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Using the CAViaR tool to estimate the value-at-risk (VaR) and the Granger causality risk test to
quantify extreme risk spillovers, we propose an extreme risk spillover network for analysing the
interconnectedness across financial institutions. We construct extreme risk spillover networks at 1%
and 5% risk levels (which we denote 1% and 5% VaR networks) based on the daily returns of
84 publicly listed financial institutions from four sectors—banks, diversified financials, insurance
and real estate—during the period 2006–2015. We find that extreme risk spillover networks have
a time-lag effect. Both the static and dynamic networks show that on average the real estate and
bank sectors are net senders of extreme risk spillovers and the insurance and diversified financials
sectors are net recipients, which coheres with the evidence from the recent global financial crisis.
The networks during the 2008–2009 financial crisis and the European sovereign debt crisis exhibited
distinctive topological features that differed from those in tranquil periods. Our approach supplies
new information on the interconnectedness across financial agents that will prove valuable not only
to investors and hedge fund managers, but also to regulators and policy-makers.
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1. Introduction

The recent global financial crisis caused a near collapse of the
financial system, and its shocks on the global economy are still
being felt (Battiston et al. 2016). It has also focused the atten-
tion of researchers on the use of complexity theory to under-
stand the behaviour and dynamics of financial markets, because
the financial system has shown itself to be a complex system
with a great number of interactive agents. Recently, network
science has become a leading tool for understanding complex
systems, e.g. the Internet (Barabái and Albert 1999), power
grid systems (Watts and Strogatz 1998) and various social
systems (Borgatti et al. 2009). In the financial system, network
science has also emerged as a useful tool for describing the
interconnectedness between financial agents (Schweitzer et al.
2009, Haldane and May 2011).

Much effort has been devoted to mapping the financial sys-
tem as a financial network in which nodes in the network stand
for different financial entities (e.g. companies, institutions and
counties) and edges between the nodes corre-spond to their

∗Corresponding authors. Email: wanggangjin@hnu.edu.cn
(G.-J. Wang); kaijian.he@my.cityu.edu.hk (K. He)

interactions. In the econophysics literature, correlation-based
networks, such as the minimal spanning tree (MST)
(Mantegna 1999, Onnela et al. 2003), the planar maximally
filtered graph (PMFG) (Tumminello et al. 2005), the corre-
lation threshold network (Onnela et al. 2004, Boginski et al.
2005) and the partial correlation PMFG (Kenett et al. 2010,
Kenett et al. 2015), are the most extensively used tools for
investigating interactions across different financial agents. Us-
ing some topological constraints,∥ correlation-based networks
filter important correlation information from the correlation
matrix of different financial agents. The primary disadvan-
tage of correlation-based networks is that the economic or
statistical meanings of their topological constraints are unclear
(Výrost et al. 2015). More recently, several econometric app-
roaches have been applied to construct the financial network
and to uncover contagion sources and spillover effects. For
example, Billio et al. (2012) propose the use of the Granger
causality network to quantify systemic risk in financial insti-
tutions in terms of mean spillovers (Granger 1969), a mean

∥For example, the topological constraint for the MST (PMFG)
network is that the graph remains a tree (planar) when a new edge
is added.

© 2017 Informa UK Limited, trading as Taylor & Francis Group

D
ow

nl
oa

de
d 

by
 [B

os
to

n 
U

ni
ve

rs
ity

] a
t 0

9:
26

 1
1 

A
ug

us
t 2

01
7 

http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/14697688.2016.1272762&domain=pdf
http://orcid.org/0000-0002-2813-4356
http://orcid.org/0000-0003-3862-0224
http://orcid.org/0000-0001-8097-4435
http://orcid.org/0000-0003-2800-4495


1418 G.-J. Wang et al.

spillover network.† The mean spillover network also has been
applied to other financial systems, e.g. the European electricity
market (Castagneto-Gissey et al. 2014), world equity markets
(Výrost et al. 2015) and the Korean financial system (Song et
al. 2016). In the framework of vector autoregression (VAR)
and generalized variance decomposition (Diebold and Yilmaz
2009, 2012), Diebold and Yilmaz (2014) propose a volatility
spillover network for measuring the connectedness of financial
institutions. Using the least-absolute shrinkage and selection
operator (LASSO) method, Hautsch et al. (2015) develop a
tail risk network for the financial system to detect the systemic
importance of financial firms. These econometric-based net-
works can capture the complex features of interconnectedness
across financial entities and identify possible risk contagion
mechanisms from different perspectives.

Here, we propose an extreme risk spillover network using
the Granger causality risk test proposed by Hong et al. (2009)
to quantify the risk embedded in the interconnectedness across
publicly listed financial institutions in the US market. Because
understanding information spillovers in the financial system is
crucial in managing asset risk, constructing investment port-
folios, monitoring market stability and formulating regulatory
policy (Wang et al. 2016), in the literature there is a growing
field of research on information spillovers across different
financial entities. In the framework of the general Granger
causality analysis (Granger 1980), information spillovers can
be divided into three types, (i) mean spillovers (Granger 1969),
(ii) volatility spillovers (Granger et al. 1986, Cheung and Ng
1996, Hong 2001) and (iii) risk spillovers (Hong et al. 2009).
To analyse the systemic spillover interconnectedness across
multiple financial agents, the econometric-based networks are
applied to the research on information spillovers in the financial
system (see, e.g. Billio et al. 2012, Diebold and Yilmaz 2014).
Inspired by the Granger causality network in terms of mean
spillovers presented by Billio et al. (2012), we carry out a
Granger causality risk test proposed by Hong et al. (2009)
to build an extreme risk spillover network for studying in-
terconnectedness in the financial system. According to Hong
et al. (2009), if the past risk information of one institution
can contribute to predicting the future risk information of an-
other institution, the first financial institution is said to be
a Granger cause of risk in the second institution, i.e. there
are extreme risk spillovers from the first institution to the
second. In our proposed extreme risk spillover network, a node
represents a financial institution, and a directed edge linked
from one financial institution to another represents an extreme
risk spillover from the former to the latter, where the extreme
risk is quantified by the left tail of return distributions of the
financial institutions or equivalently by the value-at-risk (VaR).

