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ABSTRACT The shipping market, a major component of the global economy, is characterized by high risk
and volatility. The Baltic dry index is an influential indicator in the world shipping market and international
trade. Several studies have used a variety of techniques to generate Baltic dry index predictions. The
most prominent techniques utilize either econometric or artificial intelligence computing. We compare
the forecasting accuracy of two typical univariant econometric models and three artificial neural networks
(ANNs)-based algorithms. We find that when using daily data, econometric forecasting models produce
better one-step-ahead predictions than ANN-based algorithms. When forecasting weekly and monthly
data, ANN-based algorithms produce fewer errors and a higher direction matching rate than econometric
models. We also compare the predictive power of a number of different models when applied to the
2008 financial crisis and find that the generalized autoregressive conditional heteroskedasticity model and
the back propagation neural network algorithm produce the best one-step-ahead and seven-steps ahead
predictions, respectively.

INDEX TERMS Baltic dry index prediction, ARIMA,GARCH, artificial neural networks(ANN), BP neural
network, RBFNN, ELM.

I. INTRODUCTION
More than 90% of current international trade utilizes ship-
ping, an industry that is extremely dynamic and volatile [1].
Volatility measurements generated by the Baltic Dry Bulk
Index (BDI) indicate that it is significantly higher in shipping
markets (>79%) than in commodity (>50%) and equity mar-
kets (e.g.,the Standard& Poor’s 500 Index (S&P500)> 20%)
[2]–[4].
The Baltic dry index is regarded as a ‘‘barometer’’ to eval-

uate the shipping industry, international trade, and the global
economy [5]–[7]. Investors, speculators, and researchers
have long found these indices to be useful, theoretically chal-
lenging, and relevant when projecting future profits. Because
many managerial decisions are based on future prospects,
forecasting accuracy is essential in large- scale organizations
and companies. Recent advances in both analytical and com-
putational methods have produced a number of new ways of
mining freight index time-series data.

The analytic methodology of dry bulk freight index
forecasting falls into two categories. The first includes uni-
variant and multivariant econometric methods, such as the
auto-regressive integrated moving average (ARIMA), vec-
tor auto-regression (VAR), generalized autoregressive con-
ditional heteroskedasticity (GARCH), and the vector error
correction (VEC) models.
Cullinane et al. [8] was the pioneer in developing a

BDI index analyzing method using the ARIMA model.
Kavussanos andAlizadeh [9] then created a seasonal ARIMA
model of a single variable and a VAR model to study
the seasonal characteristics of the dry bulk shipping mar-
ket. Batchelor et al. [10] compared the ARIMA, VAR, and
VECM models in predicting spot and forward freight
rates. Chen et al. [11] used the ARIMA and VAR mod-
els to predict the freight rates of several dry bulk routes,
and they found that VAR performs better in out-of-sample
forecasts than ARIMA. Tsioumas et al. [12] developed
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a multivariate vector autoregressive model with exogenous
variables (VARX) to improve the forecasting accuracy of
the BDI, and they found that the VARX model outperforms
the ARIMA. Adland et al. [13] presented cointegrated time
series models in continuous and discrete time to analyze the
dynamics of regional ocean freight rates.
Stopford [14] indicates that maritime forecasting has a

poor reputation because it is difficult for traditional econo-
metric and statistical methods to capture the nonlinear charac-
teristics hidden in dry bulk freight indices [15]. Thus a second
category of analytic methodologies now utilizes a number
of non-linear and artificial intelligence (AI) methods, such
as ANN, support vector machines (SVM), and non-linear
regression.
Leonov and Nikolov [16] use a model based on wavelets

and neural networks to predict dry bulk freight rates.
Bulut et al. [17] apply a fuzzy vector autoregressive inte-
grated logical model to forecast time charter rates.
Duru et al. [18] propose a fuzzy-DELPHI adjustment method
of increasing accuracy when statistically forecasting dry
bulk shipping indices. Han et al. [19] use wavelet trans-
form to denoise the BDI data series and combine wavelet
transform and a support vector machine to forecast BDI.
Zeng et al. [20] use empirical mode decomposition (EMD)
and artificial neural networks (ANN) to forecast the BDI.
Chou and Lin [21] propose an integrated fuzzy neural net-
work combined with technical financial market indicators
to predict BDI and find that forecasts using an integrated
fuzzy neural network are more accurate that those using
the traditional approach. ìahin et al. [22] compare the BDI
forecasting accuracy of three ANNmodels and find that their
performances are similar, but that the most consistent is an
ANN using BDI input data from the two most-recent weekly
observations.
The ANN-based prediction model produces good

