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Abstract We construct a Pearson correlation-based network and a partial correlation-
based network, i.e., two minimum spanning trees (MST-Pearson and MST-Partial), to
analyze the correlation structure and evolution of world stock markets. We propose a
new method for constructing the MST-Partial. We use daily price indices of 57 stock
markets from 2005 to 2014 and find (i) that the distributions of the Pearson correlation
coefficient and the partial correlation coefficient differ completely, which implies that
the correlation between pairs of stock markets is greatly affected by other markets,
and (ii) that both MSTs are scale-free networks and that the MST-Pearson network is
more compact than the MST-Partial. Depending on the geographical locations of the
stock markets, two large clusters (i.e., European and Asia-Pacific) are formed in the
MST-Pearson, but in the MST-Partial the European cluster splits into two subgroups
bridged by the American cluster with the USA at its center. We also find (iii) that the
centrality structure indicates that outcomes obtained from the MST-Partial are more
reasonable and useful than those from the MST-Pearson, e.g., in the MST-Partial,
markets of the USA, Germany, and Japan clearly serve as hubs or connectors in world
stock markets, (iv) that during the 2008 financial crisis the time-varying topological
measures of the twoMSTs formed a valley, implying that during a crisis stock markets
are tightly correlated and information (e.g., about price fluctuations) is transmitted
quickly, and (v) that the presence of multi-step survival ratios indicates that network
stability decreases as step length increases. From these findings we conclude that the
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MST-Partial is an effective new tool for use by international investors and hedge-fund
operators.

Keywords Stock markets · Correlation structure · Network · Minimum spanning
tree · Evolution

1 Introduction

With the rapid expansion and globalization of economic activity has come a sig-
nificant correlation increase in world financial markets. Although this interaction
among financial markets promotes an optimal allocation of global financial and eco-
nomic resources, it also allows the spread of financial crises that cause world market
deterioration. In 2007, for example, the US subprime mortgage crisis started in US
mortgage lenders and investment banks but then spread to insurance companies,
commercial banks, and savings institutions, rapidly swept across global financial mar-
kets, and resulted in global financial turmoil. Being able to describe and understand
correlations in complex financial market systems can thus help market participants
and regulators access market information as they make economic policy. It also
can help market participants understand the formation mechanism of financial asset
prices, i.e., it can aid in the optimization allocation and risk management of financial
assets.

Previous research has proposed numerous analytical methods for describing cor-
relations in financial markets, one of the most popular being the correlation-based
financial network.1 This widely-used method measures correlations among the ele-
ments (e.g., stock markets) of the financial system, treating stock markets as nodes
and correlations among them as edges that connect the nodes. The existing literature
provides a variety of correlation-based network methods of constructing a filtered net-
work for investigating its potential structure. The correlation-based network methods
tend to fall into three categories according to the way they measure correlation.

(i) Pearson correlation-based network methods construct and measure the network
using Pearson correlation coefficients. The pioneering work is done byMantegna
(1999) who propose a minimum spanning tree (MST) for investigating the corre-
lation structure of financial markets. Tumminello et al. (2005) extend theMST by
designing a planar maximally-filtered graph (PMFG), which is a new technique
for filtering out information from a complex system (e.g., a financial system).
Boginski et al. (2005) propose the correlation threshold (CT) or market graph
(MG) method that uses a specified CT to construct a financial network. Pearson
correlation-based network approaches have been widely applied to various finan-
cial systems (see, e.g., Onnela et al. 2003, 2004; Kwapień et al. 2009; Aste et al.
2010; Gilmore et al. 2010; Tse et al. 2010; Song et al. 2011; Buccheri et al. 2013;
Vizgunov et al. 2014; Wang and Xie 2015, 2016; Birch et al. 2016).

1 There are many other financial networks, e.g., the stock trading network (Jiang and Zhou 2010; Li et al.
2015) and the world investment network (Song et al. 2009).
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(ii) Partial correlation-based network approaches compute and filter a network using
partial correlation coefficients. Because financial markets are complex systems
that consist of interwoven heterogeneous agents (Mantegna and Stanley 2000;
Podobnik et al. 2011;Kwapień andDrożdż 2012;Qian et al. 2015), the correlation
between two financial agents is often affected by other financial agents, i.e., two
interacting financial agents may also be correlated with other financial agents.
For example, the Chinese and Hong Kong stock markets may also be influenced
by theUS stockmarket or by European stockmarkets. If we remove any effects of
theUS andEuropean stockmarkets hidden in the correlation between theChinese
and Hong Kong stock markets we get the “net” (or “pure”) correlation between
the two markets. The partial correlation coefficient quantifies the “net” correla-
tion between any two financial agents by measuring the relation between two
financial agents and discounting the effects of any other financial agents. Using
a partial correlation measure, Kenett et al. (2010) determine correlation depen-
dency (or correlation influence) and propose (i) a partial correlation threshold
network (PCTN) that is an extension of the CT or MG method, and (ii) a partial
correlation planar maximally filtered graph (PCPG) that is an adaptation of the
PMFG approach. These two partial correlation-based networks are also called
dependency networks by Kenett et al. (2012a) and have been widely applied to
financial markets (see, e.g., Kenett et al. 2012b, 2015).

(iii) Other correlation-based network methods estimate and build a network using
other correlation or similarity measures (Brida and Risso 2010;Wang et al. 2012,
2013a;Matesanz andOrtega 2014). For example, Brida andRisso (2010) propose
the tool of symbolic time series analysis to acquire a metric distance between two
different stocks and use it to build aMST network for studying the structure of the
30 largest North American companies. Wang et al. (2012) use a dynamic time
wrapping method to measure the similarity between two financial agents and
combine it with the MST to construct a system of foreign exchange networks.
Matesanz and Ortega (2014) employ phase synchronization coefficients and the
MST to investigate the nonlinear co-movements of foreign exchange markets
during the Asian currency crisis.

Although different correlation-based network methods of analyzing the correlation
structure of financial markets have been proposed in the literature, the MST is the
preferred andmost frequently used because it is simple, robust, and clear as it visualizes
the linkages.

Our goal here is to study the correlation structure and evolution of world stock mar-
kets usingPearson and partial correlation-basedMSTmethods to constructworld stock
market networks and to investigate their structure and dynamics. We use these two
MST methods because in the literature much use is made of the Pearson correlation-
based network to study the correlation structure and evolution of world stock markets.
For example, Coelho et al. (2007) use the Pearson correlation-based MST to construct
a dynamic network of 53 stock markets during the period 1997–2006 and find that
the network tends to become increasingly compact. Gilmore et al. (2008) employ the
Pearson correlation-basedMSTmethod to study the evolution of linkages in European
stock markets and find that the French stock market occupies the center. Eryiǧit and
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Eryiǧit (2009) investigate the correlation structure of world stock markets using the
Pearson correlation-basedMSTandPMFGandobtain a result that agreeswithGilmore
et al. (2008) that the French stock market is the most important node in both the MST
and PMFG networks. Liu and Tse (2012) study the correlation structure of world stock
markets during the period 2006–2010 using the dynamic Pearson CT method and find
that the behavior of stock markets in different countries is synchronous. Although
network approaches have produced many new well-documented descriptions of the
correlation structure and evolution of world stock markets, no research has done this
using a partial correlation-based network, and thus our use of the partial correlation-
based MST method is a new application. As a part of our study we will also compare
the Pearson and partial correlation-based MSTs.

