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First-Order Transition in the Breakdown of Disordered Media

Stefano Zapperi,1 Purusattam Ray,2 H. Eugene Stanley,1 and Alessandro Vespignani3
1Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215

2The Institute of Mathematical Sciences, CIT Campus, Madras 600 113, India
3Instituut-Lorentz, University of Leiden, P.O. Box 9506, 2300 RA, Leiden, The Netherlands

(Received 3 December 1996)

We study the approach to global breakdown in disordered media driven by increasing external
forces. We first analyze the problem by mean-field theory, showing that the failure process can be
described as a first-order phase transition, similarly to the case of thermally activated fracture in
homogeneous media. Then we quantitatively confirm the predictions of the mean-field theory using
numerical simulations of discrete models. Widely distributed avalanches and the corresponding mean-
field scaling are explained by the long-range nature of elastic interactions. We discuss the analogy
of our results to driven disordered first-order transitions and spinodal nucleation in magnetic systems.
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The breakdown of solids under external forces is a long-
standing problem that has both theoretical and practical
relevance [1]. The first theoretical approach to fracture
mechanics, proposed by Griffith [2] more than 75 years
ago, is similar to the classical theory of nucleation in first-
order phase transitions [3]. An elastic solid under stress
is in a “metastable state” and will decay to the “stable
fractured state” by the formation of cracks. Recently it
has been shown [4] that the point of zero external stress
has the same mathematical properties as the condensation
point in gas-liquid first-order transitions. In the language
of phase transitions, the stress imposed on the solid plays
the role of an external field and cracks are the analog of
droplets of a new phase. The classical theory of nucleation
is expected to fail close to the limit of stability, the spinodal
point [5], and it has been suggested [6–9] that a similar
behavior should occur for fracture, for large values of the
external stress. Thus, the failure threshold corresponds to
the spinodal point of first-order phase transitions.

The Griffith theory and related calculations deal with
the situation in which fracture is thermally activated and
quenched disorder is absent or weak. In many realistic
situations, however, the solid is not homogeneous, and
disorder, in the form of vacancies or microcracks, strongly
affects the nucleation process [8,9]. There are situations,
encountered, for example, in material testing, in which the
system is driven by an increasing external stress [11] and
the time scale of thermal fluctuations is much larger than
the time scale induced by the driving. In those cases,
the system can be effectively considered as being at zero
temperature, so only quenched disorder is relevant. It has
been experimentally observed [10–14] that the response
(acoustic emission) of stressed disordered media takes
place in bursts of widely distributed intensity, indicative
of an internal avalanche dynamics.

The understanding of the breakdown of disordered sys-
tems has considerably progressed due to the use of large
scale simulations of lattice models [15]. These models

have provided a good description of geometrical and topo-
logical properties of cracks, leading to the introduction in
this field of scaling concepts. Recently, these models have
also been used to study the dynamic response of the sys-
tem before breakdown [16–20]. Scaling and power-law
avalanche distributions were observed, in agreement with
experiments, but a clear theoretical interpretation of the
results is still lacking. Here, we address the problem by
mean-field calculations and numerical simulations. The
picture that emerges from our analysis is that the break-
down in disordered media can be described by a first-order
transition, similarly to the case of thermally activated ho-
mogeneous fracture. Since elastic interactions are long
range, scaling behavior may be present also in low di-
mensions, in analogy with spinodal nucleation [5].

The models we will consider are defined for a two-
dimensional lattice of linear size L. Each bond of the
lattice represents an elastic spring that breaks when it
is stretched beyond a threshold chosen from a given
probability distribution. An external stress is imposed
on the system by suitably chosen boundary conditions.
A simple example, because of the scalar nature of the
interactions, is the random fuse model [21] for electric
breakdown. With each bond i is associated a resistor of
unit conductivity (si  1). When the current in the bond
exceeds a threshold Di the bond becomes an insulator
(si  0). A slowly increasing external current [22] is
imposed on the lattice and the voltage drops sDV di for
each bond are computed by minimizing the total dissipated
energy

Eshsjd ;
1

2

X

i

si ssssDV d2
i 2 D2

i ddd . (1)

The dynamics of the model results from a double mini-
mization process. The voltage drops sDV di are obtained
by a global minimization of the energy at fixed si , while
the si are then chosen to minimize the local bond energy.
This last step corresponds to breaking the bonds for which
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the current overcomes the threshold. The external current
is increased slowly until the lattice is no longer conduct-
ing. We note that this dynamics is very similar in spirit
to that of a field-driven random-field Ising model (RFIM),
studied by Sethna et al. [23,24] in the context of magnetic
hysteresis. In that model, each spin chooses the sign of
the local field.