nonlinear approximations, but its structure is difficult to
determine. Neural networks are susceptible to either insuf-
ficient or excessive training, and this can induce shortages—
such as trapping in a local minimum—caused by its sensitiv-
ity to initial values.
Although much research on BDI prediction has been con-

ducted using various techniques, we still do not understand
the applicability, superiority, and deficiencies of different
forecasting techniques. Approximations of econometricmod-
els when applied to complex nonlinear problems are inad-
equate, and using ANN-based algrithoms to model linear
problems also produces misleading results. For example,
Markham and Rakes [23] used simulated data and found that
the performance of ANNs is strongly affected by sample
size and noise level. Because it is difficult to know all the
characteristics of real-world datasets, the blind application of
ANNs is unwise.
There are few studies that compare the performance of

these two techniques for different time-scale datasets and
for single and multi-period ahead forecasting. We here com-
pare the sensitivity and predictive accuracy of the typical

univariant econometric models with commonly-used
ANN-based algrithms when applied to the BDI at different
time-scales and in various prediction senarios. The goal of
this comparative study is to determine the suitable model for
forecasting future shippingmarket trends, the results of which
would be useful in academic research and industrial practice.
Section 2 of this paper describes the principles and fore-

casting procedures of econometric models and ANN-based
algrithoms. Section 3 reviews BDI shipping freight mar-
ket data, detects stationarity and votility, and proposes
several metrics for quantifying predictive performance.
Section 4 compares the performance of several empirical
results. Section 5 presents conclusions and recommendations
for future studies.

II. METHODOLOGY
A. ECONOMETRIC FORECASTING MODEL
The most common methods of forecasting trends and sea-
sonal components are time series analysis. Here we focus on
the (i) ARIMA and (ii) ARIMA-GARCH models.

1) ARIMA
ARIMA models have dominated time series forecasting
for over 50 years. Auto-regressive (AR) models were first
introduced by Yule and later generalized by Walker, and
moving average (MA) models were first introduced by
Chatfield [24]. Box and Jenkins combined the two to form
the auto-regressive moving average (ARMA) method. In an
ARMA (p, q) model, the future value of a variable is assumed
to be a linear function of several past observations and random
errors, i.e.,

yt = c+ '1yt�1 + . . . + 'pyt�p
+ "t � ✓1"t�1 . . . � ✓q"t�q, "t ⇠ N (0, 1), (1)

where yt and "t are the actual value and random error at
time period t , respectively, 'i (i = 1, 2, . . . , p) and ✓j (j =
0, 1, 2, . . . , q) are model parameters, and p and q are integers
often referred to as orders of the model. Random errors "t are
assumed to be independently and identically distributed with
a mean of zero and a constant variance of � 2.
When a variable is not stationary, a common solution is to

use different variable values and the integrated part converts
an ARMA(p, q) model into an ARIMA (q, d, q)model. Here
d is the number of differences needed for stationarity. Hence
an ARIMA model can be expressed

1yt = c+ '11yt�1 + . . . + 'p1yt�p
+ "t � ✓1"t�1 . . . � ✓q"t�q, "t ⇠ N (0, 1), (2)

where1yt is the value of yt after d number of different values.
Here when d = 1 then 1yt = yt � yt�1. Equation (2) entails
several special cases of the ARIMA family of models. When
q = 0, Eq. (2) becomes an ARmodel of order p. When p = 0,
the model reduces to an MA model of order q. A central task
of ARIMA model building is to determine the appropriate
model parameters (p, d, q).
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To select d , we first check the autocorrelation by plotting
the autocorrelation function (ACF) and partial autocorrela-
tion function (PACF). Taking into consideration the lag of
ACF and PACF, we apply first order or higher order dif-
ferences to the original BDI to achieve stationarity after d
order differencings, which is confirmed using the augmented
Dickey-Fuller Test.
To select the best fitting ARIMA model, we investi-

gate several ARIMA models with p ranges from 1 to 10
and q ranges from 1 to 10. This produces 100 different
ARIMA models with different p, q, and the best fitting
model is the one that exhibits the lowest Akaike information
criteria (AIC).