There are three ways of estimating the partial correlation coefficient. The first is
the liner regression method, which is a tedious way of solving two associated linear
regression problems, obtaining the residuals, and computing the correlation between
the residuals. The second is the iterativemethod, which is a computationally expensive
way, e.g., when the Pearson correlation coefficient is the 0-order partial correlation
coefficient, the nth-order partial correlation coefficient is calculated from three (n −
1)th-order partial correlation coefficients. The third ismatrix inversion,which is simple
and effective and allows the computing of all partial correlation coefficients. Thematrix
inversion procedure constructs the Pearson correlation matrix, computes its inverse
matrix, and calculates the partial correlation coefficients between any two variables.
Kenett et al. (2010, 2012a, b, 2015) choose the second way of estimating the partial
correlation coefficients and use the correlation influence values to construct the PCTC
andPCPGnetworks. Strictly speaking, the PCTCandPCPGnetworks are the influence
network. The network linkages are the influences of one node on another, but not the
“net” correlation between the two nodes (markets). Thus unlike in Kenett et al. (2010,
2012a, b, 2015), choosing the third way of quantifying partial correlation coefficients
between any two financial variables and transforming them into distances that follow
Euclidean axioms as in Mantegna (1999) would be novel and a contribution to the
literature.

The empirical data for our study are daily closing price indices of 57 stock markets
during the period from 2005 to 2014. Following the construction of theMST proposed
by Mantegna (1999), we obtain two correlation matrices by computing the Pearson
and partial correlation coefficients between any two stock markets, and transform the
two correlation matrices into two corresponding distance matrices whose elements
fulfill the three axioms of Euclidean distance. We next transform the two distance
matrices into two world stock market networks filtered using the Pearson and partial
correlation-based MST methods. We designate the two networks MST-Pearson and
MST-Partial. We also use the Pearson and partial correlation-based hierarchical trees
(HTs) associated with the corresponding MSTs to study the hierarchical structure of
world stock markets. Finally we use a rolling window to build time-varying MST-
Pearson andMST-Partial networks and examine the evolution of world stock markets.
We also investigate the differing topological properties between the MST-Pearson and
MST-Partial networks.

123



Correlation Structure and Evolution of World Stock Markets... 611

In summary, we have made four contributions.

(i) In studying the 57 stock markets that fall into the three categories of developed
market, emerging market, and frontier market, we extend the previous research
that is primarily focused on a few developed or emerging markets (see, e.g., the
G7 stock markets investigated by Erb et al. 1994, six developed markets studied
by Solnik et al. 1996, and the US market and nine Asian markets examined by
Chiang et al. 2007) and that does not take into full consideration all possible cor-
relations across different stock markets. Understanding the correlation structure
and dynamics across different national stock markets is crucial in constructing
globally diversified portfolios for international investors and hedge-fund opera-
tors and monitoring the market risk for regulators and policy-markers. Thus our
investigation of the interactions across 57 stock markets from a network perspec-
tive adds to the existing literature and provides a fuller picture of the interactive
behavior of world stock markets for market participants and regulators.

(ii) Our study is the first to analyze the correlation structure and evolution of world
stock markets using Pearson and partial correlation-based networks. Previous
studies used only the Pearson correlation-based network. Thus our work is a
comparative study that uses a new perspective (the partial correlation-based net-
work) to investigate the correlation structure of world stock markets.

(iii) Unlike previous partial correlation-based networks (e.g., PCTN and PCPG), we
use a new method of constructing partial correlation-based networks. We design
the partial correlation-based MST network to analyze the “net” correlation struc-
ture of the world stock markets. In addition, our proposed construction method
also can be applied to other filtered networks, e.g., PMFG and CT.

(iv) We find that the MST-Partial, which has a structure that differs from the MST-
Pearson, enhances the study of correlation structure in financial markets. Using
empirical results, we argue that the outcomes obtained from the MST-Partial
network are more useful than those from the MST-Pearson network. This is
the case because when we remove the influences of other stock markets, the
correlation between any two stock markets is “net.” Thus the MST-Partial is a
“net” network that provides a “net” correlation structure for analyzing world
stock markets.

The rest of this paper is organized as follows. In the next section, we describe the
empirical data and methodologies. In Sect. 3, we show the main empirical results
of the MST-Pearson and MST-Partial networks. We provide a discussion and some
conclusions in Sect. 4.

2 Data and Methodology

2.1 Data

Over the past decadeworld stockmarkets have experienced theUS subprime crisis, the
2008 financial crisis, and the European debt crisis. This has been an unusually active
period, and in our study we follow Bonanno et al. (2000), Coelho et al. (2007) and
Liu and Tse (2012) and use data comprising 57 Morgan Stanley Capital International
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(MSCI) daily closing price indices during the period 3 January 2005–31 December
2014. As in Coelho et al. (2007) and Gilmore et al. (2008), we list indices in US
dollars, reflecting the perspective of international investors and hedge-fund operators.
They comprise 57 stock market indices in 57 countries and regions across seven areas
of the world: seven African indices, 13 Asian indices, 24 European indices, six Latin
American indices, three Middle Eastern indices, two North American indices, and
two Oceanian indices. Table 1 lists the 57 countries and regions and their respective
symbols. The data are obtained from the website of MSCI (https://www.msci.com/
end-of-day-data-search). We define the daily stock market or country index returns i
to be ri (t) = ln Pi (t) − ln Pi (t − 1), where Pi (t) and Pi (t − 1) are values of stock

Table 1 57 counties (regions) and respective symbols

Continent Country (region) Symbol Continent Country (region) Symbol

Africa Egypt EGY Europe Greece GRC

Kenya KEN Hungary HUN

Mauritius MUS Ireland IRL

Morocco MAR Italy ITA

Nigeria NGA Netherlands NLD

South Africa ZAF Norway NOR

Tunisia TUN Poland POL

Asia China CHN Portugal PRT

Hong Kong HKG Russia RUS

India IND Slovenia SVN

Indonesia IDN Spain ESP

Japan JPN Sweden SWE

Korea KOR Switzerland CHE

Malaysia MYS Turkey TUR

Pakistan PAK United Kingdom GBR

Philippines PHL Latin America Argentina ARG

Singapore SGP Brazil BRA

Sri Lanka LKA Chile CHL

Taiwan TWN Colombia COL

Thailand THA Mexico MEX

Europe Austria AUT Peru PER

Belgium BEL Middle East Israel ISR

Croatia HRV Jordan JOR

Czech Republic CZE Lebanon LBN

Denmark DNK North America Canada CAN

Estonia EST United States USA

Finland FIN Oceania Australia AUS

France FRA New Zealand NZL

Germany DEU

123

https://www.msci.com/end-of-day-data-search
https://www.msci.com/end-of-day-data-search


Correlation Structure and Evolution of World Stock Markets... 613

price index i on day t and t–1, respectively. There are 2607 observations for each
return series during the period investigated.