Our work is related to the systemic risk literature that in-
cludes a variety of effective systemic risk measures. For ex-
ample, using credit default swap (CDS) spreads of financial
institutions and equity return correlations across these financial
institutions, Huang et al. (2009) measure systemic risk by
the price of insurance against financial distress. Under the
multivariate extreme value theory framework, Zhou (2010)
develops two systemic risk indices—systemic impact index
(SII) and vulnerability index (VI)—that, respectively, charac-

†In the literature mean spillover is also known as return spillover.

terize the systemic impact when an institution fails and the
impact on a particular institution when the system exhibits
distress. Acharya, Pedersen et al. (2017) design two measures
of systemic risk, (i) the systemic expected shortfall (SES) that
measures each financial institution’s contribution to systemic
risk and (ii) the marginal expected shortfall (MES) that is an in-
stitution’s losses in the tail of the system’s loss distribution. By
extending the work of Acharya, Engle et al. (2012); Acharya,
Pedersen et al. (2017) and Brownlees and Engle (2017) develop
SRISK to measure the capital shortfall of a financial institution
conditional on a prolonged market decline, which can quantify
a financial institution’s systematic risk contribution. Engle et
al. (2015) apply the SRISK measure to investigate the sys-
temic risk of 196 largest European financial institutions during
the period of 2000–2012. Adrian and Brunnermeier (2016)
propose CoVaR, a well-known modelling that measures the
systemic risk contribution of a financial institution defined
as the VaR of the financial system when the institution is in
financial stress. Based on the multivariate GARCH estimation,
Girardi et al. (2013) introduce a modified CoVaR to study the
systemic risk contributions of 74 US financial institutions from
June 2000 to February 2008. These measures are widely used
in the analysis of systemic risk, but Hautsch et al. (2015) point
out that such measures as the SES and MES cannot capture
the spillover effects driven by the topology of risk networks
and may underestimate the systemic risk contribution when
financial institutions are highly interconnected. Our approach
focusing on the risk spillover interconnectedness across differ-
ent financial institutions differs from the above systemic risk
measures that are market-based indices of systemic distress
(Brownlees and Engle 2017). Our work is also closely related
to the research of Adams et al. (2014), who extend the CoVaR
measure and develop a state-dependent sensitivity VaR method
to investigate risk spillovers across four financial sectors (com-
mercial banks, investment banks, hedge funds and insurance
companies). They find that commercial banks and hedge funds
play a prominent role in transmitting shocks to other financial
sectors, but their study focuses on sector-wide risk spillovers
and our work is based on institution-level risk spillovers.

Here, we analyse 84 publicly listed financial institutions
from the Standard & Poors (S&P) 500 index during the period
from 2006 to 2015. We employ a new time-adapted VaR esti-
mator, i.e. conditional autoregressive value-at-risk (CAViaR)
introduced by Engle and Manganelli (2004) to measure the
extreme (downside) risk of each financial institution. Using the
Granger causality risk test of Hong et al. (2009), we examine
extreme risk spillovers between each pair of financial institu-
tions and build an extreme risk spillover network. Our pro-
posed network for investigating the interconnectedness across
financial institutions is a new contribution to the literature of
econometric-based networks and has three distinctive features
that distinguish it from previous networks. First, our network
is an extension of the Granger causality network of Billio et al.
(2012) but focuses on extreme risk spillovers, and this can serve
as a new tool for analysing systemic risk to the financial system.
Second, unlike most undirected correlation-based networks
(e.g. the MST and PMFG), our network is a directed graph
that can reflect the lead–lag relationship between financial
institutions, i.e. a directed edge in the extreme risk spillover
network not only shows the relationship between two financial
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institutions but also represents which financial institution leads
or influences which in terms of risk. Third, our new network
allows us to examine which institutions and sectors are sys-
temic (net) senders and which are recipients of extreme risk
spillovers. It also allows us to quantify the period of time
in which past information will continue to spill over into the
entire system. In addition, time-varying extreme risk spillover
networks allow us to analyse the dynamic interconnectedness
across financial institutions and to detect any abnormal be-
haviour in the financial system. Thus, the information obtained
by our network has important applications in such areas as
asset risk management, portfolio optimization, systemic risk
evaluation and financial regulation.

We organize our paper as follows. In section 2, we describe
the methodologies for constructing an extreme risk spillover
network. In section 3, we show the data. We present empirical
results in section 4 and state our conclusions in section 5.

2. Methodology

As mentioned above, our proposed extreme risk spillover net-
work for analysing interconnectedness among financial insti-
tutions is based on the Granger causality risk test of Hong et al.
(2009). In this section, we first briefly describe the CAViaR of
Engle and Manganelli (2004) for estimating the VaR of each
financial institution. We then introduce the Granger causality
risk test of Hong et al. (2009) for examining extreme risk
spillovers between pairs of financial institutions. Finally, we
construct the extreme risk spillover network and introduce
some topological approaches to quantifying it.

2.1. CAViaR
VaR was developed in the early 1990s and has become a stan-
dard tool used by firms and regulators in the financial industry
to estimate market or investment risk. It measures how much
a set of asset portfolios can lose with a probability θ in a
specific time period with a confidence level of (1−θ ) in which
θ ∈ (0, 1). Let {rt }T

t=1 be the returns of a given asset portfolio
and T be the length of the returns. VaR is defined as the left
θ -quantile of the conditional probability distribution of returns
of the asset portfolio, which is subject to

Pr[rt < −Vt |"t−1] = θ, (1)

where Vt is the VaR at time t , and "t−1 is the information set
available at time t − 1.

The methods proposed for estimating VaR fall into two
groups, (i) factor mapping models (e.g. the variance–covariance
approach), and (ii) portfolio models (e.g. historical quantiles),
but these approaches are often criticized by researchers and
practitioners because they assume that the distribution of asset
returns is invariable across time. Thus, Engle and Manganelli
(2004) propose a time-adapted CAViaR model using an autore-
gressive process and regression quantiles. The general CAViaR
model is defined as follows:

Vt (θ) = θ0 +
p∑

i=1

θi Vt−i (θ) +
q∑

j=1

θ j l(rt− j ), (2)

where l(·) is a function that depends on a finite number of
lagged values of observables and {θi Vt−i (θ)}p

i=1 are the au-

toregressive terms ensuring that VaR changes smoothly over
time. In particular, Engle and Manganelli (2004) develop four
CAViaR models, i.e.