To derive a mean-field theory, it is useful to recast the
dynamics of the model in terms of the externally applied
current I . In full generality, we can rewrite the energy of
Eq. (1) as

EsI , hsjd 
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where Gshsjd is the total conductivity of the lattice and is a
complicated function of the local conductivities. We can
estimate Gshsjd using the effective medium theory [25],
which in our case gives

Gshsjd  2f 2 1 , (3)

where f ;
P

i siyL2. We can express the energy as a
sum over “spins” interacting with effective random fields
hi
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the value of f can be computed self-consistently as

f  Pshi . 0d  1 2
Z IyLf

p
s2f21d

0

rsDd dD , (5)

where rsDd is the distribution of failure thresholds. The
solution of this equation can be expressed in terms of the
current per unit length f ; IyL. We can identify f with
the external field and f with the order parameter.

From considerations similar to those presented in
Ref. [24], we can show that for any analytic [26] normal-
izable distribution function r Eq. (5) has a solution for
f , fc and, close to fc, f scales as

f 2 fc , s fc 2 fd1y2. (6)

The mean-field theory we have presented can be exactly
mapped to the democratic fiber-bundle model (DFBM), an
exactly solvable model for fracture which has been studied
extensively [27]. We can, therefore, obtain the mean-field
avalanche size distribution from the exact results derived
for the DFBM [27]

Psmd , m2tf sssms fc 2 fdk ddd; t 

3

2 , k  1 ,

(7)

where m is the number of bonds that break as a function of
the current. The average avalanche size kml is proportional

to the “susceptibility” dfydf [17], and therefore diverges
at the breakdown as

kml , s fc 2 fd2g , g  1y2 . (8)

The exponents we have introduced satisfy the scaling re-
lation ks2 2 td  g, which is consistent with the values
reported in Eqs. (7) and (8). The mean-field analysis in-
dicates that the system is undergoing a first-order transi-
tion since the order parameter has a discontinuity and the
conductivity at fc has a finite jump from Gsfcd . 0 to
zero. The approach to this transition is characterized by
avalanches of increasing size, diverging at the transition.

A similar behavior with the same scaling exponents is
observed in the mean-field theory of the driven RFIM
[23,24] for small disorder. In the RFIM, one observes
also a second-order transition as the width of the disorder is
increased. A similar transition does not seem to be present
in our system, at least not in the mean-field treatment.
It is also interesting to note that the same scaling laws
describe metastable systems close to a spinodal point. The
quasistatic susceptibility diverges as in Eq. (8) and droplets
are distributed according to Eq. (7).

An important issue to address at this point is the valid-
ity of mean-field results in the case of real low-dimensional
systems. It is known that scaling does not hold close to
the first-order transition for short-ranged RFIM in dimen-
sions d  2, 3 [23,24]. Similarly, spinodal singularities
are observed when interactions are long range [28]. Elas-
tic interactions are intrinsically long range, which leads
to mean-field behavior even for low dimensions, as we
will next show numerically. We simulate the random fuse
model [21] on a tilted square lattice, with periodic bound-
ary conditions in the transverse direction. The current in
each bond is computed numerically by solving the Kirch-
hoff equations with a precision e  10210. The distribu-
tion of thresholds is chosen to be uniform in the interval
f1 2 D, 1 1 Dg. We made the choice D  1 in order to
avoid the “ductile-brittle” crossover at a finite value of the
lattice size [21]. Other broad analytic distributions give
rise to similar results. We impose an external current I

through the lattice, and we increase it at an infinitesimal
rate. When a bond fails, we recompute the currents to
see if other failures occur. The system responds to the
increase of the current with avalanches whose size m di-
verges at the breakdown fc. In Fig. 1 we plot the average
avalanche size kml versus IyL, and we see that the mean-
field exponent g  1y2 fits the data quite well. The data
collapse is not perfect because logarithmic corrections are
expected in d  2 [21]. The avalanche size distribution,
integrated over the entire range of the current, is plotted in
Fig. 2. We see that the scaling is consistent with an expo-
nent t0

 t 1 1yk  5y2, which results from the mean-
field calculations [Eq. (7)]. As expected the cutoff of the
distribution increases with L.