2) ARIMA-GARCH
Over the three decades since its introduction, GARCH
model (Bollerslev, 1986; Engle, 1982) and numerous variants
have improved volatility estimation and time series predic-
tion [25], [26]. Some studies [27]–[30] find that GARCH
models outperform such traditional techniques as moving
average, exponential smoothing, and linear regression when
modeling and forecasting conditional time series.
Because a GARCH model is able to deterministically

describe volatility at time t using the information avail-
able at time t�1, it can model and forecast its value when
the time series of each component q is heteroskedastic.
Pham and Yang [31] estimate the ARMA(p, q)–GARCH
(r, s) model for a univariate process using

yt = c+
pX

i=1

'iyt�i +
qX

j=1

✓j"t�j + "t , "t ⇠ N (0, � 2
t ), (3)

where yt and "t are the actual value and random error at
time period t , respectively, and 'i (i = 1, 2, . . . , p) and ✓j
(j = 0, 1, 2, . . . , q) are model parameters. This differs from
the ARIMAmodel in that random errors "t are not assumed to
be independently and identically distributed with a constant
variance of � 2. Otherwise, "t = �tZt , where Zt ⇠ iidN (0, 1).
Then "t follows a GARCH (r, s) model,

� 2
t = a+

rX

g=1

�g�
2
t�g +

sX

k=1

!k"
2
t�k , (4)

where � 2
t is the conditional variance of yt , and a, !k , and

�g are the constant and estimated parameters of ARCH
and GARCH, respectively. After selecting the appropriate
ARIMA, we use the Lagrange-multiplier (L-M) test to detect
ARCH effects. If we find GARCH effects, we employ
ARIMA-GARCH models with r ranges from 0 to 4 and s
ranges from 0 to 4. As in the ARIMA model, the model with
the lowest AIC value is the best fitting model.

B. ARTIFICIAL NEURAL NETWORKS ALGORITHMS
A series of ANN algorithms for univariable time series fore-
casting were recently developed, and they have proven to be
superior to traditional forecasting models [32], [33].

There are three steps in the time series forecasting method
that uses ANN:
(i) Prepare the training and test datasets.

Assuming that the original sample set has N observa-
tion values, we use the sliding window method with
window length L and sliding step l = 1 to divide
the original BDI dataset into M = [N � L + l] data
samples. Each sample contains L observation values of
the BDI {Xt ,Xt�1, ···,Xt�L}. For each sample, we select
the last s observation values as the output set and the
previous L � s observation values as the input ANN
set. Here s is the number of steps in the multi-periods-
ahead prediction. In one-step-ahead predicting s = 1
and L = 5. In seven-steps-ahead predicting s = 7 and
L = 35. We then divide the sample dataset into two
parts, a training set and test set. The training set here is
the firstM�1 samples in the sample dataset and the test
set is the last or sample M . We also divide the training
dataset into a sub-training set and a sub-validation set
to generate the trained neural network. Using a previous
study [34], we set the ratio of the sub-training set and the
sub-validation dataset at 8 : 2.

(ii) Data normalization and denormalization.
To use the ANNs algorithm we first minimize the differ-
ence between the threshold and actual data. The training
data are usually normalized before being input,

X 0
t = Xt � Xmin

Xmax � Xmin
, (5)

where X 0
t is the data after normalization at time t ,

and Xmin and Xmax are the minimum and maximum
of original data Xt in our study, which are daily,
weekly, or monthly BDIs. After processing we antinor-
malize the output,

bYt = Y 0
t (Ymax + Ymin) + Ymin (6)

where Y 0
t is the predicted data after anti-normalization

at time t , and Ymin and Ymax are the minimum and
maximum of output Y 0

t .
(iii) Train the neural network and simulate the prediction

results.
Finally we use the normalized sub-training dataset
and sub-validation dataset to train the neural network,
which we regard an in-sample prediction similar to that
using an econometric forecasting model. We set all
ANN-based algorithms to use a two-layer artificial
neural network with one hidden layer and one output
layer. Here the number of units in the hidden layer
can vary from model to model. We then use k-fold
cross validation to select the ANN architecture with
the fewest errors. We randomly partition the original
training dataset into k equal sized sub-samples, here
k = 5. Of the five sub-samples, a single sub-sample
is retained as sub-validation data to test the model. The
remaining four sub-samples are used as sub-training
data. We then repeat the cross-validation process five
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times, using each of the five sub-samples once as valida-
tion data [35]. After determining the best ANN, we input
the L � s values of the test set into the neural network
and output the s values as the forecasting result, which is
the out-sample prediction. For each prediction, we train
the neural network and simulate the predicted value
ten times and use the average of all predictions as the
final forecasting result, which we then compare with the
actual value of the testing dataset.