2.2 Methodology

To construct Pearson and partial correlation-based MSTs for world stock markets we
calculate the Pearson correlation coefficients between all pairs of daily returns of the
57 stock market indices. The Pearson correlation coefficient between any two stock
markets i and j is defined

Ci j = 〈rir j 〉 − 〈ri 〉〈r j 〉√
〈r2i − 〈ri 〉2〉〈r2j − 〈r j 〉2〉

, (1)

where ri and r j are vectors of return series of stock markets i and j respectively, and
〈·〉 is the time average over the period investigated.

Then the Pearson correlation matrix C is

C =

⎡
⎢⎢⎢⎣

C11 C12 · · · C1N
C21 C22 · · · C2N
...

...
. . .

...

CN1 CN2 · · · CNN

⎤
⎥⎥⎥⎦ , (2)

where Ci j ranges from −1 to 1 and N is the number of stock markets, which in
our case is N = 57. If two stock markets i and j are each correlated with other
stock markets, the correlation between these two markets computed by Eq. (1) may
introduce spurious correlation information, which we exclude by introducing a partial
correlation coefficient. We use the matrix inversion method to calculate this partial
correlation coefficient, the first step of which is computing the inverse matrix of C
given by

C′ = C−1 =

⎡
⎢⎢⎢⎣

C ′
11 C ′

12 · · · C ′
1N

C ′
21 C ′

22 · · · C ′
2N

...
...

. . .
...

C ′
N1 C ′

N2 · · · C ′
NN

⎤
⎥⎥⎥⎦ . (3)

For any two stock markets i and j , the partial correlation coefficient is

C∗
i j = − C ′

i j√
C ′
i iC

′
j j

, (4)

where the coefficient C∗
i j is the “net” correlation between stock markets i and j , the

value that emerges when all influences from other stock markets are excluded. The
partial correlation matrix C∗ is thus
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C∗ =

⎡
⎢⎢⎢⎣

C∗
11 C∗

12 · · · C∗
1N

C∗
21 C∗

22 · · · C∗
2N

...
...

. . .
...

C∗
N1 C∗

N2 · · · C∗
NN

⎤
⎥⎥⎥⎦ . (5)

As proposed byMantegna (1999),we can link the stockmarkets in theMSTnetwork
by transforming the correlation matrix into a distance matrix. Following Mantegna
(1999), we covert the elementCi j (C∗

i j ) in the correlationmatrixC (C∗) into a distance
metric between each pair of stock markets i and j , and this is given by

di j =
√
2(1 − Ci j ), or d∗

i j =
√
2(1 − C∗

i j ), (6)

where di j (d∗
i j ) varies from 0 to 2 and stratifies the three axioms of the Euclidean

distance (i) di j = 0 if and only if i = j , (ii) di j = d ji , and (iii) di j ≤ dik + dkj .2

When the distance is short the correlation is high, and vice versa. Thus we can use
elements di j and d∗

i j to form two N × N distance matrices D and D∗.
The MST network is a graph constructed by linking N nodes (stock markets) with

N − 1 edges such that the sum of all edge distances is the minimum, i.e., the MST
network uses the N − 1 linkages to extract the most important information from
the correlation matrix. We use the Kruskal’s algorithm (1956) to apply the distance
matricesD andD∗ in constructing theMST-Pearson andMST-Partial networks. There
are fours steps in the construction of the Kruskal’s algorithm.

(i) Place the N (N − 1)/2 elements from the distance matrix in increasing order.
(ii) Select the element (e.g., a pair of stock markets) with the shortest distance and

add the edge to the graph.
(iii) Select the next-shortest element and add the edge such that the new graph is still

a tree.
(iv) Repeat (iii) until all stock markets are linked in the graph.

Mantegna (1999) and Mantegna and Stanley (2000) specify the construction of the
MST in detail.

2 To verify that the partial correlation-based distance metric d∗
i j satisfies the third axiom (i.e., the triangle

inequality, TI), we follow Wang et al. (2012) and conduct the TI verification based on the empirical data.
Given a triplet (i, j, k), if the TI is fulfilled, d∗

ik + d∗
k j ≥ d∗

i j and thus Hik j = d∗
ik + d∗

k j − d∗
i j ≥ 0. For

57 stock market indices, we have a total number of C3
57 × 3=87,780 triplets for testing Hik j . Figure 14

shows the histogram of {Hik j } and its descriptive statistics for 57 stock market indices during the entire
period from 2005 to 2014. The minimum of {Hik j } is 0.6821, meaning all Hik j ≥ 0 and that d∗

i j fulfills

the third axiom. Figure 15 shows that the minimums of {Ht
ik j } for dynamic MST-Partial networks using

rolling windows are all larger than 0.3, which further confirms that d∗
i j is a Euclidean distance based on our

empirical data.
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Fig. 1 Probability density functions (PDFs) of correlation coefficients for the world stock markets over the
period 2005–2014. The left and right panels respectively show the PDFs of Pearson correlation coefficients
{Ci j ; i < j} and partial correlation coefficients {C∗

i j ; i < j}

3 Empirical Results

3.1 Statistics of Pearson and Partial Correlation Coefficients

Prior to analyzing the MST-Pearson and MST-Partial networks, we investigate the
probability density functions (PDFs) of N (N − 1)/2 elements {Ci j ; i < j} in the
Pearson correlationmatrixC and elements {C∗

i j ; i < j} in the partial correlationmatrix
C∗. Figure 1 provides graphs of the twoPDFs. Table 2 provides the descriptive statistics
of Pearson correlation coefficients {Ci j ; i < j} and partial correlation coefficients
{C∗

i j ; i < j}. From Fig. 1 and Table 2 we see that the two PDFs differ completely. The
PDF of Pearson correlation coefficients {Ci j ; i < j} is a nonsymmetrical distribution
with a large positive value at its center that deviates from a Gaussian-like shape.
Like the correlation distribution reported in Drożdż et al. (2001) and Wang and Xie
(2015), the distribution of {Ci j ; i < j} is bimodal, indicating that the distribution
may be derived from two independent markets and that the MST-Pearson network

Table 2 Descriptive statistics of
Pearson correlation coefficients
{Ci j ; i < j} and partial
correlation coefficients
{C∗

i j ; i < j}

The Jarque–Bera statistic tests
for the null hypothesis of
Gaussian distribution
∗Rejection of the null
hypothesis at the 1 %
significance level

{Ci j ; i < j} {C∗
i j ; i < j}

Mean 0.3585 0.0150

Maximum 0.9509 0.6682

Minimum −0.0268 −0.1700

SD 0.2230 0.0532

Skewness 0.2739 3.1899

Kurtosis 2.2453 27.0167

Jarque–Bera 57.8345∗ 4.1064 × 104∗
Observations 1596 1596
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has a minimum of two large independent clusters. The PDF of partial correlation
coefficients {C∗

i j ; i < j} has a non-Gaussian shape with a high degree of kurtosis
and a long right tail. Table 2 shows that for each distribution the Jarque–Bera statistic
rejects the null hypothesis of Gaussian distribution at the 1 % significance level. By
comparing the mean, maximum, and minimum values of the two distributions, we
conclude that the partial correlations between world stock market pairs are smaller
than the Pearson correlations, indicating that correlations between world stock market
pairs are significantly influenced by other stock markets.

