
removed node’s degree BOX 6.9. Furthermore, the behavior of a net-
work can be rather complex if additional elementary processes are 
considered, inducing phase transitions between scale-free and expo-
nential networks Box 6.10. 

In summary, in most networks some nodes can disappear. Yet as long 
as the network continues to grow, its scale-free nature can persist. 
The degree exponent depends, however, on the detail governing the 
node removal process.

ACCELERATED GROWTH

In  the models discussed so far the number of links increases linearly 
with the number of nodes. In other words, we assumed that L=ࢭkࢮ�N, 
where ࢭkࢮ is independent of time. This is a reasonable assumption for 
many real networks. Yet, some real networks experience accelerat-
ed growth, meaning that the number of links grows faster than N, 
hence ࢭkࢮ� increases. For example the average degree of the Internet 
increased from ࢭk3.42=ࢮ in November 1997 to 3.96 by December 1998 
[32]; the WWW increased its average degree from 7.22 to 7.86 during 
a five month interval [33, 34]; in metabolic networks the average de-
gree of the metabolites grows approximately linearly with the num-
ber of metabolites [35]. To explore the consequence of such acceler-
ated growth let us assume that in a growing network the number of 
links arriving with each new node follows [36, 37, 38, 39]

For ș=0 each node has the same number of links; for ș>0, however, 
the network follows accelerated growth. The degree exponent of the 
Barabási-Albert model with accelerated growth Eq. 6.30 is

Hence, accelerated growth increases the degree exponent beyond Ȗ=3,

EVOLVING NETWORKS

(6.30)

(6.31)

m(t)= m0t
�

� = 3+ 2�
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making the network more homogenous. For ș=1 the degree exponent 
diverges, leading to hyper-accelerating growth [37]. In this case ࢭkࢮ�
grows linearly with time and the network looses its scale-free nature.

AGING

In many real systems nodes have a limited lifetime. For example, actors 
have a finite professional life span, capturing the period when they still 
act in movies. So do scientists, whose professional lifespan corresponds 
to the time frame they continue to publish scientific papers. These 
nodes do not disappear abruptly, but fade away through a slow aging 
process, gradually reducing the rate at which they acquire new links 
[40, 41, 42, 43]. Capacity limitations can induce a similar phenomena: 
if nodes have finite resources to handle links, once they approach their 
limit, they will stop accepting new links [41].

To understand the impact of aging let us assume that the probability 
that a new node connects to node i is ∏(k, t−ti), where ti is the time node 
i was added to the network. Hence, t−ti is the node’s age. In analytical 
calculations slow aging is often modeled by choosing [40]

where Ȟ� is a tunable parameter governing the dependence of the at-
tachment probability on the node’s age. Depending on the value of Ȟ we 
can distinguish three scaling regimes:

•  For negative Ȟ the older is node i, the more likely that a new node 
will link to it. Hence, Ȟ�< 0 enhances the role of preferential attach-
ment. In the extreme case Ȟ�ĺ�−∞, each new node will only connect 
to the oldest node, resulting in a hub-and-spoke topology Fig. 6.11a. 
The calculations show that the scale-free state persists in this re-
gime, but the degree exponent drops under 3. Hence,�Ȟ < 0 makes 
the network more heterogeneous

•  A positive Ȟ will encourage the new nodes to attach to younger 
nodes. In the extreme case Ȟ�ĺ�∞ each node will connect to its im-
mediate predecessor Fig. 6.11a. We do not need a very large�Ȟ�to ex-
perience the impact on aging: the degree exponent diverges as we 
approach Ȟ=1. Hence gradual aging homogenizes the network by 
shadowing the older hubs.

•  For Ȟ�> 1 the aging effect overcomes the role of preferential attach-
ment, leading to the loss of the scale-free property.

In summary, the results discussed in this section indicate that a wide 
range of elementary processes can affect the structure of a growing 
network Table 6.1. These results highlight the true power of the evolv-
ing network paradigm: it allows us to address, using a mathematical-
ly predictive framework, the impact of a wide range of elementary 
processes on the network topology and evolution.

EVOLVING NETWORKS

(6.32)�(k,t � ti ) � k(t � ti )
�v

(a) A schematic illustration of the expected 
network topologies for various aging ex-
ponents�Ȟ. In the context of a growing net-
work model we assume that the probability 
to attach to a node is proportional to kĲíȞ, 
where Ĳ is the age of the node. For negative 
Ȟ nodes prefer the oldest nodes, turning the 
network into a hub-and-spoke topology. 
For positive�Ȟ�the most recent nodes are the 
most attractive. Hence for large Ȟ the net-
work turns into a chain, as the last (hence 
the youngest) node is the most attractive 
for the new node. The network is shown for 
m=1 for clarity but note that the degree ex-
ponent is independent of m.

(b)  The degree exponent Ȗ�vs the aging expo-
nent Ȟ, as predicted by the analytical solu-
tion of the rate equation. The red symbols 
are the result of simulations, each repre-
senting a single network of N=10,000 and 
m=1. The degree exponent is estimated us-
ing the method described in CHAPTER 4. 
Redrawn after Ref. [40].

Figure 6.11
The impact of aging

,
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a

BOX 6.8
DECLINING NETWORKS AND FASHION

The properties of declining networks is well illustrated by the New 
York City garment industry, whose nodes are designers and contrac-
tors that are connected to each other by the annual coproduction of 
lines of clothing. As the industry decayed, the network has persistent-
ly shrunk. This is illustrated by the fate of the largest connected com-
ponent, that collapsed from 3,249 nodes in 1985 to 190 nodes in 2003. 
Interestingly, the network’s degree distribution remained relatively 
unchanged during this period. The analysis of the network’s evolution 
allowed researchers to uncover several interesting properties of de-
clining networks [23]:

• Preferential Attachment: While overall the network was shrinking 
with time, new nodes continued to arrive. The measurements indi-
cate that the attachment probability of these new nodes follows ∏(k) 
Ȯkਞ with Į=1.20 ± 0.06 PANEL A, offering evidence of superlinear pref-
erential attachment.

• Link deletion: The measurements also show that the probability that 
a firm looses a link decreased proportionally with the firms’ degree, 
as k(t)−Ș with Ș=0.41±0.04. This documents a weak-gets-weaker phe-
nomenon where the less connected firms are more likely to loose 
their links.

(a) Preferential attachment. The relative 
probability ∏(k) that a newcomer firm 
added at time t connects to an incum-
bent firm with k links. The dashed line 
has slope�Į=1.2.

(b) Link deletion. The relative probabili-
ty, Rk(t) of deleting a link from a degree 
node, compared with random link re-
moval. The dashed line has slope�Ș=0.41.

If link addition and removal were to be ran-
dom, we would expect ∏(k) Ȯ 1 and Rk(t) Ȯ�1 for 
all k. After [23].

The Garment District is a Manhattan neigh-
borhood located between Fifth Avenue and 
Ninth Avenue, from 34th to 42nd Street. 
Since the early 20th century it has been 
the center for fashion manufacturing and 
design in the United States. The Needle 
threading a button sculpture and a sculp-
ture of a tailor, located in the heart of the 
district, pay tribute to the neighborhood’s 
past and present.

Figure 6.12

Figure 6.13

The decline of the garment industry

Garment district
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BOX 6.9
NODE REMOVAL INDUCED PHASE TRANSITIONS

The coexistence of node removal with other elementary processes can
lead to interesting topological phase transitions. This is illustrated by a
simple model in which the network’s growth is governed by Eq. 6.23, 
i.e. preferential attachment with initial attractiveness, and we also 
remove nodes with rate r. The network displays three distinct phases, 
captured by the phase diagram shown below:

Subcritical node removal (r < r*(A)): If the rate of node removal is 
under a critical value r*(A), the network will be scale-free.

Critical node removal (r=r*(A)): Once r reaches a critical value r*(A),
the degree distribution turns into a stretched exponential SECT. 4.A.

Exponential networks (r> r*(A)): In this regime the network looses 
its scale-free nature, developing an exponential degree distribution.

Therefore, the coexistence of multiple elementary processes in a net-
work can lead to discontinuous changes in the network topology. To 
be specific, a continuous increase in the node removal rate leads to a 
transition from a scale-free to an exponential network.

The degree distribution of a network 
whose growth is driven by preferential at-
tachment with initial attractiveness A and 
node removal rate r. After [28].

Figure 6.14
Scaling under node deletion

A summary of the various elementary processes discussed in this section and their impact on the degree distribution.

Table 6.1 Elementary processes

PROCESS PROCESS OBSERVATIONS

Preferential attachment 3

Initial attractiveness 
Small degree cutoff 

Double preferential attachment

 
Random internal attachment 

Node (link) deletionN ode removal rate r

Scale-free for                  

Stretched exponential for

Exponential for

Accelerated growth
For            we have hyper-accelerated growth and the 

scale-free state disappears.

Aging For            the network looses its scale-free topology.

(k) k

(k)= A + k

(k, k )=
(A + Bk)(A + B k )

m(t)= t

(k) (t tt)

3+ A
m
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m +2 n

3+ 2r
1 r

3
1

=1

B = B =0

pk (k + A)

3+ 2n
m

A = A =0 , B 0, B 0

r = r*

r < r*

r > r*

>1

Internal links

See Figure 6.11
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SUMMARY
SECTION 6.5

As we illustrated in this chapter, rather diverse processes, from node 
fitness to internal links or aging, can influence the topology of real net-
works. By exploring these processes, we came to see how to use the evolv-
ing network modeling framework to accurately predict the impact of var-
ious frequently encountered elementary events on a network’s topology 
and evolution. The most important conclusion of the examples discussed 
in this chapter is that if we want to understand the structure of a network 
we must first get its dynamics right. The topology is the bonus of this ap-
proach.

In CHAPTER 4 we documented the difficulties we encounter when we 
attempt to fit a pure power law to the degree distribution of real networks. 
The roots of this problem were revealed in this chapter: if we account for 
the detailed dynamical processes that contribute to the evolution of real 
networks, we expect systematic deviations from a pure power law. Indeed, 
the previous sections predicted several analytical forms for the degree dis-
tribution:

• Power law: A pure power law emerges if a growing network is gov-
erned by preferential attachment only, lacking nonlinearities or ini-
tial attractiveness. In its pure form a power law is observed only in a 
few systems. Yet, it is the starting point for understanding the degree 
distribution of most real networks.

• Stretched exponential: If preferential attachment is sublinear, the 
degree distribution follows a stretched exponential SECTION 5.7. A 
stretched exponential degree-distribution can also appear under node 
removal at the critical point SECTION 6.5.

• Fitness-induced corrections: In the presence of fitnesses the precise 
form of pk depends on the fitness distribution ȡ�Ș�, which determines 
pk via Eq. 6.6. For example, a uniform fitness distribution induces a log-
arithmic correction in pk Eq. 6.8. Other forms of ȡ�Ș� can lead to rather 
exotic pk.

EVOLVING NETWORKS
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•  Small-degree cutoffs: Initial attractiveness adds a random compo-
nent to preferential attachment. Consequently, the degree distribu-
tion develops a small-degree saturation.

•  Exponential cutoffs: Node and link removal, present in many real 
systems, can also induce exponential cutoffs in the degree distribu-
tion. Furthermore, random node-removal can deplete the small-de-
gree nodes, inducing a peak in pk.

In most networks several of the elementary processes discussed in this 
chapter appear together. For example, in scientific collaboration networks 
we have sublinear preferential attachment with initial attractiveness and 
links can be both external and internal. As researchers have different 
creativity, fitness also plays a role, requiring us to know the appropriate 
fitness distribution. Therefore, the degree distribution is expected to dis-
play small degree saturation (thanks to initial attractiveness), stretched 
exponential cutoff at high degrees (thanks to sublinear preferential at-
tachment), and some unknown corrections due to the particular form of 
the fitness distribution ȡ�Ș�.  These findings indicate that if our goal is to 
obtain an accurate fit to the degree distribution, we first need to build a 
generative model that analytically predicts the expected functional form 
of pk. Yet, in many systems developing an accurate theory for pk may be an 
overkill. Hence, it is often sufficient to establish if we are dealing with a 
broad or a bounded degree distribution SECTION 4.9, as the system’s prop-
erties will be primarily driven by this distinction.

The results of this chapter also allow us to reflect on the role of the vari-
ous network models. We can categorize these models into three main class-
es Table 6.2:

Static Models: The random network model of ErdĘs and Rényi CHAP-

TER 3 and the small world network model of Watts and Strogatz Fig. 3.15 

have a fixed number of nodes, prompting us to call them static. They 
both assume that the role of the network modeler is to cleverly place 
the links between the nodes. Both models predict a bounded degree 
distribution.

Generative Models: The configuration and the hidden parameter 
models discussed in SECTION 4.8 generate networks with some pre-
defined degree distribution. Hence, these models are not mechanistic, 
in the sense that they do not tell us why a network develops a particu-
lar degree distribution. Rather, they help us understand how various 
network properties, from clustering to path lengths, depend on the 
degree distribution. 

Evolving Network Models: These models aim to capture the mecha-
nisms that govern the time evolution of a network. The most studied 
example in the Barabási-Albert model, but equally important are the 
extenions discussed in this chapter, from the Bianconi-Barabási mod-
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el to models involving internal links, aging, node and link deletion, 
or accelerated growth. These models are motivated by the hypothesis 
that if we correctly capture all microscopic processes that contribute 
to a network’s evolution, then the network’s large-scale characteris-
tics follow from that. There is an important role in network theory for 
each three modeling frameworks. If our interest is limited to the role 
of the network environment on some phenomena, like spreading pro-
cesses or network robustness, the generative models offer an excel-
lent starting point. If, however, we want to understand the origin of 
a certain network property, we must resort to evolving network mod-
els, that capture the processes that have built the network in the first 
place.

Finally, the results of this chapter allow us to formulate our next net-
work law:

The fifth law, the role of diversity.

With time the fittest nodes turn into the larg-
est hubs.

A. Quantitative formulation
Eq. 6.4 offers the quantitative formulation of the fifth law, predicting 
that the dynamical exponent, capturing the rate at which a node ac-
quires links, is proportional to the node’s fitness. Hence the higher 
a node’s fitness, the higher the rate it acquires links. Consequently, 
with time the nodes with the highest fitness will turn into the largest 
hubs.

B. Universality
In most networks nodes with different qualities and capabilities 
compete for links. Hence node fitness, capturing a node’s ability to 
attract links, is present in most real networks.

C. Non-random origin
The dynamics of fitness-driven networks is quite different from the 
dynamics of the random network model, in which nodes acquire 
links at comparable rate. Hence, the properties of these networks 
cannot be explained within the random network framework.

The table shows the three main modeling 
frameworks we encountered so far, together 
with their main distinguishing features.

Table 6.2
Models of network science

SUMMARY
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HOMEWORK
SECTION 6.6

1. Calculate the degree exponent and the dynamical exponent for a grow-
ing network with two distinct fitnesses. To be specific, let us assume 
that the fitnesses follow the double delta distribution

Discuss how the degree exponent depends on the parameter a.

2. Calculate the degree exponent of the directed Barabási-Albert model 
with accelerated growth, i.e. when m(t)=tĬ.

3. Assume that a network is driven by a preferential attachment with ad-
ditive fitness, π(ki) Ȯ Ai+ki, where Ai is chosen from a�ȡ(Ai) distribution 
[44]. Calculate and discuss the degree distribution of the resulting net-
work.

EVOLVING NETWORKS

(6.33)�(�) = �(� � a)+�(� �1) with 0 � a �1.
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ADVANCED TOPICS 6.A
SOLVING THE FITNESS MODEL

SECTION 6.7

The purpose of this section is to derive the degree distribution of the 
fitness model [2, 13, 14]. We start by calculating the mean of the sum 
over all possible realizations of the quenched fitnesses Ș. Since each node is 
born at a different time t0, we can write the sum over j as an integral over t0

By replacing kȘ(t, t0) with Eq. 6.3 and performing the integral over t0, we ob-
tain

The dynamic exponent� ȕ�Ș� is bounded, i.e. 0<ȕ�Ș�<1 because a node can 
only increase its degree with time �ȕ�Ș�>0 and ki(t) cannot increase faster 
than t(ȕ(Ș)<1). Therefore in the limit tĺ∞ in Eq. 6.35 the term tȕ(n) can be ne-
glected compared to t, obtaining

where İ�= (1 − maxȘȕ(Ș)) > 0 and

Using Eq. 6.36, and the notation kȘ=kȘi(t, t0), the dynamic equation Eq. 6.2 can 
be written as

which has a solution of the form Eq. 6.3, given that

EVOLVING NETWORKS

j
�� jk j
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confirming the self-consistent nature of the assumption Eq. 6.3. To com-
plete the calculation we need to determine C from Eq. 6.37. After substitut-
ing ȕ(n) with�Ș/C , we obtain

where Șmax is the maximum possible fitness in the system. The integral Eq. 

6.40 is singular. However, since ȕ�Ș�=Ș/c < 1 for any�Ș, we have C > Șmax, thus 
the integration limit never reaches the singularity. Note also that, since

we have C ≤ Șmax.

If there is a single dynamic exponent ȕ, the degree distribution should fol-
low the power law pk Ȯ k−Ȗ , where the degree exponent is given by�Ȗ=1/ȕ+1. 
However, in the fitness model we have a spectrum of dynamic exponents 
ȕ�Ș�, thus pk is given by a weighted sum over different power-laws. To find 
pk we need to calculate the cumulative probability that a randomly chosen 
node’s degree satisfies kȘ(t)>k. This cumulative probability is given by

Thus, the degree distribution is given by the integral

ADVANCED TOPICS 6.A
SOLVING THE FITNESS MODEL

(6.40)

(6.41)
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(6.43)
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SECTION 7.0

Angelina Jolie and Brad Pitt, Ben Affleck and Jennifer Garner, Harrison 
Ford and Calista Flockhart, Michael Douglas and Catherine Zeta-Jones, Tom 
Cruise and Katie Holmes, Richard Gere and Cindy Crawford. An odd list, yet 
instantly recognizable to those immersed in the headline-driven world of 
celebrity couples. They are Hollywood stars that are or were married in the 
past. Their weddings (and breakups) sold millions of magazines and drawn 
countless hours of media coverage. Thanks to them we take for granted 
that celebrities marry each other. We rarely pause to ask: is this normal? 
What is the expected chance that a celebrity marries another celebrity?

Assuming that a celebrity could date anyone from a pool of about a bil-
lion (109) eligible individuals, the chances that their mate would be another 
celebrity from a generous list of 1,000 other celebrities is only 10-6. There-
fore, if dating is driven by random encounters, celebrities would never 
marry each other. Yet, they do, with some puzzling implications.

Even if you do not care about the dating habits of celebrities, we must 
pause and explore what this phenomenon tells us about the structure of 
the social network. Hollywood celebrities, political leaders, and CEOs of 
major corporations tend to know an exceptionally large number of indi-
viduals and are known by even more. They are hubs. Hence celebrity dating 
is a manifestation of an interesting property of social network: hubs tend 
to have ties to other hubs.

As obvious this may sound, this property is not present in all networks. 
Consider for example the protein-interaction network of yeast, shown in 
Fig. 7.2. Each node corresponds to a protein and a link between two proteins 
indicates a binding interaction. A quick inspection of the network reveals 
its scale-free nature: numerous one- and two-degree proteins coexist with 
a few highly connected hubs. These hubs, however, tend avoid linking to 
each other. They link instead to many small-degree nodes, generating a 
hub-and-spoke pattern. This is particularly obvious for the two hubs high-
lighted in Fig. 7.2: they almost exclusively interact with small-degree pro-
teins while avoiding linking to each other.

INTRODUCTION

Celebrity couples, offering a vivid demon-
stration that in social networks hubs tend 
to know, date and marry each other (Images 
from http://www.whosdatedwho.com).

Figure 7.1
Hubs Dating Hubs
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A brief calculation illustrates how unusual this pattern is. Let us as-
sume that each node chooses randomly the nodes it connects to. Therefore 
the probability that two nodes with degree k and k ƍ�link to each other is

Eq. 7.1 tells us that hubs, by the virtue of the many links they have, are 
much more likely to connect to each other than to small degree nodes. Yet, 
the hubs highlighted in Fig. 7.2 almost exclusively connect to degree one 
nodes. By itself this is not unexpected: Fig. 7.1 also predicts that a hub with k 
= 56 connections should link to N1 P1, 56 ≈ 12 nodes with degree 1. The prob-
lem is that this hub connects to 46 degree one neighbors, i.e. four times the 
expected number.

Furthermore, the likelihood that two largest hubs with degrees k=56 
and k’ = 13 have a direct link between them Fig. 7.2, is pk  k’ = 0.15, which is 400 
times larger than p1, 2 = 0.0004, the likelihood that a degree-two node links 
to a degree-one node. Yet, there are no direct links between the hubs in Fig. 

7.2, but we observe numerous direct links between small degree nodes.

In summary, while in social networks hubs tend to “date” each other, in 
the protein interaction network the opposite is true: the hubs avoid linking 
to other hubs. While it is dangerous to extrapolate generic principles from 
two examples, the purpose of this chapter is to show that these patterns are 
manifestations of a general property of real networks: they exhibit a phe-
nomena called degree correlations. We discuss how to measure such degree 
correlations and explore their impact on the network topology.

(7.1)

The protein interaction map of yeast. Each 
node corresponds to a protein and two pro-
teins are linked if there is experimental evi-
dence that they can bind to each other in the 
cell. The two largest hubs, with degrees k = 56 
(left) and k̖�= 13 (right) are highlighted in the 
figure. They both connect to many small de-
gree nodes and avoid linking to each other.

The network has N = 1,870 proteins connect-
ed by L = 2,277 links, representing one of the 
earliest protein interaction maps [1, 2]. Only 
the largest component is shown. Note that 
the protein interaction network of yeast, dis-
cussed in TABLE 4.1, represents a later, more 
detailed map. Hence, it contains more nodes 
and links than the network shown in this fig-
ure. Redrawn after [3].

pk , �k = k �k
2L
.