We here focus on three widely-used models, (i) the back
propagation neural network (BPNN), (ii) the radial basis
function neural network (RBFNN), (iii) and the extreme
learning machine (ELM).
Although BPNN is a widely-used neural network models,

it requires a long training period. The RBFNN uses local
transformations that improve BPNN by enabling much more
rapid training. Because RBFNN with one hidden layer can
also approximate any function, we select it to be the second
ANN-based model in our comparison. ELM is an emerging
learning algorithm for forward-feed neural network training.
Unlike BPNN and RBFNN, the internal parameters of ELM
are not iteratively adjusted, but are set to random values,
usually uniformly distributed, which simplifies the require-
ments for determining the output hidden unit weights. Thus
the computational burden of ELM is significantly less, but its
performance is comparable to that of BPNN and RBFNN in
different applications.

1) BACK PROPAGATION NEURAL NETWORK
The BPNNmodel is one of the most widely used ANN-based
algorithms for classification and prediction [36]–[38]. This
technique is an advanced multiple regression analysis that
deals with responses that are more complex and non-linear
than those of standard regression analysis. The basic formula
of the BP algorithm is

W (n) = W (n� 1) � 1W (n), (7)

where

1W (n) = ⌘
@E
@W

(n� 1) + �1W (n� 1), (8)

where W is the weight, ⌘ the learning rate, E the gradient of
error function, and �1W (n� 1) the incremental weight.
Using BPNN we select the hyperbolic tangent sigmoid

transfer function to be the activation function, set the maxi-
mum number of training epochs to 1000, and set the learning
rate to 0.01. The number of nodes in the hidden layer ranges
from 20 to 100 with an interval of 10, and we use k-fold
cross-validation to determine the number of nodes.

2) RADIAL BASIS FUNCTION NEURAL NETWORK
RBFNN is an artificial neural network that uses radial basis
functions as activation functions. Radial basis function (RBF)
networks typically have three layers: an input layer, a hidden
layer with a non-linear RBF activation function, and a linear
output layer [39]–[41]. The input can be modeled as a vector

of real numbers x 2 Rr , and the prototype of the input vectors
Bi 2 Rr . The output of each RBF unit is

Ri(X ) = Ri(k X � Bi k), i = 1, 2, . . . , u, (9)

where k k is the Euclidean norm on the input space. Because
it can be factored, the Gaussian function is the preferred radial
basis function. Thus

Ri(X ) = exp[�k X � Bi k2
� 2
i

] (10)

where �i is the width of RBF unit i. The output Yj(X ) of unit
j of an RBFNN is

Yj(X ) =
uX

i=1

Ri(X ) ⇤W (j, i), (11)

where R0 = 1, W (j, i) is the weight or strength of receptive
field i to the output j, and W (j, 0) is the bias of output j.
Geometrically, an RBFNN partitions the input space into
several hypersphere subspaces. The parameters of the RBF
networks are the center, the influence field of the radial
function, and the output weight (between the intermediate
layer neurons and those of the output layer). The training
process can obtain these parameters.
For RBF we set the radial basis function to the Gaussian

function. The number of nodes in the hidden layer varies
from 90 to 200, increasing each step by ten in its architectural
optimization.

3) THE EXTREME LEARNING MACHINE
ELM was originally applied to single hidden-layer feed-
forward neural networks and then extended to generalized
feed-forward networks [42], [43]. For a set of training sam-
ples (Xj,Cj)Nj=1 with N samples and C classes, the single hid-
den layer feed-forward neural network with h hidden nodes
and activation function f (x) is
hX

i=1

�ifi(Xj) =
hX

i=1

�if (Wi ⇤ Xj + bi) = Yj, j = 1, 2, . . .N ,

(12)

