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Abstract – The study of risk contagion in economic networks has most often focused on the
financial liquidities of institutions and assets. In practice the agents in a network affect each
other through social contagion, i.e., through herd behavior and the tendency to follow leaders.
We study the coupled risk between social and economic contagion and find it significantly more
severe than when economic risk is considered alone. Using the empirical network from the China
venture capital market we find that the system exhibits an extreme risk of abrupt phase transition
and large-scale damage, which is in clear contrast to the smooth phase transition traditionally ob-
served in economic contagion alone. We also find that network structure impacts market resilience
and that the randomization of the social network of the market participants can reduce system
fragility when there is herd behavior. Our work indicates that under coupled contagion mecha-
nisms network resilience can exhibit a fundamentally different behavior, i.e., an abrupt transition.
It also reveals the extreme risk when a system has coupled socio-economic risks, and this could
be of interest to both policy makers and market practitioners.

Copyright c⃝ EPLA, 2016

Introduction. – Can the failure of a single element
threaten the stability of an economic system? This is the
key question when authorities deal with predicting and
reducing risk propagation in highly complex economic sys-
tems [1]. All complex systems are at risk of cascading fail-
ure in which one failed part can cause the failure of linked
fractions such that failure propagates throughout the en-
tire system [2–4]. Systemic risks associated with cascading
failures have been present in recent and earlier economic
crises, e.g., the world financial crisis, the Asianeconomic
crisis, and dot-com bubbles [5,6].

Because network science can use both the behavior of
economic system participants and the relationships among
them to model contagion mechanisms [7–9], it has at-
tracted enormous attention among researchers studying
risk propagation in such economic systems as banking net-
works, buyer and seller credit systems, international trade,
capital markets and stock markets [10–14]. In network

science vertices represent agents in economic systems and
links represent connections among them. The networks
can be generated by using real data [15,16] or by develop-
ing theoretical networks in which properties are assumed,
e.g., random networks or scale-free networks [17]. Two
types of network failure mechanism are used in this re-
search. The first is the generic context failure approach
based on a network social contagion epidemiological model
in which one node fails or survives depending on the state
of its neighbors [18–20]. The other is the liquidity ap-
proach in which each node is assigned a simplified balance
sheet state, and a default in asset results in cascading
failures through liquidations. When its asset value drops
below its liability value it either fails or survives with an
assumed tolerance probability [17,21,22].

Most studies of systemic risk in economic networks
focus on economic/liquidity contagion. Yet real-world sys-
tems have both economic and social contagion risks [23]
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that have different mechanisms but that strongly inter-
act [24]. Thus the crucial aspect not appearing in previ-
ous studies is social contagion among market players: how
information-sharing and panic-spreading affect the collec-
tive actions of the market players and can trigger systemic
risk to the overall market. Social contagion can be related
to the risk propagation that occurs through the spreading
of panicked sentiment caused by market shock that gets
further amplified [25]. If we are to understand the risk
propagation mechanisms in a complex economic system,
both asset-shock transmission and social-panic contagion
must be taken into consideration [26]. In addition, most
risk contagion studies have focused on banking systems
and stock markets. Here we study a critical sector of the
financial system: the venture capital market. The venture
capital market is fragile when facing external shocks, i.e.,
the typical venture-backed project has negative earnings
and few tangible assets and is thus susceptible to failure.
The venture capital market is also closely related to the
stock market and since 1999, 60 percent of the IPOs that
have occurred in the US stock market have been venture-
backed [27]. Thus the instability of venture capital market
frequently induces damage to the overall financial market
and to the entire economic system.

We propose a unified cascading model based on a cou-
pled socio-economic network that allows us to quantify the
contribution of social contagion to systemic risk. We find
the economic system shows exacerbated risks of a differ-
ent nature when the social contagion effect is present. In
particular, the transition to a large-scale market failure is
abrupt instead being smooth, implying a first-order phase
transition that generates extreme risk.