Asymmetric slope :
Vt (θ) = θ0 + θ1Vt−1(θ) + θ2(rt−1)

+ + θ3(rt−1)
−, (3)

Indirect GARCH(1, 1) :
Vt (θ) = [θ0 + θ1V 2

t−1(θ) + θ2(r2
t−1)]1/2, (4)

Symmetric absolute value:

Vt (θ) = θ0 + θ1Vt−1(θ) + θ2|rt−1|, (5)

Adaptive:

Vt (θ1) = Vt−1(θ1) + θ1

{[1 + exp(F[rt−1 − Vt−1(θ1)])]−1 − θ}, (6)

where (rt−1)
+ = max(rt−1, 0), (rt−1)

− = −min(rt−1, 0)
and F is some positive finite number. Engle and Manganelli
(2004) also propose a dynamic quantile (DQ) test to check the
adequacy of the estimated CAViaR models. Following Hong
et al. (2009), we use the asymmetric slope model to estimate
the VaR of each financial institution when its DQ statistic
is significant at the 1% level. We otherwise use the indirect
GARCH(1,1) model, the symmetric absolute value model and
the adaptive model in turn if the corresponding DQ statistic is
significant.†

2.2. Granger causality risk test
The Granger causality risk test proposed by Hong et al. (2009)
is an extension of the general Granger causality test of Granger
(1980). The Granger causality risk test is straightforward, i.e.
one financial institution can be said to Granger causes risk to a
second institution if the ability to forecast the future risk infor-
mation of the second institution is improved by incorporating
the past risk information of the first institution. We follow Hong
et al. (2009) and introduce a risk indicator

Zm,t = 1(rm,t < −Vm,t ), m = 1, 2, (7)

where rm,t and Vm,t are the returns and VaR of financial insti-
tution m, respectively, and 1(·) is an indicator function. When
the actual loss exceeds the VaR, Zm,t takes the value of 1,
otherwise it takes 0.

Let {r1,t } and {r2,t } denote the returns of financial
institutions 1 and 2. Consider information set "t−1 = {"1,t−1,

"2,t−1}, where "1,t−1 = {r1,t−1, r1,t−2, . . . , r1,1} and
"2,t−1 = {r2,t−1, r2,t−2, . . . , r2,1} are the information sets
available at time t − 1 for the two financial institutions 1
and 2, respectively. The Granger causality risk test compares
the null hypothesis

H0 : E(Z1,t |"1,t−1) = E(Z1,t |"t−1), (8)

against the alternative hypothesis

H1 : E(Z1,t |"1,t−1) ̸= E(Z1,t |"t−1). (9)

†We also consider two GARCH(1,1) models (i.e. AR(1)-
GARCH(1,1)-Gaussian and AR(1)-GARCH(1,1)-Skewed-t) as alter-
native approaches to estimate time-varying VaRs, but the backtesting
results for evaluating the accuracy of VaR estimates computed by
the CAViaR model and the two GARCH(1,1) models show that the
CAViaR model is a better choice than the two GARCH(1,1) models
(see Appendix 1).
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Figure 1. ND and GE of extreme risk spillover networks at 1% and 5% risk levels (i.e. 1% and 5% VaR networks) as functions of lag M .
About the interpretation of M , see equations (12)–(14).
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Figure 2. Snapshots of extreme risk spillover networks at 1% and 5% risk levels (i.e. 1% and 5% VaR networks) of 84 publicly listed
financial institutions from the S&P 500 index during the period 2006–2015. The lag order M in the calculation of Granger causality test in
risk is 10. The sample includes 20 banks, 27 diversified financials, 15 insurance firms and 22 real estate companies. Financial institutions
from the same sector are marked by the same colour and shape, and their outgoing edges are indicated by the same colour as their sectors.
Coding is: banks, red circles; diversified financials, blue triangles; insurance, green diamonds; and real estate, yellow squares. For the full
name of each financial institution, see table 1. Note that the information provided by the network diagram may depend on which lines are
first plotted. For example, many yellow lines shown in the 1% VaR network are mostly covered or overplotted by other lines, meaning that
real estate companies are actually more connected than that suggested by the network diagram.

Hong et al. (2009) use the framework of the cross-correlation
function (CCF) to test the null hypothesis. Considering two
estimated series of risk indicators Ẑ1,t and Ẑ2,t , their sample
cross-covariance function at positive lag j is

Ĉ( j) = T −1
T∑

t=1+ j
(Ẑ1,t − α̂1)(Ẑ2,t− j − α̂2), 1 ≤ j ≤ T − 1,

(10)
where α̂m = T −1 ∑T

t=1 Ẑm,t , m = 1, 2. Thus, the sample CCF
is defined as follows:

ρ̂( j) = Ĉ( j)
Ŝ1 Ŝ2

, (11)

where Ŝ2m = α̂m(1 − α̂m). Using the sample CCF, the statistic
for testing the unidirectional Granger causality in risk from
financial institution 2 to financial institution 1 is defined as
follows:

Q(M)=
[
T

∑T −1

j=1
k2( j/M)ρ̂2( j)−CT (M)

]/
[DT (M)]1/2,

(12)
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Figure 3. Out-degree and in-degree of each financial institution in extreme risk spillover networks at 1% and 5% risk levels (i.e. 1% and
5% VaR networks) of 84 financial institutions during the period 2006–2015 when M=10. Panels (a) and (b) show out-degree and in-degree
of each financial institution in the 1% VaR network, and panels (c) and (d) show those in the 5% VaR network. The solid line shown in each
panel is the average out-degree or in-degree. The label order for each institution on the x-axis is shown in table 1. Colours and shapes of
sectors are as in figure 2.

where the centring and standardization constants are defined
as follows:

CT (M) =
∑T −1

j=1
(1 − j/T )k2( j/M), (13)

DT (M) = 2
∑T −1

j=1
(1 − j/T )(1 − ( j + 1)/T )k4( j/M).