where Xj = [xj1, xj2, · · · , xjm]T , Cj = [cj1, cj2, · · · , cjm]T ,
Wj = [wj1,wj2, · · · ,wjm]T , and bi are the input, its corre-
sponding output, the connecting weights of hidden neuron i
to input neurons, and the bias of hidden node i, respectively.
Here �j = [�j1, �j2, · · · , �jm]T are the connecting weights of
hidden neuron i to output neurons, and Yj the actual network
output with respect to input Xj. Because the hidden param-
eters Wi, bi can be randomly generated during the training
period without tuning, ELM solves a compact model that
minimizes the error between Cj and Yj, i.e., mink H� �C kF
Here H is the hidden layer output matrix and � the output

weight matrix. The merit of ELM is that only the output
weights are needed when randomly selecting the hidden node
parameters (the input weights and bias). We set the number of
ELM nodes in the hidden layer in a range between 10 to 50,
increasing each interval by 10.
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III. DATA DESRCIPTION AND PREDICTION
PERFORMANCE METRICS
A. DATA
To service the participants in the dry bulk shipping market,
the London Baltic Exchange began publishing the Baltic
Freight Index (BFI) in 1985. On 1 November 1999 it was
replaced by the BDI, which is now widely used by industry
practitioners and considered the ‘‘barometer’’ of the dry bulk
shipping market. The BDI is an index that measures 26 ship-
ping routes in terms of time-charter and voyage. We here
compare the forecasting of the daily, weekly, and monthly
BDI data from 1 November 1999 to 30 February 2018. All
of the data is from the world’s leading shipping database,
Clarkson Sin (https://sin.clarksons.net/)

FIGURE 1. Index values of BDI from November 1999 to February 2018.

Figure 1 shows that the fluctuations of the BDI have a
large amplitude, a high frequency, and are irregular. From
November 1999 to early 2003, the BDI value gently fluc-
tuates, but beginning in 2003 market volatility increases,
the BDI reaches 11793 on 20 May 2008, and then drops
sharply to approximately 700 points in the following six
months.

TABLE 1. Descriptive statistics of daily value and rate of change of BDI.

Table 1 provides descriptive statistics of the daily BDI and
its rate of change. The rate of change of the daily BDI value
is Ryt = yt�yt�1

yt�1
.

Note that the volatile daily movements of the BDI value
range from �11.37% to 14.63%. The Jarque and Bera
(1980) test rejects the null hypothesis of normality at the

5% significance level for both BDI daily values and returns.
Finally, the values of the augmented Dickey and Fuller (ADF)
unit root test suggest that the BDI value is unstationary, and
that a first order difference is needed if predictions are to be
based on ARIMA and GARCH models.

B. ACCURACY METRICS
To measure the forecasting accuracy of these proposed meth-
ods we use the mean absolute percentage error (MAPE) and
the root mean square error (RMSE) [44], [45], which are
defined

MAPE = 1
N

NX

t=1

| X (t) � X̂ (t)
X (t)

|, (13)

and

RMSE =
sPN

t=1(X̂ (t) � X (t))2

N
, (14)

where X̂ (t) andX (t) are the predicted and real values at time t ,
respectively, and N is the size of the dataset being tested. The
MAPE technique measures the mean absolute relative error
of the prediction models, and the RMSE technique measures
their standard deviation.
In using these error criteria we find that the smaller the

MAPE and RMSE values the greater the accuracy of the
model.
For any given prediction, the actual outcomes above and

below the predicted outcome are treated asymmetrically
when using the MAPE and RMSE [46] techniques. Thus
the directional tendencies of the data fluctuations—whether
upward, stable or downward—are important. We measure
them using the direction matching rate Dsta, which is defined

Dsta = 1
N

NX

t=1

a(t), (15)

a(t) =
(
1, (X (t + 1) � X (t)) ⇤ (X̂ (t + 1) � X (t)) � 0
0, otherwise.

(16)

The closer the Dsta value is to 1, the higher the accuracy of
the directional prediction of the models, and the closer the
Dsta value is to 0, the lower the accuracy of their directional
predictions.
In addition to errors and directional matching rates,

we must also evaluate whether the proposed forecasting
models outperform simple banchmark forecasting methods.
We use two simple banchmark methods, (i) the naïve method
based on the most recent observation, and (ii) the historical
mean method using data up to the most recent observation.
To compare the predictive accuracy of our proposed

models with that of the naïve method, we use the
mean absolute scaled error (MASE) proposed in 2005 by
Hyndman and Koehler [47] and defined

MASE = MAE
MAEsn

, (17)
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where MAE is the out-sample mean absolute error,