Figure 7.2 (folowing page)

Hubs Avoiding Hubs
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k = 56

k’ =
 13
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ASSORTATIVITY
AND DISASSORTATIVITY

SECTION 7.1

Just by the virtue of the many links they have, hubs are expected to link 
to each other. Yet, as we have seen in the previous section, in some net-
works they do, in others they don’t. This is illustrated in Fig. 7.3, that shows 
three networks with identical degree sequence but different topology:

•  Neutral Network
Fig. 7.3b shows a network whose wiring is truly a random. The network 
of Fig. 7.3b is neutral, meaning that the number of links between the 
hubs coincides with what we expect by chance, as predicted by Eq. 7.1. 
For clarity we highlighted in red the five largest nodes and the direct 
links between them, observing a few red links as the likelihood that 
two nodes link to each other increases with their degree.

•  Assortative Network
The network of Fig. 7.3a has precisely the same degree sequence as the 
one in Fig. 7.3b. Yet, there is a noticeable difference between the two 
networks: the hubs in Fig. 7.3a tend to link to each other, while avoid-
ing linking to small-degree nodes. At the same time the small-degree 
nodes tend to connect to other small-degree nodes. Networks display-
ing such trends are assortative. An extreme manifestation of this 
pattern is a perfectly assortative network, in which degree-k nodes 
connect only to other degree-k nodes Fig. 7.4.

•  Disassortative Network
We observe the opposite trend in Fig. 7.3c, where the hubs completely 
avoid each other, linking mainly to small-degree nodes. Consequently 
the network displays a hub and-spoke character, making it disassor-
tative.

In general a network displays degree correlations if the number of links 
between the high and low-degree nodes is systematically different from 
what is expected by chance. In other words, in correlated networks the 
number of links between nodes of degrees k and k̖�deviates from Eq. 7.1.

DEGREE CORRELATIONS
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a, b, c Three networks that have precisely the 
same degree distribution (Poisson pk), but dis-
play different degree correlations. We show 
only the largest component and we highlight 
the five nodes with the highest degree in red, 
together with the direct links between them.

d, e, f The degree correlation matrix eij for (d) 
an assortative, (e) a neutral and (f) a disassor-
tative network with Poisson degree distribu-
tion and N=1,000, and ຊk=10.  The colors cor-
respond to the probability that there is a link 
between nodes with degrees k1 and k2. 

a, d For assortative networks eij takes higher 
values along the main diagonal. This indicates 
that nodes of similar degree tend to link to 
each other: small-degree nodes to small-de-
gree nodes and hubs to hubs. The network in 
(a) illustrates this by having numerous links 
between its hubs. 

b, e In neutral networks nodes link to other 
nodes randomly. Hence, the density of links 
is symmetric around the average degree, indi-
cating the lack of  correlations in the linking 
pattern.  

c, f  In disassortative networks eij is higher 
along the secondary diagonal, indicating that 
hubs tend to connect to small-degree nodes, 
and small-degree nodes to hubs. This is illus-
trated by the hub and spoke character of the 
network in (c). 

Figure 7.3
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The complete information about potential degree correlations is con-
tained in the degree correlation matrix, eij, which is the probability of find-
ing a node with degrees i and j at the two ends of a randomly selected link. 
As eij is a probability, it obeys the normalization condition

In SECT. 5.8 we derived the probability qk that there is a degree-k node at 
the end of the randomly selected link Eq. 5.29.

We can connect qk to ei,j via

In neutral networks, we expect

A network displays degree correlations if eij deviates from the random 
expectation captured by Eq. 7.5, Eqs. 7.2 - 7.5 are valid for networks with an 
arbitrary degree distribution, hence they apply to both random and scale-
free networks. Given that eij contains the complete information about po-
tential degree correlations, we start with its visual inspection. Figs. 7.3 d, e, 

f shows eij for an assortative, a neutral and a disassortative network. In a 
neutral network small and high-degree nodes connect to each other ran-
domly, hence eij lacks any trend Fig. 7.3e. In contrast, assortative networks 
show high correlations along the main diagonal, indicating that nodes 
predominantly connect to other nodes with comparable degree. Therefore 
low-degree nodes tend to link to other low-degree nodes and hubs to hubs 
Fig. 7.3d. In disassortative networks eij displays the opposite trend: it has 
high correlations along the secondary diagonal, indicating that high-de-
gree nodes tend to connect to low-degree nodes Fig. 7.3f.

In summary information about degree correlations is carried by the de-
gree correlation matrix eij. Yet, the study of degree correlations through 
the inspection of eij has numerous disadvantages:

• It is difficult to extract information from the visual inspection of a 
matrix.

• Unable to infer the magnitude of the correlations, it is difficult to 
compare networks with different correlations.

• ejk contains approximately k2
max independent variables, representing 

a huge amount of information that is difficult to model in analytical 
calculations and simulations.

We therefore need to develop a more compact way to detect the pres-
ence and the magnitude of degree correlations.

ASSORTATIVITY AND DISASSORTATIVITY

Maximal assortativity is obtained when each 
degree-k node links only to other degree-k 
nodes. For such a perfectly assortative net-
work ejk = ਡjkqk, where�ਡjk is the Kronecker del-
ta. In this case the non-diagonal elements of 
the ejk matrix are zero. The figure shows such 
a perfectly assortative network, consisting of 
complete k-clusters.

Figure 7.4
A perfectly associative network

(7.2)

(7.3)

(7.4)

(7.5)

qk =
kpk
�k�

eij = qiqj .

i, j
�eij = 1.

eij
j

" qi .
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SECTION 7.2

While eij contains the complete information about the potential degree 
correlations characterizing a network, it is difficult to interpret its content. 
The purpose of this section is to introduce the degree correlation function, 
which offers a simpler way to measure degree correlations.

Degree correlations capture the relationship between the degrees of 
nodes that link to each other. One way to quantify their magnitude is to 
measure for each node i the average degree of its neighbors Fig. 7.5.

If we wish to calculate Eq. 7.6 for all nodes with the same degree k, we 
define the degree correlation function as [4, 5]

where P(k’ | k) is the conditional probability that following a link of a 
k-degree node we reach a degree-k node. To quantify degree correlations 
we inspect the dependence of knn(k) on k. For neutral networks, using Eqs. 

7.3-7.5, we have

Hence knn(k) can be expressed as

Therefore, in a neutral network the average degree of a node’s neigh-
bors is independent of the node’s degree k and depends only on ࢭkࢮ�and ࢭk2ࢮ. 
So plotting knn(k) in function of k is expected to result in a horizontal line 
at ࢭk2ࢭ/ࢮkࢮ, as observed in the case of the power grid in Fig. 7.6b. Eq. 7.9 also 
reflects an intriguing property of real networks: that our friends are more 
popular than we are, a phenomenon called the friendship paradox BOX 7.1.

MEASURING DEGREE
CORRELATIONS

(7.6)

(7.8)

(7.7)

(7.9)

To determine knn(k), we calculate the average 
degree of a node’s neighbors. The figure illus-
trates the calculation of knn(k) for node i shown 
in red. As the degree of the node i is ki = 4, by 
averaging the degree of its neighbors j1, j2, j3 
and j4, we obtain knn(4) = (4 + 3 + 3 + 1)/4 = 2.75.

Figure 7.5
Nearest neighbor degree: Knn

knn (ki ) =
1
ki
�
j=1

N

Aijk j

knn (k) � �k
�k
� P( �k | k)

P( �k | k) = ek �k

ek �k
�k
� = ek �k

qk
= q �k qk

qk
= q �k

knn (k) = �k
�k
� q �k = �k

�k
� �k p( �k )

�k�
= �k2 �

�k�
.

j2

j1

j4

j3

i

j2.

.

.
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•  Assortative Network
In this case hubs tend to connect to other hubs, hence the higher is 
the degree k of a node, the higher should be the average degree of its 
nearest neighbors. Consequently for assortative networks knn(k) in-
creases with k, as observed in collaboration networks in Fig. 7.6a.

•  Disassortative Network
In this case hubs prefer to link to low-degree nodes. Consequently
knn(k) decreases with k, as observed for the protein-protein interac-
tion network Fig. 7.6c.

The scaling observed in Fig. 7.6 prompts us to approximate the degree 
correlation function with [4]

If  Eq. 7.10 holds, then the nature of degree correlations characterizing a 
network is determined by the sign of the correlation exponent µ:

•  For assortative Networks µ > 0
Indeed, a fit to knn(k) for the science collaboration network provides µ 
= 0.37 ± 0.11 Fig. 7.6a.

•  For neutral networks we have µ = 0
As according to Eq. 7.9 knn(k) is independent of k. For the power grid we 
obtain µ = 0.04 ± 0.05, which is indistinguishable from zero Fig. 7.6b.

•  For disassortative networks we expect µ < 0
Indeed, for the metabolic network we obtain µ = − 0.76 ± 0.04 Fig. 7.6c.

In summary, the degree correlation function helps us capture the pres-
ence or absence of correlations in real networks. The knn(k) function also 
plays an important role in analytical calculations, allowing us to calculate 
the impact of degree correlations on various network characteristics SECT. 

7.6. Note that it is often convenient to extract a single number to capture 
the magnitude of correlations present in a network. This can be achieved 
either through the correlation exponent µ defined in Eq. 7.10, or using the 
degree correlation coefficient discussed in BOX 7.2.

The degree correlation function knn(k) for three 
real networks. The panels show knn(k) on a log-
log plot to test the validity of Eq. 7.10.

(a) Collaboration network of astrophysicists. 
The increasing knn(k) with k indicates that 
the network is assortative.

(b) Power grid. The horizontal knn(k) indicates 
the lack of degree correlations, as predict-
ed by Eq. 7.9 for neutral networks.

(c) Metabolic network. The decreasing knn(k) 
documents the network’s disassortative 
nature.

On each panel the horizontal dotted line cor-
responds to the prediction Eq. 7.9 and the 
oblique dashed line is a fit to Eq. 7.10. The slope 
in (a) is µ = 0.37, in (b) is µ = 0.04 while the slope 
in (c) is µ = − 0.76.

Figure 7.6
Degree correlation function

(7.10)knn (k) = ak
µ .
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(7.11)

BOX 7.1
FRIENDSHIP PARADOX

While most people believe that they have more friends than their 
friends [7], the friendship paradox, discovered by sociologist Scott L. 
Feld, states the opposite: on average your friends are more popular 
than you are [6].

The roots of the friendship paradox is Eq. 7.9, telling us that the aver-
age degree of a node’s neighbors is not simply ࢭkࢮ, but depends on ࢭk2ࢮ 
as well. Consider for example a random (ErdĘs-Rényi) network, for 
which ࢭk2ࢭ =�ࢮkࢮ(ࢭ + 1kࢮ) . According to Eq. 7.9

Therefore the average degree of a node’s neighbors is always higher 
than the average degree of the network ࢭkࢮ�The gap between ࢭkࢮ and 
our friends’ degree can be particularly large in scale-free networks, 
for which ࢭk2ࢭ/ࢮkࢮ is significantly larger than ࢭkࢮ�Fig. 4.7. Consider for 
example the email network, for which ࢭk2ࢭ/ࢮk390.45 = ࢮ, or the actor 
network, for which ࢭk2ࢭ/ࢮk565.70 =  ࢮ. Hence in these networks the av-
erage degree of the friends of a randomly selected node can be hun-
dreds of times higher than the expected degree of the node itself, 
which is ࢭkࢮ.

To understand the origin of the friendship paradox, we must realize 
that for a randomly chosen node, the degree distribution of the nodes 
at the other end of each link do not follow pk, but are biased towards 
higher-degree nodes, as indicated by Eq. 7.3. In other words, we are 
more likely to be friends with hubs than with small-degree nodes, 
simply because hubs have more friends than the small-nodes. Hence 
our friends do not reflect the whole population - they are biased to-
wards the hubs.

(7.11)knn (k) = 1+ �k�.
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SECTION 7.3

Throughout this book we assumed that the networks we explore are 
simple, meaning that there is at most one link between any two nodes 
CHAPTER 2. For example, in the email network we place a single link be-
tween two individuals that are in email contact, despite the fact that they 
may have exchanged multiple messages; in the actor network we connect 
two actors with a single link if they acted together, independent of the 
number of movies they jointly made. All datasets discussed in TABLE 4.1 are 
simple networks. In simple networks there is a puzzling conflict between 
the scale-free property and degree correlations [10, 11]. Consider for exam-
ple the scale-free network of Fig. 7.7a, whose two largest hubs have degrees 
k = 55 and k' = 46, connected by a link. In a network with degree correlations 
ekk' the expected number of links between k and k' is

For a neutral network ekk, is given by Eq. 7.5, which, using Eq. 7.3, predicts

Therefore, given the size of these two hubs, they should be connected to 
each other by two to three links to comply with the network’s neutral na-
ture. Yet, in a simple network we are allowed only one link between them, 
raising a conflict between degree correlations and the scale-free property. 
Such conflict emerges in a simple network each time the degrees violate 
the Ekk’ ≤ 1 condition. The goal of this section is to understand the origin and 
the consequences of this conflict. 

For small k and k Eq. 7.15 predicts that Ekk’ is also small, i.e. we expect 
less than one link between the two nodes. Only for nodes whose degree ex-
ceeds some threshold ks will Eq. 7.15 predict multiple links. As we show in 
ADVANCED TOPICS 7.B, this ks, that we

STRUCTURAL CUTOFFS

(7.14)

(7.15)

Ek �k = ek �k �k�N

Ekk ' =
kk pkk ' pk '

�k�
N =

55
300

46
300
3

300 = 2.8

(a) A scale-free network with N=300, L=450, 
according Eq. 7.15, and Ȗ=2.2, generated by 
the configuration model, while forbidding 
self-loops and multiple links between two 
nodes, making the network simple. The 
blue and the red nodes are the two largest 
nodes in the network and are connected by 
the red link. As Eq. 7.15 predicts,to maintain 
the network’s neutral nature, we would 
need two to three links between these two 
nodes. The fact that we do not allow mul-
tiple links (simple network representation) 
makes the network disassortative, a phe-
nomena we call structural disassortativity.

(b) To illustrate the origins of structural cor-
relations, we start from a fixed degree 
sequence, shown as stubs on the left, and 
we randomly connect the stubs (config-
uration model). In this case, the expected 
number of links between the nodes with 
degree 8 and 7 is 8 2 ≈ �7/28ࡆ. Yet, if we do 
not allow multilinks, there can only be one 
link, making the network structurally dis-
sasortative.

Figure 7.7 (following page)

Structural disassortativity

.
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In other words, nodes whose degree exceeds Eq. 7.16 are expected to have 
Ekk’ > 1, a conflict that as we show below gives rise to degree correlations.

To fully understand the consequences of the described conflict, we 
must first ask if a network has nodes whose degrees exceeds Eq. 7.16. For 
this we compare the structural cutoff, ks, with the natural cutoff, kmax, 
which is the expected largest degree in a network with degree distribution 
pk. According to Eq. 7.14, for a scale-free network  kmax Ȯ N         . The relative 
magnitude of kmax, vs. ks, gives raise to two regimes:

• For scale-free networks with ਠ ≥ 3 and random networks, ks is always 
larger than kmax, hence we lack nodes for which Ekk’ > 1.

• For scale-fee networks with ਠ < 3, ks is smaller than kmax, hence all 
nodes between ks and kmax violate Ekk’ > 1. Consequently, the network 
has fewer links between its hubs than expected based on  Eq. 7.15. As 
a result, these networks will be disassortative, a phenomenon we call 
structural disassortativity. This is illustrated in Figs. 7.8a, b that show a 
simple scale-free network generated by the configuration model. The 
network shows disassortative tendencies, despite the fact that we did 
not impose degree correlations.

We have two avenues to generate networks that are free of structural 
disassortativity:

(i) We relax the simple network requirement, allowing multiple links 
between the nodes. The conflict disappears and the network will be 
neutral Figs. 7.8c, d.

(ii) If we insist of having a simple scale-free network that is neutral or 
associative, we must remove all hubs with degrees larger than ks. 
This is illustrated in Fig 7.8 e, f: the obtained network, missing nodes 
with k ≥ 100, is neutral.

How can we convince ourselves that the correlations observed in a par-
ticular network are a consequence of structural dissasortativity, or are 
generated by some unknown process? Degree-preserving randomization 
Fig. 4.14 helps us distinguish these two possibilities:

(i) Degree preserving randomization with simple links (R-S): We apply 
degree-preserving randomization to the original network, while 
making sure that we do not allow for more than one link between 
any pair of nodes. On the algorithmic side this means that each re-
wiring that results in multiple links between two nodes is discarded. 
If the real knn(k) and the randomized knn  (k) are indistinguishable, 
then the correlations observed in a real system are all structural, 

(7.16)

1
y �1

R−S 

ks (N ) � (�k�N )
1/2

. BOX 7.2
DEGREE CORRELATION
COEFFICIENT

If we wish to characterize de-
gree correlations using a single 
number, we can  also use the de-
gree correlation coefficient, in-
troduced by Mark Newman and 
defined as [8,9]

with

Hence r is the Pearson correla-
tion coefficient between the de-
grees at the two end of the same 
link. It varies between −1 ≤ r ≤ 1: 
for v < 0 the network is assorta-
tive, for r = 0 the network is neu-
tral and for v > 0 the network is 
disassortative. For example, for 
the collaboration network we 
obtain r = 0.13, in line with its as-
sortative nature; for the protein 
interaction network r = −0.04, 
supporting its disassortative na-
ture and for the power grid r = 0. 
Note that the degree correlation 
coefficient r assumes that knn(k) 
is a linear function of k with 
slope r. In contrast the correla-
tion exponent µ assumes that 
knn(k) follows the power law Eq. 

7.10. Naturally, both scaling laws 
cannot be valid simultaneously.
The analytical models of SECT. 

7.7 offer some guidance, sup-
porting the validity of Eq. 7.10. 
As we show in ADVANCED TOP-

ICS 7.B, while r correlates with 
µ, we need to be cautious when 
we use it to measure degree cor-
relations.

(7.12)

(7.13)

r =
jk
� jk(ejk � qjqk )

� r
2

� r
2 =

k
�k2qk �

k

jk

�kqc
�

�
�

�

�
�

2



15DEGREE CORRELATIONS STRUCTURAL CUTOFFS

The figure illustrates the tension between the 
scale-free property and degree correlations. It 
shows the degree distribution (left panels) and 
the degree correlation function knn(k) (right 
panels) of a scale-free network with N = 10,000 
and Ȗ� = 2.5, generated by the configuration 
model.

(a, b) If we generate a scale-free network with 
the power-law degree distribution shown 
in (a), and we forbid self-loops and multi-
links, the network displays structural dis-
assortativity, as indicated by knn(k) in (b). 
In this case, we lack a sufficient number 
of links between the high-degree nodes 
to maintain the neutral nature of the net-
work, hence for high k the knn(k) function 
decays.

(c, d) We can eliminate structural disassorta-
tivity by allowing multiple links, i.e. re-
laxing the simple network requirement. 
As shown in (c,d), in this case we obtain a 
neutral scale-free network.

(e, f) If we artificially impose an upper cutoff 
by removing all nodes with k ≥ ks predict-
ed by Eq. 7.16, the network becomes neu-
tral, as seen in (f).

Figure 7.8
Natural and structural cutoffs
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fully explained by the degree distribution. If the randomized knn  (k)  
does not show degree correlations while knn(k) does, there is some 
unknown process that generates the observed degree correlations.

(ii) Degree preserving randomization with multiple links (R-M): For a 
self-consistency check it is useful to also perform degree-preserving 
randomization that allows for multiple links between the nodes. On 
the algorithmic side this means that we allow each random rewir-
ing, even if they lead to multiple links. This process eliminates all 
degree correlations.

We have taken the three networks of in Fig. 7.6 and performed the ran-
domizations discussed above. As Fig. 7.9a shows, the assortative nature of 
the scientific collaboration network disappears under both randomiza-
tions. This indicates that the observed assortative correlations are not 
linked to the scale-free nature of the underlying network. In contrast, for 
the metabolic network the observed disassortativity remains unchanged 
under R-S Fig. 7.9c. This indicates that the disassortativity of the metabolic 
network is structural, induced by its degree distribution.

In summary, the scale-free property can induce disassortativity in sim-
ple networks. To be specific, in neutral or assortative networks we expect 
multiple links between the hubs. If such multiple links are forbidden (sim-
ple graph), the network will display disassortative tendencies. This conflict 
vanishes for scale-free networks with�Ȗ�≥ 3 and for random networks. It 
also vanishes if we allow for multiple links between the nodes.

R−S 

To uncover the origin of the observed degree 
correlations, it is useful to compare knn(k) with 
knn  (k) and knn  (k) obtained after degree-pre-
serving randomization. We perform two dif-
ferent randomizations for this purpose.

Green symbols
Degree-preserving randomization with sim-
ple links (r-s), in which case at each step of the 
randomization process we check that we do 
not have more than one link between any node 
pairs.

Blue symbols
Degree-preserving randomization with multi-
ple links (R-M), in which case we allow multi-
links during the randomization processes.

We performed these two randomizations for 
the networks of Fig. 7.6. The R-M procedure 
always generates a neutral network, conse-
quently knn  (k) is always horizontal.The true in-
sight is provided when we compare knn(k) with 
knn (k), allowing us to decide if the observed 
correlations are structural:

(a)  Scientific collaboration network
The increasing knn(k) differs from the hori-
zontal knn  (k), indicating that the network’s 
assortativity is not structural (i.e. it is not 
a consequence of the degree distribution), 
but it is generated by some process that 
governs the network’s evolution. This is 
not unexpected: structural effects can 
generate only disassortativity, not assor-
tativity.

(b)  Power grid
The horizontal knn(k), knn (k) and knn  (k) all 
support the lack of degree correlations 
(neutral network).

(c)  Metabolic network
As both knn(k) and knn  (k) decrease, we con-
clude that the network’s disassortative na-
ture is induced by its scale-free property. 
Hence the observed degree correlations are 
structural.

Figure 7.9
Randomization and degree correlations
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SECTION 7.4

To truly understand the prevalence of degree correlations, we need to 
inspect the correlations characterizing various real networks. Therefore, 
in Fig. 7.10 we show the knn(k) function for the ten reference networks of TA-

BLE 4.1. Let us discuss the observed behavior:

•  Power grid
For the power grid knn(k) is flat and indistinguishable from its ran-
domized version, indicating a lack of degree correlations Fig. 7.10a. 
Hence the power grid is neutral.