Model. – We first build a multiplex network G =
{I, N} that represents a socio-economic network in which
venture capital firms (VCs) are embedded. Here I is the
economic network and N the social network.

Equity connections between venture capital investors
(VC) and portfolio projects are the major channels by
which asset shocks are transmitted from one VC to an-
other. We use a weighted bipartite network to describe
these equity connections. Hence I = {C, V, Ec, W}, where
C denotes venture capital investor vertex set ci ∈ C and
V denotes portfolio project nodes set vj ∈ V . Once VC
i invests portfolio project j, there is eij between node ci

and vj . Ec is the edge set and eij ∈ Ec. In this network,
weight wij of each link eij represents the equity amount of
portfolio project j owned by VC i. Because this network
is undirected, eij = eji and wij = wij . There is no edge
between the VC nodes or the portfolio project nodes.

In addition to equity connections, social connections are
a critical channel for the spread of attitude and behavior,
and they can amplify threat. Because in the venture cap-
ital industry investors tend to syndicate their investment
and build co-investing relationships, we use a co-investing
network to represent the social connections among VCs.
In this network two VC nodes are connected only when

Fig. 1: Coupled socio-economic network of a venture capital
market.

they both invest in the same portfolio project in the same
round. Co-investors in the same round are more likely
to exchange information and to share risk. Here we do
not consider the weight and direction of links. Thus
N = {C, Es}, where C also denotes the VC node set and
Es the co-investing edge set. Once two VCs co-invest in
one portfolio project in the same round, es connects the
two VC nodes.

Thus for each VC node there are two types of link, i) eq-
uity connections to portfolio projects and ii) co-investing
links to other VCs. Figure 1 shows the structure of a cou-
pled socio-economic network of venture capital investors.

To take the social contagion effect into consideration
when we simulate the cascading failure process, we apply
the bipartite network model proposed by Huang et al. in
2012 [21] and extend it by considering two types of social
contagion, i) the herd behavior effect and ii) the leader-
following effect. The simulation process consists of the
following steps:

1) The initial shock hits portfolio projects belonging to
industry m. The total market value of industry m is
reduced to a p fraction of its original value, p ∈ [0, 1].
The smaller the value of p, the stronger is the shock
level. When p = 0, the total market value of the
industry is wiped out. When p = 1, there is no shock
imposed.

2) As the market deteriorates, each VC i that owns port-
folio projects in the shocked industry m will experi-
ence a Sm

i (1 − p) reduction in value, where Sm
i is

the total asset value of the shocked portfolio projects
that are on the balance sheet of VC i, denoted Sm

i =∑
J wm

ij .

3) We assume that when the total asset value of any VC
i is lower than its liability Li, i.e., Si < Li, where
Sm

i =
∑

J wij , then VC i faces liquidity distress or
default risk. Any portfolio projects on the balance
sheet of a VC with liquidity distress will suffer a cor-
responding market value devaluation because of a fire
sale by the VC, which leaves the market to avoid the
risk of bankruptcy. We define VCs with an asset value
lower than its liability to be in a failed state and oth-
erwise in a surviving state.

4) When we take the social contagion phenomena into
consideration the fire sale behavior of VC i′ is
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dependent on its balance sheet condition and is in-
fluenced by the actions of its co-investing partners.
Even when VC i does not have liquidity distress, it
can still choose to fire sale its assets because its part-
ners have already exited. Thus we use s ∈ [0, 1] as a
measure of the social contagion effect.

The s value functions differently in different social
contagion mechanisms. In the case of herd behav-
ior, social contagion is when market participants fol-
low the actions of the majority of the VCs. There is
a limitation in the amount of available information,
and a market participant can only know the business
decisions of its closest partners. Thus surviving VC i
observes the fire-sale behavior of its co-investing part-
ners (in our case its neighbor nodes in the co-investing
network), and if a fraction larger than s of its partners
chooses to fire sale their assets and exit the market,
VC i will also fire sale its assets. Thus s is the thresh-
old value of percolation. When s = 1, no social con-
tagion occurs and VCs deciding whether to fire sale
their assets can be only depend on their balance sheet.
The lower the s value, the more easily each VC i will
be influenced by the behavior of its partners, and the
stronger will be the social contagion effect.