MAE =
PM+N

t=M+1 |X̂ (t) � X (t)|
N

. (18)

HereMAEsn is theMAEof the one-step ormulti-step ahead
naïve method for in-sample prediction, which is defined

MAEsn =
PM

t=1+n |X (t) � X (t � n)|
M � n

, (19)

where X̂ (t) andX (t) are the predicted and real values at time t ,
respectively, N is the size of the dataset being tested,M is the
size of the training dataset, and n is the length of the period-
ahead prediction.
When MASE is less than one it produces a better forecast

than the average one-step naïve forecast computed in-sample.
Conversely, when it is greater than one the forecast is worse
than the average one-step naïve forecast computed in-sample.
When computing multi-step forecasts, we can scale using the
in-sample MAE derived from multi-step naïve forecasts.
To compare the predictive accuracy of our proposed

models with the mean of the training dataset, we apply
the Nash–Sutcliffe model efficiency coefficient (NSE) [48],
which is defined

NSE = 1 �
PN

t=1(X̂ (t) � X (t))2
PN

t=1(X (t) � X̄ )2
, (20)

where X̄ is the mean of the training dataset. NSE can range
from 1 to 1. When NSE = 0, the model predictions are as
accurate as the mean of the observed data, but whenNSE < 0
the observed mean is a better predictor than the forecasting
model. The closer the NSE model is to 1, the higher its accu-
racy. There are threshold values producing sufficient level of
accuracy between NSE > 0.5.

IV. EMPRICAL RESULTS
Because previous studies have found that predictive models
are sensitive to the time scale of the data, we compare the
accuracy of the econometric models with ANN-based algo-
rithms using daily, weekly, and monthly BDI.
Because the shipping market is cyclical, we divide our

dataset into three long-term cycles. Each cycle contains at
least one BDI peak and contraction. In our BDI dataset
the three cycle periods are (1999-2006), (2007-2010), and
(2011-2018).
To compare how econometric and ANN-based models

behave in different market cycles, we set the length of each
cycle period to be the same as that of the sample data. Thus
for daily, weekly, and monthly datasets, we select three stages
when we compare forecasts.

A. DAILY BDI PREDICTIONS
When using econometric predictivemodels, for each stagewe
randomly select the beginning time point, make 200 consecu-
tive observations to obtain the best fitting econometric model,
and use the best fittingmodel to conduct out-sample one-step-
ahead and seven-steps-ahead forecasts. As in ANN-based

forecasting, we use the same observations as the training data
and also predict the one-day-ahead and seven-days-ahead
values.We compare the out-sample predictive accuracy of the
econometric models with the ANN-based algorithms.

TABLE 2. Predictive performance of one-step head forecasting
(daily data).

Table 2 compares the one-step-ahead performance of
econometric models with that of ANN-based algorithms.
Note that the values of MASE and NSE indicate that all
models perform better than the naïve method and the mean
value of historical data. The GARCH model outperforms
the ARIMA model in all three forecasting stages with lower
MAPE and RMSE. The GARCH model also exhibits lower
MAPE and RMSE outcomes than the ANN-based algorithms
in all stages.
Table 3 shows the seven-steps-ahead predictive perfor-

mances of econometric models and ANN-based algorithms.
We find that GARCHoutperformsARIMA among the econo-
metric forecasting models. Among the ANN-based models,
no single method performs the best in all stages. For example,
in the second stage ELM performs better than the other
ANN-based models, but the RBFNN is the most accurate
of the ANN-based models in the first and third stages. This
indicates that the predictive power of ANN-based models
is sensitive to the characteristics of the training data. The
difference in errors between the GARCH model and the
ANN-based algorithms is slight but if we compare them with
Dsta the predictions of ANN-based models produce a better
directional matching than the econometric models. Note that
in some stages, simple baseline forecasting methods produce
more accurate forecasts than the proposed models. For exam-
ple, in the third stage the simple naïve method andmean value
of historical data both outperform BPNN.

B. WEEKLY BDI PREDICTIONS
To make weekly data predictions, we apply the same pro-
cedure to obtain a sample dataset and make out-sample
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TABLE 3. Predictive performance of seven-step head forecasting
(daily data).