•  Internet
For small degrees (k ≤ 30) knn(k) shows a clear assortative trend, an 
effect that levels off for high degrees Fig. 7.10b. The degree correlations 
vanish in the randomized networks. Hence the Internet is assortative, 
but structural cutoffs eliminate the effect for high k.

•  Social Networks
The three networks capturing social phenomena, like the mobile 
phone network, science collaboration networks and actor network, 
all have an increasing knn(k), indicating that they are assortative Figs. 

7.10c-e. Hence in these networks hubs tend to link to other hubs and 
low-degree nodes tend to link to low-degree nodes. For each of these 
networks the observed knn(k), differs from the knn  (k), indicating that 
their assortative nature is not rooted in the degree distribution.

•  Email Network
While the email network is often used as an example of a social net-
work, its knn(k) decreases with k, documenting a clear disassortative 
behavior Fig. 7.10f. The randomized knn  (k) also decays, indicating that 
we are observing structural disassortativity, a consequence of the 
network’s scale-free nature.

•  Biological Networks
The protein interaction and the metabolic network both have a nega-

DEGREE CORRELATIONS
IN REAL NETWORKS

R-S

R-S
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tive µ, suggesting that these networks are disassortative Eq. 7.10. Yet, 
the scaling of kmin (k) is indistinguishable from knn(k), indicating that 
we are observing structural disassortativity, rooted in the scale-free 
nature of these networks Fig. 7.10g, h.

•  WWW
The decaying knn(k) implies disassortative correlations Fig. 7.10i. The 
randomized kmin (k) also decays, but not as rapidly as knn(k). Hence the 
disassortative nature of the WWW is not fully explained by its degree 
distribution.

•  Citation network
This network displays a puzzling behavior: for k ≤ 20, knn(k) shows a 
clear assortative trend; for k > 20, however, we observe equally clear 
disassortative scaling Fig. 7.10j. Such mixed behavior can emerge in 
networks that display extreme assortativity SECT. 7.6. This suggests 
that the citation network is strongly assortative up to ks, but its scale-
free nature reverses the trend for k�ɝ ks. 

In summary, Fig. 7.10 indicates that to understand degree correlations, 
we must always compare knn(k) to the degree randomized knn (k). It also al-
lows us to draw some interesting conclusions:

(i)  Of the ten reference networks the power grid appears to be the only 
that is truly neutral. Hence most real networks display degree cor-
relations.

(ii) All networks that display disassortative tendencies (email, protein, 
metabolic), do so thanks to their scale-free property. Hence, these 
are all structurally disassortative. Only the WWW shows disassorta-
tive correlations that are only partially explained by its degree dis-
tribution.

(iii) The degree correlations characterizing associative networks are not 
explained by their degree distribution. Most social networks (mobile 
phone calls, scientific collaboration, actor network) are in this class 
and so is the Internet and the citation network.

A number of proposals exist to explain the origin of the observed as-
sortativity. For example, the tendency of individuals to form communities 
CHAPTER 9 has been shown to induce assortative scaling [12]. Similarly, 
the society has endless mechanisms, from professional committees to TV 
shows, to bring hubs together, enhancing the assortative nature of social 
and professional networks. Finally, homophily, a well documented social 
phenomena, [13], captures the fact that individuals have a tendency to as-
sociate with other individuals of similar background and characteristics. 
This tendency may also be responsible for the celebrity marriages dis-
cussed in SECT. 7.0.

R-S

R-S

R-S
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The degree correlation function knn(k) for the 
ten reference networks of Table 4.1. The grey 
symbols show the knn(k) function under linear 
binning: red symbols represent the same data 
using log-binning SECT. 4.10. The dotted line 
corresponds to the best fit of the form Eq. 7.10 
and the small arrows at the bottom mark the 
fitting interval. Green squares represent knn  
(k) obtained for 100 independent degree-pre-
serving randomizations, making sure that we 
preserve the simple character of these net-
works; blue triangles correspond to  knn   (k), i.e. 
randomization that does allow self-loops and 
multiple links between two nodes. Note that 
we made directed networks undirected when 
we measured knn(k). To fully characterize the 
correlations emerging in directed networks 
we must use the directed correlation function 
BOX 7.3.

Figure 7.10
Randomization and degree correlations
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BOX 7.3
CORRELATIONS IN DIRECTED NETWORKS

The degree correlation function knn(k) in Eq. 7.7 is defined for undirect-
ed networks. To measure correlations in directed networks we must 
take into account that each node i is characterized by an incoming kin

and an outgoing kout degree. Hence, we define four degree correlation 
functions, knn (k), where Į�and�ȕ refer to the in and out indices Figs. 7.11 

a-d. In Fig. 7.11e we show knn (k) for citation networks, indicating a lack 
of in-out correlations, while a detectable assortative scaling for small 
k for the other three correlations.

i

i

Į��ȕ

Į��ȕ

Panels (a)-(d) illustrate the four possible 
correlations in directed networks. We 
show in red and green the (Į, ȕ) indices 
that define the appropriate correlation 
function [14]. For example, (a) describes 
the knn   (k)  correlations between the in-
degrees of two nodes connected by a link. 
(e) The knn  (k) correlation function for ci-
tation networks, a directed network. For 
example knn   (k)  is the average indegree 
of the in-neighbors of nodes with in-de-
gree kin. These functions show a clear as-
sortative tendency for three of the four 
function up to degree k 100 ݍ. The lighter 
symbols capture the degree randomized 
knn  (k) for each correlation function.

Figure  7.11

Correlation and directed network

Į, ȕ

Į, ȕ

LQ��LQ

LQ��LQ

102

101

100

10 10 10 10 100 1 2 3 4

103
in-in
in-out
out-in
out-out

in-in in-out

out-in out-out

a

c d

b

knn  (k)

kȕ

Į��ȕ



21DEGREE CORRELATIONS

SECTION 7.5

To study degree correlations and to explore their impact on various net-
work characteristics, we need to build networks with tunable correlations. 
Given the conflicts between the scale-free property and degree correla-
tions, this is not a trivial task. In this section we discuss the degree correla-
tions characterizing some well-known network models, together with an 
algorithm capable of generating networks with tunable correlations.

DEGREE CORRELATIONS IN STATIC MODELS

ErdĘs-Rényi Model
The random network model is neutral by definition. As it lacks hubs, 
it does not develop structural correlations either. Hence for the ErdĘs-
Rényi network knn(k) is given by Eq. 7.9, predicting µ = 0 for any ࢭkࢮ and N.  
Configuration Model: The configuration model SECT. 4.7 is also neutral, 
independent of our choice of the degree distribution pk. This is because 
the model allows for both multi links and self-loops. Consequently, any 
conflicts caused by the hubs are relieved by multiple links between 
them. If, however, we force the network to be simple, then the generat-
ed network will develop structural disassortativity Fig. 7.8.

Hidden Parameter Model
In the model ejk is the product of the hidden variables Șj and Șk, which are 
chosen randomly, hence the network is technically uncorrelated SECT. 

4.8. However, if we do not allow multiple links, for scale-free networks 
we again observe structural disassortativity. Analytical calculations in-
dicate that in this case knn(k) Ȯ�k−1, i.e. we have µ = − 1 [10].

DEGREE CORRELATIONS IN EVOLVING NETWORKS

To understand the emergence (and absence) of degree correlations in 
growing networks, let us start with the initial attractiveness model dis-
cussed in SECT. 6.4. In the model preferential attachment follows ∏(k) 
Ȯ�A + k, where A is the initial attractiveness Eq. 6.23. The degree correla-
tion function depends on A, the calculations predicting three scaling 
regimes [15]: 

GENERATING
CORRELATED NETWORKS
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(i)  If  Ȗ�< 3 (i.e. − m < A < 0 according to Eq. 6.24, we have

Hence the resulting network is disassortative, knn(k) being character-
ized by the power-law decay [15, 16]

(ii)  If Ȗ = 3 (A = 0), the initial attractiveness model reduces to the Barabá-
si-Albert model CHAPTER 5. In this case

that is, knn(k) is independent of k, hence the network is neutral.

(iii)  If Ȗ > 3 (A > 0), the calculations predict

As knn(k) increases logarithmically with k, the resulting network dis-
plays a weak assortative tendency, but does not follow the scaling 
Eq. 7.10.

Bianconi-Barabási Model
With a uniform fitness distribution the Bianconi-Barabási model gen-
erates a disassortative network [5] Fig. 7.12. As the randomized version 
of the network is also disassortative, this is a structural disassortativi-
ty. Note, however, that the real knn(k) and the randomized knn  (k) do not 
overlap, indicating that the Bianconi-Barabási model displays some dis-
assortativity that is not fully explained by its scale-free nature.

TUNING DEGREE CORRELATIONS

Several algorithms exist to generate networks with desired degree cor-
relations [8, 17, 18]. Here we discuss a simplified version of the algo-
rithm proposed by Xalvi-Brunet and Sokolov that generates maximally 
correlated networks with a predefined degree sequence [19, 20, 21]. It 
consists of the following steps Fig. 7.13a:

•  Step 1: Link selection
Choose at random two links. Label the four nodes at the end of these 
two links with a, b, c, and d such that their degrees ka, kb, kc, and kd are 
ordered as

ka ≥ kb ≥ kc ≥ kd.

•  Step 2: Rewiring
Break the selected links and rewire them to form new pairs. Depend-
ing on the desired degree correlations the rewiring is done in two dif-
ferent ways:

The degree correlation function of the Bian-
coni-Barabási model for N = 10, 000, m = 3 and 
uniform fitness distribution SECT. 6.2. As the 
dotted line indicates, the network is disassor-
tative, with µ = 0.5. The green symbols show 
knn (k), and the blue are for knn (k). As knn (k) also 
decreases, the bulk of the observed disassorta-
tivity is structural. But the difference between 
knn (k) and correlations in the Bianconi-Barabá-
si model suggests that structural effects can-
not fully account for the observed degree cor-
relation.

R-S

R-S R-SR-M

Figure  7.12
Correlations in the Bianconi-Barabási model
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•  Step 2A: Assortative
By pairing the two highest degrees (a with b) and the two lowest 
degrees (c with d), we are connecting nodes with comparable de-
grees, enhancing the network’s assortative nature.

•  Step 2B, Disassortative
By pairing the highest and the lowest degree nodes (a with d and 
b with c), we tend to connect nodes with rather different degrees, 
enhancing the network’s disassortative nature.

By iterating these steps we gradually enhance the network’s assortative 
(2A) or disassortative (2B) features. If we aim to generate a simple network 
(free of multi-links), after Step 2 we check whether the particular rewiring 
leads to multi-links. If it does, we reject it, returning to Step 1. 

The correlations characterizing the networks generated by this algo-
rithm converge to the maximal or minimal value one can reach for the 
given degree sequence Fig. 7.13b. We refer to these networks as maximally 
assortative or maximally disassortative. The model has no difficulty cre-
ating disassortative correlations Figs. 7.13e, f. In the assortative limit simple 
networks displays a mixed knn(k): assortative for small k and disassortative 
for high k Figs. 7.13b. This is a consequence of structural cutoff: for scale-free 
networks the system is unable to sustain assortativity for high k. This be-
havior is reminiscent of the knn(k) function observed for citation networks 
Fig. 7.10j.

The version of the Xalvi-Brunet & Sokolov algorithm discussed in Fig. 7.13 
generates maximally assortative or disassortative networks. We can tune 
the magnitude of the generated degree correlations if we use the original 
version of the proposed algorithm, discussed in Fig. 7.14.

In summary, static models, like the configuration or hidden parameter 
models, are neutral if we allow multi-links, and develop structural disas-
sortativity if we force them to generate simple networks. To generate net-
works with tunable correlations, we can use for example the Xalve-Brunet 
& Sokolov algorithm. An important result of this section is Eq. 7.17, predicts 
the functional form of the degree correlation function for a growing net-
work, offering analytical backing for the scaling hypothesis Eq. 7.10.
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(a)  The basic steps of the algorithm.  (b) kn-

n(k) for the networks generated by the mod-
el for a scale-free network with N = 1,000, 
L = 2,500, Ȗ�= 3.0.  (c, d)  A typical network 
configuration and the corresponding Eij 
matrix for the maximally assortative net-
work generated by the model (e,f). Same 
as in (c,d) for a maximally disassortative 
network. 

Note that the Eij matrices capture the in-
ner regularity of networks with maximal 
correlations, consisting of blocks of nodes 
that connect to nodes with similar degree 
in (d) and to nodes with rather different 
degrees in (f).

Figure  7.13
Xulvi-Brunet & Sokolov algorithm for extreme 
correlations
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(a) The original Xalvi-Brunet & Sokolov algo-
rithm allows us to tune the magnitude of 
the observed degree correlations. For this 
we execute the deterministic rewiring step 
with probability p, and with probability 1 
− p we randomly pair the a, b, c, d nodes 
with each other. For p = 1 we are back to 
the model of Fig. 7.13, generating maximal 
degree correlations; for p < 1 the induced 
noise tunes the magnitude of the effect. 

(b) Typical network configurations generated 
for p = 0.5. 

(c) The knn(k) functions for various p values. 
The simulations are shown for a network 
with N = 10,000, ࢭk1 = ࢮ, and Ȗ�= 3.0. 

Note that the fit of Eq. 7.10 is nonconclu-
sive, as the exponents depend on the fitting 
region, especially in the assortative case.

Figure  7.14
Tuning degree correlations
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SECTION 7.7

As we have seen in SECT. 7.5, most real networks are characterized by 
some degree correlations. Social networks are assortative; biological net-
works display structural disassortativity. The presence of these correla-
tions raise an important question: why do we care? In other words, do 
degree correlations alter the properties of a network? And which network 
properties do they influence? The purpose of this section is to briefly ad-
dress these questions.

As we have seen in SECT. 3.6, an important property of a random net-
work is the emergence of a phase transition at ࢭk1 = ࢮ, marking the appear-
ance of the giant component. Fig. 7.15 shows the relative size of the giant 
component for networks with different degree correlations, indicating 
that [8, 19, 20]:

•  For assortative networks 
the phase transition point moves to a lower ࢭkࢮ, hence a giant compo-
nent emerges for ࢭk1 > ࢮ. The reason is that it is easier to create a giant 
component if the high-degree nodes tend to link to other high-degree 
ones.

•  For disassortative networks
the phase transition is delayed, as in these networks the hubs tend 
to connect to small degree nodes. Consequently, these networks have 
difficulty forming a giant component.

•  For large ࢭkࢮ�the giant component is smaller in assortative networks 
than in neutral or disassortative networks. Indeed, the high-degree 
nodes form a core group of high mean degree. As assortativity forces 
these hubs to mostly link to each other, they fail to attract to the giant 
component the numerous small degree nodes.

These changes in the size and the structure of the giant component 
have implications on the spread of diseases [22, 23, 24], a topic discussed 
in CHAP. 10. Indeed, as we have seen in SECT. 7.4, social networks tend to be 

THE IMPACT OF DEGREE
CORRELATIONS

Relative size of the giant component for an 
Erdös-Rényi network of size N=10,000 (green 
curve), which is rewired using the Xalvi-Bru-
net & Sokolov algorithm with p = 0.5, to induce 
degree correlations (red and blue curve). Each 
point represents an average of 10 independent 
runs. The figure indicates that as we move 
from assortative to disassortative networks, 
the phase transition point is delayed and the 
size of the giant component increases for large 
.ࢮkࢭ

Figure  7.15
Degree correlations and the phase 
transition point
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assortative. The high degree nodes therefore form a giant component that 
acts as the “reservoir” for the disease, sustaining an epidemic even when 
on average the network is not sufficintly dense for the virus to persist.

The altered giant component has implications for network robustness 
as well [25]. As we discuss in CHAPTER 8, a network can be fragmented by 
the removal of its hubs. In assortative networks hub removal makes less 
damage because the hubs cluster together, forming a core group, hence 
many of them are redundant. The removal of the hubs is more damaging 
in disassortative networks, as in these the hubs connect to many small-de-
gree nodes, which fall off the network once a hub is deleted.

Let us mention a few additional consequences of degree correlations:

•  Fig. 7.16 shows the path-length distribution for a random network 
rewired to display different degree correlations. It indicates that in 
assortative networks the average path length is shorter than in neu-
tral networks. Yet the most dramatic difference is in the network di-
ameter dmax, which is significantly higher for assortative networks. 
Indeed, assortativity favors links between nodes with similar degree, 
hence it results in long chains of k = 2 nodes, enhancing dmax Fig. 7.13c.

•  Degree correlations influence a system’s stability against stimuli and 
perturbations [26] as well as the synchronization of oscillators placed 
on a network [27, 28].

• Degree correlations have a fundamental impact on vertex cover prob-
lems [29], requiring us to find the minimal set of nodes such that each 
link is connected to at least one node in the vertex cover BOX 7.4.

• Finally, degree correlations have an impact on our ability to control 
a network, altering the number of input signals one needs to achieve 
full control [30].

In summary, degree correlations are not only of academic interest, but 
they alter numerous network characteristics and have a strong impact on 
various processes that take place on a network.

Shortest path distribution for a network with 
Poisson degree distribution of size N = 10, 
000 and ࢭk3 = ࢮ. Correlations are added using 
the Xalvi-Brunet & Sokolov algorithm with p 
= 0.5. Each curve presents is an average of 10 
independent networks. The plots indicate that 
as we move from disassortative to assortative 
networks, the average path length
decreases, but the diameter grows.

Figure  7.16
Degree correlations and path lengths
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BOX 7.4
VERTEX COVER AND MUSEUM GUARDS

Imagine you are director of an open-air museum situated in a large 
park with numerous paths. You wish to place guards on crossroads to 
observe each path, but to save cost you want to use as few guards as 
possible. Let N be the number of crossroads and m < N is the number 
of guards you can afford to hire. There are (Nm) ways of placing the 
m guards in the N positions, but most configurations will leave some 
paths unobserved [31]. 

The number of trials one needs to find a perfect solution grows expo-
nentially with N. Indeed, this is one of the six basic NP-complete prob-
lems, called the vertex cover problem. By definition, the vertex cover 
of a network is a set of nodes such that each link is connected to at 
least one node of the set. The NP-completeness means that there is no
known algorithm which can identify a vertex cover substantially fast-
er than using as exhaustive search, i.e. checking each possible config-
uration individually. Obviously, the number of nodes needed to obtain 
a vertex cover depends on the network topology, being affected by the 
degree distribution and potential degree correlations [29].

Formally, a vertex cover of a network G 
is a set C of nodes such that each link of 
G connects to at least one node in C. A 
minimum vertex cover is a vertex cover 
of smallest possible size. The figure above
shows examples of minimal vertex covers 
in two graphs, where the set C is shown 
in red. One can check that if we turn any 
of the red nodes into white nodes, we will 
have at least one link that does not con-
nect to a red node.

Figure  7.17
The minimum cover
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SECTION 7.7

There are at least three important reasons why we care about degree 
correlations:

•  Degree correlations are present in most real networks SECT. 7.4.

•  In the previous chapters we showed how much we can learn about 
a network by inspecting its degree distribution. Degree correlations 
force us to go beyond the degree distribution, demonstrating that 
there are quantifiable patters that govern the way nodes link to each 
other that are not captured by pk alone.

•  Once present, degree correlations change a network’s behavior SECT. 

7.6.

Despite the considerable effort devoted to characterizing degree cor-
relations, our understanding of the phenomena is not yet complete. For 
example, while in SECT. 7.6 we showed how to tune degree correlations, the 
problem is far from being fully resolved. Indeed, the full degree correla-
tions characterizing a network is contained in the eij matrix. Generating 
networks with an arbitrary eij remains a difficult task. 

The results of this chapter allow us to formulate the next network law: 

Structural Correlations

Simple scale-free networks are disassortative.

Let us inspect the validity of this law in the light of the three criteria 
established in CHAPTER 3:

A. Quantitative Formulation
The quantitative basis of this law is provided in SECT. 5.3 and AD-

VANCED TOPICS 7.B, where we derived the magnitude of the structur-
al cutoff and the emergence of disassortative correlations beyond ks.

SUMMARY
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B. Universality
In SECT. 7.4 we showed that many real networks, from biological to 
email networks, display structural disassortativity.

C. Non-random Character
As we showed in SECT. 5.3, structural disassortativity cannot appear 
in the random network model, as the degree of the largest node in a 
random network is smaller than the structural cutoff ks.

BOX 7.5
DEGREE CORRELATIONS: BRIEF HISTORY

Degree correlations were first reported in 2001 in the context of 
the Internet in a classic paper by Romualdo Pastor-Satorras, Alexei 
Vazquez, and Alessandro Vespignani [4, 5]. This work introduced the
degree correlation function knn(k) and the scaling Eq. 7.10. A year later
Kim Sneppen and Sergey Maslov used the full p(ki, kj), rooted in the eij 
matrix, to discover the presence of degree correlations in protein-in-
teraction networks [32]. In 2003 Mark Newman introduced the de-
gree correlation coefficient [8, 9], allowing him to realize that two 
kinds of correlations can emerge in real systems. He also introduced
the terminology “assortativity” and “disassortativity” to characterize
this diversity. These terms have their roots in social sciences where
they are used to capture mating preferences [33]. 

Assortative mating
reflects the tendency of individuals to date or marry individuals 
that are similar to them. For example, low-income individuals tend 
to marry low-income individuals, and college graduates marry col-
lege graduates. Network theory uses assortativity in the same spirit, 
capturing the degree-based similarities between nodes: in assorta-
tive networks hubs tend to connect to other hubs and small-degree 
nodes to small-degree nodes. In a network environment we can also 
encounter the traditional assortativity, when nodes of similar prop-
erties link to each other Fig. 7.18.

Disassortative mixing
when individuals link to individuals who are unlike them, is also ob-
served in social systems. Sexual networks are perhaps the best exam-
ple of this phenomena, as most sexual relationships are between indi-
viduals of different gender. Disassortative mixing is also common in 
economic settings. For example, trade typically takes place between 
individuals of different skills: the baker does not sell bread to other 
bakers, and the shoemaker rarely fixes other shoemaker’s shoes.