The other prevailing social contagion phenomenon is
that market players tend to adopt the benchmark
business strategy of market leaders, especially those
within its co-investing partners group. So when VC
i is without liquidity distress they still can choose to
fire sale their asset with a probability 1 − s when the
focused market leader has made a fire sale decision.
The focused market leader here is defined as the one
whose total amount of investment is the largest of all
the neighbor nodes of VC i and is also larger than the
total investment amount of VC i. Also the lower the
value of s, the stronger will be the social contagion
effect.

5) Let a represent the illiquidity parameter that deter-
mines the degree to which the market values of the
portfolio projects are devalued after the fire sales have
occurred. The VCs with liquidity distress must exit
to meet their liabilities. The ability of the market to
absorb this sale is not perfect, which leads to a price
decrease of the affected portfolio projects. Depend-
ing on the liquidity of the market, a can be between
0 and 1. When the market is extremely liquid, the
value of the equity will not be adversely affected by
VC i’s fire sales, so a = 1. When the market is ex-
tremely illiquid, the equity value could potentially be
very close to zero.

6) A further deterioration of the market can then con-
tribute to the failure of more VCs and portfolio
projects. Thus the damage in the bipartite net-
work spreads between VCs and portfolio projects bi-
directionally until the cascading failure stops, which
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Fig. 2: (Colour online) Log-log degree distribution of investing
network (blue dot) and co-investing network (green dot).

is for all VCs when Si > Li, and there are no more
VCs in failure and the simulation stops iterating.

Data: China venture capital market as an em-
pirical case. – We obtain our venture capital investment
data from the China Venture Source database [28], which
covers more than 90% of all venture investments in China.
The data we use is from 1 January 2011 to 31 December
2014, covering 2310 venture capital firms, 5893 portfolio
projects, and 19892 investment events. We use investment
data to generate a bipartite network of venture capital in-
vestors and portfolio projects. For each venture capital
firm we use the fund-raising amount as its liability, because
a venture capital firm works as a financial intermediary
to raise capital from such institutions as pension funds,
banks, and insurance corporations. Once a fund has ma-
tured, the investment amount goes back to the investors
accompanied by the return that the venture capital firm
has promised. Each portfolio firm dataset is categorized
by industry, and there are ten industry categories. Thus
for a bipartite equity connection network, the average de-
gree of VC nodes and portfolio project nodes are 8.61 and
3.38, respectively. Within the recorded data, 66.62% of
the sample venture capital firms participate in syndicated
investment. We use the same round of syndication in-
vestment to build a co-investing network of VCs. Thus
in our co-investing network there 1571 vertices and 4468
links, making the average degree 5.69. Figure 2 shows the
degree distribution of the bipartite equity connection net-
work and the co-investing network. Note that the degree
of the VC equity connection network and the co-investing
network shows a distribution with a heavy tail and ex-
hibits power-law properties, which means few VCs have a
large number of portfolio projects and co-investing part-
ners and that the majority of VCs have only a few equity-
connection and social-relation linkages.

Results. – There are many different definitions of mar-
ket resilience R [29–31]. In order to measure how R is
dependent on the model parameters, we define it here as
the fraction of venture capital firms surviving an external
shock.

We begin by investigating the relationship between mar-
ket resilience and the controlling parameters p (external
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Fig. 3: (Colour online) Market resilience, fraction of surviving
venture capital firms (R) as a function of external shock level
(p) and the market liquidity degree a) in no-social-contagion
scenario for two different shocked industry sectors: Internet
industry (a) and Logistics industry (b).