(14)

In equations (12)–(14), the kernel function k(·) assigns
weights to various lags. Following Hong (2001) and Hong et al.
(2009) in our study, we employ the Daniell kernel k(x) =
sin(πx)/(πx). The lag order M represents how many lags
are used to examine extreme risk spillovers from financial
institution 2 to financial institution 1. Because the domain of the
Daniell kernel function is unbounded, M is also the effective
lag truncation order, according to Hong (2001) and Hong et al.
(2009). When M = 10, for example, it satisfies the calculation
of VaR with a time horizon of 10 days (i.e. the 10-day VaR)
required by the Basel Committee on Banking Supervision. In
our empirical analysis, we will discuss extreme risk spillover
networks under different lag orders.

Under the null hypothesis, Hong et al. (2009) show that
Q(M) follows an asymptotically standard normal distribution

N (0, 1). Thus, the null hypothesis is rejected when Q(M) is
greater than the right-tailed critical value of N (0, 1) at a given
significance level β (in our case, β = 1%), indicating that
there is a unidirectional Granger causality in risk from financial
institution 2 to financial institution 1.

2.3. Extreme risk spillover network
Let G(V , E) be an extreme risk spillover network, where V =
{1, 2, . . . , N } is the set of nodes and E is the set of edges. In our
network, a node is a financial institution and a directed edge is
the Granger causality connectivity in risk from one financial
institution to another. For any two financial institutions i , j ∈
V , we draw a directed edge from i to j (i.e. i → j) if i
Granger causes risk to j . In a similar way, we draw a directed
edge from j to i (i.e. j → i) if j Granger causes risk to i .
Mathematically, given the confidence level of (1 − θ ), the lag
order M , and the significance level β (β = 1%), E is a directed
binary connection matrix for all i and j such that

Ei→ j =
{

1, if i ̸= j and i Granger causes risk to j
0, otherwise

. (15)
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Figure 5. Sector degree from one sector to another or to itself in the 1% VaR network as a function of lag M .

Using rolling windows, we build time-varying extreme
spillover networks to investigate the dynamic interconnect-
edness across financial institutions. Specifically, we divide the
empirical data during the 2006–2015 period into T ′

windows
(t ′ = 1, 2, . . . , T ′

) with width L and step size δ, where L is
the number of daily returns in each window and δ is the step
size between two continuous windows. Following Yan et al.
(2015), we set the width L and step size δ to 250 and 20 trading
days, respectively, which are roughly equivalent to a trading
year and a trading month. Thus, we obtain dynamic extreme
risk spillover networks Gt ′ (V , Et ′ ).

To quantify the topological features of (time-varying) ex-
treme spillover networks, we introduce measures from three
levels, (i) system-level connectivity, (ii) institution-level con-
nectivity and (iii) sector-level connectivity.

2.3.1. System-level connectivity measures. We introduce
network density (ND), which is an indicator of network health
and functionality. The ND is defined as the ratio between the
actual connections (edges) and all possible connections in a
network. For N financial institutions, there are N (N − 1)

possible connections. Mathematically, we have
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Extreme risk spillover network 1423

ND = 1
N (N − 1)

N∑

i=1

∑

j ̸=i
Ei→ j . (16)

Another measure is the global efficiency (GE) of a network
(Latora and Marchiori 2001), which quantifies how efficiently
the information is exchanged over the network and is defined
as follows:

GE = 1
N (N − 1)

N∑

i=1

∑

j ̸=i

1
di→ j

, (17)

where di→ j is the shortest path length from node i to j . If there
is no path in the network from i to j , di→ j = +∞. Both the
values of ND and GE fall in the range [0, 1].

2.3.2. Institution-level connectivity measures. Node de-
gree indicates the number of edges connected to a node. In
our extreme risk spillover network, the out-degree of financial
institution i is the number of outgoing edges from institution
i to other institutions. A higher out-degree of a financial insti-
tution suggests that it is a more active sender of extreme risk
spillovers to other institutions and thus has a greater influence
on them. The out-degree of financial institution i is defined as
follows:

kout(i) =
N∑

j=1, j ̸=i
Ei→ j . (18)

Similarly, the in-degree of financial institution i is the num-
ber of incoming edges from other financial institutions to in-
stitution i . When a financial institution has a higher in-degree
it is more susceptible to extreme risk spillovers from other
institutions. The in-degree of financial institution i is defined
as follows:

kin(i) =
N∑

j=1, j ̸=i
E j→i . (19)

Following Kenett et al. (2010), we introduce the relative in-
fluence (RI) of financial institution i , which is the ratio between
the difference and the sum of out-degree and in-degree, i.e.

RIinstitution(i) = kout(i) − kin(i)
kout(i) + kin(i)

, (20)

where RIinstitution ∈ [−1, 1]. A positive (negative) value of
RI of a financial institution means that it has greater (less)
influence on other institutions than the other institutions have
on it, i.e. the intensity of extreme risk spillovers from this
institution to other institutions is greater (smaller) than from
the others to it.

2.3.3. Sector-level connectivity measures. The sectoral
clustering effect is widely found in financial networks (see,
e.g. Onnela et al. 2003, Kenett et al. 2010). In our case, the
84 publicly listed financial institutions fall into four subsec-
tors, banks, diversified financials, insurance and real estate. To
investigate how sectors influence each other, we introduce a
measure of sector degree (SD) from one sector m to another
or to itself n, which is defined as follows:

SDm→n = 1
Nm Nn

Nm∑

i=1

Nn∑

j=1

Ei |m→ j |n, (21)

where m and n ∈{banks, diversified financials, insurance and
real estate}, Nm and Nn are the number of financial institutions
belonging to sector m and sector n, respectively, and i |m ( j |n)

represents financial institution i ( j) belonging to sector m (n).
Note that when m = n in equation (21), Nn = Nm −1 and j ̸=
i . The SD measures the proportion of extreme risk spillovers
from one sector to another or to itself.