TABLE 4. Predictive performance of one step head forecasting (weekly
data).

predictions for one-step-ahead and seven-steps ahead-values
using econometric models and ANN-based algorithms.
Table 4 compares the one-step-ahead performance of the
econometric models with the ANN-based algorithms for the
weekly BDI data.
Note that the forecasting errors are lowest in the BPNN

model in all stages. In one-step-ahead predictions, BPNN
forecasts the best among the ANN-based algorithms in all
three stages, but the forecasts of the other ANN-based models
are not better than those of the econometricmodels. The accu-
racies of the ARIMA and GARCH models are similar, but
the accuracies of the ANN-based models vary dramatically
across different stages.
Table 5 compares the seven-steps-ahead predictive perfor-

mances. In the longer forecasting horizon of weekly data,
the errors of the econometric models rapidly increase over
those made using daily data, but the ANN-based algorithms

TABLE 5. Predictive performance of seven-step head forecasting
(weekly data).

maintain their predictive power, and the MAPE is lower than
0.09 for all forecasting results. BPNN also outperforms all
other ANN-based models in all three stages. In addition, most
ANN-base methods perform better than simple naïve models
and the econometric models perform worse than the simple
baseline models in some stages.

C. MONTHLY BDI PREDICTIONS
Because the time horizon of the monthly BDI data is rela-
tively small, we increase the observation length to 100 and
make out-sample predictions of one-step-ahead and seven-
steps-ahead values using econometric models. We use the
same sample data as the training data for ANN-based
algorithms, and we predict the one-step-ahead and seven-
steps-ahead values. Table 6 shows that in one-step-ahead
prediction the ELM model outperforms the others in the
first and third stages, and that RBFNN is the best in

TABLE 6. Predictive performance of one step head forecasting (monthly
data).
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the second stage. All proposed models outperform simple
baseline methods, even though the MAPE value is higher
than 0.2.
Comparing the predictive performances of seven-steps-

ahead forecasting, Table 7 shows that the errors of both
econometric models and ANN-based algorithms increase,
and that in the second testing stage the MAPE values in all
models are > 0.2, indicating that no model produces a usable
prediction.

TABLE 7. Predictive performance of seven-step head forecasting
(monthly data).

Previous studies show that when the time scale of the
datasets is longer, the accuracy of the forecasting model
decreases. Thus the effectiveness and robustness of a fore-
casting model can be evaluated using the relationship
between the predictive accuracy and the time scale of
the dataset and the error changes between single-step and
multi-step predictions. Figures 2 and 3 compare the values of
the average MAPE and RSME of five forecasting models for
daily, weekly, and monthly datasets when making single-step
and multi-step predictions.

FIGURE 2. Average MAPE comparison of different time scale dataset in
one step and seven-step ahead predictions.

Figures 2 and 3 show that the behavior of economet-
ric models and ANN-based algorithms differs between

FIGURE 3. Average RMSE comparison of different time scale dataset in
one step and seven-step ahead predictions .

the various times-ahead forecasts with different time scale
datasets. Unlike daily BDI predictions, MAPE and RMSE
both increase when applying econometric models to pre-
dict weekly and monthly BDI, and the MAPE values of
ANN-based algorithms slowly increases under the same
conditions. In addition, the MAPE and RSME values of
ANN-based algorithms also increase more slowly than
econometric models when the periods of out-sample forecast-
ing are increased. This indicates that ANN-based models are
more effective when applied to longer time-scale datasets and
multi-period predictions.

D. CHALLENGING SITUATION FORECAST COMPARISON
In order to compare the robustness of prediction perfor-
mance in the challenging situation, we use different mod-
els to forecast the extreme fluctuation of BDI during world
financial crisis in 2008. We apply moving sample data from
the starting period of November 1999 to November 2007,
and make one-step ahead and seven-step ahead fore-
casts respectively based on daily, weekly and monthly
BDI data. The out-sample test data covers May 2008 to
December 2008 when BDI plunged sharply from the peak
that is close to 12000 to around 700 points.
Fig.4, Fig.5 and Fig 6 compare the one step ahead and

seven-step ahead forecasted results with the actual value of
BDI in the out-sample prediction period from May 2008 to
December 2008 based on daily, weekly and monthly data
respectively.
As we can observe, for daily data prediction, all five mod-

els predict the trend of BDI well while econometric models
demonstrate lower errors than ANNmodels in one step ahead
forecasting case. GRACH model outperforms others. But
in seven-step ahead forecasting case, ANN models present
much powerful prediction than econometric models.
This result is same in weekly data prediction shown

in Fig.3, in which econometric models have advantages com-
pared to ANN models in one step forecasting, however ANN
models superior to econometric approaches.
For monthly data prediction shown in Fig.4, all ANN

models can reasonably well reproduce the trend of BDI
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FIGURE 4. Forecasts of two econometric models and three ANN
algorithms with actual value of daily BDI. (a) One step ahead forecasting
results vs actual value. (a) Seven-step ahead forecasting results vs actual
value.