Fig. 4: (Colour online) Market resilience, R as a function of p

and the market a in herd behavior scenario for two different
shocked industry sectors: Internet industry (a) and Logistics
industry (b).

shock level) and a (market liquidity level) for three differ-
ent scenarios, i) assuming no social contagion, ii) assuming
herd behavior social contagion, and iii) assuming leader-
following social contagion. We also consider s = 0.5 for
ii) and iii) (see Model section). The largest sector is the
Internet industry, which has ≈ 49% market share, and the
smallest is the logistics industry, which has ≈ 2% market
share. Both of these sectors are initially shocked.

Figure 3 shows that if a VC makes a fire sale decision
by relying only on its balance sheet condition without be-
ing influenced by any counterparty behavior, there is no
social contagion and the overall venture capital market is
resilient. Figure 3(a) shows that even when the initially
shocked industry sector is the largest, approximately 30%
of the VCs survive. When a shock hits the smallest sec-
tor and the shock level is extremely high (p < 0.3) and
market liquidity is almost frozen (a < 0.3), the fraction of
surviving VCs is still greater than 50% (see fig. 3(b)).

When there is social contagion among the VCs, how-
ever, the system is dominated by an opposite cascading
mechanism. Figures 4(a) and (b) show the market re-
silience dynamics under an external shock when herd be-
havior dominates. Note that it does not matter whether
the initially shocked industry sector is large or small, when
p < 0.8 and a < 0.6 almost all of the VCs fail. This indi-
cates that when panic prevails market players are eager to
liquidate their equity to maintain a certain liquidity ratio
and avoid further losses even when they do not face actual
liquidity distress. This irrational herd behavior can cause
a huge amount of damage and activate a sudden freeze
of market liquidity, even when asset price fluctuations are

Fig. 5: (Colour online) Market resilience, R as a function
of p and the a in leader-following scenario for two different
shocked industry sectors: Internet industry (a) and Logistics
industry (b).
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Fig. 6: (Colour online) Market resilience, R as a function of p

with given a = 0.8 for three scenarios: without social conta-
gion (green line), herd behavior (blue line) and leader following
(red line).

slight. For example, in the 2008 world financial crisis after
the bankruptcy of Lehman Brothers most banks and finan-
cial institutions stopped lending, tightened credit terms
for borrowers, and increased the stress on market liquidity.

Figure 5 shows that, when leader following is the type of
social contagion that dominates the market, if the initially
shocked industry is the largest, the amplifying effect of the
contagion produces a risk level similar to that of herd be-
havior but the damage incurred is less serious, even when
the level of shock is the same. Figure 5(b) shows that when
the initial shock hits the smallest sector, if the shock level
is moderate (p > 0.7) and the market liquidity is relatively
high (a > 0.5), more than 80% of the VCs survive, which
means that the leader following does not dramatically am-
plify the risk level. If the shock level is severe and the
market liquidity is extremely low, leader-following effects
will increase the market fragility much more than when
there is no social contagion present.

Note that when the external shock level and market liq-
uidity conditions are the same, social contagion increases
market fragility. This finding is consistent with previous
studies that found that the financial system exhibits a
robust-yet-fragile behavior [32–34].

Figure 6 depicts the market resilience as a function of p,
the magnitude of the external shock for fixed a = 0.8 when
the Internet sector is the initially shocked industry for
three cases (no social contagion, herd behavior contagion,
and leader-following contagion).
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Fig. 7: (Colour online) With given p = 0.8 and a = 0.9,
compare market resilience, R as a function of social contagion
degree (s) in herd behavior (blue line) and leader-following sce-
narios (red line).