The out-degree of sector m is defined as the number of outgo-
ing edges from institutions belonging to sector m to institutions
belonging to other sectors. Similarly, the in-degree of sector m
is the number of incoming edges from institutions belonging to
other sectors to institutions belonging to sector m. Let kout(m)

and kin(m) denote the out-degree and in-degree of sector m.
The RI of sector m is defined as follows:

RIsector(m) = kout(m) − kin(m)

kout(m) + kin(m)
. (22)

In addition to the above measures, we introduce the survival
ratio (SR), which was proposed by Onnela et al. (2003) to
examine the connection robustness of dynamic extreme risk
spillover networks. SR is defined as the ratio between the num-
ber of edges simultaneously found in two continuous networks
at times t ′

and t ′ + 1 and the number of edges in the network
at time t ′

,† i.e.

SRt ′ =
∣∣Et ′ ∩ Et ′+1

∣∣
∣∣Et ′

∣∣ , (23)

where Et ′ is the set of edges of an extreme risk spillover
network at time t ′

, | · | is the number of observations in the
set and ∩ is the intersection operator.

3. Data

Following Billio et al. (2012); Diebold and Yilmaz (2014) and
Hautsch et al. (2015), we apply the proposed extreme risk
spillover network to publicly listed financial institutions. We
collect the daily closing prices of 84 financial institutions that
are component stocks of the financial sector of the S&P 500
index during the period from 3 January 2006 to 31 December
2015.According to the Global Industry Classification Standard
(GICS), the financial sector can be subdivided into four GICS
industry groups, i.e. banks (GICS code 4010), diversified fi-
nancials (GICS code 4020), insurance (GICS code 4030) and
real estate (GICS code 4040). Our sample is composed of 20
banks, 27 diversified financials, 15 insurance firms and 22 real
estate companies.‡ Table 1 shows the list of these financial
institutions. We obtain the data from the website of Yahoo
Finance (http://finance.yahoo.com). We define the daily return
of financial institution i on day t as ri,t = 100×ln(Pi,t/Pi,t−1),
where Pi,t is the daily closing stock price of financial institution
i on day t . There are 2516 observations for each return series.

†Two continuous networks represent two networks at two continuous
time windows t ′

and t ′ + 1. Suppose at the time window t ′
we have

a network Gt ′ and at the next time window t ′ + 1 we have another
network Gt ′+1, these two networks Gt ′ and Gt ′+1 are designated
two continuous networks.
‡The financial institutions are selected based on their inclusion in the
financial sector of the S&P 500 index as of March 2016. Note that on
31 August 2016, stock exchange listed Equity REITs and other listed
real estate companies from the financial sector were moved to a new
real estate sector in the GICS.
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Figure 6. Sector degree from one sector to another or itself in the 5% VaR network as a function of lag M .
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Figure 7. RI of each sector in 1% and 5% VaR networks as a function of lag M .

4. Empirical results

In our empirical study, we consider two commonly used con-
fidence levels (99% and 95%) when calculating VaRs, i.e. 1%
and 5% risk levels.† For simplicity, we denote extreme risk
spillover networks at 1% and 5% risk levels as 1% VaR network

†To measure bank capital adequacy, for example, the Bank for
International Settlements (BIS) uses the 1% VaR, and the JPMorgan
Chase & Co. uses the 5% VaR.

and 5% VaR network.§ As mentioned above, the statistically
significance level β for testing the Granger causality in risk
from one institution to another is 1%. In the following, we will

§Due to space limitations, we do not include the results of VaR for
each financial institution estimated by the CAViaR models of Engle
and Manganelli (2004) and the statistics of the Granger causality risk
test of Hong et al. (2009) for each pair of financial institutions, but
they are available upon request.
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Figure 8. Dynamic ND of time-varying 1% and 5% VaR networks when M = 5, 10, and 20. Notes for this and below figures: the time on
x-axis represents the period of a 250-day window.
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Figure 9. Dynamic GE of time-varying 1% and 5% VaR networks when M = 5, 10, and 20.

focus on the extreme risk spillover networks under different
lags and time-varying networks.

4.1. Networks under different lags
In real-world economic and financial behaviour, market par-
ticipants and regulators usually do not respond quickly to past
information (e.g. market shocks) but take time to understand
the information before taking action and thus contribute to a
time-lag effect in extreme risk spillovers. In this subsection,
we investigate how extreme risk spillover networks change
as the lag order M increases. We construct 1% and 5% VaR

networks connecting 84 financial institutions during the period
2006–2015 with varying lags from 2 to 30.

Figure 1 shows the ND and GE of 1% and 5% VaR networks
as functions of lag. Both the values of ND and GE of 1%
VaR networks at different lags (except for lag 2) are greater
than those of 5% VaR networks, suggesting that extreme risk
spillovers across financial institutions at 1% risk level have
a higher frequency than at 5% risk level. This finding also
confirms that when the market is in a more extreme risk condi-
tion, the panic of market participants increases and their con-
fidence declines, thus causing ‘herd behavior’ and an increase
in the interconnectedness across financial agents in the system.
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1426 G.-J. Wang et al.

Table 1. 84 Publicly listed financial institutions and their ticker symbols in alphabetical order within four sectors.

Order Institution (Ticker symbol) Order Institution (Ticker symbol)