We have studied the behavior of the average crack size
ksl as a function of the current. Although the crack size
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FIG. 1. The average avalanche size kml21yg is plotted as a
function of IyL, using the mean-field value g  1y2. The
curves are averaged over several realizations of the disorder
(N  500 for L  32, N  100 for L  64, 128). The critical
current of the random fuse model IcyL has logarithmic
corrections, so the curves do not superpose.

grows with the current, it does not appear to diverge at
the breakdown when the system size is increased. This
implies that the final macroscopic crack is formed by
the coalescence of several microcracks, rather than by
the growth of a single crack. In fact, by monitoring the
dynamics, we observe that avalanches are not spatially
connected since interactions are long range; this may be
the reason why mean field works so well for these systems.
Finally, we have checked that the conductivity of the lattice
displays a finite jump at the first-order transition.

FIG. 2. The avalanche size distribution for a random fuse
model of size L  32 and L  128 is plotted in log-log scale.
A line with the mean-field value t0

 5y2 of the exponent is
plotted for reference. The cutoff of the distribution increases
with the system size.

The mean-field theory was derived for the case of a
scalar model, but the results do not only apply to scalar
models. We have numerically simulated a more complex
vectorial model, defined in Ref. [18]. The model is a
spring network with central and bond bending forces, with
random failure thresholds associated with each bond. The
system is driven by an increasing external stress f, and
the dynamics is obtained by numerically integrating the
equations of motion of the springs. The model gives a
more reliable description of the fracture process, taking
into account the tensorial nature of the elastic interactions
and a realistic relaxation dynamics. In this case we
also find power-law distributed avalanches and mean-field
exponents (see Fig. 3). A detailed account of the results
of this model, as well as a complete discussion of the
random fuse model, will be reported elsewhere [29].

The results we have discussed clarify the nature of the
breakdown process in the presence of quenched disorder.
We have shown that the breakdown corresponds to a first-
order transition, with avalanche precursors characterized
by power laws. The scaling exponents are in quantitative
agreement with the prediction of mean-field calculations.
In mean-field theory, driven disordered systems behave
similarly to their homogeneous, thermally driven, coun-
terparts, if we compare the scaling of avalanches with that
of the droplets. This applies to the RFIM [23,24], which
shows features similar to those of spinodal nucleation [5],
and to the fracture models we have studied. However,
one should be careful not to interpret these analogies too
strictly, since in driven disordered systems the notions of
metastability, spinodal point, and nucleation are not well
defined.

Finally, we comment on the applicability of self-
organized criticality (SOC) [30] to fracture problems. In
fact, first-order transitions and SOC are becoming the
principal competing theoretical frameworks for the inter-
pretation of avalanche phenomena in disordered systems.

FIG. 3. The suscptibility dfydf for the spring network of
size L  50, averaged over N  100 configurations, is plotted
as function of the applied stress f . Mean-field scaling (g 

1y2) appears to be very good also in this case.
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A striking example of this controversy is represented by
earthquake phenomena [31]. The definition of SOC im-
plies a slowly driven system with a critical stationary state
[32]. The only possibility to observe SOC behavior in
fracture phenomena is in the presence of a long lived plas-
tic state before rupture. Recently proposed scalar models
[33] of microfractures and molecular dynamics simula-
tions of granular solids under shear [34] have shown that
the plastic stationary state is characterized by power-law
avalanche distributions suggestive of SOC. On the other
hand, the model studied in Ref. [19] that was claimed to
display SOC has no stationary state, like the models dis-
cussed here. Power laws without cutoff in this case arise
not due to self-organization, but because the control pa-
rameter is externally “swept” towards the instability (as
pointed out by Sornette [35]). We believe that different
experimental conditions can all give rise to similar scaling
behavior, but the underlying physical mechanisms could
be quite different.
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