3.2 Results of MSTs and HTs

Figures 2 and 3 show the MST-Pearson and MST-Partial networks of 57 world stock
market indices acquired from the Pearson correlationmatrix and the partial correlation
matrix estimated using all daily index returns over the period 2005–2014. In both
figures, the colors and shapes of the symbols indicate the geographical distribution of
the host country (region) of the stock market, i.e., the host countries (regions) from the
same geographical location are coded using the same color and shape. The length of an
edge shown in the figure reflects the relative distance between the two corresponding
nodes. For example, in Fig. 2 the FRA–DEU length is shorter than the FRA-NOR
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Fig. 2 (Color online) MST-Pearson network of 57 stock indices in the world stock markets obtained from
the Pearson correlation matrix computed by all daily index returns during the period 2005–2014. In the
network, the length of the edge between two nodes stands for the relative distance between two nodes. The
longer the edge, the father the distance between two nodes, and the smaller the correlation between two
stock markets is. The color and shape of the symbols represent the geographical distribution of the host
country (region) of the stock market. African stock markets are orange circles, Asian are cyan diamonds,
European are yellow squares, Latin American are blue triangles, Middle Eastern are green diamonds, North
American are red circles, and Oceanian are magenta squares
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Fig. 3 (Color online)MST-Partial network of 57 stock indices in the world stockmarkets obtained from the
partial correlation matrix computed by all daily index returns during the period 2005–2014. In the network,
the length of the edge between two nodes stands for the relative distance between two nodes. The longer the
edge, the father the distance between two nodes, and the smaller the correlation between two stock markets
is. The color and shape of the symbols represent the geographical distribution of the host country (region) of
the stock market. African stock markets are orange circles, Asian are cyan diamonds, European areyellow
squares, Latin American are blue triangles, Middle Eastern are green diamonds, North American are red
circles, and Oceanian are magenta squares

length, indicating that the distance between FRA and DEU is less than the distance
between FRA and NOR. It also indicates that the correlation between the French stock
market and the German stock market is greater than between the French stock market
and the Norwegian stock market.

Figure 2 shows aMST-Pearson network comprised of two large clusters, oneWest-
ern and one Eastern, and this suggests that stock markets tend to cluster according
to their geographical distribution. There are two clusters in the Western cluster, the
European cluster with the French stock market (FRA) at its center and the American
cluster that includes stock markets in North America and Latin America. The Eastern
cluster is the Asia-Pacific cluster and it has two centers, the Singapore stock mar-
ket (SGP) and the Australian stock market (AUS). The African stock markets (e.g.,
KEN, NGA, MUS, and TUN) deviate from this network clustering, their distribution
is dispersed, and they do not form clusters. This may be because the economies of
many African countries are underdeveloped and the capital markets are dominated by
frontier markets.

The distances between stock markets in the European cluster are smaller than in
the American cluster and the Asia-Pacific cluster, which suggests that correlations
between the European stock markets are stronger than in other regional stock markets.
The MST-Pearson network indicates an surprising linkage among ten stock markets,
i.e., CAN inNorthAmerica, GBR inEurope, ZAF inAfrica, AUS andNZL inOceania,
and SGP, IND, LKA, MYS, and PAK in Asia. The host countries of all ten of these
stockmarkets aremember states of theCommonwealth ofNations, indicating that their
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capitalmarketsmay be influenced by shared commonvalues and goals.As indicated by
Coelho et al. (2007), it is surprising that theUSA stockmarket, the largest stockmarket
in the world, is not the hub in the MST-Pearson network and is only a bridge between
CAN and the Latin American cluster. This may be because the strong correlations
among the 21 European stock markets lessen the influence of the USA stock market.
By removing the influences of other stock markets (most of which will be from the
same geographical location) on the correlations, the MST-Partial network reveals the
“net” correlation structure of world stock markets.

Figure 3 shows that the structure of the MST-Partial network differs from the struc-
ture of the MST-Pearson network. The biggest difference is that the Western cluster is
broken into three clusters, two in the European cluster and one in the American cluster
comprising North America and Latin America.3 The European cluster has one stock
market cluster inWestern and Southern Europe and the other in Northern, Central, and
Eastern Europe. The American cluster with the USA stock market at its center bridges
the two European clusters, indicating that the USA stock market is the actual hub
and has the dominant market position. In the MST-Partial network, the Asia-Pacific
cluster is more highly concentrated and has three subsets, (i) a big sub-cluster with
SGP at its hub, (ii) an Oceanian cluster consisting of AUS and NZL, and (iii) a clus-
ter comprised of JPN, KOR, and TWN. Two Middle Eastern stock markets, i.e., the
Lebanese stock market (LBN) and the Jordanian stock market (JOR), link with the
Egyptian stock market (EGY), again indicating that geographical distribution strongly
influences network architecture.

In addition to our use of the MST-Pearson and MST-Partial networks to investi-
gate the hierarchical structure of world stock markets, we also use the hierarchical
tree (HT). We construct the HT using an ultrametric distance metric that fulfills
the first two properties of the Euclidean distance, and also the ultrametric inequality
(d̂i j ≤ max{d̂ik, d̂k j }), which is stronger than the triangular inequality of the Euclidean
distance. Mantegna (1999) and Mantegna and Stanley (2000) provide a detailed intro-
duction to HT. Using Pearson and partial correlation matrices, we obtain two HTs,
i.e., HT-Pearson and HT-Partial of world stock markets during the period 2005–2014
(see Fig. 4).