Banks (20) 43 Regions Financial Corp. (RF)
1 Bank of America Corp (BAC) 44 State Street Corp. (STT)
2 Bank of New York Mellon Corp. (BK) 45 T. Rowe Price Group (TROW)
3 BB&T Corporation (BBT) 46 Unum Group (UNM)
4 Charles Schwab Corp. (SCHW) 47 Ventas Inc. (VTR)
5 Citigroup Inc. (C) Insurance (15)
6 Comerica Inc. (CMA) 48 AFLAC Inc. (AFL)
7 E*Trade (ETFC) 49 Allstate Corp. (ALL)
8 Fifth Third Bancorp (FITB) 50 American International Group, Inc. (AIG)
9 Goldman Sachs Group (GS) 51 Aon plc (AON)
10 Huntington Bancshares (HBAN) 52 Assurant Inc. (AIZ)
11 JPMorgan Chase & Co. (JPM) 53 Chubb Limited (CB)
12 KeyCorp (KEY) 54 Cincinnati Financial (CINF)
13 M&T Bank Corp. (MTB) 55 Hartford Financial Svc.Gp. (HIG)
14 Morgan Stanley (MS) 56 Lincoln National (LNC)
15 People’s United Financial (PBCT) 57 Marsh & McLennan (MMC)
16 PNC Financial Services (PNC) 58 MetLife Inc. (MET)
17 SunTrust Banks (STI) 59 Progressive Corp. (PGR)
18 U.S. Bancorp (USB) 60 The Travelers Companies Inc. (TRV)
19 Wells Fargo (WFC) 61 Torchmark Corp. (TMK)
20 Zions Bancorp (ZION) 62 XL Capital (XL)
Diversified Financials (27) Real Estate (22)
21 Affiliated Managers Group Inc. (AMG) 63 American Tower Corp A (AMT)
22 American Express Co (AXP) 64 Apartment Investment & Mgmt (AIV)
23 Ameriprise Financial (AMP) 65 AvalonBay Communities, Inc. (AVB)
24 Berkshire Hathaway (BRK-B) 66 Boston Properties (BXP)
25 BlackRock (BLK) 67 CBRE Group (CBG)
26 Block H&R (HRB) 68 Crown Castle International Corp. (CCI)
27 Capital One Financial (COF) 69 Equity Residential (EQR)
28 CME Group Inc. (CME) 70 Essex Property Trust Inc. (ESS)
29 Equifax Inc. (EFX) 71 Extra Space Storage (EXR)
30 Franklin Resources (BEN) 72 Federal Realty Investment Trust (FRT)
31 Intercontinental Exchange (ICE) 73 General Growth Properties Inc. (GGP)
32 Invesco Ltd. (IVZ) 74 HCP Inc. (HCP)
33 Legg Mason (LM) 75 Host Hotels & Resorts (HST)
34 Leucadia National Corp. (LUK) 76 Kimco Realty (KIM)
35 Loews Corp. (L) 77 Macerich (MAC)
36 McGraw Hill Financial (MHFI) 78 Public Storage (PSA)
37 Moody’s Corp. (MCO) 79 Realty Income Corporation (O)
38 NASDAQ OMX Group (NDAQ) 80 Simon Property Group Inc. (SPG)
39 Northern Trust Corp. (NTRS) 81 SL Green Realty (SLG)
40 Principal Financial Group (PFG) 82 Vornado Realty Trust (VNO)
41 Prologis (PLD) 83 Welltower Inc. (HCN)
42 Prudential Financial (PRU) 84 Weyerhaeuser Corp. (WY)

The ND and GE sharply increase at lags 2–4, reach a steady
increase when lags M ≥ 5 and finally achieve stabilization at
protracted lags (e.g. lag 15). This trend confirms that the market
takes time (at least five trading days as shown in figure 1)
to reflect past information, and that extreme risk spillover
networks have time-lags.

To investigate the institution-level connectivity of 1% and
5% VaR networks, we select the lag order M = 10 as a
representation that coheres with the 10-day VaR required by the
BIS. Figure 2 shows snapshots of 1% and 5% VaR networks
of 84 financial institutions calculated using the daily returns
during the period 2006–2015 when M = 10. Both of these
two networks are highly connected, suggesting a significant
danger of extreme risk spillovers across the financial institu-
tions. There are more edges in the 1% VaR network than in the
5% VaR network. Figure 3 shows the out-degree and in-degree
of each financial institution in the 1% and 5% VaR networks. In
each panel of figure 3, we show the top 10 financial institutions

ranked by the out-degree or in-degree in each network. The
solid line in each panel is the average out-degree or in-degree.

From the out-degree of 1% VaR network shown in figure
3(a), we find (i) that the Northern Trust Corporation (NTRS)
from the sector of diversified financials, which is among the
three largest trust companies with total fiduciary assets of
$1,504 billion in Q4 2015, has the largest out-degree (i.e, the
largest source of extreme risk spillovers), (ii) that among the
top 10 financial institutions ranked by out-degree, there are
6 banks and 2 real estate institutions, and (iii) that the out-
degree of most banks and real estate institutions is greater
than the average value.† Findings (ii) and (iii) imply that the

†Note that our results based on extreme risk spillover networks are
somewhat different from the systemic risk rankings provided by the
volatility institute (V-Lab) of NYU Stern School of Business (see
http://vlab.stern.nyu.edu/analysis/RISK.USFIN-MR.MES) that are
based on the systemic risk measures (SRISK) proposed by Acharya,
Engle et al. (2012); Acharya, Pedersen et al. (2017) and Brownlees
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Figure 10. Dynamic SD from one sector to another or to itself in time-varying 1% VaR networks when M=10.

major senders of extreme risk spillovers are from the bank
and real estate sectors. Figure 3(b) shows that half of top
10 institutions ranked by in-degree are banks, meaning that
bank institutions are also the main recipients of extreme risk
spillovers. Comparing figure 3(a) and (b), we find that the in-
degree of most diversified financial and insurance institutions
is significantly larger than their out-degree, which suggests
that most institutions from these two sectors are recipients
of extreme risk spillovers. By analysing the out-degree and
in-degree of institutions in the 5% VaR network shown in
figures 3(c) and (d), we conclude (i) that banks and diversified

and Engle (2017). According to the V-Lab, for example, the NTRS
owning the largest out-degree in the 1% VaR network is only ranked
21 on 31 December 2015, but the high rankings of some banks (e.g.
Bank of American, Citigroup and Goldman Sachs) in our network
are consistent with the results obtained by the V-Lab. There are two
possible reasons for the difference. (i) Our approach differs from the
V-Lab measurements (e.g. SRISK) developed byAcharya, Engle et al.
(2012); Acharya, Pedersen et al. (2017) and Brownlees and Engle
(2017) that investigate an individual institution’s capital shortfall
when the system is in distress, and our proposed network focuses
on the extreme risk spillover interconnectedness across different
financial institutions. (ii) The data samples differ. Our sample includes
22 real estate companies that can influence the interconnectedness
across financial institutions and thus may lead to a different ranking.
For example, some real estate companies (e.g. General Growth
Properties and Essex Property Trust) have high out-degree rankings
in the 1% VaR network.

financial institutions play two roles, i.e. senders and recipients
of extreme risk spillovers, (ii) that most real estate institutions
are extreme risk spillover senders and (iii) that most insurance
institutions are recipients of extreme risk spillovers.