both in one step and seven-step ahead forecasting but with
the exception of RBFNN model. The prediction of RBFNN
deviated from actual value dramatically while BPNN and
ELM still present well predictive power. Similar to daily
and weekly data, econometric models outperform in one step
ahead forecasting while BPNN and ELM excel in seven-step
ahead case.
Through the comparison, the BPNNmodel can be regarded

as the most robust one for both short term and long term
prediction as well as in data with various time scales.

V. DIEBOLD AND MARIANO TEST
In order to evaluate whether there is any statistical signif-
icant difference between the models we aim to compare,
we employ Diebold andMariano test (hereafter, the DM test).
Diebold andMariano [49], [50] introduced a statistical test

for the null hypothesis of equal forecast accuracy between
two competing models. Here the loss function is set to be the
absolute error (AE), defined as AE = | ˆX (t) � X (t)|, here
where X̂ (t) andX (t) are the predicted and real values at time t .
The null hypothesis is that the AE value of the tested model
equaling to that of the alternative model. The DM statistic is

FIGURE 5. Forecasts of two econometric models and three ANN
algorithms with actual value of weekly BDI . (a) One step ahead
forecasting results vs actual value. (a) Seven-steps ahead forecasting
results vs actual value.

defined

DM = D
p
VD/N

, (21)

where D = 1
N

PN
t=1 d(t), d(t) = etest (t) � ealternative(t),

in which e(t) is the AE value at time t , VD = �0+2
Pq=1

1 �q,
�q = cov(dt , dt�q)
In using the DM test to statistically compare the accuracy

of econometric and ANN-based forecasting models, the DM
value of Eq.(21) and the p-value are used to measure how
much the difference is between test model over the alternative
model.
Table 8 lists the DM test results for daily, weekly and

monthly BDI datasets respectively. If the p-value is less
than 0.05, we reject the null hypothesis that there’s no
difference between two proposed forecasting models. It is
noted that for all three datasets ANN-based model have
significant different accuraies with econometric models. For
daily dataset, ARIMA and GARCH present equal forecasting
accuraies while different ANN-based models also exhibit no
statistically difference in accuraies. However, for weekly
datasets ARIMA and GARCH perform differently and
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FIGURE 6. Forecasts of two econometric models and three ANN
algorithms with actual value of monthly BDI . (a) One step ahead
forecasting results vs actual value. (a) Seven-step ahead forecasting
results vs actual value.

TABLE 8. DM test results for econometric and ANN-based models.

ANN-based models still present equal forecasting accuraies.
When the time-scale of the dataset is longer such as for
monthly dataset, all accuraries of five forecasting models

are statistically different. This indicates that econometric
methods and ANN-based model are two distict methodology
caterigories. And within the caterigories, the longer the time
scale of the data to predict, the obvious the difference among
various forecasting models.

VI. CONCLUSION
We have studied and compared the performance of two
forecasting techniques: the econometric approach and the
computational approach of artificial neural network (ANN)
algorithms. We use BDI data from 1999 to 2018 to test the
predictive power of the proposed models.
(i) We find that the ANN approach predicts the most

accurate weekly and monthly BDI values. Econometric
models produce good one-step-ahead daily values, but
the ANN models produce the best seven-step ahead
forecasting values. Thus ARIMA and GARCH produce
short-term daily BDI predictions that are better than
those of the ANN models.

(ii) We also find that ANNmodels are sensitive to input data
and forecasting horizon. In different sets of training sam-
ple data, ANNmodel predictions vary greatly, indicating
that no particular model is the best in all situations.

(iii) Econometric models and ANN algorithms have both
advantages and disadvantages. The long-term forecast-
ing based on monthly data of both econometric models
and ANN algorithms is weak. Thus a possible course of
future study would be to develop a hybrid forecasting
method that combines econometrics and the computa-
tional approach of ANN.
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