The network behind the political blogosphere 
in the US illustrates the  presence of assorta-
tive mixing, as used in sociology, meaning that 
nodes of similar characteristics tend to link to 
each other. In the map each node corresponds 
to a blog, colored blue if the blog is considered 
liberal and red if conservative. Blue links con-
nect liberal blogs, red links connect conser-
vative blogs, yellow links go from liberal to 
conservative, and purple from conservative 
to liberal. As the image indicates, the linkage 
patterns is not random: liberal blogs predomi-
nantly cite other liberal blogs and conservative 
blogs connect mainly to conservative-learning
blogs. Very few blogs link across the political 
divide. After [34].

Figure  7.18
Politics is rarely neutral

31
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BOX 7.6
TWO-POINT, THREE-POINT CORRELATIONS

In their most general form, the degree correlations present in a 
network are determined by the conditional probability P (k(1), k(2), 
..., k(k)) that a node of degree k connects to nodes with degrees k(1), 
k(2), ..., k(k).

Two-point correlations
The simplest of these is the two-point degree correlation dis-
cussed in this chapter, being the conditional probability P(k̖) that 
a node with degree k is connected to a node with degree kƍ.  For 
uncorrelated networks this conditional probability is indepen-
dent of k, hence P(k˽) = k’P(k’)/ࢭk[18] ࢮ. As the empirical evaluation 
of P(k̖) in real networks is a cumbersome task, it is more practical 
to analyze the degree correlation function knn(k) defined in Eq. 7.7.

Three-point correlations
In principle there is no reason to stop at two-point correlations. 
Correlations involving three nodes are determined by the proba-
bility P (k(1), k(2) | k) that a node with degree k is connected to nodes 
with degrees k(1) and k(2). This conditional probability determines 
the clustering coefficient Eq. 7.20. Indeed, the average clustering 
coefficient C(k) of nodes with degree k [22, 23] can be formally 
written as the probability that a node of degree k is connected to 
nodes with degrees k(1) and k(2), and that those two are joined by a 
link, averaged over all the possible values of k(1) and k(2),

where pk    is the probability that nodes k(1) and k(2) are connected, 
provided that they have a common neighbor with degree k [18]. 
For neutral networks the clustering coefficient is independent of 
k, following

k(1), k(2)

C(k) = �
k(1) ,k(2 )

P(k (1),k (2) | k)p
k(1) ,k(2 )
k

C(k) =
�k2 � � �k�( )2
�k�3N

,

.

To illustrate the relationship between r and µ, 
we estimated µ by fitting the knn function to 
Eq. 7.10, whether or not the power law scaling 
was statistically significant Fig. 7.8.

Figure 7.19
Correlation between r and N
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SECTION 7.8

In BOX 7.2 we defined the degree correlation coefficient r as an alter-
native measure of degree correlations characterizing a network [8, 9]. The 
use of a single number to characterize degree correlations is extremely at-
tractive, as it also offers an easy way to compare the correlations observed 
in networks of different nature and size. Yet, before we use r we must be 
aware of some of its limitations.

The hypothesis behind the correlation coefficient r is that the knn(k) 
function can be approximated by the linear function

This is different from the scaling Eq. 7.10, which assumes a power law 
dependence on k. Eq. 7.21 raises several important issues:

•  The linear dependence Eq. 7.21 is not supported by empirical data, nu-
merical simulations, or analytical calculations. Indeed, analytical 
calculation of the initial attractiveness model predict a power law Eq. 

7.18 or a logarithmic k-dependence Eq. 7.20 for the degree correlation 
function. Therefore, r forces a linear fit to an inherently nonlinear 
function. This discrepancy is illustrated in Fig. 7.20, which shows that 
for assortative and disassortative networks Eq. 7.21 offers a poor to the 
data.

•  As we have seen in Fig. 7.10, the dependence of knn(k) on k is rather 
complex, often changing trends for large k thanks to the structur-
al cutoff. A linear fit ignores this inherent complexity. To illustrate 
the consequences of this phenomena, we calculated r and µ for the 
ten reference networks TABLE 7.1. The results are plotted in Fig. 7.19, 
indicating that while µ and r correlate for positive r, this correlation 
breaks down for negative r.

•  As we discuss in BOX 7.8, the maximally correlated model has a van-
ishing r for large N, despite the fact that the network maintains its 

ADVANCED TOPICS 7.A
DEGREE CORRELATION
COEFFICIENT

(7.21)

The table shows r and µ for the ten reference 
networks of TABLE 4.1. Directed networks 
were made undirected to measure r and µ. 
Alternatively, we can use the directed correla-
tion coefficient to characterize such directed 
networks BOX 7.8.

Table  7.1
Degree correlations in reference networks

knn (k) � rk .
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degree correlations. This suggests that the degree correlation coeffi-
cient r has difficulty detecting correlations characterizing large net-
works.

RELATIONSHIP BETWEEN µ AND r
If knn(k) follows the scaling Eq. 7.10, then the sign of the degree coeffi-
cient r should agree with the sign of µ. This is supported by Fig. 7.20 as 
well. To show the origin of this behavior, next we derive a direct rela-
tionship between µ and r. To be specific we assume the validity of Eq. 

7.10 and determine the value of r for a network with a given correlation 
exponent µ.

We start by determining a from from Eq. 7.10. We can write the second 
moment of the degree distribution as

which leads to

We now calculate r for a network with a given µ:

For µ = 0 the term in the last parenthesis vanishes, obtaining r = 0. 
Hence if µ = 0 (neutral network), the network will be neutral based on 
r as well. For k > 1  Eq. 7.22 suggests that for µ > 0 the parenthesis is pos-
itive, hence r > 0, and for µ < 0 is negative, hence r < 0. Therefore, r and 
µ predict degree correlations of similar kind.

Therefore, if the degree correlation function follows Eq. 7.10, then the 
sign of the degree correlation exponent µ will determine the sign of the 
assortativity coefficient r:

µ < 0 ̹�r < 0
µ = 0 ̹ r = 0
µ > 0 ̹ r > 0

In summary, the degree correlation coefficient assumes that knn(k) 
scales linearly with k, a hypothesis that lacks numerical and analytical 
support. Hence r forces a linear fit to knn(k), giving occasionally rise to in-
consistent results. While typically the sign of r and µ agree, overall r does 
not offer a natural characterization of the underlying degree correlations. 
An accurate characterization starts with eij, whose behavior is reasonably 
captured by knn(k).

(7.22)

�k2 � = �knn (k)k� =�
k '
akµ+1pk = a�k

µ+1�
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BOX 7.7
AT A GLANCE: DEGREE
CORRELATIONS

Degree Correlation Matrix eij 
probability of finding a node 
with degrees i and j at the two 
ends of a link. 

Neutral networks:

Degree Correlation Function

Neutral networks:

Scaling Hypothesis

µ > 0: Assortative
µ = 0: Neutral
µ < 0: Dissasortative

Degree Correlation Coefficient

r > 0: Assortative
r  = 0: Neutral
r  < 0: Dissasortative

eij = qiqi =
ki pki k j pkj

�k�2

knn (k) =�
k '
k ' p(k ' | k)

knn (k) =
�k2 �
�k�

knn (k) � k
µ

r =� jk(ejk � qjqk )
� r
2



35DEGREE CORRELATIONS ADVANCED TOPIC 7A: DEGREE CORRELATION

The degree correlation function knn for three 
real networks. The left panels show the cumu-
lative function knn(k) on a log-log plot to test 
the validity of Eq. 7.10. The right panels show 
knn(k) on a lin−lin plot to test the validity of Eq. 
7.21, i.e. the assumption that knn(k) depends lin-
early on k, the hypothesis behind the correla-
tion coefficient r. The slope of the dotted line 
corresponds to the correlation coefficient r. As 
the lin-lin plots illustrate, Eq. 7.21 offers a poor 
fit for assortative (d) and disassortative (f) net-
works.

Figure 7.20
Degree correlation function
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BOX 7.9
CORRELATION COEFFICIENT FOR DIRECTED NETWORKS

To measure correlations in directed networks we must take into ac-
count that each node i is characterized by an incoming kin and an 
outgoing kout degree. Hence, we can define four degree correlation co-
efficients, rin, in, rin,out, rout,in, rout, out capturing all possible combinations 
between the incoming and outgoing degrees of two nodes linked to 
each other Figs. 7.12 a-d. Formally we have [14].

where Į and�ȕ refer to the in and out indices. To illustrate the use of 
Eq. 7.23, we show in Fig. 7.21e the four correlation coefficients for the 
five directed reference networks TABLE 7.1. For a complete characteri-
zation of degree correlations, it is desirable to measure the four knn(k) 
functions as well BOX 7.2.

Panels (a)-(d) illustrate in red and green 
the (Į��ȕ) indices that define the appropri-
ate correlation coefficient for directed ne 
tworks. (e) The correlation profile of the 
five directed reference networks, indicat-
ing, for example, that while citation net-
works have negligible correlations, all four 
correlation coefficients document strong 
assortative behavior for cell phone calls 
and strong disassortative behavior for 
metabolic networks. The case of the WWW 
is particularly interesting: while three 
of its correlation coefficients are close to 
zero, there is a strong assortative tendency 
for the (in, out) combinations.

Figure  7.21

i

i

(7.23)
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SECTION 7.9

As discussed in SECT. 7.3, there is a fundamental conflict between the 
scale-free property and degree correlations, which leads to a structural 
cutoff in simple networks. In this section we derive Eq. 7.16, providing the 
system size dependence of the structural cutoff [11]. We start by defining

where Ekkƍ is the number of links between nodes of degrees k and k’, and

is the largest possible value of Ekkƍ. If multiple links are allowed, mkk’ is sim-
ply mkk’ = min{k Nk, k’Nk, NkNk’}. The origin of Eq. 7.25 is explained in Fig. 7.22. 
Consequently, we can write the rkk’ ratio as

As mkk’ is the maximum of Ekkƍ, rkkƍ must be smaller than or equal to one 
for any k and k’. Yet, for some networks and for some k, k’ pairs rkkƍ becomes 
larger than one. This is clearly non-physical and signals some conflict in 
the network configuration. Strictly speaking, in simple networks degree 
pairs for which rkkƍ > 1 cannot exist. Hence, we define the structural cut off 
ks as the solution of the equation

Note that as soon as k > NP(k’) and k’ > NP(k), the effects of the restric-
tion on the multiple links are already felt, turning the expression for rkkƍ 
into

ADVANCED TOPICS 7.B
STRUCTURAL CUTOFFS

(7.24)

(7.25)

(7.26)

(7.27)

(7.28)

Illustrating the maximum number of links 
one can have between two groups of nodes. 
The figure shows two groups of nodes, with 
degree k=3 and k’=3.  The total number of links 
between these two groups must not exceed 

(a)  The total number of links available in k=3 
group, which is kNk=9; 

(b)  The total number of links available in k’=2 
group, which is k’Nk’=8; 

(c)  The total number of links one can poten-
tially have between the two groups, which 
is NkNk’. 

In the example shown above the smallest of 
the three is k’Nk = 8 of (b). The resulting config-
uration is shown on the top right. One can see 
that in this configuration, one link in the k=3 
class remains unpaired.

Figure 7.22
Correlation between r and N

rkk ' =
Ekk '

mkk '

mkk ' = min kNk ,k 'Nk ,NkNk '{ }

rk �k = Ek �k

mk �k

= �k�P(k, �k )
min kP(k), �k P( �k ),NP(k)P( �k ){ } .

rksks = 1.

rk �k = �k�P(k, �k )
Npk pk '

.

,
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For scale-free networks these conditions are fulfilled in the region k, k’ > 
(aN)1/(Ȗ+1), where a is a constant that depends on the function pk. Note that 
this value is below the natural cut off. As a consequence, this scaling pro-
vides a lower bound for the structural cut off, in the sense that whenever 
the cut off of the degree distribution falls below this limit, the condition
rkk’ < 1 is always satisfied.

For neutral networks the joint distribution factorizes as

Hence, the ratio rkk’ of Eq. 7.28 takes the form

Therefore, the structural cutoff needed to preserve the condition rkk’ ≤ 1 has 
the form [35, 36, 37]

which is Eq. 7.16. Note that Eq. 7.31 is independent of the degree distribution 
of the underlying network. Consequently, for a scale-free network ks(N) is 
independent of the degree exponent�Ȗ.

(7.29)

(7.30)

(7.31)

P(k, �k ) = k �k pk pk '
�k�2

rk �k = k �k
�k�N

.

ks (N ) ~ (�k�N )
1/2 ,
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SECTION 8.0

Errors and failures can corrupt all human designs: the failure of a sin-
gle component in your car’s engine may force you to call for a tow truck 
or a wiring error in your computer chip can make your computer useless. 
Many natural and social systems, however, have a unique ability to sus-
tain their basic functions even when several of their components fail. In-
deed, there are countless protein misfolding errors or missed reactions in 
our cells, often without noticeable consequences; large organizations can 
function despite numerous missing employees. Understanding the origins 
of this robustness is important for many disciplines:

•  Robustness is a central question in biology, which aims to understand 
how a cell or an organism functions under frequent internal errors 
and why some errors lead to diseases.

• It is of concern for social scientists and economists, who explore the 
stability of human societies and organizations in the face of famine, 
war, and changes in social and economic order.

•  It is a key issue for ecologists and environmental scientists, who seek 
to estimate the chances that an ecosystem survives when faced with 
the disruptive effects of human activity.

•  It is the ultimate goal in engineering, aiming to design communica-
tion systems, cars, or airplanes that can maintain a high readiness de-
spite occasional component failures.

These biological, social and technological systems share a common fea-
ture: their functionality and robustness is guaranteed by densely inter-
linked networks. Indeed, cellular functions are encoded by intricate regu-
latory and metabolic networks; the society’s resilience cannot be divorced 
from the interwoven social, professional, and communication web behind 
it; economic stability is guarded by a delicate network of financial and 
regulatory organizations; an ecosystem’s survivability cannot be under-
stood without a careful analysis of the food webs that sustain each species. 

INTRODUCTION

The cover of the 27 July, 2000 issue of Nature, 
highlighting the paper entitled Attack and er-
ror tolerance of complex networks that sparked 
the interest in network robustness [1].

Figure 8.1
Achilles’ Heel of Complex Networks

NETWORK ROBUSTNESS
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Whenever nature seeks robustness, it resorts to networks to achieve it.

The purpose of this chapter is to explore the role networks play in en-
suring the robustness of a complex system. We show that understanding 
the structure of the underlying network is essential if we want to quantify 
a system’s ability to survive random failures or deliberate attacks. We also 
explore the role of these networks in the emergence of cascading failures, a 
damaging phenomenon frequently encountered in real systems. Most im-
portantly, we show that the laws governing the error and attack tolerance 
of complex networks and the emergence of cascading failures are univer-
sal.

“Robust” comes from the latin Quercus Robur, 
meaning oak, the symbol of strength and lon-
gevity in the ancient world.

Figure 8.2
Robust Robustness

NETWORK ROBUSTNESS
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PERCOLATION THEORY
SECTION 8.1

Robustness requires us to understand the impact of node or link re-
moval on the integrity of a network.The removal of a single node typically 
has only limited impact on a network’s integrity Fig. 8.3a. The removal of 
multiple nodes, however, can break a network into isolated, non-commu-
nicating subgraphs Fig. 8.3c, d. Obviously, the more nodes we remove, the 
higher are the chances that we damage a network, prompting us to ask: 
How many nodes do we have to delete to fragment a network into isolated 
components? For example, what fraction of Internet routers must break 
down so that the Internet turns into isolated clusters of computers that are 
unable to communicate with each other? To answer these questions, we 
first introduce some concepts of percolation theory that offers the mathe-
matical underpinnings of the network robustness problem.

PERCOLATION

Percolation theory is a highly developed subfield of statistical physics 
and mathematics [2, 3, 4]. A typical problem addressed by it is illustrat-
ed in Fig. 8.4, showing a square lattice with pebbles placed with proba-
bility p at each intersection. Pebbles next to each other are considered 
connected, forming clusters of size two or more. Given that the position 
of each pebble is decided by chance, we ask:

•  What is the size of the largest cluster?
•  What is the average cluster size?

Obviously, the higher is p, the larger are the individual clusters. Perco-
lation theory predicts, however, that the cluster size does not change 
continuously with p. Rather, for a wide range of p values the lattice is 
populated with numerous tiny clusters Fig. 8.4a. If we increase p beyond 
a critical value pc, these small clusters grow rapidly until a single large 
cluster emerges rather suddenly. We call this the percolating cluster as 
it percolates through the lattice by reaching its ends. In other words, at 
pc we observe a phase transition from many small clusters to a percolat-
ing cluster that spans the whole lattice Fig. 8.4b. 

NETWORK ROBUSTNESS

The gradual fragmentation of a small network 
following the breakdown of several nodes. In 
each panel we remove a new node (highlight-
ed), together with its links. As the sequence 
of images indicates, while the removal of the 
first node has only limited impact on the net-
work’s integrity, the removal of the second 
node isolates two small clusters from the rest
of the network and the removal of the third 
node fragments the network, breaking it into 
five non-communicating clusters of sizes s = 
2, 2, 2, 5, 6.

Figure 8.3
The impact of node removal
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To quantify the nature of this phase transition, we focus on several fre-
quently measured quantities:

•  The average cluster size, ࢭsࢮ, represents the average size of all finite 
clusters observed for a given p. Percolation theory predicts that in the 
vicinity of pc it follows

In other words, the average cluster size diverges as we approach pc

Fig. 8.4c.

The order parameter, p∞, represents the probability that a randomly cho-
sen pebble belongs to the largest cluster. In the vicinity of the critical 
point p∞ follows

Hence, as p decreases towards pc the probability that a pebble belongs to 
the largest cluster drops zero Fig. 8.4d.

•  The correlation length, ס, represents the mean distance between two 
pebbles that belong to the same cluster. In the vicinity of pc  it follows

(8.1)

(8.2)

(8.3)

A classical problem in percolation theory ex-
plores the random placement with probability 
p of pebbles on a square lattice.

(a) For small p most peebles are isolated. In 
this case the largest cluster has only three 
nodes, shown in red.

(b) For large p most (but not all) pebbles be-
long to a single giant component, colored red.
This giant component is called the percolating 
cluster, as it spans the whole lattice (See also 
Fig. 8.6).

(c) The average cluster size, ࢭsࢮ, in function of 
p. As we approach pc from below, the numer-
ous small clusters coalesce and ࢭsࢮ diverges. 
The same divergence is observed above pc, 
where to measure ࢭsࢮ we remove the largest 
component from the average. The plot shows 
schematically the divergence of ࢭsࢮ as de-
scribed by Fig. 8.1. The same exponent ਠp char-
acterizes the divergence at both sides of the 
critical point.

(d) The p−dependence of the probability p∞ 
that a pebble belongs to the largest connect-
ed component. For p < pc all components are 
small, so p∞ is effectively zero. Once p reaches 
pc a giant component emerges. Consequent-
ly beyond pc there is a finite probability that 
a node belongs to the largest component, as 
predicted by Fig. 8.2.

Figure 8.4
Percolation

NETWORK ROBUSTNESS

P� � (p � pc )
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While at p < pc the distance between the peebles in the same cluster is 
finite, at pc the correlation length diverges. Therefore, at pc, the linear 
size of the largest cluster becomes infinite, which is the reason it perco-
lates the whole lattice.

The exponents Ȗp,�ȕ, and Ȟ�are called critical exponents, as they charac-
terize the system’s behavior near the critical point pc. Percolation the-
ory predicts that these exponents are universal, meaning that they are 
independent of the nature of the lattice on which we place the peebles 
or the precise value of pc. Therefore, if we place the peebles on a triangu-
lar or a hexagonal lattice, the behavior ofࢭ�sࢮ, P∞, and�ȗ�is characterized 
by the same Ȗp,�ȕ, and Ȟ exponents. Consider the following examples to 
better understand this universality:

•  The exponents depend only on the dimension of the lattice. In two 
dimensions, the case illustrated in Fig. 8.4, we have Ȗp = 43/18, ȕ�= 5/36, 
Ȟ = 4/3, while in three dimensions Ȗp = 1.80, Ȗ = 0.41, Ȗ = 0.88 . For d > 
6 we have Ȗp = 1, Ȗ = 1, Ȗ = 1/2 [2], i.e. beyond d = 6 the exponents are 
independent of d.

•  The value of pc is not universal, as it depends on the lattice type. For 
example, for a two-dimensional square lattice Fig. 8.4 we have pc ≈ 
0.593, while for two-dimensional triangular lattice we have pc = 1/2 
(site percolation).

•  The value of pc also changes with the dimension: for a square lattice 
we have pc ≈ 0.593 (d = 2); for a simple cubic lattice (d = 3) we have pc ≈ 
0.3116. Therefore, in d = 3, we need to cover a smaller fraction of the 
nodes with pebbles to reach the percolation transition.

 ROBUSTNESS AS AN INVERSE PERCOLATION TRANSITION

We can use percolation theory to describe the impact of node failures 
in networks, the phenomena of primary interest in robustness. For 
this we view a square lattice as a network whose nodes are the inter-
sections Fig. 8.5. Next, we randomly remove an f fraction of nodes, ask-
ing how their absence impacts the integrity of the lattice. If f is small, 
the few missing nodes do little damage to the network. Increasing f, 
however, can remove chunks of nodes from the giant component. 
Finally, for sufficiently large f the giant component breaks into tiny 
disconnected components. 

Once again, the fragmentation process is not gradual, but it is charac-
terized by a critical threshold fc: for f < fc we continue to have a giant 
component, but once f exceeds fc, the giant component vanishes. This 
is illustrated by the f-dependence of P∞, representing the probability 
that a node is part of the giant component Fig. 8.5: P∞ is finite under fc, 
but it drops to zero as we approach fc. The critical exponents charac-
terizing this breakdown, Ȗp,�ȕ� ȝ, are the same as those encountered 
in Eq. 8.1-8.3, as the two processes can be mapped into each other by 
choosing f = 1 − p. Furthermore, in ADVANCED TOPICS 8.A, we show that 

NETWORK ROBUSTNESS
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random networks under random node failures share the same scal-
ing exponents as infinite-dimensional percolation. This equivalence 
predicts that the value of the critical exponents for a random network 
are Ȗp = 1, ȕ = 1 and Ȟ = 1, the d > 6 values encountered earlier. 