Figure 4a shows at least four hierarchical clusters of linked stock markets in the
HT-Pearson. The first is a European cluster that encompasses most European markets.
The distance between FRA and DEU is the smallest in the HT-Pearson, indicating
that the relationship between the French and German markets is the strongest of all
world stockmarkets. The second is the North American cluster composed of CAN and
USA. The third is the Latin American cluster that consists of BRA and MEX. These

3 An extreme example of the difference between these two networks is that in the MST-Pearson network
DEU and POL are indirectly linked by FRA, and POL links to CZE and HUN together, but in the MST-
Partial network DEU–FRA and POL–CZE–HUN are detached and mediated by several remote markets.
We find that the Pearson and partial correlation coefficients between FRA and POL are 0.75 and −0.04
and those between FRA and DEU are 0.95 and 0.42. This suggests (i) that the “net” correlation between
FRA and DEU is far stronger than that between FRA and POL and this is why FRA–DEU stays in the
MST-Partial network, and (ii) that the original Pearson correlation between FRA and POL is an “apparent”
correlation resulting primarily from correlations with other markets. We thank a reviewer for pointing out
this example.
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(a)

(b)

Fig. 4 (Color online) Hierarchical trees (HTs) of 57 stock indices in the world stock markets during the
period 2005–2014. a and b respectively show the HT-Pearson and HT-Partial obtained from the Pearson
and partial correlation matrices estimated by all daily index returns. The color of symbols represents the
geographical distribution of the host country (region) of the stock market. African stock markets are orange,
Asian are cyan, European are yellow, Latin American are blue, Middle Eastern are green, North American
are red, and Oceanian are magenta

two clusters are closely linked and constitute an American cluster. The fourth is the
Asia-Pacific cluster comprising two sub-clusters, (i) the HKG, CHN, SGP, AUS, and
NZL cluster, and (ii) the KOR and TWN cluster. Other Asian stock markets, including
MYS, IDN, and IND, also connect to the Asia-Pacific cluster.

Figure 4b shows that (i) the HT-Partial is more hierarchical than the HT-Pearson,
(ii) the distances among stock markets are more uniformly distributed, and (iii) more
hierarchical clusters are formed in the HT-Partial than in the HT-Pearson. The distance
betweenHKG andCHN in the HT-Partial is the smallest, indicating the tight economic
relationship between Hong Kong and the Chinese mainland. We designate this kind
of tight relationship a “twin market.” Other twin markets in the HT-Partial include
FRA–DEU, CAN–USA, AUS–NZL, ITA–ESP, KOR–TWN, HUN–POL, FIN–SWE,
and HRV–SVN. International investors and hedge-fund operators should take co-
movements between twinmarkets into considerationwhenmaking portfolio decisions.
Except for the two frontier markets LKA and PAK, the rest of the Asian and Oceanian
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markets form three hierarchical clusters, (i) one composed of most Asian stock mar-
kets, (ii) the Oceanian cluster with AUS and NZL, and (iii) one composed of JPN,
KOR, and TWN, which is similar to that in the MST-Partial network. The union of
European stock markets presented in the HT-Pearson is split into at least five clusters
bridged by the American cluster that includes the North American cluster (USA and
CAN) and the Latin American cluster (MEX, BRA and PER). This indicates once
again that the European and American stock markets are correlated and that the USA
stock market is prominent world-wide. In addition to the big cluster with centers in
FRA and DEU, the European clusters also include the North European cluster (FIN,
SWE, NOR, and RUS), the Central European cluster (CZE, HUF and POL), and other
small clusters. A cluster with EGP, JOR, and LBN is formed in the HT-Partial. Overall,
the HT-Partial shows more hierarchical clusters and includes more information about
world stock markets than the HT-Pearson.

3.3 Scale-Free Structure of MSTs

Scale-free networks, pioneered by Barabási and Albert (1999), are networks with a
distribution that follows a power law. They found that many real networks (e.g., the
World Wide Web) are scale-free. If a node i has k edges in a network, then k is
designated the degree of node i . The degree distribution p(k) is the probability that
a node will have k edges and is also the ratio between the number of nodes with k
edges and the total number nodes in the network. If the degree distribution p(k) of a
network has a power-law tail, i.e.,

p(k) ∼ k−α, (7)

the network is scale-free or has a scale-free structure (Albert and Barabási 2002).
Scale-free structures are widespread in financial networks, e.g., stockmarket networks
(Vandewalle et al. 2001; Onnela et al. 2003) and foreign exchange networks (Górski
et al. 2008; Kwapień et al. 2009; Wang et al. 2013a).

To study the scale-free structure of MST-Pearson and MST-Partial networks we
use an analytical tool proposed by Clauset et al. (2009) that combines the maximum-
likelihood estimation method of fitting a power-law with the Kolmogorov-Smirnov
(KS) test for goodness-of-fit and confidence-interval. Figure 5 is a graph of the dis-
tributions of node degree for the MST-Pearson and MST-Partial networks. Note that
when the estimated p value is greater than 0.1, the power-law hypothesis for the
empirical data stands. Clauset et al. (2009) provide a detailed explanation of p value.
Figure 5 shows that the power-law exponents are 2.76 and 3.26 for the two MSTs and
the corresponding p values are greater than 0.1, indicating that the MST-Pearson and
MST-Partial networks are scale-free networks.4 In general, the closer the value of the

4 Our estimated power-law exponent of theMST-Pearson network is similar to the result obtained byGórski
et al. (2008) who investigate cumulative distribution furcations (CDFs) of the node degree of MST-Pearson
networks for a comparable amount of world-currencies exchange rates based on different numeraires, but
note that there is a difference in unity for the estimated exponents between the CDF and the probability
distribution function (PDF), see, e.g., Clauset et al. (2009) and Wang et al. (2013a).
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Fig. 5 The CDFs P(k) of node degree for MST-Pearson and MST-Partial networks. The tail power-law
fitting is estimated by the method of Clauset et al. (2009). If the p value is larger than 0.1, the power-law
hypothesis can be accepted for the empirical data; otherwise, reject it. The estimated power-law exponents
for the node degree distributions ofMST-Pearson andMST-Partial networks are 2.76 and 3.26, respectively.
Both their p values (>0.1) accept the power-lawhypothesis,meaning that theMST-Pearson andMST-Partial
networks are scale-free networks

power-law exponent α is to 1.0, the longer the tail of the distribution, and the larger the
proportion of the distribution in the tail. Thus the degree distribution with α = 2.76 in
the MST-Pearson network has a greater proportion of tail distribution than the degree
distribution α = 3.26 for the MST-Pearson network, and this is in accord with the
graphic results shown in Figs. 2 and 3. This is because the MST-Pearson network is
more compact than the MST-Partial network, e.g., the degree of FRA in the former
network is greater than in the latter.

3.4 Centrality Structure of MSTs

To measure the relative influence of stock markets, we analyze the centrality struc-
ture of MST-Pearson and MST-Partial networks using centrality measures—influence
strength, betweenness centrality, and closeness centrality—to quantify the centrality
structure of the MSTs.

The influence strength (IS) of a node is the sum of the correlations of the node with
all other connected nodes (Kim et al. 2002), i.e.,

S(i) =
∑

j∈Γi

ρi j , (8)

where S(i) is the influence strength of node i andρi j the correlation coefficient between
nodes (stock markets) i and j . Here ρi j represents the Pearson and partial correlation
coefficients, and Γi represents the neighbors of node i .