To determine which financial institutions are net senders
and which are net recipients of extreme risk spillovers, we
investigate the RI of each financial institution in 1% and 5%
VaR networks when M = 10, and we present the results in fig-
ure 4. We also indicate the top 10 financial institutions ranked
by the RI in each network. In the list of the top 10 financial
institutions in the 1% VaR network [see figure 4(a)], there are
6 real estate institutions, 3 banks and 1 insurance institution,
which means that the top net senders of extreme risk spillovers
are from real estate and banks, and the US subprime crisis
confirmed this finding. It is not surprising that the American
International Group (AIG) insurance corporation is listed in
the top 10 because it was a key player in the 2008 financial
crisis. On 15 September 2008, AIG faced a severe liquidity
crisis, and its stock price declined 61% when its credit ratings
were downgraded by credit rating agencies. AIG was active
in various segments of the US residential mortgage market
by selling credit protection through its AIG Financial Products
division in the form of CDSs on collateralized debt obligations
(CDOs), but these products declined in value and caused the
AIG crisis. In the 5% VaR network shown in figure 4(b), nine
real estate firms and one bank are among the top 10 institutions
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Figure 11. Dynamic SD from one sector to another or to itself in time-varying 5% VaR networks when M=10.

ranked by RI. From the RI of each institution in these two
networks, we conclude (i) that most real estate firms are net
senders of extreme risk spillovers, (ii) that most insurance
companies are net recipients and (iii) that approximately half
of the banks and diversified financial institutions are either net
senders or net recipients.

To examine the sector-level connectivity of extreme risk
spillover networks, in figures 5 and 6 we present the SD from
one sector to another or to itself as a function of lag M in 1%
and 5% VaR networks. The trend for most SDs is similar to that
of ND and GE, i.e. it increases rapidly at first and then rises
smoothly as the lag increases. We first look at 1% VaR networks
under different lags (figure 5). Figure 5(a) shows that the SDs
from banks to banks, diversified financials and insurance are
approximately equal (especially when M ≥ 15), and the SD to
real estate is the smallest. This suggests that the most extreme
risk from banks spills over to itself, diversified financials or
insurance, and the least to real estate. Figure 5(b) shows that
the most extreme risks of diversified financials are spilled over
to banks, followed by itself, insurance and real estate. Figure
5(c) shows that real estate is the largest recipient of extreme
risk spillovers from insurance, followed by insurance itself,
banks and diversified financials. Figure 5(d) shows that the
bank sector is the largest recipient of extreme risk spillovers
from real estate, followed by diversified financials, itself and
insurance. The case of 5% VaR networks under different lags

(see figure 6) differs from 1% VaR networks. For the recip-
ients of extreme risk spillover from any sector, insurance is
the largest, followed by banks, diversified financials and real
estate.

Figure 7 shows the RI of each sector in 1% and 5% VaR
networks under different lags. By ranking the RI values under
different lags, we find that real estate takes the lead, followed
by banks, diversified financials and insurance, and that the RI
values of real estate and banks are positive and those of the
other two sectors are negative. From this we conclude (i) that
real estate is the largest net sender of extreme risk spillovers,
followed by banks, and (ii) that insurance is the largest net
recipient, followed by diversified financials. These findings are
in accord with the US subprime crisis, which was trigged by
the collapse of real estate bubbles in US that caused mortgage
delinquencies and the foreclosure and devaluing of real estate
securities, which then spread to banks and insurance companies
and finally swept across other financial institutions.

4.2. Time-varying networks
In the financial system, trading and investing strategies made
by market participants vary across time, and the interactive
behaviour across financial agents, also changes across time.
Here, we examine how extreme risk spillover networks vary
as time changes. Using 250-day rolling windows, we build
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Figure 12. Dynamic RI of each sector in time-varying 1% VaR networks when M = 10.

time-varying 1% and 5% VaR networks when M = 5, 10, and
20 (lags roughly equivalent to one trading week, two trading
weeks and one trading month, respectively).†

Figures 8 and 9 show the dynamic ND and GE of time-
varying 1% and 5% VaR networks. The dynamic ND and GE
of time-varying 1% VaR networks increase as the lag order

†In previous research, Wang et al. (2010) and Liu and Wan (2011),
who, respectively, investigate cross-correlations between the Chinese
A-Share and B-Share markets and between crude oil spot and futures
markets using rolling windows, explain how to choose the window
width. They indicate (i) that one can use a large window width (e.g.
four trading years) to study the long-term market dynamics because
the evolution of statistic properties is smooth and general tends can be
detected and (ii) that to examine the effects of exogenous events (e.g.
seasonal factors and financial crisis) on market short-term dynamics,
a small window width (e.g. a 250-day trading year) is a better option.
They also state that when the window width is too small the statistical
measures evolve too rapidly, making local trends difficult to observe.
Thus, we choose a small window width of 250 trading days and a step
size of 20 trading days to study the dynamic interconnectedness across
financial institutions. To test the robustness of our results, we also
consider four cases of window width L and step size δ: (i) L = 250
and δ = 10, (ii) L = 250 and δ = 1, (iii) L = 225 and δ = 20 and
(iv) L = 200 and δ = 20. In (i) and (ii), we keep the same window
width L = 250 but change the step size. In (iii) and (iv), we keep
the same the step size δ = 20 but change the window width. Because
when we use these window widths and step sizes the dynamic ND
and GE results for the time-varying extreme risk spillover networks
are similar to those in figures 8 and 9, we hold that our results are
robust. The detailed results are available upon request.

increases, but this pattern is not obvious in time-varying 5%
VaR networks. For different lags, the trend of dynamic ND
(GE) in time-varying 1% and 5% VaR networks shows a similar
pattern but with different levels. Figure 8 shows that the ND
of time-varying 1% and 5% networks is large and forms a
significant peak during two periods, (i) the global financial
crisis of 2008–2009 (Period I), and (ii) from mid-2010 to Q4
2011 (Period II). Period II is the worst interval in the European
sovereign debt crisis. During this period, there was a ‘July-
August-2011 stock market crash’ across the US, Europe, the
Middle East andAsia. This crash was caused by several factors,
(i) fears that the European sovereign debt crisis would spread to
Spain and Italy, (ii) concerns about France’s downgraded credit
rating and (iii) concerns about the slow economic growth in the
US and its downgraded credit rating from AAA to AA+. These
two periods can also be seen in the GE of time-varying 1%
and 5% VaR networks (see figure 9). In addition, during the
US subprime crisis the GE strongly fluctuated. In summary,
when a market faces financial and macroeconomic uncertainty
(e.g. a financial crisis and a flash cashing of stocks), ND and
the information exchange efficiency of extreme risk spillover
networks become strong and large because of the increase in
interconnectedness across financial institutions. These findings
also imply that measurements of ND and GE can be used to
identify when systemic risk and abnormal behaviour will occur
in the market.
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Figure 13. Dynamic RI of each sector in time-varying 5% VaR networks when M = 10.
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Figure 14. Survival ratios of time-varying 1% and 5% VaR networks when M = 5, 10, and 20.