In summary, the breakdown of a network under random node removal 
is not a gradual process. In general, removing a small fraction of nodes 
has limited impact on a network’s integrity. Once the number of removed 
nodes reaches a critical threshold, the network abruptly breaks into dis-
connected components. In other words, random node failures induce a 
phase transition from a connected to a fragmented state. We can use the 
tools of percolation theory to characterize this transition in both regular 
and in random networks.

NETWORK ROBUSTNESS

The consequences of node removal are accu-
rately captured by the inverse of the percola-
tion process discussed in Fig. 8.4. We start from 
a square lattice, viewed as a network whose 
nodes are the intersections. Next we random-
ly select and remove an f fraction of nodes, 
measuring the size of the largest component 
formed by the remaining nodes, captured by 
P∞. The obtained networks are illustrated on 
the three bottom panels. Under each panel we 
list the characteristics of the corresponding 
phases.

Figure 8.5
Network breakdown as inverse percolation
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BOX 8.1
PERCOLATION THEORY: A BRIEF HISTORY

 
Percolation theory began with a paper written by the mathematicians
Simon Broadbent and John Hammersey in 1957, who proposed its 
name and formalized many of its mathematical concepts [5]. The the-
ory rose to particular prominence in the 1960 and 70s with the devel-
opment of critical phenomena in physics and the recognition that per-
colation offers an analytically treatable example of phase transitions. 
It also found important applications from oil exploration to transport 
phenomena in physics.

The spread of a fire in a forest is often used to illustrate the basic con-
cepts of percolation theory. Let us assume that each pebble in Fig. 8.4 is 
a tree, hence the whole lattice describes a forest. If a tree catches fire, 
it ignites the neighboring trees; these, in turn ignite their neighbors. 
The fire continues to spread until no burning tree has a non-burning 
neighbor. The question we ask is the following: if we randomly ignite 
a tree, what fraction of the forest do we expect to burn down? And 
how long it takes the fire to burn out? The answer depends on the tree 
density, controlled by the parameter p. For small p the forest consists 
of many small islands of trees (p = 0.55 in Fig. 8.6), hence igniting any 
tree will only burn down the small cluster containing the igniting tree.

Consequently, the fire will die out quickly. For very large p most trees 
belong to a single large cluster, hence the fire will rapidly sweep 
through much of the dense forest (see p = 0.62 in Fig. 8.6). The simula-
tions
indicate that there is a critical pc, for which it takes extremely long 
time for the fire to end. This pc is the critical threshold of the perco-
lation problem. Indeed, at p = pc the giant component just emerged 
through the union of many small clusters. Hence the fire has to follow 
a long and winding path to reach all clusters and all trees, a process 
that can be rather time consuming.

The emergence of the giant component on a 
square lattice as we change the occupation 
probability p. Each panel corresponds to a 
different p in the vicinity of pc . The largest 
cluster is shown in black. For p < pc the larg-
est cluster is tiny, as seen on the top panel. 
If we view this as a forest, where the peb-
bles are trees, a fire can at most consume 
only a small fraction of the trees, hence it 
burns out quickly. Once p reaches pc 0.593 ݍ, 
however, the largest cluster percolates the 
whole lattice and the fire can “percolate” 
through the forest. Increasing p beyond pc 
“fattens” the largest cluster, connecting 
more pebbles (trees) to it, as seen for p = 
0.62 on the bottom panel. Hence, the fire 
burns out quickly again.

Figure 8.6
Forrest Fire
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ROBUSTNESS OF
SCALE-FREE NETWORKS

SECTION 8.2

Percolation theory was developed either for regular lattices, whose 
nodes have identical degrees, or for random networks, whose nodes have 
comparable degrees. What happens, however, if the network is scale-free? 
Will the hubs affect the percolation transition? We can get a hint from a 
simulation testing the Internet’s robustness to router failures [1]. We start 
from the router level map of the Internet and randomly select and remove 
nodes one-by-one. Percolation theory predicts that once the number of re-
moved nodes reaches a critical value  fc, the Internet should fragment into 
many isolated subgraphs. The simulations indicate otherwise: the Internet 
refuses to break apart even under rather extensive random node removal. 
Instead, the size of the largest component decreases gradually, vanishing 
only in the vicinity of f = 1 Fig. 8.7a. Hence, the network behind the Internet 
shows an unusual robustness to random router failures: we must remove 
all nodes to destroy its giant component. This conclusion disagrees with 
percolation theory, which predicts that networks must fall apart after the 
removal of a finite fraction of nodes.

The behavior observed above is not unique to the Internet. Indeed,in Fig. 

8.7b we show P∞ for a scale-free network with degree exponent Ȗ�= 2.5, ob-
serving a similar pattern: under random node removal the giant compo-
nent vanishes only in the vicinity of f = 1, rather than collapsing at some 
finite fc. This indicates that the robustness observed for the Internet is a 
property of the scale-free topology. The goal of this section is to uncover 
and quantify the source and the characteristics of this remarkable robust-
ness.

MALLOY-REED CRITERIA

To understand the origin of the anomalously high fc for the Internet and 
for a scale-free network we must first calculate fc for a network with an 
arbitrary degree distribution. To do so we rely on a simple observation: 
if a network has a giant component, then most nodes that belong to it 
must be connected to at least two other nodes Fig. 8.8. This leads to the 
Malloy-Reed criteria ADVANCED TOPICS 8.B, stating that the condition 
for the existence of a giant component is [6]

NETWORK ROBUSTNESS

MOVIE 8.1
SCALE-FREE NETWORK
UNDER NODE FAILURES

To illustrate the robustness of 
a scale-free network we start 
from the network we construct-
ed in Movie 4.1 using the Barabá-
si-Albert model. Next we ran-
domly select and remove nodes 
one-by-one. As the movie illus-
trates, despite the fact that we 
remove a significant fraction of 
the nodes, the network refuses 
to break apart. The origin of this 
robustness to random failures is 
the topic of SECTION 8.2. Visual-
ization by Dashun Wang.

→
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Consequently networks with ਧ�< 2 must be fragmented into many dis-
connected components. The Malloy-Reed criteria links the network’s 
integrity, as expressed by the presence or the absence of a giant com-
ponent, to ࢭkࢮ and ࢭk2ࢮ, which depend only on the degree distribution pk.
To illustrate the predictive power of Fig. 8.4 we apply it to a random net-
work, for which ࢭk2ࢭ =�ࢮkࢮ(ࢭ + 1kࢮ). Hence, a random network has a giant 
component if

or

The condition coincides with Eq. 3.10, the necessary condition for the ex-
istence of a giant component.

ROBUSTNESS OF SCALE-FREE NETWORKS

To understand the mathematical origin of the robustness observed in 
Fig. 8.8, we ask at what threshold fc will a scale-free network loose its gi-
ant component. To answer this we apply the Malloy-Reed criteria to a 
network with an arbitrary degree distribution. We find that the critical 
threshold follows [7] (ADVANCED TOPICS 8.C)

The most remarkable prediction of Fig. 8.7 is that we can calculate the 
critical threshold fc depends only from ࢭkࢮ�and ࢭk2ࢮ, quantities that are 
uniquely determined by the degree distribution pk. Let us illustrate the 
utility of Fig. 8.7 by calculating the breakdown threshold of a random 
network. Using ࢭk2ࢭ = ࢮkࢮ (ࢭk1 + ࢮ), we obtain

Hence, the denser is a random network, the higher is fc, i.e. the more 
nodes we need to remove to break it apart. Eq. 8.8 also predicts that a 
random network always has a finite fc, consequently it always breaks 
apart after the removal of a finite fraction of nodes. 

Most important, Fig. 8.7 helps us understand the roots of the enhanced 
robustness observed in Fig. 8.7. Indeed, for scale-free networks with Ȗ�
< 3 in the N ̹�∞ limit the second moment diverges. If  we insert ࢭk2ࢮ 
ĺ�∞ into Fig. 8.7, we find that fc converges to fc = 1. This means that to 
fragment a scale-free network we must remove all of its nodes. In other 

(8.4)

(8.5)

(8.6)

(8.7)

(8.8)

(a) The fraction of Internet routers that belong 
to the giant component after an f fraction of 
routers are randomly removed. The ratio P∞  
( f)/P∞(0) provides the relative size of the giant 
component. The simulations use the router 
level Internet topology of Table 4.1.

(b) The fraction of nodes that belong to the gi-
ant component after the removal of an f frac-
tion of nodes from a scalefree network with ਠ 
= 2.5, N = 10, 000 and kmin = 1.

The plots indicate that the Internet and in 
general a scale-free network do not fall apart 
after the removal of a finite fraction of nodes. 
We need to remove almost all nodes (i.e. fc 1 ݍ) 
to fragment these networks.

Figure 8.7

Robustness of scale-free networks

NETWORK ROBUSTNESS
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words, the random removal of a finite fraction of its nodes does not 
break apart a large scale-free network. To further illustrate the roots of 
this anomaly we express ࢭkࢮ and ࢭk2ࢮ in terms of the parameters charac-
terizing a scale-free network: the degree exponent�Ȗ�and the minimal 
and maximal cutoffs, kmin and kmax, obtaining (ADVANCED TOPICS 5.D)

Eq. 8.9 predicts that Fig. 8.9:

•  For ਠ�> 3 the critical threshold fc depends only on Ȗ and kmin, hence fc 

is independent of the network size N. In this regime a scale-free net-
work behaves like a random network: it falls apart after the removal 
of a finite fraction of its nodes. 

•  For ਠ��  3 the kmax diverges for large N (see Eq. 4.18). Therefore in the N ĺ�

∞�limit Eq. 8.9 predicts  fc ̹�1. Hence, to fragment an infinite scale-free 
network we must remove all of its nodes.

Eq. 8.6, 8.9 are the key results of this chapter, predicting that scale-free 
networks can withstand an arbitrary level of random failures without 
breaking apart. To understand the origin of this remarkable robustness 
we must inspect the role of the hubs. Random node failures by defini-
tion are blind to degree, affecting with the same probability a small or 
a large degree node. Yet, in a scale-free network we have far more small 
degree nodes than hubs. Therefore, random node removal will pre-
dominantly remove one of the numerous small nodes as the chances 
of removing one of the few large hubs is negligible. These small nodes 
contribute little to a network’s integrity, hence their removal does not 
damage the network.

Returning to the airport analogy of Fig. 4.6, if we close a randomly se-
lected airport, we will most likely be shutting down one of the numer-
ous small airports. Its absence will be hardly noticed elsewhere in the 
world: you can still travel from New York to Tokyo, or from Los Angeles 
to Rio de Janeiro.

ROBUSTNESS OF FINITE NETWORKS

Eq. 8.9 predicts that for a scale-free network fc converges to one only in 
the kmax ĺ ∞ (or N ĺ�∞) limit. While many networks of practical interest 
are very large, they are still finite, prompting us to ask if the observed 
anomaly is relevant for finite systems. We can address this by inserting 
Eq. 4.18 into Eq. 8.9, obtaining that fc depends on the network size N as

To form a chain, each individual must hold the
hand of two other individuals. Similarly, to 
have a giant component in a network, on aver-
age each of its nodes should have at least two 
neighbors. The Malloy-Reed criteria Fig. 8.4 
exploits this property to help us calculate the 
critical point at which a network breaks apart.

Figure 8.8

Malloy-Reed criteria

NETWORK ROBUSTNESS
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where C collects all terms that do not depend on N. Eq. 8.10 indicates that 
the larger the size of a network, the closer will be its critical threshold 
to fc = 1. To see how close fc can get in a real system to the theoretical fc 
= 1, we calculate fc for the Internet. The router level map of the Internet 
has ࢭk2ࢭ/ࢮk37.94 =�ࢮ Table 4.1. Inserting this ratio into Eq. 8.7 we obtain fc = 
0.972. Therefore, we need to remove 97% of the routers to fragment the 
Internet into disconnected components. The probability that by chance 
220,000 routers fail simultaneously, representing 97% of the 
N = 228, 263 routers on the Internet, is effectively zero. This is one of 
the reasons the topology of the Internet is so robust to random failures.

A network displays enhanced robustness if its breakdown threshold
deviates from the random network prediction Eq. 8.8, i.e. if

Enhanced robustness has several ramifications:

•  The inequality Eq. 8.11 is satisfied for all networks for which ࢭk2ࢮ devi-
ates from ࢭkࢮ (ࢭk1 + ࢮ). According to Fig. 4.8, for virtually all networks 
in our reference network list ࢭk2ࢮ exceeds the random expectation. 
Hence the robustness predicted by Eq. 8.7 is not an isolated property 
of a few selected networks, but affects most networks of practical in-
terest.

•  Eq. 8.7 also predicts that the degree distribution of a network does not 
need to follow a strict power law to display enhanced robustness; all 
we need is a larger ࢭk2ࢮ�than expected for a random network of similar 
size.

• Finally, enhanced robustness is not limited to node removal, but 
emerges under link removal as well Fig. 8.10.

In summary, in this section we encountered a fundamental property of 
real networks: their robustness to random failures. Eq. 8.7 predicts that 
the breakdown threshold of a network depends only on its degree dis-
tribution through ࢭkࢮ and ࢭk2ࢮ. This predicts that random networks have 
a finite threshold, but for scale-free networks with Ȗ < 3 the breakdown 
threshold converges to one. Therefore, we need to remove all nodes to 
break a scale-free network apart, indicating that these networks show 
enhanced robustness to random failures. The origin of this enhanced 
robustness is the large ࢭk2ࢮ term. As for most real networks ࢭk2ࢮ is larger 
than the random expectation, enhanced robustness is a generic proper-
ty of many networks. This robustness is rooted in the fact that random 
failures affect mainly the numerous small nodes, which play a limited 
role in maintaing a network’s integrity.

NETWORK ROBUSTNESS

(8.10)

(8.11)

fc � 1�
C

N
3��
� �1

fc > fc
ER

The probability that a node belongs to the gi-
ant component after the removal of an f frac-
tion of nodes from scale-free networks with 
different degree exponent Ȗ. For Ȗ = 4 we ob-
serve a finite critical point fc, as predicted by 
Eq. 8.9. For Ȗ < 3, however, we have fc ĺ 1. The 
networks were generated with the configura-
tion model using kmin = 2 and N = 10, 000.

Figure 8.9
Robustness and degree exponent

.

.
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The table shows the estimated fc for random 
failures (second column) and attacks (fourth 
column) for ten reference networks. The pro-
cedure for determining fc is described in AD-
VANCED TOPICS 10.X. The third column (ran-
dom network) offers fc for a network whose N, 
L coincides with the original values, but whose 
nodes are connected randomly to each other. 
Note that for most networks fc for random 
failures exceeds fER

 for the corresponding ran-
dom network, indicating that these networks 
display enhanced robustness, as defined in Eq. 
8.11. Only the power grid lacks this property, a 
consequence of the fact that its degree distri-
bution is exponential Fig.  8.27e.

Table 8.1
Breakdown thresholds
under random failures and attacks

c 

c 

Our focus on node removal prompts us to 
ask: what happens if we randomly remove 
the links rather than the nodes? That is, how 
robust are networks to link removal? The 
calculations predict that the critical thresh-
old fc is the same for random link and node 
removal [7, 8]. To illustrate this,we compare 
the impact of random node and link remov-
al on a random network with ࢭk2 =�ࢮ. The plot 
indicates that the network falls apart at the 
same critical threshold fc 0.5 ݍ. The differ-
ence in the shape of the two curves is rooted 
in the fact that the removal of an f fraction of 
nodes leaves us with a smaller giant compo-
nent than the removal of an f fraction of links. 
This is not unexpected: on average each node 
removes ࢭkࢮ links, hence the removal of an f 
fraction of nodes is equivalent with remov-
ing an fࢭkࢮ fraction of the links, which clearly 
makes more damage than the removal of an f 
fraction of links.

Figure 8.10
Robustness and link remova
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ATTACK TOLERANCE
SECTION 8.3

The important role the hubs play in holding together a scale-free net-
work prompts our next question: what if we do not remove the nodes ran-
domly, but go after the hubs? That is, we first remove the highest degree 
node, followed by the node with the next highest degree and so on. The 
likelihood that nodes would break in this particular order under normal 
conditions is essentially zero. Instead this process mimics an attack on the 
network, as it assumes a detailed knowledge of the network topology, an 
ability to target the hubs, and a desire to deliberately cripple the network 
[1]. The removal of a single hub is unlikely to fragment a network, as the 
remaining hubs can still hold the network together. After the removal of a 
few hubs, however, large chunks of nodes start falling off  Movie 8.2. If the 
attack continues, it can rapidly break the network into tiny clusters.

The impact of hub removal is quite obvious in the case of the scale-free 
network shown in Fig. 8.11: the critical point, which is absent under random 
failures (green curve), reemerges under attacks (red curve). Not only re-
emerges, but it has a remarkably low value. This indicates that the removal 
of a small fraction of the nodes, namely the system’s hubs, is sufficient to 
break a scale-free mnetwork into tiny clusters. The goal of this section is 
to identify the origin of this attack vulnerability and to quantify its mag-
nitude.

CRITICAL THRESHOLD UNDER ATTACKS

As Fig. 8.11 indicates, an attack on a scale-free network has two conse-
quences:

•  The critical threshold, fc, is smaller than fc = 1, indicating that under 
attacks a scale-free network can be fragmented by the removal of a 
finite fraction of its hubs.

•  The observed fc is remarkably low, indicating that we need to remove 
only a tiny fraction of the hubs to cripple the network.

To quantify this process we need to analytically calculate fc for a net-

NETWORK ROBUSTNESS

MOVIE 8.2
SCALE-FREE NETWORK

UNDER ATTACK

During an attack we aim to 
inflict maximum damage on 
a network. We can do this by 
removing first the highest de-
gree node, followed by the next 
highest degree, and so on. As 
the movie illustrates, it is suf-
ficient to remove only a few 
hubs to break a scale-free net-
work into disconnected com-
ponents. Compare this with the 
network’s refusal to break apart 
under random node failures, 
shown in MOVIE 8.1. Visualiza-
tion by Dashun Wang.

→
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work under attack. To do this we rely on the fact that hub removal 
changes the underlying network in two different ways [9]:

•  It changes the maximum degree of the network from kmax to k'max as all 
nodes with degree larger than  k'max have been removed.

•  The degree distribution of the network changes from pk to  p'k', as all 
nodes connected to the removed hubs will loose links, altering the de-
grees of the remaining nodes.

In ADVANCED TOPICS 8.E we combine these two changes and map the 
attack problem into the robustness problem discussed in the previous sec-
tion. In other words, we can view an attack as random node removal from 
a network with adjusted k'max and p'k'. The calculations predict that the crit-
ical threshold fc for attacks on a scale-free network with degree exponent Ȗ�
is the solution of the equation [9, 10].

Fig. 8.12 shows the numerical solution of Eq. 8.12 in function of Ȗ, leading 
to several conclusions:

•  While fc for failures decreases monotonically with Ȗ, fc for attacks has 
a complex non-monotonic behavior.

•  fc for attacks is always smaller than fc for random failures.

•  For large Ȗ a scale-free network behaves like a random network. As 
a random network lacks hubs, an attack on a random network will 
follow a scenario similar to random node removal. Numerical sim-
ulations support this expectation: Fig. 8.13 shows that a random net-
work has a finite percolation threshold under both random failures 
and attack. The main difference is that fc for attacks is lower than fc 
for random failures.

•  The failure and the attack thresholds converge to each other for large 
Ȗ. Indeed, if Ȗ ĺ ∞ then pk ĺ į(k − kmin), meaning that all nodes have 
the same degree kmin. Therefore random failures and targeted attacks 
become indistinguishable in the Ȗ ĺ ∞ limit, when fc ̹  1 − 1/(kmin − 1).

The airport analogy helps us understand the fragility of scale-free net-
works to attacks: the closing of two hub airports, like Chicago’s O’Hare 
Airport or the Atlanta International Airport for only a few hours would 
be headline news, altering travel throughout the US. Should some se-
ries of events lead to the simultaneous closure of the Atlanta, Chicago, 
Denver, and New York airports, the biggest hubs, air travel within the 
U.S. would come to a halt within hours.

In summary, while random node removal has difficulty fragmenting 

(8.12)

The probability that a node belongs to the 
largest connected component in a scale-free 
network under attack (red) and under ran-
dom failures (green). In the case of an attack 
the nodes are removed in a decreasing order 
of their degree: we first remove the biggest 
hub, followed by the next biggest and so on. 
In the case of failures, the order in which the 
nodes are chosen is random, independent of 
the node’s degree. The plot illustrates the net-
work’s extreme fragility to attacks: fc is rather 
small, implying that the removal of only a few 
hubs can disintegrate the network. The initial 
network has a degree exponent ਠ�= 2.5, kmin = 2 
and N = 10, 000.

Figure 8.11

Scale-free networks under attack

NETWORK ROBUSTNESS

fc
2��
1�� = 2 + 2 � �

3� �
kmin ( fc

3��
1�� �1).

The dependence of the critical probability, fc, 
on the degree exponent ਠ, for scale-free net-
works with kmin = 2, 3, as predicted by Eq. 8.12, 
for an attack (red curves) and by Eq. 8.7 for 
random failures (green curves). Note that Eq. 
8.12 predicts that the attack threshold fc ĺ 0 
for kmin = 2 and fc ĺ�1/2 for kmin = 3, in line with 
the behavior observed in the figure.

Figure 8.12

Critical threshold under attack
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a scale-free network, an attack that targets the hubs can easily destroy a 
network. This fragility is bad news for the Internet, as it indicates that it 
is inherently vulnerable to deliberate attacks. It can be good news in med-
icine, as the vulnerability of bacteria to the removal of its hub proteins of-
fers avenues to design drugs that target these hubs, potentially destroying 
the organism.

NETWORK ROBUSTNESS

The fraction of nodes that belong to the gi-
ant component in a random (i.e. ErdĘs-Rényi) 
network if an f fraction of nodes are removed 
randomly (random failure, green) and in de-
creasing order of their degree (attacks, red). 
Both curves indicate the existence of a finite 
threshold, in contrast with scale-free net-
works, for which fcĺ 1 under random failures. 
The simulations were performed for random 
networks with N = 10, 000 and ࢭk3 = ࢮ.