The betweenness centrality (BC) of a node quantifies the importance of a node
when it is positioned between other nodes in the network. The betweenness centrality
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B(i) of node i is defined (Freeman 1977)

B(i) =
∑

k 
=i 
=h

σkh(i)

σkh
, (9)

where σkh(i) is the number of shortest paths between nodes (stock markets) k and h
that run through node (stock market) i , and σkh is the total number of shortest paths
between k and h.

The betweenness centrality (BC) of an edge is similar to the definition of BC for a
node, i.e., it is the number of shortest paths passing through the edge in the network
(Girvan and Newman 2002).

The closeness centrality (CC) of a node is the reciprocal of its farness. The farness
of a node is defined as the sum of all the shortest path lengths from the node to all
other nodes in the network. On average, the larger the closeness centrality of a node,
the closer the node is to other nodes (Tabak et al. 2010). For a node i in a network
with N nodes, the closeness centrality C(i) is

C(i) = 1∑N
j=1 li j

, (10)

where li j is the shortest path length from node i to node j .
We calculate the influence strength, betweenness centrality, and closeness centrality

values for each node in the MST-Pearson and MST-Partial networks. Table 3 shows
the top five markets (nodes) of the MST-Pearson and MST-Partial networks ranked by
their corresponding values.

Table 3 The top five markets of MST-Pearson and MST-Partial networks according to values of influence
strength (IS), betweenness centrality (BC), and closeness centrality (CC)

Rank IS BC CC

Market S(i) Market B(i) Market C(i)

Panel A: MST-Pearson

1 FRA 10.6142 GBR 1.1980 GBR 0.00532

2 SGP 3.7998 FRA 1.1667 ZAF 0.00518

3 AUS 3.7307 AUS 1.0965 FRA 0.00498

4 NLD 2.5633 ZAF 1.0013 AUS 0.00495

5 GBR 2.3326 SGP 0.9223 SGP 0.00444

Panel B: MST-Partial

1 FRA 1.3023 FRA 1.2068 FRA 0.00353

2 USA 0.8770 USA 1.1441 DEU 0.00352

3 HKG 0.8737 DEU 0.9812 USA 0.00348

4 SGP 0.8076 JPN 0.8972 CHE 0.00333

5 CAN 0.8002 CHE 0.8810 CAN 0.00327
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In theMST-Pearson network fourmarkets, including twoEuropeanmarkets (France
and UK), one Asian market (Singapore), and one Oceanian stock market (Australian),
are always among the top five irrespective of how they are measured. The betweenness
centrality and closeness centrality of the SouthAfrican stockmarket also performwell.
Somewhat surprisingly, the stock markets of the USA (the biggest economic entity),
Germany (the economic engine of Europe), and Japan (with a huge economy and
world-wide trading volume) never rank in the top five.

In theMST-Partial network the Frenchmarket occupies the top position irrespective
of how it is measured. This may be because the headquarters of the World Federation
of Exchanges (WFE) is located in Paris, and this would allow other markets to have co-
movements with the French stock market. Note that the USA, German, and Japanese
stock markets appear in the top-five ranking, that the USA and German markets are
particularly strong, and that the Swiss and Canadian stock markets are also influential
and important.

To determine the influence of edges in theMSTs, we compute the values of the edge
betweenness centrality in MST-Pearson and MST-Partial networks. Table 4 shows
the top five market–market edges in the two MSTs. A network edge with a large
betweenness centrality value links two parts of the network. For example, if we remove
or break the edge between AUS and ZAR in the MST-Pearson network shown in
Fig. 2, the network splits into Western and Eastern clusters. Table 4 shows that, with
the exception of FRA, all nodes (markets) on edges in the MST-Pearson network
are member states of the Commonwealth of Nations, but that in the MST-Partial
network the USA, DEU, FRA, CHE, CAN and JPN markets are the world stock
market connectors, a result more in line with our expectations.

3.5 Dynamic Structure of MSTs

To study the evolution of world stock markets, we use a rolling window to analyze
the dynamic structure of MSTs. We divide the empirical data from the period 2005–

Table 4 The top five edges
(market–market) of
MST-Pearson and MST-Partial
networks according to values of
the edge betweenness centrality
(BC)

Rank Edge (market–market) BC

Panel A: MST-Pearson

1 GBR–ZAR 0.2525

2 AUS–ZAR 0.2481

3 GBR–FRA 0.2412

4 AUS–SGP 0.2130

5 GBR–CAN 0.1228

Panel B: MST-Partial

1 DEU–FRA 0.2544

2 DEU–USA 0.2538

3 CHE–FRA 0.2318

4 USA–CAN 0.2262

5 CHE–JPN 0.2262
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2014 into T windows t = 1, 2, . . . , T , with a window width L , i.e., there are L
observations of the daily returns from each stock market in the window. Following
Wang and Xie (2015), we set windowwidth L to 260 trading days (approximently one
trading year) and fix the window step length to one trading day. In each window we
calculate the Pearson and partial correlation matrices and obtain two corresponding
MSTs. The T MST-Pearson and MST-Partial networks we get we use in investigating
the time-varying structure of world stock markets.

In our study of the dynamic structure of the MSTs we focus on (i) the topological
properties of the network, and (ii) the linkage survival ratio in the network. Following
Onnela et al. (2003) and Wang et al. (2012, 2014), we introduce three measures—
normalized tree length, average path length, and mean occupation layer—to analyze
the topological properties of the MSTs.

The normalized tree length (NTL) is the average distance of the network at time t
(Wang et al. 2012), i.e.,

NTL(t) = 1

N − 1

∑

dti j∈Θt

dti j , (11)

where dti j is the distance between nodes i and j at time t , Θt denotes the set of all
edges of the network at time t , and N − 1 is the number of edges.

The average path length (APL) can be used to analyze the network density and is
defined

APL(t) = 2

N (N − 1)

∑

i< j

l ti j , (12)

where lti j is the shortest path between nodes i and j in the network at time t .
The mean occupation layer (MOL) proposed by Onnela et al. (2003) is used to

characterize the spread of nodes in the network and is defined

MOL(t, vtc) = 1

N

N∑

i=1

Lev(vti ), (13)

where vtc and vti are the central node c and node i , respectively, in the network at time
t , and Lev(vti ) is the difference in level between nodes i and c at time t when the level
of the central node c is set at zero.