There are two cascading mechanism regimes that the
herd behavior contagion effect has, one in which no VC
faces liquidity distress at the end of the model, which
means R → 1, and one in which the number of surviv-
ing VCs is below 10%. When there is no social contagion
these two separate phases do not form and market re-
silience decays slowly as external shocks increase. This
indicates that if every market player were rational and
made decisions independently the market would deterio-
rate gradually. This would allow sufficient time to warn
policy makers who would then have time to respond. How-
ever, when the herd behavior effect is strong, the market
can rapidly deteriorate so that policy makermakers have
no time to react. If p is defined such that the fraction of
surviving VCs is below 20% at a critical point pc, the herd
behavior case pc = 0.8 is higher than the leader-following
case pc = 0.55. Thus herd behavior is more likely to con-
tribute to systemic risk than leader following. Because
approximately 60% of the VCs have fewer than five co-
investing partners, fire-sale actions of even a small fraction
of the VCs can spread to the whole market and endanger
the entire system. When there is no social contagion, the
fraction of surviving VCs is above 30% as the market de-
teriorates, indicating that the market can sustain a huge
decrease in asset value.

To quantify the impact of social contagion on market
resilience, we investigate herd behavior and leader follow-
ing for a shock level of p = 0.8 and a liquidity condition
of a = 0.9. Figure 7 shows that when the Internet is the
initially shocked industry and herd behavior dominates,
the market resilience undergoes a phase transition as s
reaches a critical value of 0.5. When s > 0.5 the level
of herd behavior is relatively limited, and the fraction of
healthy VCs is ≈ 60% as the degree of social contagion
increases. But when s < 0.5, market resilience sharply de-
creases to less than 30%, cascading failures occur, and the
system undergoes an abrupt first-order transition, which
indicates that the market condition has suddenly changed
from stable to a crisis situation.

Under the same shock level and liquidity conditions,
however, when the leader-following effect dominates, the

Fig. 8: (Colour online) With given a = 0.9, compare market re-
silience, R as a function of p based on two different co-investing
networks: real network (blue line) and ER random network
with same ⟨k⟩ as real network (purple line). (a) shows herd
behavior scenario and (b) shows leader-following scenario.

fraction of surviving VCs remains at 60% as the social
contagion degree increases. Because the shock level is
moderate and market liquidity is sufficiently high, the ma-
jority of market leaders do not have a liquidity problem,
and this is critical in maintaining the overall health of the
system.

Previous studies indicate that network topology impacts
risk propagation. We compare the dynamics of market re-
silience with social contagion in a real-world co-investing
network with those in an ER random network with the
same average degree ⟨k⟩. Here the ER network is only a
social contagion network. The underlying bipartite net-
work of liquidity contagion remains the same, such that
only the social contagion effect is considered. Figure 8(a)
shows that in herd behavior social contagion, market re-
silience in a real-world co-investing network and a random
co-investing network both exhibit a first-order phase tran-
sition as the shock level increases, but when p < 0.8 the
fraction of surviving VCs in the real-world network is much
less than that in an ER random network with the same ⟨k⟩.
Figure 8(b) shows the leader-following scenario in which
market resilience exhibits a first-order transition in ran-
dom networks and a second-order phase transition in real-
world co-investing networks.

Summary and conclusions. – Our study has shown
that adding social contagion to liquidity contagion com-
pletely changes the nature of network resilience. In par-
ticular, the coupling of the two contagion mechanisms
causes a first-order transition phenomenon not observed
when there is only a single contagion mechanism. These
results may be related to a recent study of cooperative
contagion [35] in which a first-order phase transition was
also observed. An analysis of the empirical network of
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the Chinese Venture Capital market indicates that social
contagion changes both the nature of network resilience
and increases overall risk. Our analysis on the bipartite
network using two coupled mechanisms reveals a signif-
icant aspect of considering multiple mechanisms in such
networks. For further academic research, more than two
mechanisms can be studied in the same framework and
investigate the coupled effect. In addition, it is valuable
for practitioners, especially governments, to be informed
that the market is much more vulnerable when social con-
tagion is taken into account. In particular, this analy-
sis framework could be used to more effectively predict
the damage that could be inflicted on the whole economy
when financial crisis occurs. One possible future work is
to take into account nodes’ spontaneous recovery mecha-
nism [36], and model the temporal bipartite network dy-
namics in the data. Such an analysis will be able to pro-
vide a more realistic picture of risk contagion with multiple
mechanisms.
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