Figure 8.13

Attack and failures in random networks
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BOX 8.2
PAUL BARAN AND THE INTERNET

 
In 1959 RAND, a Californian think-tank, has assigned Paul Baran, a 
young engineer at that time, to develop a communication system that 
can survive a Soviet nuclear attack. As a nuclear strike handicaps all 
equipment within the range of the detonation, Baran had to design a 
system whose users outside this range would not lose contact with one 
another. He described the communication system of his time as a “hi-
erarchical structure of a set of stars connected in the form of a larg-
er star,” offering an early description of what we would call today a 
scale-free network. He concluded that this topology is too centralized 
to be viable under attack. He also discarded the hub-and-spoke topolo-
gy shown in Fig. 8.14a noting that “The centralized network is obviously 
vulnerable as destruction of a single central node destroys communi-
cation between the end stations.” Baran decided that the ideal surviv-
able architecture was a distributed mesh-like network, shown in Fig. 

8.14C, which is sufficiently redundant, so that even if some of its nodes 
break down, alternative paths can maintain the connection between 
the remaining nodes. Baran’s ideas were ignored by the military, so 
when the Internet was born a decade later, it relied on distributed pro-
tocols that allowed each node to decide where to link. This decentral-
ized approach paved the way to the emergence of a scale-free Inter-
net, rather than the uniform mesh-like topology envisioned by Baran. 
Consequently the Internet today resembles more the decentralized 
structure B, the one that Baran wanted to avoid, than the distributed 
topology C he preferred.

Possible network configurations, described 
by Paul Baran in his 1959 report.

Figure 8.14
Baran’s Network
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CASCADING FAILURES
SECTION 8.4

Throughout this chapter we assumed that the nodes in a network fail 
independently of each other. In reality, the activity of each node in a net-
work depends on the activity of its neighboring nodes. Consequently the 
failure of one node can often induce the failure of the nodes connected to 
it. Let us consider a few examples:

•  Blackouts (power grid)
As electricity travels with the speed of light, after a node or link fail-
ure the electric currents are instantaneously reorganized on the 
rest of the power grid. For example, on August 10, 1996, a hot day in 
Oregon, a line carrying 1,300 megawatts sagged close to a tree and 
snapped. Because electricity cannot be stored, the current it carried 
was automatically shifted to two lower voltage lines with 115 and 230 
kilovolt capacity. These were not designed to carry the excess cur-
rent, so they also failed. Seconds later the excess current lead to the 
malfunction of thirteen generators, causing a blackout in eleven U.S. 
states and two Canadian provinces [11].

•  Denial of service attacks (Internet)
If a router malfunctions, responding too slowly or failing to transmit 
the packets received by it, the Internet protocols will alert the neigh-
boring routers, which will re-route the packets, using alternative 
routes to avoid the troubled equipment. Consequently a failed router 
can place a significant burden on other routers, potentially inducing 
cascading failures in the form of a series of denial of service attacks 
distributed throughout the Internet [12].

•  Financial Crises
Cascading failures are common in economic systems as well. For ex-
ample, the drop in the house prices in 2008 in the U.S. lead to a global 
financial meltdown that is considered the worst crisis since the 1930s 
Great Depression. In other words, the impact of the housing bubble 
has spread along the links of the financial network, inducing a cas-
cade of failures throughout the economy, leading to failed banks,

NETWORK ROBUSTNESS

In general we call the domino effect a sequence 
of events that is induced by a local change, yet 
it propagates through the whole system. The 
phenomena is similar to the fall of a series of 
dominos induced by the fall of the first domi-
no. The domino effect represents perhaps the 
simplest illustration of cascading failures, the 
topic of this section.

Figure 8.15

Domino effect
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BOX 8.3
NORTHEAST BLACKOUT OF 2003

One of the largest blackouts in North America took place on August 14,
2003, just before 4:10 p.m. Its cause was a software bug in the alarm
system at a control room of the FirstEnergy Corporation in Ohio. Miss-
ing the alarm, the operators were unaware of the need to redistrib-
ute the power after an overloaded transmission line hit a tree. Con-
sequently a normally manageable local failure stared a cascading 
failure that shut down more than 508 generating units at 265 power
plants, leaving without electricity an estimated 10 million people in 
Ontario and 45 million people in eight U.S. states.

Canadian and USA states affected by the 
August 14, 2003 blackout, illustrating how 
a local failure can turn into a major global 
event.

Figure 8.16
The 2003 Power Outage

NETWORK ROBUSTNESS CASCADING FAILURES
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companies and even nations [13, 14, 15].

Despite covering different domains, these examples have several com-
mon characteristics. First, the initial failure had only limited impact on 
the network structure. Second, the initial failure did not stay localized, 
but it spread along the links of the network, inducing additional failures. 
Eventually, multiple nodes, one after the other, failed to carry out their 
normal functions. Each of these systems experienced cascading failures, 
a dangerous phenomena in many networks [16]. In this section we discuss 
the empirical patterns governing such cascading failures. The modeling of 
these events in the topic of the next section.

EMPIRICAL RESULTS

Cascading failures are well documented in the case of the power grid, 
information systems and tectonic motion, offering detailed statistics 
about their frequency and magnitude. 

•  Blackouts
A blackout, also called a power outage or power failure, is a loss of 
the electric power in some area. It can be caused by failures at power 
stations, damage to electric transmission lines, substations, a short 
circuit, and so on. When the operating limits of a component is ex-
ceeded, it is typically automatically disconnected to protect it. In oth-
er words, a component can “fail” in the sense that it is not available 
to transmit power. Such failure redistributes the power previously 
carried by the failed component to other components, altering power 
flows, frequency, voltage and phase, and inducing changes in the op-
eration of the control, monitoring and alarm systems. These changes 
can in turn disconnect other components as well, in some cases start-
ing an avalanche of failures.

A frequently recorded measure of blackout size is the energy un-
served. Fig. 8.17a shows the probability distribution p(s) of energy un-
served in all North American blackouts between 1984 and 1998. Elec-
trical engineers approximate the obtained distribution with a power 
law [17],

where the estimated value of the avalanche exponent�Į is listed in Ta-

ble 8. 2 for several countries. The power law nature of this distribution 
indicates that most blackouts are rather small, affecting only a few 
consumers. These coexists, however, with occasional major black-
outs, where millions of consumers lose power BOX 8.3.

•  Information cascades
Modern communication systems, from email to mobile phones, Face-
book or Twitter, allow for the cascade-like spreading of information 
along the links of the social network. As the events pertaining to 
the spreading process often leave digital traces, these platforms al-

(8.13)

(a) The distribution of energy loss for all North 
American blackouts between 1984 and 1998, 
as documented by the North American Elec-
trical Reliability Council. The distribution is 
typically fitted to Eq. 8.13. The reported expo-
nents for different countries are listed in Ta-
ble 8.2. After [17].

(b) The distribution of cascade sizes on Twit-
ter. While most tweets cause no reaction, 
bringing the average cascade size down to 
1.14, a tiny fraction of tweets are shared thou-
sands of times. Overall the retweet numbers 
are well approximated with Eq. 8.13 with�Įݍ� 
1.75. After [18].

(c) The distribution of earthquake sizes re-
corded between 1977 and 2000. The dotted 
line indicates the power law fit Eq. 8.13 used by 
seismologists to characterize the distribution. 
After [19].

Figure 8.17
Cascade size distributions

c

b

a
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low researchers to detect and explore the underlying cascades. The 
micro-blogging service Twitter has been particularly useful in this 
context. On Twitter the network of who follows whom can be recon-
structed by crawling the follower graph behind the service. As users 
frequently share web-content using URL shorteners, the tracking of 
a spreading/sharing process is relatively straightforward. A study 
tracking 74 million such events over a two month interval in 2009 
traced the diffusion of each URL from a particular seed node through 
its reposts until the end of a cascade Fig. 8.18.

As Fig. 8.17b indicates, the cascade size distribution follows the pow-
er-law Eq. 8.13 with an avalanche exponent� Į� �ݍ 1.75. This indicates 
that the vast majority of posted URLs do not spread at all, a claim also 
supported by the fact that the average cascade size is only 1.14. Yet, a 
small fraction of URLs are reposted thousands of times.

•  Earthquakes
Most geological fault surfaces are irregular and sticky, not permitting 
a smooth slide against each other. Once a fault has locked, the contin-
ued relative motion of the plates increases the stress, accumulating 
an increasing amount if strain energy around the fault surface. This 
continues to accumulate until the stress is sufficient to break through 
the asperity, resulting in a sudden slide that releases the stored ener-
gy and causes an earthquake. Earthquakes can be also induced by the 
natural rupture of geological faults, by volcanic activity, landslides, 
mine blasts and even nuclear tests. Each year around 500,000 earth-
quakes are detected with instrumentation. Only about 100,000 of 
these are sufficiently strong to be felt by humans. Seismologists ap-
proximate the distribution of earthquake sizes with the power law Eq. 

8.13 with ਞ�≈ 1.67 Fig. 8.17c. Earthquakes are rarely considered a mani-
festly network phenomenon, given the difficulty of mapping out the 
precise interdependencies in the Earth’s crust that causes them. Yet, 
the resulting cascading failures bear many similarities to network 
based cascading events, suggesting common mechanisms.

The power-law distribution Eq. 8.13 followed by blackouts, information 
cascades and earthquakes indicates that most cascading failures are 
relatively small.

NETWORK ROBUSTNESS

The reported avalanche exponents charac-
terizing the power law distribution Eq. 8.13 of 
energy loss in various countries [17], twitter 
cascades [18] and earthquake sizes [19]. The 
third column indicates the nature of the mea-
sured cascade size s, corresponding to power 
or energy not served, the number of retweets 
generated by a typical tweet and earthquake 
magnitudes.

Examples of information cascades on Twitter. 
Nodes denote Twitter users, the top node cor-
responding to the individual who first posted 
a certain shortened URL. The links correspond 
to those who retweeted it. The observed cas-
cades capture the heterogeneity of informa-
tion avalanches: most URLs are not retweeted 
at all (shown as individual nodes in the fig-
ure), but some are part of major retweet ava-
lanches, like the one seen at the bottom panel. 
After [18].

Table 8.2

Figure 8.18

Avalanche exponents in real systems.

Information Cascades
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These capture the loss of electricity in a few houses, tweets of little 
interest to most users, or earthquakes so small that are detected only 
by sensitive instruments. Eq. 8.13 also predicts that these numerous 
small events coexist with a few exceptionally large events, like black-
outs leaving millions without power, messages retweeted by hun-
dreds or earthquakes causing major loss of human life. Examples of 
such major cascades include the 2003 power outage in North America 
BOX 8.3, the tweet Iran Election Crisis: 10 Incredible YouTube Videos 
http://bit.ly/vPDLo that was shared 1,399 times [20], or the January 
2010 earthquake in Haiti, with over 200,000 victims Fig. 8.19. What is 
particularly intriguing as we compare these systems is that the ava-
lanche exponents reported by electrical engineers, media researches 
and seismologists are so close to each other: they are all between 1.6 
and 2 Table 8.2.

Cascading failures are documented in many other environments:

•  The consequences of bad weather or mechanical failures can cas-
cade through airline schedules, delaying flights whose schedule is 
apparently unrelated to the original cause, in some cases stranding 
thousands of passengers BOX 8.5 [21].

•  The extinction of a species can cascade through an ecosystem, in-
ducing the extinction of numerous species and altering the habitat 
of others [22, 23, 24, 25].

• Cascading failures are common in international trade, when the 
shortage of a particular component cripples supply chains, affect-
ing the availability of a numerous products. For example, the 2011 
floods in Thailand have resulted in a chronic shortage of car com-
ponents that disrupted the production chain of more than 1,000 
automotive factories. Thanks to these cascading events the dam-
age was not limited to the flooded factories, resulting in insurance 
claims reaching $20 billion [26].

In summary, cascading effects are observed in systems of rather differ-
ent nature. Their size distribution is well approximated with a power law, 
implying that most cascades are too small to be noticed; a few, however, 
are huge, having global impact. The goal of the next section is to under-
stand the origin of these phenomena.

NETWORK ROBUSTNESS

Devastation caused in Port-au-Prince, Haiti, 
by a magnitude 7 earthquake that hit the is-
land on January 12, 2010. After http://en.wiki-
pedia.org/wiki/File:Haiti_earthquake_damage.
jpg

Figure 8.19
Earthquake Damage
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BOX 8.4
CASCADING CONGESTION

In the U.S. flight delays have an economic impact of over $40 bil-
lions per year [27], caused by the need for enhanced operations, pas-
senger loss of time, decreased productivity and missed business and 
leisure opportunities. A flight delay is defined as the time difference 
between the expected and actual departure/arrival times of a flight. 
Airline schedules include a buffer period between consecutive flights 
to allow for potential delays. When a delay exceeds this buffer, sub-
sequent flights that rely on the same aircraft, flight crew or gate, are 
also delayed. Consequently the impact of a delay can propagate in a 
cascade-like fashion through the system. 

A study found that while most flights in 2010 were on time, 37.5% ar-
rived or departed late [21]. The delay distribution has a broad tail, sim-
ilar to Eq. 8.13, implying that while most flights were delayed by just a 
few minutes, a few were hours behind schedule. These long delays in-
duce correlated delay patterns, a signature of cascading congestions 
in the air transportation system Fig. 8.20.

A U.S. aviation map showing the congested 
airports as red nodes, while those with nor-
mal traffic as green nodes. The lines corre-
spond to the direct flights between them on 
March 12, 2010. Congested airports form a 
correlated cluster, a manifestation of cas-
cading delays in air travel. After [21].

Figure 8.20
Clusters of congested airports

NETWORK ROBUSTNESS CASCADING FAILURES
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MODELING CASCADING
FAILURES

SECTION 8.5

The unfolding of a cascading event depends on the structure of the net-
work on which it propagates, the nature of the propagation process, and 
the breakdown criteria of each individual component. The empirical re-
sults discussed in the previous section indicate that despite the diversity 
of these factors, the statistics of cascading processes is universal, being in-
dependent of the particularities of the system. The purpose of this section 
is to understand the mechanisms governing cascading phenomena and to 
explain the power-law nature of the observed cascade size distributions.

Numerous models have been proposed to capture the dynamics of cas-
cading events [17, 28, 29, 30, 31, 32, 33, 34]. While these models differ in the 
degree of fidelity they employ to capture specific phenomena, they indi-
cate that systems that develop cascades share three key ingredients:

(i)  Each system is characterized by some flow over a network, like the 
flow of electric current in the power grid or the transport of infor-
mation in communication systems.

(ii)  Each component has a local breakdown rule that determines when 
it contributes to a cascade, either by failing or choosing to pass on a 
piece of information.

(iii) Each system has a mechanism to redistribute the traffic or flow to  
other nodes upon the failure or the activation of a component.

Next, we discuss two models that offer an increasing level of abstrac-
tion and with that an increased ability to predict the characteristics of cas-
cading failures.

FAILURE PROPAGATION MODEL

Introduced to model the spread of ideas and opinions, the failure propa-
gation model [29] is used to describe both information cascades and cas-
cading failures [34]. Consider a network with an arbitrary degree distri-
bution pk, where each node contains an agent. Each agent i can be in the 

NETWORK ROBUSTNESS
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state 0 (active or healthy) or 1 (inactive or failed), and is characterized by 
a breakdown threshold ĳi�Ł�ĳ.

All agents are initially in state 0. At time t = 0 one agent is switched to 
state 1, capturing for example an initial failure or the birth of new infor-
mation. In each subsequent time step, we randomly pick an agent and 
update its state following a simple threshold rule:

•  If the selected agent i is in state 0, it inspects the state of its ki neigh-
bors. The agent i adopts state 1 (i.e. it also fails) if at least a ĳ fraction 
of its ki neighbors are in state 1, otherwise it retains its original state 
0.

•  If the selected agent i is in state 1, it does not change its state.

Depending on the local network topology, an initial perturbation can 
die out immediately, failing to induce the failure of any other node. It 
can also lead to the failure of additional nodes, as illustrated in Fig.  8.21a, 

b. To characterize the dynamics of the model we focus on two quanti-
ties:

(i)  The probability that a global cascade is triggered by a single node, 
a global cascade is defined as a sequence of failures that involves a 
finite fraction of all nodes Fig. 8.21c.

(ii) The expected size distribution of the observed cascades Fig. 8.21d. 

Both quantities depend on the average degree ࢭkࢮ�of the network and 
the threshold ĳ. The simulations document three regimes with distinct 
avalanche characteristics:

•  Subcritical Regime
If ࢭkࢮ is high, changing the state of a node is unlikely to move other 
nodes over their threshold, as the unflipped nodes have many neigh-
bors that did not yet flip.  In this regime cascades die out quickly and 
their sizes follow an exponential distribution.  The system is subcriti-
cal, unable to support large global cascades (blue symbols in Fig.  8.21c, 

d).

•  Supercritical Regime
If ࢭkࢮ is very small, the flipping of a single node can put several of its 
neighbors over the threshold, triggering a global cascade. In this case 
virtually any perturbation induces a major breakdown, making the 
system supercritical (black symbols in Fig. 8.21c, d).

•   Critical Regime
At the boundary of the subcritical and supercritical regime the ava-
lanches have widely different sizes. Numerical simulations indicate 
that in this regime the avalanche sizes s follow Eq. 8.13 (green, red sym-
bols in Fig. 8.21d), with�Į = 3/2 if the underlying network is random. 

NETWORK ROBUSTNESS
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(a) The emergence of a cascade in a small net-
work when each node has the same break-
down threshold ĳ = 0.4. Initially all nodes 
are in state 0, shown as black circles. After 
node A changes its state to 1 (red circle), its 
neighbors B and E will have a fraction f = 
1/2 > 0.4 of their neighbors in state 1. Con-
sequently they also fail, changing their 
state to 1, as shown in (b).

(b) In the next time step C and D will also fail, 
having f > 0.4. Consequently at the end the 
cascade sweeps the whole network, reach-
ing a size s = 5. One can check that if we 
initially flip node B, it will not induce an 
avalanche, as none of its neighbors pass the 
threshold ĳ.

(c) The phase diagram of the failure propaga-
tion model in terms of the threshold func-
tion ĳ and the network’s average degree 
 The dashed line encloses the region of .ࢮkࢭ
the (ࢭkࢮ, ĳ) plane in which the cascades can 
propagate in a random graph.

(d) Cascade size distributions for N = 10,000 
and ĳ = 0.18, ࢭk1.05 = ࢮ (red), ࢭk3.0 =�ࢮ (black), 
 At the .(blue) 10.0 =�ࢮkࢭ and (green) 5.76 =�ࢮkࢭ
lower critical point we observe a power law 
p(s) with exponent ਞ = 3/2 . In the supercrit-
ical regime we have only a few small ava-
lanches, as most cascades are global. In the 
upper critical and subcritical regime we see 
only small avalanches. After [29].

Figure 8.21
Failure propagation model
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In ADVANCED TOPICS 8.F we discuss two additional models describing
cascading failures:

•   The overload model is designed to capture power grid failures. Its dis-
tinguishing feature is a global flow process: as the electric current re-
distributes itself throughout the power grid, the model assumes that 
each failure instantaneously increases the load of all nodes. This is 
different from the local spread of failures in the failure propagation 
model.

•   The self-organized critical model aims to model only the behavior of a 
system in the critical regime.

Despite there differences these two models predict the same avalanche 
exponent (Į = 3/2 for a random network) in the critical regime as the 
failure propagation model. The fact that the three models with rather 
different propagation dynamics and failure mechanisms predict simi-
lar scaling laws and avalanche exponents suggests that the underlying 
phenomena is universal, i.e. model independent.

BRANCHING MODEL

Given the complexity of the models discussed above, it is hard to ana-
lytically predict their scaling behavior. To understand the origin of the 
power-law nature of the observed p(s) and to calculate the avalanche ex-
ponent Į, we turn to the branching model. This is perhaps the simplest 
model that still captures the basic features of cascading events.

The model builds on the observation that the history of a cascading fail-
ure (avalanche) can be described as a branching process. Let us desig-
nate the node whose failure triggers the avalanche as the root of a tree. 
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The branches of the tree are the nodes whose failure was directly trig-
gered by this initial failure. For example, in Fig. 8.21 a, b, the breakdown of 
node A starts the avalanche, hence A is the root of the tree. The failure of 
A leads to the failure of B and E, which are the two branches of the tree. 
Subsequently E induces the failure of D and B leads to the failure of C 
Fig. 8.22a.

The branching model captures the essential features of this avalanche 
propagation process Fig. 8.22. The model starts with a single active node. 
In the next time step each active node produces k offsprings, where k is 
selected from a pk distribution. If a node selects k = 0, that branch dies 
out permanently Fig. 8.22b. If it selects k > 0, it will have k new active sites. 
The size of an avalanche corresponds to the size of the tree when all ac-
tive sites died out Fig. 8.22c.

(a) The branching process describing the prop-
agation of the failure shown in Fig. 8.20a,b. 
The perturbation starts from node A, whose 
failure flips B and E, which in turn flip C 
and D, respectively.

(b) An elementary branching process. Each ac-
tive link (red link) can become inactive with 
probability p0 = 1/2 (top) or give birth to two 
new active links with probability p2 = 1/2 
(bottom).

(c) The number of active sites, x(t), in function 
of time t. A nonzero x(t) means that the ava-
lanche persists. When x(t) becomes zero, we 
loose all active sites and the avalanche ends. 
In the image this happens at t = 5, hence the 
size of the avalanche is tmax + 1 = 6. An exact 
mapping between the branching model and 
a one dimensional random walk helps us 
calculate the avalanche exponent. Consid-
er a branching process starting from a stub 
with one active end. When the active site be-
comes inactive, it decreases the number of 
its active sites, i.e. x ĺ�x − 1. When the active 
site branches, creates two active sites, i.e. x 
ĺ x + 1. This maps the avalanche size s to 
the time it takes for the walk that starts at x 
= 1 to reach x = 0 for the first time. This is a 
much studied process in random walk theo-
ry, predicting that the return time distribu-
tion follows a power law with exponent 3/2 
[32]. For branching process corresponding 
to scale-free pk, the avalanche exponent de-
pends on ਠ, as predicted by Fig. 8.15d, f.

Typical avalanches generated by the branch-
ing model in the: subcritical (d), supercritical 
(e) and critical regime (f). The red node in each 
cascade marks the root of the tree, i.e. the first 
perturbation. In d and f we show multiple 
trees, while in e we show only one, as each tree 
grows indefinitely.