Figures 6, 7 and 8 show the time-varying results of NTL, average path length, and
mean occupation layer in theMST-Pearson andMST-Partial networks. Figure 6 shows
that all the dynamic values of the NTL in the MST-Partial are greater than in the MST-
Pearson, which is the case because the partial correlations between stock markets are
smaller than the Pearson correlations. The NTL curves of the two networks both show
that during the 2008 financial crisis the values of NTLwere clearly lower than average
and that there was a valley formed in each curve. Because lower values of NTL cor-
respond to higher correlations across stock markets, these NTL results show evidence
of the usually used phase “correlations jump to one” when describing the behavior of
financial asset prices during the financial crisis (Papenbrock and Schwendner 2015).
During the 2008 financial crisis trigged by the US subprime mortgage crisis, and espe-
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Fig. 6 Time-varying normalized tree length (NTL) of MST-Pearson and MST-Partial networks. The top
and bottom panels respectively show the corresponding results for MST-Pearson and MST-Partial, and the
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Fig. 7 Time-varying average path length (APL) of MST-Pearson and MST-Partial networks

cially after the bankruptcy of the financial giant Lehman Brothers on 15 September
2008, many stocks and other assets in the USA market declined dramatically in value
or even became illiquid (Papenbrock and Schwendner 2015), and this behavior was
transmitted to other stock markets and led to increasing correlations across national
stockmarkets. Our finding adds to the literature that financial crises andmarket crashes
usually lead to an increase in correlations (or co-moments) across stock markets (see,
e.g., Erb et al. 1994; Solnik et al. 1996; Wang et al. 2011; Rizvi et al. 2015).5 The
NTL curve of the MTS-Pearson network during the period from Q4 2010 to the end

5 For example, Rizvi et al. (2015) use wavelet analysis to investigate co-movements and the contagion
behavior in Islamic and conventional equity markets across the USA and Asia-Pacific. They find that
the recent US subprime mortgage crisis is a fundamental-based contagion and that there is an increasing
co-movement (i.e., a wavelet coherency) during most crises.
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Fig. 8 Time-varying mean occupation layer (MOL) of MST-Pearson and MST-Partial networks

of 2011 shows another significant valley. We also find this fluctuation behavior in
the NTL curve of the MST-Partial network during the period July–August 2011. This
“July–August-2011 stock market drop” was the worst period in the European debit
crisis across the USA, Europe, Middle East, and Asia. The S&P 500 index of the USA
fell 6.7 % on 8 August 2011, the FTSE MIB index of Italy fell 24.7 % from 19,491
points on 21 July 2011 to 14,676 points on 10 August 2011, and the FTSE 100 index
of the UK dropped 1100 points (about 18.6 %) from above 5900 points on 26 July
2011 to below 4800 points on 9 August 2011. Two reasons for this stock market crash
were fears generated by (i) the European debit crisis spreading to Spain, Portugal, and
Italy, and (ii) the downgrading of the credit ratings of such countries as the USA and
France. These factors increased market coordination and the correlations across stock
markets. In 2012 the NTL curves of the two networks exhibited an opposite pattern,
i.e., an increasing trend in the MST-Pearson network and a decreasing trend in the
MST-Partial network, indicating that the correlation across stock markets declined
but the “net” correlation increased. Although bailout procedures were utilized, e.g.,
a e 120 billion stimulus package passed by the EU and a $430 billion contributed
to the IMF by the G20 to halt the contagion, the 2012 world economy was still in
crisis and thus the “net” correlation across stock markets increased. More recently
both NTL curves have increased and reached the 2005 level, suggesting that the world
economy is in recovery and international investors can benefit from global portfolio
diversification.

Figure 7 shows that on average the dynamic values of the average path length
(APL) in the MST-Partial are larger than in the MST-Pearson, indicating that the
MST-Partial requires more intermediary markets to transmit price fluctuations from
one market to another than the MST-Pearson. As in the NTL curves, the APL curves
of the two MSTs show a sharp fluctuation during the 2008 financial crisis, especially
in the MST-Partial network, and the APL reaches its minimum. This finding once
again suggests that stock markets are more highly correlated during a crisis and price
fluctuations and other information more quickly delivered. Figure 8 shows that in the
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Fig. 9 Single-step survival ratios (SSRs) of MST-Pearson and MST-Partial networks
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Fig. 10 Multi-step survival ratios (MSRs) of MST-Pearson and MST-Partial networks, where the step
length δ is set to be five trading days (i.e., a 5-day trading week)

mean occupation layer (MOL) the dynamic values of the MST-Partial are on average
higher than in the MST-Pearson. The MOL curves of the twoMSTs also form a valley
during the 2008 financial crisis. The smaller MOL value during the crisis means that
the transmission of price fluctuations and other information from the central market
(node) to other markets (nodes) requires fewer intermediate markets than during more
stable periods. Surprisingly, the APL and MOL curves during the European debt
crisis are dynamic irrespective of macroeconomic or political events. In summary, the
2008 financial crisis greatly influenced world stock market networks, increased the
correlations among them, and made them more sensitive to changes in market price.

We next use the multi-step survival ratio (MSR) and the single-step survival ratio
(SSR), measurements proposed by Onnela et al. (2003), to quantify MST edge evolu-
tion. The MSR is the ratio between the number of common edges found in successive
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Fig. 11 Multi-step survival ratios (MSRs) of MST-Pearson and MST-Partial networks, where the step
length δ is set to be 20 trading days (i.e., a 20-day trading month)
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Fig. 12 Multi-step survival ratios (MSRs) of MST-Pearson and MST-Partial networks, where the step
length δ is set to be 60 trading days (i.e., a 60-day trading quarter)

MSTs and the total number of edges in the MST, i.e.,

MSR(t, δ) = 1

N − 1
|E(t) ∩ E(t − 1) ∩ · · · ∩ E(t − δ)| , (14)

where δ is the step length and E(t) the set of edges in the MST at time t . For small
and large δ values, MSR (t, δ) quantifies the short-term and long-term MST stability,
respectively (Sensoy and Tabak 2014). The larger the survival ratio, the more stable
the MST. When δ = 1, the MSR reduces to the SSR, i.e.,

SSR(t) = 1

N − 1
|E(t) ∩ E(t − 1)| . (15)
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Fig. 13 Multi-step survival ratios (MSRs) of MST-Pearson and MST-Partial networks, where the step
length δ is set to be 260 trading days (i.e., a 260-day trading year)

Figure 9 shows the single-step survival ratios (SSRs) of MST-Pearson and MST-
Partial networks. Note that the SSR trends in both MSTs are similar and that the SSR
values are very high. We find that the average SSR values in the MST-Pearson and
MST-Partial are 0.93 and 0.96, respectively, indicating that most linkages survive from
one time to the next and that the MSTs in the short term are stable. We then quantify
the robustness of the edges by measuring the MSR using different step lengths. We set
theMSR step length at a 5-day trading week, a 20-day trading month, a 60-day trading
quarter, and a 260-day trading year and examine the stability of the MST-Pearson and
MST-Partial networks. Figures 10, 11, 12 and 13 show the results from four different
MSRs for the two MSTs. Note that the MSR curves of the two MSTs show the same
trend across different step lengths. Note also that increasing the step length intensifies
the MSR curves of the two MSTs, suggesting that the MST edges become less stable
over time. For example, when the step length is 5 days, the average values of the two
MSTs are 0.89 and 0.82, respectively, indicating that 50 linkages in the MST-Pearson
network and 46 linkages in the MST-Partial network are identical over 5 days. If we
increase the step length to 260 days, however, the average values are 0.22 and 0.13,
respectively, suggesting that only 12 linkages in the MST-Pearson and 7 linkages in
the MST-Partial networks are identical over one year. Thus international investors and
hedge-fund operators should make timely adjustments in their portfolios if they are to
avoid or reduce risk.