Figure 8.22
Branching process



29 MODELING CASCADING FAILURESNETWORK ROBUSTNESS

The branching model predicts the same three phases as those observed 
in the cascading failures model. These phases are determined by ࢭkࢮ�of 
pk:

•  Subcritical regime
If ࢭk1 > ࢮ, on average each branch has less then one offspring. Conse-
quently each tree will terminate quickly Fig. 8.22d. In this regime the 
avalanche sizes follow an exponential distribution.

•  Supercritical regime
If ࢭk1 < ࢮ, on average each branch has more than one offspring. Conse-
quently the tree will continue to grow indefinitely Fig. 8.22e. This cap-
tures the supercritical phase, when all avalanches are global.

•  Critical regime
If ࢭk1 = ࢮ, on average each branch has exactly one offspring. Conse-
quently some trees are large; others die out shortly Fig. 8.21. Numerical 
simulations indicate that in this regime the avalanche size distribu-
tion follows a power law.

The branching model can be solved analytically, allowing us to predict 
the avalanche size distribution for an arbitrary pk. If pk is bounded, e.g. it 
follows a binomial or exponential form, the calculations predict Į = 3/2. 
If, however, pk is scale-free, then the avalanche exponent depends on the 
power-law exponent ਠ as Fig. 8.23 [31, 32]

We can revisit Table 8.2 in the light of Eq. 8.15, to confirm that the empiri-
cally observed avalanche exponents are all between 1.5 and 2, as predicted 
by Eq. 8.15. 

In summary, numerous models capture the dynamics of cascading fail-
ures. These models differ in their realism as well as the number and the na-
ture of their tuning parameters. Yet, their predictions are consistent with 
each other:

•  They predict the existence of a critical state, in which the avalanche 
sizes follow a power law. The value of the avalanche exponent ਞ de-
pends on the degree exponent of the network on which the avalanche 
propagates, as predicted by Eq. 8.15.

•  They predict the existence of a subcritical regime, in which all pertur-
bations die out immediately, and a supercritical regime, when most 
perturbations sweep the whole system.

Note that a detailed modeling of cascading failures should also account 
for the fact that nodes and links have different capacities to carry traffic 
[33]. Such models are best discussed in the context of weighted networks.

(8.15)� =
3 / 2, � � 3

� / (� �1), 2 < � < 3

�
�
�

��

The dependence of the avalanche exponent ਞ 
on the degree exponent ਠ of the network on 
which the avalanche propagates, according 
to Eq. 8.15. The plot indicates that between 2 < 
ਠ�< 3 the avalanche exponent depends on the 
exponent of pk. Beyond ਠ = 3, however, the ava-
lanches behave as they would be spreading on 
a random network.

Figure 8.23
The avalanche exponent is universal

.
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BUILDING ROBUSTNESS
SECTION 8.6

Can we enhance a network’s robustness? In this section we take advan-
tage of the insights we gained in the previous sections to design networks 
that are simultaneously robust to random failures and attacks. We also 
discuss mechanisms proposed to stop a cascading failure, allowing us to 
enhance a system’s dynamical robustness. Finally, we apply the developed 
tools to the power grid, linking its robustness to its reliability.

DESIGNING ROBUST TOPOLOGIES

The coexistence of robustness to random failures and fragility to at-
tacks of scale-free networks prompts us to ask: could we design net-
works that are simultaneously robust to attacks and random failures 
[35, 36, 37, 38]? This appears to be a conflicting desire. For example, the 
hub-and-spoke network of Fig. 8.24a is robust to random failures, as only 
the failure of its central node can break the network into isolated com-
ponents. Therefore, the probability that a random failure will fragment 
the network is 1/(N − 1), which is negligible for large N. At the same time 
this network is rather vulnerable to attacks, as the removal of a single 
node, its central hub, will break the network into isolated nodes.

We can enhance this network’s robustness to both failures and attacks 
by connecting its peripheral nodes Fig. 8.24b. There is a price, however, 
for this enhanced robustness: it requires us to double the number of 
links. If we define the cost to build and maintain a network to be pro-
portional to its average degree ࢭkࢮ, the cost of the network of Fig. 8.24b is 
24/7, which is double of the cost 12/7 of the network of Fig. 8.24a. The in-
creased cost helps us refine our question: can we maximize the robust-
ness of a network to both random failures and targeted attacks, without 
changing the cost, i.e. keeping ࢭkࢮ�constant?

To enhance a network’s robustness against random failures we can in-
crease its percolation threshold  fc, which denotes the moment when the 
network falls apart. As fc depends only on ࢭkࢮ and ࢭk2ࢮ according to Eq. 

8.7, the degree distribution which maximizes  fc needs to maximize ࢭk2ࢮ

for a fixed ࢭkࢮ. This is achieved by a bimodal distribution, whose nodes 

NETWORK ROBUSTNESS

(a) A hub-and-spoke network is robust to ran-
dom failures but has a low tolerance to an 
attack that removes its central hub. 

(b) By connecting some of the small degree 
nodes, the reinforced network has a high-
er tolerance to targeted attacks. Yet, the 
cost, captured by the total number of links 
the network needs to maintain, i.e. ࢭkࢮ, is 
higher in the reinforced network. 

(c)  Random, fc
rand, targeted  fc

targ and total fc
tot 

percolation thresholds for scale-free net-
works in function of the degree exponent 
ਠ. The plot is shown for kmin = 3.

Figure 8.24
Enhancing Robustness
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have either degree kmin or kmax, the two extreme values allowed in the 
respective network.

In a similar spirit, if we wish to optimize the network topology against 
both random failures and attacks, we search for topologies that maxi-
mize the sum Fig. 8.24c

A combination of analytical arguments and numerical simulations in-
dicate that this too is best achieved by the bimodal degree distribution 
[35, 36, 37, 38]

describing a network in which an r fraction of nodes have degree kmax  

and the remaining (1 − r) fraction have degree kmin. As we show in AD-

VANCED TOPICS 8.G, the maximum of fc
tot is obtained when r = 1/N, i.e. 

when there is a single node with degree kmax and the remaining nodes 
have degree kmin. The value of kmax depends on the system size as (AD-

VANCED TOPICS 8.G)

In other words, a network that is robust to both random failures and 
attacks has a single hub with degree Eq. 8.18, while the rest of the nodes 
have the same degree kmin. This configuration is obviously robust 
against random failures as the chance of removing the central hub is 
rather small. The obtained network may appear to be vulnerable to an 
attack that removes its kmax hub, but it is not necessarily so. Indeed, the 
network’s giant component is held together by both the central hub as 
well as by the many nodes with degree kmin, that for kmin > 1 form a giant 
component on their own. Hence while the removal of the kmax hub caus-
es a major time loss, the remaining low degree nodes are robust against 
subsequent targeted removal Fig. 8.25.

HALTING CASCADING FAILURES

How can we avoid cascading failures? The first instinct is to reinforce 
the network through the addition of new links. If that is feasible, in 
some system may solve the problem. In others additional links could 
worsen the situation, offering more routes for the failure to spread. The 
true problem with reinforcement is that in most real systems the time 
frame needed to establish a new link is much larger than the timeframe 
of a cascading failure. For example thanks to regulatory, financial and 
legal barriers, building a new power line can take up to two decades. In 
contrast, a cascading failure can sweep the power grid in a few seconds. 
There is no way we can reinforce the network during this short time 
frame.

NETWORK ROBUSTNESS

(8.16)

(8.17)

(8.18)

fc
tot = fc

rand + fc
t arg

pk � (1� r)� (k � kmin )+ r� (k � kmax )

kmax = AN
2/3 The figure illustrates the optimal network to-

pologies predicted by Eq. 8.16 and Eq. 8.17, con-
sisting of a single hub of size Eq. 8.18 and the 
rest of the nodes have the same degree kmin 
determined by ࢭkࢮ. The left panels illustrate 
the network topology for N = 300; the right 
panels show the failure/attack curves for N = 
10000.

(a) For small ࢭkࢮ� the hub plays a key role in 
holding the network together. Once we 
remove this central hub, given that ࢭkࢮ is 
small, the network breaks apart. Hence the 
attack and error curves are rather differ-
ent.

(b) For larger ࢭkࢮ� a giant component exists 
even without the central hub. Hence while 
the hub enhances the system’s robustness 
to random failures, it is no longer essential 
for the network. In this case both the attack 
and error fc are large.

(c) For even larger ࢭkࢮ�the error and the attack 
curves are indistinguishable, as the net-
work is robust even without its central hub.

Figure 8.25
Optimizing attack and failure tolerance

.

.
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BOX 8.5
ROBUSTNESS, REDUNDANCY, RESILIENCE

Redundancy and resilience are concepts deeply linked to robustness. 
It is useful, therefore, to clarify the relationship between them.

Robustness
A system is robust if it can maintain its basic functions in the presence 
of internal and external errors. In a network context, robustness re-
fers to the system’s ability to carry out its basic functions, even when 
some of its nodes and links may be missing.

Resilience
A system is resilient when it can adapt to internal and external errors 
by changing its method of operations while continuing to function. 
Hence, resilience is a dynamical property that requires a shift in the 
system’s core activities.

Redundancy
Redundancy implies the presence of parallel functions and compo-
nents that, if needed, can replace a missing function or component. 
Networks show considerable redundancy in their ability to navigate 
information between two nodes, thanks to the multiple independent 
paths between most node pairs. For example, if you live in the United 
States, your local senator offers you a short path to the President. Yet, 
you may also reach to the president through many other, often equally 
short chains of acquaintances. A similar redundancy is built into the 
Internet: if a router fails, the packets normally handled by it are re-
routed along alternative routes.
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In a counterintuitive fashion, the impact of cascading failures can be 
lowered through selective node and link removal [39]. To do so we note 
that each cascading failure has two parts:

(i)  Initial failure results in the breakdown of the first node or link, rep-
resenting the source of the subsequent cascade.

(ii) Propagation, when the initial failure induces the breakdown of ad-
ditional nodes and it starts cascading through the network.

In real networks the time interval between (i) and (ii) is much shorter 
than the time scale over which new nodes and links could be added to 
reinforce the network. Yet, simulations indicate that the size of a cas-
cade can be reduced if we intentionally remove additional, well selected 
nodes, right after the initial failure, but before the failure could propa-
gate. Even though the intentional removal of a node or a link increases 
the damage to the network, the removal of a well chosen component 
can suppress the cascade propagation. The mechanism is similar to the 
method used by firefighters, who set a controlled fire in the fire-line to 
consume the fuel in the path of a wildfire. The implementation of this 
procedure depends on the details of the spreading and failure mecha-
nism, but simulations indicate that we can limit the size of the cascades 
if we remove nodes with small loads and links with large excess load in 
the vicinity of the initial failure.

A dramatic manifestation of the potentially positive effects of further 
damage is provided by the Lazarus effect, the ability to revive a bacteria 
that is unable to grow through the knockout of a few well selected genes 
[40] Fig. 8.26. Therefore, in a counterintuitive fashion, controlled damage 
can be beneficial to a network facing cascading failures.

CASE STUDY: ESTIMATING ROBUSTNESS

The European power grid is an ensemble of more than twenty nation-
al power grids consisting of over 3,000 generators and substations 
(nodes) and 200,000 km of transmission lines Fig. 8.27a-d. The degree 
distribution of this network can be approximated with Fig. 8.27e [41, 42]

indicating that its topology is characterized by a single parameter, ࢭkࢮ. 
As we showed in SECTION 5.5, such pk emerges in growing networks that 
lack preferential attachment. By determining ࢭkࢮ separately for each 
national power grid, we can predict the critical threshold fc for attacks, 
using the tools SECTION 8.3. As shown in Fig. 8.27f, for national power grids 
with ࢭk1.5 <�ࢮ there is a reasonable agreement between the observed and 
the predicted fc (Group 1). However, for national power grids with ࢭkࢮ < 
1.5 (Group 2) the predicted fc underestimates the real fc, indicating that 
these national networks are more robust to attacks than expected based 
on their degree distribution. As we show next, this enhanced robust-
ness correlates with the reliability of the respective national networks.

NETWORK ROBUSTNESS

A bacteria’s growth is limited by its ability to 
generate biomass, the molecules the bacteria 
needs to build its cell wall, DNA and other cel-
lular components. If some key genes are miss-
ing, preventing the bacteria from generating 
the necessary biomass, it cannot multiply and 
will likely die. Genes in whose absence the bio-
mass flux is zero are called essential. The plot 
above shows the biomass flux for a mutant of 
E. Coli, a bacteria frequently studied by biolo-
gists. The mutant is missing an essential gene, 
hence its biomass flux is zero, as shown on the 
vertical axis. Consequently, it cannot multi-
ply. Yet, the removal of five additional genes 
can turn on the biomass flux. Consequently, 
in a counterintuitive fashion, we can revive 
a dead organism, through the removal of fur-
ther genes, a phenomena called Lazarus effect 
[40].

Figure 8.26
Lazarus effect in bacteria

(8.19)pk =
e�k /�k �

�k�
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To test the relationship between robustness and reliability, we use sev-
eral quantities collected for each power failure: (1) energy not supplied; 
(2) total loss of power; (3) average interruption time, measured in min-
utes per year. The measurements indicate that Group 1 networks, for 
which the real and the theoretical fc agree, represent two thirds of the 
full network size and share almost as much power and energy as the 
Group 2 networks. Yet, this group accumulates more than five times 
the average interruption time, more than two times the recorded power 
losses and almost four times the undelivered energy. Hence, Group 1 
networks are more fragile than the Group 2 networks. This result offers 
direct evidence that networks that are topologically more robust are 
also more reliable. Note that this finding is rather counterintuitive: one 
would expect the denser networks to be more robust. We find, however,
that the sparser power grids show enhanced robustness.

In summary, the results of this section indicate that a better under-
standing of the network topology is essential to develop strategies to im-
prove robustness. We can improve robustness by either designing network 
topologies that are simultaneously robust to both random failures and 
attacks, or by designing interventions that limit the spread of cascading 
failures.

Our ability to design robust networks would suggest that we should re-
design the topology of the Internet and the power grid to enhance their 
robustness [43]. Given the chance, this could indeed be achieved. Yet, these 
infrastructural networks were built incrementally over decades, following 
the self-organized growth process described in the previous chapters. Giv-
en the enormous cost of each link and node, it is unlikely that we would 
ever be given a chance to redesign them. In general the design principles 
of robust networks should be enforced only if robustness is an absolute 
criteria, like in the case of the wiring diagram of an airplane, whose failure 
could be fatal.

NETWORK ROBUSTNESS
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(a) From a power engineer’s perspective a 
power grid is a complex machinery co sist-
ing of (1) power generators, (2) switching 
units, (3) the high voltage transmission 
grid, (4) transformers, (5) low voltage lines, 
(6) consumers, like households or busines 
es. When we study the network behind 
the power grid, many of these details are i 
nored. The necessary procedure to arrive to 
the network topologies amenable for study 
is illustrated in (b)-(d) for the Italian power 
grid.

(b) The power grid with the details of produc-
tion and consumption. Once we strip these 
off, we obtain the spatial network shown 
in (c). Once the spatial information is also 
removed, we arrive to the network show in 
(d), which is the typical object of study at 
the network level.

(e) The cumulative degree distribution of the 
European power grid. The plot shows the 
data for the full network (UCTE) and sepa-
rately for Italy, UK, and Ireland, indicating 
that the national grid’s pk also follows the 
exponential (8.19).

(f) Phase space (fc, k) for exponential uncor-
related networks under attack, where fc 
is the fraction of hubs we must remove 
to fragment the network. The continuous 
curve corresponds to the critical boundary 
for attacks, below which the network has 
retains its giant component. The plot also 
shows the estimated fc(ࢭkࢮ) for attacks from 
the thirty-three national power grids with-
in EU, shown as circles. The plot allows us 
to distinguish two classes of power grids. 
For countries with ࢭk1.5 < ࢮ (Group 1), the 
analytical prediction for fc agrees with the 
numerically observed values. However, 
for countries with ࢭkࢮ� > 1.5 (Group 2) the 
analytical prediction underestimates the 
numerically observed values. Therefore, 
Group 2 national grids show enhanced 
robustness to attacks, which means that 
they are more robust than expected for a 
random network with the same degree se-
quence. Reliability measures indicate that 
the power grids in the robust Group 2 coun-
tries are more reliable. After [41].

Figure 8.27
The power grid
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SUMMARY
SECTION 8.7

The terrorist attacks of September 11, 2001 offered a vivid illustration 
of the important role hubs play in attacks. Indeed, the targets of the attack 
were not chosen at random: the World Trade Center in New York, the Pen-
tagon, and the White House (an intended target) in Washington DC are the 
hubs of America’s economic, military, and political power [44]. Yet, while 
causing a human tragedy far greater than any other event America has 
experienced since the Vietnam war, the attacks failed at their main goal: to 
topple the network. They did offer, however, an excuse to start new wars, 
like the Iraq and the Afghan wars, hence inducing a series of cascading 
events whose impact was far more devastating than the 9/11 terrorist at-
tacks themselves. Yet, all networks, ranging from the economic to the mil-
itary and the political web, survived. Hence, we can view 9/11 as a tale of 
robustness and network resilience. The roots of this robustness were un-
covered in this chapter: real networks have a whole hierarchy of hubs. Tak-
ing out any one of them is not sufficient to topple the underlying network.

Network robustness represents good news for most complex systems. 
Indeed, there are uncountable errors in our cells, from misfolding pro-
teins to the late arrival of a transcription factor. Yet, the robustness of the 
underlying cellular network helps our cells to carry on their normal func-
tions. Network robustness also explains why we rarely notice the effect of 
router errors on the Internet or why the disappearance of a species does 
not lead to an immediate environmental catastrophe.

This topological robustness has its price, however: a fragility against at-
tacks. As we showed in this chapter, the simultaneous removal of hubs will 
break any network. This is bad news for the Internet, as it allows crackers 
to design strategies that can harm this vital communication system. It is 
bad news for economic systems, as it indicates that hub removal can crip-
ple the whole economy, vividly illustrated by the 2009 financial meltdown. 
Yet, it is good news for drug design, as it suggests that an accurate map of 
cellular networks can help us design drugs that can kill unwanted bacteria 
or cancer cells.

NETWORK ROBUSTNESS
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BOX 8.7
NETWORK ROBUSTNESS:
BRIEF HISTORY

The systematic study of network 
robustness within network science 
started with a paper published 
in Nature Fig. 8.1 by Réka Albert, 
Hawoong Jeong and Albert-László 
Barabási [1], that discovered the ro-
bustness of scale-free networks to 
random failures and their fragility
to attacks. Yet, when it comes to our 
understanding of network robust-
ness, particularly important were 
the contributions of Shlomo Havlin 
and his collaborators, like Reuven 
Cohen, who showed that the perco-
lation threshold of a scale-free net-
work is determined by the first two 
moments of the degree distribution.

SUMMARY

The main message of this chapter is simple: network topology, ro-
bustness, and fragility cannot be separated from one other. Rather, each 
complex system has its own Achilles’ Heel: the networks behind them are 
robust to random failures but vulnerable to attacks. When considering ro-
bustness, we cannot ignore the fact that most systems have numerous con-
trols and feedback loops that help them survive in the face of errors and 
failures. Internet protocols were designed to ‘route around the trouble’, 
guiding the traffic to avoid routers that malfunction; cells have numerous 
mechanisms to dismantle faulty proteins and to shut down malfunction-
ing genes. This chapter documented a new contribution to error tolerance: 
the structure of most complex systems preferred by nature offers them an 
enhanced error and failure tolerance. By the virtue of their topology only, 
real systems display a high degree of topological robustness.

The robustness of scale-free networks prompts us to ask: is this en-
hanced robustness the reason why many real networks are scalefree? Per-
haps real systems have developed a scale-free architecture to satisfy their 
need for robustness. If this hypothesis is correct we should be able to set 
robustness as an optimization criteria and obtain a scale-free network. Yet, 
as we showed in SECTION 8.6, a network optimized for robustness has a hub-
and-spoke topology. Its degree distribution is bimodal, rather than a power 
law. This suggests that robustness is not the force that drives the develop-
ment of real networks. Rather, networks are scale-free thanks to growth 
and preferential attachment. It so happens that scale-free networks also 
have enhanced robustness. Yet, they are not the most robust networks we 
could design.

Finally, note that enhanced robustness does not require a network to 
be scale-free. Indeed, Eq. 8.7 links fc to ࢭk2ࢮ, hence any network whose ࢭk2ࢮ�

is larger than expected for a random network will display enhanced ro-
bustness. Of course, if a network is scale-free with ਠ < 3, yet automatically 
displays enhanced robustness. 

The results of this chapter allow us to formulate our next law:

ACHILLES’ HEEL

Scale-free networks are robust to random failures and fragile to at-
tacks. Let us revisit the three criteria that prompts us to call this state-
ment a network law:

A. Quantitative formulation
Eq. 8.7 indicates that the critical threshold of a scale-free network, cap-
turing its response to random failures, converges to fc = 1, implying an 
enhanced robustness to random node deletion. As we showed in SEC-

TION 8.3, the finite threshold re-emergences under attacks.

B. Universality
Enhanced robustness is present in all networks whose ࢭk2ࢮ is higher 
than expected in a random network. According to Table 4.1, this is true 
for most real networks.

NETWORK ROBUSTNESS

A statistical physicist at Bar Ilan 
University in Israel, Havlin has 
played an important role in the de-
velopment of network science. He 
derived (8.7), demonstrating that 
the origin of the enhanced robust-
ness is rooted in the convergence 
of the the percolation threshold to 
one. His contributions to the field 
are diverse, from discovering the 
selfsimilar nature of real networks 
[45] to introducing the study of lay-
ered interdependent networks [46].

Figure 8.28
Shlomo Havlin
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C. Non-random origins
The phenomena discussed in this chapter is obviously absent from ran-
dom networks, that have a finite threshold against both failures and 
attacks Fig. 8.13.

NETWORK ROBUSTNESS

BOX 8.7
AT A GLANCE:
NETWORK ROBUSTNESS

Malloy-Reed criteria:
A giant component exists if

Critical threshold for random 
failures:

Random Network:

Enhanced robustness:

Critical threshold for attacks:

Size distribution for cascading 
failures:
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SECTION 8.8

RANDOM NETWORKS AND INFINITE DIMENSIONAL LATTICE

The percolation transition observed when nodes are randomly removed 
from a random network is characterized by the same critical exponent 
as percolation in d > 6 dimensions. This equivalence is illustrated by the 
following two-step argument.
 
i.  The Cayley tree, a regular branching tree shown in Fig. 8.29a, is a fre-

quently used as a model of an infinite dimensional lattice. Indeed, in 
d-dimensions the volume of a hypersphere of radius r is proportional 
to rd, whereas its surface is rd−1. Hence, in general, we have suface ܞ�
volume1−1/d. For example, in d = 2 the area (volume) of a circle of radi-
us r is πr2 and its circumference (surface) is 2πr. In d = 3, the volume 
depends on r as r3 whereas the area increases as r2. In the d ĺ ∞ limit 
the surface of a d-dimensional hypersphere is proportional to its vol-
ume, as 1/d becomes negligible. This proportionality is valid for the 
Cayley tree: the number of nodes in the outer layer of a Cayley tree 
(surface) equals the number of nodes inside the tree (volume). Hence, 
we can view the Cayley tree as an infinite dimensional object Fig. 8.29a.

ii.  At the same time the Cayley tree captures the local topology of a ran-
dom network. Indeed, in a very large random network the probabili-
ty of finding loops is negligible. Hence, locally the network is a tree. 
To see this consider a cluster of three nodes occupied with pebbles on 
a d-dimensional cubic lattice (red nodes in d = 2, Fig. 8.29b). If we add 
an additional pebble, for it to be part of the cluster, it has to be adja-
cent to at least one of the three previous pebbles. We can place the 
new pebble in 3(2d − 2) possible spots so that it does not form a loop 
(green sites); only one of the site closes the loop (red site). Therefore, 
the probability that the four pebbles form a loop decreases as, 

which is negligible in the d ĺ ∞ limit [2]. Consequently, locally the 
nodes in a random network form a tree, well approximated by the 
Cayley tree of Fig. 8.29a.

ADVANCED TOPICS 8.A
RANDOM NETWORKS 
AND PERCOLATION

NETWORK ROBUSTNESS

(a)  The Cayley tree represents a model of an in-
finite dimensional lattice, as the number of 
nodes on its surface is proportional to the 
total number of nodes within the tree, cor-
responding to its volume. This is a property 
of an infinite dimensional lattice as well.

(b) If we form a four-node cluster in a square 
lattice, the likelihood that they form a loop 
is negligible. Indeed, we have positions 
for the new node to form a cluster (green 
dashed circles); one (red dashed) leads to a 
loop.

Figure 8.29
Infinite dimensional percolation

(8.19b)
1

3(2d � 2)+1



40 RANDOM NETWORKS AND PERCOLATION

In summary, percolation in a random network is in the same universa 
ity class as percolation on a Cayley tree, which in turn is in the universality 
class of infinite dimensional percolation [2]. Therefore, Ȗp = 1, ȕ = 1 and Ȗ�
= 1, the percolation critical exponents for d = ∞, characterize the behavior 
of the clusters near the critical point fc when an fraction of nodes are ran-
domly selected and removed from a random network.

PERCOLATION EXPONENTS FOR SCALE-FREE NETWORKS

To understand how a scale-free network breaks apart as we approach 
the threshold Eq. 8.7, we need to determine the critical exponents Ȗp, ȕ�
and Ȟ. The calculations show that the scale-free property alters the val-
ue of these exponents, leading to systematic deviations from the expo-
nents discussed in SECTION 8.1 that characterize random networks. 

Let us start with the probability P∞ that a randomly selected node be-
longs to the giant component. According to Eq. 8.2 this follows a power 
law near pc (or fc in the case of node removal). The calculations predict 
that for a scale-free network the exponent ਟ depends on the degree ex-
ponent Ȗ as [7, 47, 48, 49, 50]

Hence, while for a random network (captured by the ਠ > 4 regime) we 
have ਟ = 1, for most scale-free networks of practical interest ਟ� > 1. 
Therefore, the collapse of the giant component is steeper at the critical 
point in a scale-free network than in a random network.

The exponent describing the average component size near pc  follows 
[47]

The negative ਠp for ਠ < 3 may appear surprising. Note, however, that for 
ਠ < 3 we always have a giant component. Hence, the divergence Fig. 8.1 
cannot be observed in this regime. For a random graph of arbitrary de-
gree distribution the size distribution of the finite clusters follows [47, 
49, 50]

Here, ns is the number of clusters of size s and s* is the crossover cluster 
size. At criticality

(8.20)

(8.21)

(8.22)

(8.23)
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The pertinent critical exponents are

Once again, the random network values ਰ = 5/2 and ਯ = 1/2 are recovered 
for�ਠ > 4. Finally, the exponent ਪ governs the average size of the finite
components, obeying the scaling relation ਪ�= (3 − ਰ)/ਯ. Hence,

In summary, the exponents describing the breakdown of a scale-free 
network depend on the degree exponent ਠ. This is true even in the range 3 
< ਠ < 4, where the percolation transition occurs at a finite threshold fc. The 
mean-field behavior predicted for percolation in infinite dimensions, cap-
turing the response of a random network to random failures, is recovered 
for ਠ > 4.

(8.24)

(8.25)
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SECTION 8.9

The purpose of this section is to derive the Malloy-Reed criteria BOX 8.7, 
which allows us to calculate the percolation threshold of an arbitrary net-
work [6]. For a giant component to exist each node that belongs on average 
to it must be connected to at least two other nodes Fig. 8.8. Therefore, the 
average degree ki of a randomly chosen node i that is part of the giant com-
ponent should be at least 2. Denote with p(ki  ȕ i ļ j) the joint probability 
that a node in a network with degree ki is connected to an arbitrary node j 
that is part of the giant component. This conditional probability allows us 
to determine the expected degree of node i as

In other words, ࢭki  ȕ i ļ jࢮ should be equal to two, the condition for node  
i to be part of the giant component. We can write the probability appearing 
in the sum Eq. 8.26 as

where we used Bayes’ theorem in the last term. For a network with degree 
distribution pk, in the absence of degree correlations, we can write

which expresses the fact that we can choose between N − 1 nodes to link to, 
each with probability 1/(N − 1) and that we can try this ki times. We can now 
return to Eq. 8.26,

With that we arrive at the Malloy-Reed criteria Eq. 8.4, indicating that the 
condition to have a giant component is

ADVANCED TOPICS 8.B
MALLOY-REED CRITERIA
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SECTION 8.10

The purpose of this section is to derive Eq. 8.7, that provides the critical 
threshold for random node removal [7, 50]. The random removal of an f 
fraction of nodes has two consequences:

•   It alters the degree of some nodes, as nodes that were previously con-
nected to the removed nodes will lose some links [k ĺ k' ≤ k].

•  It changes the degree distribution, as the neighbors of the missing 
nodes will have an altered degree [ pk ĺ p'k']. 

To be specific, after we randomly remove an f fraction of nodes, a node 
with degree k turns into a node with degree  k' with probability

The first f -dependent term in Eq. 8.31 accounts for the fact that the se-
lected node lost (k − k')  links, each with probability f; the next term ac-
counts for the fact that node removal leaves k' links untouched, each with 
probability (1 − f).

The probability that we have a degree-k node in the original network 
is pk; the probability that we have a new node with degree k' in the new 
network is

Let us assume that we know ࢭkࢮ and ࢭk2ࢮ for the original degree distribu-
tion pk. Our goal is to calculate  ࢭk'ࢭ ,ࢮk'2ࢮ for the new degree distribution p'k', 
obtained after we randomly removed an f fraction of the nodes. For this 
we write

ADVANCED TOPICS 8.C
CRITICAL THRESHOLD
UNDER RANDOM FAILURES
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The sum above is performed over the triangle shown in Fig. 8.30. We can 
check that we are performing the same sum if we change the order of sum-
mation together with the limits of the sums as

Hence we obtain

This connects ࢭk'ࢮ to the original ࢭkࢮ after the random removal of an f 
fraction of nodes. We perform a similar calculation for ࢭk'2ࢮ:

Again, we change the order of the sums Fig. 8.30
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(8.33)

(8.34)

(8.35)

(8.36)

(8.37)

In Eq. 8.34 we changed the integration order, 
i.e. the order of the two sums. We could do so 
because both sums are defined over the trian-
gle shown in blue in the figure.

Figure 8.30
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Hence we obtain

which connects ࢭk'2ࢮ�to the original ࢭk2ࢮ after the random removal of an f 
fraction of nodes. Let us put the results Eq. 8.35 and Eq. 8.38 together:

According to the Malloy-Reed criteria the breakdown threshold is given 
by the equality

Inserting Eq. 8.38 and Eq. 8.40 into Eq. 8.41 we obtain our final result Eq. 8.7 

in SECTION 8.3,

providing the breakdown threshold of networks with arbitrary pk under 
random node removal.
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SECTION 8.11

The goal of this section is to determine the dependence Eq. 8.10 of the 
breakdown threshold of a scale-free network on the network size N. We 
start by calculating the mth moment of a power-law distribution

As discussed in CHAPTER 4, we have

To calculate fc we determine the ratio

which in the N ĺ�∞ (and hence the kmax ĺ ∞) limit depends on Ȗ as

The breakdown threshold is given by

where ਧ is given by Eq. 8.46. Inserting Eq. 8.43 into Eq. 8.42 and Eq. 8.47, we obtain

which is Eq. 8.10, providing the dependence of fc on N.

ADVANCED TOPICS 8.D
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SCALE-FREE NETWORK

NETWORK ROBUSTNESS

(8.43)

(8.44)

(8.45)

(8.46)

(8.47)

�km � = (� �1)kmin
� �1 �

kmin

kmax

km�� dk = (� �1)
(m � � +1)

kmin
� �1[km�� +1]kmin

kmax

kmax = kminN
1

� �1

�km � = (� �1)
(m � � +1)

kmin
� �1[kmax

m�� +1 � kmin
m�� +1]

� � �k2 �
�k�

= (2 � � )
(3� � )

kmax
3�� � kmin

3��

kmax
2�� � kmin

2��

� = �k2 �
�k�

= 2 � �
3� �

kmin � > 3

kmax
3�� kmin

� �2 3> � > 2
kmax 2 > � >1

�

�
��

�
�
�

(8.48)fc = 1�
1

� �1

(8.49)fc � 1�
C

N
3��
� �1

,

,

,



47

SECTION 8.12

The goal of this section is to explore how a scale-free network responds 
to attack, by deriving Eq. 8.12. In other words, we calculate fc for an uncor-
related scale-free networks, generated by the configuration model with pk 
= c ʷ k−ਠ where k = kmin ,…, kmax and c ≈ (ਠ − 1)/(k−ਠ+1 − k−ਠ+1 ).

The removal of an f fraction of nodes in a decreasing order of their de-
gree (hub removal) has two effects [9, 50]:

(i)  The maximum degree of the network changes from kmax to k'max.

(ii) The links connected to the removed hubs are also removed, chang-
ing the degree distribution of the remaining network.

The resulting network is still uncorrelated, therefore we can use the 
Molloy-Reed criteria to determine the existence of a giant component. We 
start by considering the impact of (i). The new upper cutoff, k'max, is given 
by

If we assume that kmax ɝ�k'max and kmax ɝ�kmin (true for large scale-free 
networks with natural cutoff), we can ignore the kmax terms, obtaining

which leads to

Eq. 8.51 provides the new maximum degree of the network after we re-
move an f fraction of the hubs.
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Next, we turn to (ii), accounting for the fact that hub removal also re-
moves the links connected to these hubs, changing the degree distribution 
pk ĺ p'k . In the absence of degree correlations we can assume that the links 
of the removed hubs connect to randomly selected stubs. Consequently, we 
calculate the fraction of links removed ‘randomly’, f, as a consequence of 
removing an f fraction of the hubs:

Ignoring the kmax again and using                              we obtain

Using Eq. 8.49 we obtain:

For ਠ�̹ 2 we have f ̹ 1, which means that the removal of a tiny fraction 
of the hubs removes all links, potentially destroying the network. The rea-
son is that for ਠ = 2 the hubs dominate the network. The degree distribution 
of the remaining network is

Note that we obtained the same degree distribution as Eq. 8.27 in AD-

VANCED TOPICS 5.B. This means that now we can use the calculation meth-
od developed for random node removal. To be specific, we calculate�ਧ for a 
scale-free network with kmin and k'max using Eq. 8.45:

Substituting into this Eq. 8.57 we have

After simple transformations we obtain:

which is Eq. 8.12 in SECTION 8.3.
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SECTION 8.13

In this section we discuss two additional cascading failure models, that 
together with the Failure Propagation Model and the Branching Model dis-
cussed in SECTION 8.5, help illustrate the universality of the mechanisms 
governing cascading failures.

OVERLOAD MODEL

The overload model was proposed to capture the emergence of large 
blackouts [17]. The model has N identical nodes (components), each 
node j assigned an initial load Lj, which is a random variable uniformly 
distributed between Lmin and Lmax. A node fails when its load exceeds a 
preassigned threshold, Lfail assumed to be the same for all nodes. When 
a node fails, a fixed amount of power P is transferred to all other nodes 
in the network. Hence the impact of each failure is global, affecting not 
only the neighbors of the failed node, but all other nodes. 

This mimics the fact that after each node or link failure the electric cur-
rents rearrange themselves globally. Hence, the impact of a local fail-
ure is not limited to the failed node’s or link’s direct neighbors, but can 
alter the current flowing through all nodes and links. Consequently, the 
model’s behavior is independent of the network topology: the system 
behaves as if it would be fully connected.

To begin a cascade, we assume an initial disturbance that adds to the 
load of each component an additional load P. Some nodes with high ini-
tial loads Li may fail and each such failure distributes an additional load 
P to the remaining nodes, potentially causing further failures Fig. 8.31a, 

b. The model’s behavior is captured by the phase diagram of Fig. 8.31c, 
predicting three regimes:

•  Subcritical regime
If the initial load Lmin is under a global threshold, then most local per-
turbations die out, hence we do not observe global avalanches. In this 
regime the avalanche size distribution is bounded Fig. 8.31d.

ADVANCED TOPICS 8.F
MODELING CASCADING FAILURES

NETWORK ROBUSTNESS
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•  Supercritical regime
If the initial load Lmin is over the threshold, then the perturbations 
propagate, resulting in avalanches that involve most nodes. In this 
regime the avalanche size distribution is again bounded and bimodal, 
capturing the coexistence of only very large and very small avalanch-
es.

•  Critical regime
At the boundary of the subcritical and the supercritical regime, the 
avalanche size distribution follows a power law. The observed ava-
lanche exponent is ਞ = 3/2.

SANDPILE MODEL

A common feature of the cascade and the overload models is that 
the empirically documented power-law behavior appears only in the 
critical regime. Therefore, we need to tune the model parameters to 
reach this critical state. Outside this critical regime the avalanche siz-
es follow an exponential distribution. This raises an important ques-
tion: how does nature drive these systems to criticality? Attempts 
to answer this question have lead to a family of models collectively 

NETWORK ROBUSTNESS

(a) To illustrate the dynamics of the overload 
model, we start with four nodes, each as-
signed an initial load Li. When node A is 
perturbed by increasing its load above 
the threshold Lfail = 1, it fails and redistrib-
utes a fixed amount of power P = 0.15 to 
all other nodes in the network. Hence, the 
remaining nodes will now have a load Li = 
Li + P.

(b) The extra power will cause node C to also 
fail, as now Lc = 1.05 > Lfail. That event adds 
another P power to the remaining nodes, 
prompting them to fail too, allowing the 
avalanche to sweep the full network.

(c) Phase Diagram: Mean number of failed 
components in function of Lfail in the over-
load model. At the critical loading Lfail = 0.8 
the model changes its behavior, support-
ing large avalanches.

(d) Log-log plot showing the distribution of the 
number of components failed for three 
values of Lfail. Note the power-law scaling 
of p(s) for the critical load L = 0.8.

After [17].

Figure 8.31

Avalanche sizes in the overload
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called self-organized critical (SOC) models [51]. These models do not 
require external tuning, but self-organize to a critical state. Probably 
the best known of these is the sandpile model [52] that mimics the 
dropping of single grains on a plane. When the pile gets too high on a 
site, it topples by moving its grains to the neighboring sites. The mod-
el is typically defined on a lattice. With interest in cascading failures, 
its network version has been explored [30, 31]. The model starts from 
a network with an arbitrary wiring diagram and evolves following 
these steps:

1.  Each node i is given a prescribed threshold zi( ≤ ki). We denote with 
[zi] the smallest integer not smaller than zi (zi ≤ ki).

2.  At each time step a grain is added at a randomly chosen node i, so 
that the height of the node i increases by one (hi ĺ hi + 1).

3. If the height of node i reaches or exceeds zi, it becomes unstable and 
zi grains on the node topple to zi randomly chosen adjacent nodes 
among the ki neighbors of node i. Therefore, hi ĺ hi + 1- zi

 and hi ĺ 
hi + 1 for zi neighboring nodes of j.

4.  If this toppling causes any of the adjacent nodes to become unsta-
ble, zi subsequent toppings follow until there is no unstable node 
left. This process defines an avalanche.

We repeat the steps 2–4 and determine the avalanche size s in each 
case, where s represents the number of toppling events in a given av-
alanche. The analytical calculations indicate that for a random net-
work the avalanche size distribution follows [30, 31]

For a scale-free network the distribution depends on ਠ as:

In summary, the four cascading failure models discussed in this chap-
ter predict a critical regime where the avalanche size distribution follows 
a power law. A summary of the avalanche exponents obtained for these 
models is provided in Table 8.3.

NETWORK ROBUSTNESS

(8.60)

(8.61)

The avalanche exponents for the four models 
supporting cascading failures. Here�ਞER corre-
sponds to the avalanche exponent if the un-
derlying network is random; ਞSF describes av-
alanches propagating on a scale-free network.

Table 8.3

The avalanche exponents in the explored models
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SECTION 8.14

In this section we explore the attack and error curves for the ten refer-
ence networks discussed in Tables 4.1 and Eq. 8.2. The corresponding curves 
are shown in Fig. 8.33. Their inspection reveals several patterns, confirming 
the results discussed in this chapter:

• For all networks the error and attack curves separate, confirming 
the Achilles’ Heel property: real networks are robust to random fail-
ures but are fragile to attacks.

• The degree of separation between the error and attach curves de-
pends on the underlying degree heterogeneity and the average de-
gree of each network. For example, for the citation and the actor 
networks we observe a very large fc for attacks, at of 0.5 and 0.75, 
respectively. This is mainly because these networks have an unusu-
ally large ࢭkߺࢮ with ࢭk20.8 = ࢮ for citations and ࢭk83.7 = ࢮ for the actor 
network. Their high robustness to attacks is attributed to their high 
link density.

ADVANCED TOPICS 8.G
ATTACK AND ERROR
TOLERANCE OF REAL NETWORKS

NETWORK ROBUSTNESS
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OF REAL NETWORKS

The error (green) and attack (red) curves for 
the ten reference networks listed in Table 4.1. 
The green vertical line corresponds to the es-
timated fc for errors, while the red line corre-
sponds to  fc for attacks. We estimated  fc as the 
point where the giant component first drops 
below 1% of its original size. This procedure in 
most systems accurately captures the point 
where P∞ drops to zero. The only exception 
is for the metabolic network, for which f < 
0.25, but a small cluster persists, pushing the 
reported  fc to  fc 0.5 ݍ. Another way to detect 
the critical point fc is to plot the size of the 
second largest component in function of the 
fraction of deleted nodes f. For infinite net-
works S2 diverges at  fc; for finite networks we 
do not observe a true phase transition, but S2 
has a maximum at fc. Hence we can estimate 
the critical point fc by searching for this max-
imum.

Figure 8.32

Error and attack curves for reference networks

NETWORK ROBUSTNESS
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SECTION 8.15

The purpose of this section is to derive the bimodal distribution that si-
multaneously optimizes a network’s topology against attacks and failures, 
as discussed in SECTION 8.6 [36]. Let us assume, as we did in Eq. 8.17, that the 
degree distribution is bimodal, consisting of two delta functions:

First, we calculate the total threshold, f tot, as a function of r and kmax for 
a fixed ࢭkࢮ. To obtain analytical expressions for fc

rand and fc
targ, we start by 

calculating the moments of the bimodal distribution Eq. 8.60,

Inserting these into Eq. 8.7 we obtain

To determine the threshold for targeted attack, we must consider the fact 
that we have only two types of nodes, an r fraction of nodes having the 
larger degree kmax and the remaining (1 − r) fraction has the smaller degree 
kmin. Hence hub removal can either remove all hubs (case (i)), or only some 
fraction of them (case (ii)):

(i)  fc
targ > r . In this case all hubs have been removed, hence all nodes left 

after the targeted attack have degree kmin. We therefore obtain

ADVANCED TOPICS 8.H
THE OPTIMAL DEGREE
DISTRIBUTION
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(ii)  fc
targ  < r. In this case the removed nodes are all from the higher de-

gree group, leaving behind some kmax nodes. Hence we obtain

With the thresholds Eq. 8.64 - Eq. 8.66, we can now evaluate the total 
threshold fc

tot  given by Eq. 8.16. We can obtain an expression for the optimal 
value of kmax as a function of r by determining the value of k for which  fc

tot 
is maximal. Using Eq. 8.64 and Eq. 8.66, we find that for small r the optimal 
value of kmax can be approximated by

Using this result and Eq. 8.14, for small r

Thus f  tot c approaches the theoretical maximum when  r approaches zero. 
For a network of N nodes, the maximum value of fc

tot is obtained when r = 
1/N, being the smallest value consistent with having at least one node of 
degree kmax. Given this r the equation determining the optimal kmax, repre-
senting the size of the central hubs, is [36]

where A is defined in Eq. 8.67.
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HOMEWORK
SECTION 8.16

1.  We have seen in SECTION 8.2 that the value of pc decreases with th lat-
tice dimension: for a simple cubic lattice, representing the three di-
mensional version of a square lattice, we have pc = 0.2488, less than 
half of pc = 1/2 for two dimensional square lattice. 

Can you offer an intuitive explanation why does pc decrease with the 
lattice dimension?

NETWORK ROBUSTNESS
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