4 Discussion and Conclusions

In this study we use a complex-network approach to investigate the correlation struc-
ture and evolution of world stock markets. Our empirical data are daily price indices
of 57 stock markets during the 2005–2014 period, and we construct MST-Pearson
and MST-Partial networks. We examine Pearson and partial correlation coefficient
statistics, the clustering structure of MSTs, the scale-free structure of MSTs, and
the centrality structure of MSTs. We also analyze the hierarchical structure of world
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stock markets using HTs. As a comparative study, we analyze the topological prop-
erties between the MST-Pearson and MST-Partial networks. Finally, we construct
time-varying MSTs and use them to study the dynamic structure of MSTs.

Studying the correlation structure and evolution of world stock markets we found
(i) that comparing the distributions of Pearson and partial correlation coefficients
reveals that the two distributions have fat tails but are totally different, indicating that
correlations between two stockmarkets are greatly influencedbyothermarkets, (ii) that
the structure of theMST-Pearson andMST-Partial networks also differs, i.e., the former
is more compact than the latter, (iii) that two large stock market clusters (European
and Asia-Pacific) form in the MST-Pearson network according to their geographical
distribution, and that in the MST-Partial network the European cluster splits into two
parts and that they are bridged by the American cluster with the USA at its center, (iv)
that the HT-Partial is more hierarchical than the HT-Pearson and more hierarchical
clusters are grouped in the former than in the latter, (v) that the degree distributions
of both the MST-Pearson and MST-Partial networks show a power-law tail, indicating
that the two MST networks are scale-free, (vi) that the centrality measurement results
indicate that the ranking of influential markets presented in the twoMSTs differ, i.e., in
the MST-Pearson network the USA, DEU, and JPN markets are not listed the top five
but in the MST-Partial network they are, (vii) that during the 2008 financial crisis the
time-varying topological measures of MST-Pearson andMST-Partial networks form a
valley, which implies that during crises the world stock markets are tightly correlated
and price changes and other information quickly transmitted, and (viii) that increasing
the step length decreases the multi-step survival ratio (MSR) values of the two MSTs,
indicating that the linkage stability in the twoMSTs decreases as step length increases.

We have not taken into consideration non-synchronous trading in world stock mar-
kets, and that will be a useful focus for future study. We leave this topic for future
study because to the best of our knowledge there is no effective way of eliminating the
non-synchronous trading effect. For example, weekly data are usually used to fix the
time-zone differences in the study of world stock markets, but trading activities and
decisions are heterogeneous and change across days or even hours and minutes (i.e.,
across different time horizons) and thus weekly data lose information contained in
daily data. Eryiǧit and Eryiǧit (2009) find that the weekly MST network is somewhat
similar to—but still differs from—the daily MST network. In the well-known work on
contagion among stock markets by Forbes and Rigobon (2002), the authors employ
the rolling-average 2-day returns of each stock market index to control for the non-
synchronous trading effect and find no significant difference between daily returns and
rolling-average 2-day returns. This finding is confirmed by Chiang et al. (2007) who
studyfinancial contagionwith a dynamic conditional-correlationmodel. But they point
out that using rolling-average 2-day returns can easily produce serial auto-correlations
and ignores the daily-based announcement effect. Another way of fixing the problem
of data asynchronous due to time-zone differences is to lag daily prices or returns of
stockmarket indices (see, e.g., Sheng and Tu 2000). The 57world stockmarkets can be
divided into three time-zone regions, (i) Asian-Pacific, (ii) European-African, and (iii)
American. When measuring the correlations between two stock markets from differ-
ent regions simultaneously take into consideration three cases, i.e., Asian-Pacific and
European-African, Asian-Pacific and American, and European-African and Ameri-
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can, and lag one time series of two stock markets by 1 day in each case. A correlation
matrix only allows us two choices, however, to lag or not to lag,6 which is why San-
doval (2014) uses an enlarged correlation matrix among all original and lagged time
series7 to analyze the correlation structure of world stock markets. Based on the ran-
dom matrix theory (RMT), a large body of research (see, e.g., Laloux et al. 1999;
Plerou et al. 1999; Kwapień and Drożdż 2012; Zhou et al. 2012; Wang et al. 2013b;
Meng et al. 2014, 2015; Dai et al. 2016) finds that the empirical correlation matrix
for financial data contains a great deal of random noise. Thus the enlarged correlation
matrix would introduce more random noise into the network and make the analysis
more complex. Thus finding a way of eliminating the non-synchronous trading effect
in the study of world stock markets is a topic worth researching.

Our new perspective described here can be a useful tool for international investors
and hedge-fund operators as they make portfolio decisions and for regulators and
policy-markers as they assess the market stability and formulate economic policy.
Modern investment theory such as the mean-variance model proposed by Markowitz
(1952) indicates that investors should hold a diversified portfolio in order to balance
risk and optimize returns. Thus international investors investing in more than one
stock market would obtain benefits from global portfolio diversification. The corre-
lation structure across different assets is at the root of the optimization problem in
the mean-variance model. Previous research shows that a correlation-based network
can improve optimal investment strategy. For example, Onnela et al. (2003) find that
stocks in a portfolio with minimum risk usually are located in the “leaves” of the
MST-Pearson network. Tola et al. (2008) show that the network-filtered correlation
matrices used in the mean-variance model can improve the reliability of portfolios.
Thus our proposed MST-Partial network offers a new tool for portfolio optimization.
Highly correlated stock markets during financial crises lower any potential gains from
international portfolio diversification, but the “twin market” (e.g., the HKG–CHN)
found in the MST-Partial network offers new opportunities for pair trading. If the
highly correlated twin markets show two different trends (i.e., one moves up and the
other moves down), for example, investors can go long on the underperforming one,
go short on the overperforming one, and close the positions when the correlations
between the two return to normal. If market regulators and policy-markers understand
the correlation structure and the corresponding clustering structure of stock markets
observed in correlation-based networks, they can improve their global and regional
policy coordination and deal with extreme market volatility and the co-movements in
world stock markets. Information on the evolution of correlation-based networks and
their dynamic topological features would enable them to assess market stability and
monitor risk.

6 For example, when computing the correlation between DEU and USA (a case of European-African and
American), we do not need to lag the time series of DEU but only that of the USA because the closing price
of the USA market on day t − 1 can affect the closing price of the DEU market on day t . In contrast, when
computing the correlation between DEU and CHN (a case of European-African and Asian-Pacific), we do
not need to lag the time series of CHN but only that of DEU. These lag operations for the time series of
DEU are contradictory and inconsistent.
7 All original time series are lagged by 1 day.
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Appendix

See Figs. 14 and 15 for the triangle inequality verification of the partial correlation-
based distance metric d∗

i j .
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