Interestingly, figures 8 and 9 show that the dynamic ND
and GE measures of the two networks (especially of the 5%
VaR network) have a spike in 2011 that is much larger than
the increase during the 2008 financial crisis after the Lehman

Brothers collapse. The financial crisis in September 2008 was
a much more severe systemic event for the US financial insti-
tutions than the European sovereign debt crisis in 2011. Our
finding is somewhat inconsistent with this, but it is similar
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to the outcome reported by Adrian and Brunnermeier (2016)
who find that systemic risk measures during the Great Depres-
sion were smaller than those during the recent financial crisis.
Following Adrian and Brunnermeier (2016), we explain this
inconsistency in two ways. First, our finding is a consequence
of an artefact of the composition of financial institutions be-
cause our sample does not include some systemically important
firms in 2008 that were bankrupt, merged or acquired. For
example, Bear Stearns was sold to JP Morgan Chase in March
2008, Merrill Lynch was acquired by Bank of America on 14
September 2008, Lehman Brothers collapsed on 15 September
2008, Washington Mutual was sold to JP Morgan Chase in
September 2008 and Wachovia was fully acquired by Wells
Fargo on 31 December 2008. Our sample also does not contain
two key players in the 2008 financial crisis, i.e. Fannie Mae
and Freddie Mac, because they were dropped in the S&P 500
index in 2008. Second, our results may have a ‘survivorship
bias’ because the extreme risks of our investigated financial
institutions that survived the 2008 financial crisis may be lower
and thus the dynamic ND and GE values in the 2008 financial
crisis were not as large as those during the European sovereign
debt crisis in 2011.

We examine the dynamic SD from one sector to another or to
itself in time-varying 1% and 5% VaR networks when M = 10,
and we present the results in figures 10 and 11, respectively.
In both time-varying 1% and 5% VaR networks, the SDs for
different sectors change over time. In the time-varying 1% VaR
network, because the order changes across time we cannot
determine the sector ranking order of recipients of extreme
risk spillovers from a particular sector, but we find that the
SDs reach a high value during crisis periods. The situation in
the time-varying 5% VaR network is the same as in the time-
varying 1% VaR network, but during Period II the SDs exhibit
a huge peak that suddenly increases and then falls rapidly.
During Period II, the order of sector recipients of extreme risk
spillovers is insurance, banks, diversified financials and real
estate, an order identical to that in the full sample.

Figures 12 and 13 show the dynamic RI of each sector in
time-varying 1% and 5% VaR networks when M = 10. Figure
12(a) shows the dynamic RI of time-varying 1% VaR networks
and that the RI of banks changes over time with positive and
negative values, but during most crisis periods the RI takes
the positive value, i.e. the bank sector acts as the net sender
of extreme risk spillovers. Figure 12(b) shows that the RI of
diversified financials also changes over time with positive and
negative values, but that the RI of diversified financials is
positive (i) from Q1 2006 to Q4 2007 and (ii) from mid-2012
to Q4 2015. Figure 12(c) shows that insurance is usually a net
recipient of extreme risk spillovers except (i) from Q2 2006
to Q4 2007 and (ii) from mid-2012 to Q4 2013. In contrast,
most of the time real estate is the net sender of extreme risk
spillovers except for two periods prior to mid-2007 and Q1–Q4
2013 [see figure 12(d)].

Figure 13 shows the dynamic RI of time-varying 5% VaR
networks and how their outcomes are similar to those in time-
varying 1% VaR networks, but there are two major differences,
i.e. (i) prior to 2010 the bank sector nearly always acts as
a net sender of extreme risk spillovers and (ii) the sector of
diversified financials is usually a net recipient except during
the period prior to Q4 2006. Real estate and banks are usually

net senders of extreme risk spillovers and diversified financials
and insurance are usually net recipients, but note that the roles
of net sender and net recipient for sectors may switch at tipping
points of financial and macroeconomic uncertainty.

Figure 14 shows the survival ratios (SRs) of time-varying
1% and 5% VaR networks when lag M = 5, 10 and 20 in
order to explore the interconnectedness robustness of extreme
risk spillover networks. For these three lags, the SRs show
a similar trend. The SRs for time-varying 1% VaR networks
are greater than those for time-varying 5% VaR networks,
indicating that more links survive from one period to the next
in the 1% VaR network than in the 5% VaR network. We find
that the SRs during Periods I and II are significantly different
and larger than during other periods, suggesting that during
financial crisis periods the interconnectedness across financial
institutions becomes stronger but more sensitive because mar-
ket participants frequently take the same action when facing
financial and macroeconomic uncertainty.

5. Conclusions

We have proposed an extreme risk spillover network using
the CAViaR method and the Granger causality risk test. This
network allows us to analyse the potential channels of extreme
systemic risk spillovers across financial agents. We have used
our network to analyse the interconnectedness among 84 pub-
licly listed financial institutions from the S&P 500 index.

In our empirical analysis, we have constructed two extreme
risk spillover networks at 1% and 5% risk levels, i.e. 1 and
5% VaR networks. Our work has focused on (i) the time-
lag effect of extreme risk spillover networks and (ii) time-
varying extreme risk spillover networks. We first investigated
the relationship between the networks and lag orders M . The
empirical results show that our proposed network indeed in-
corporates the time-lag effect, and we conclude that market
participants who want to use extreme risk spillover networks
should consider a long lag (e.g. at least five trading days)
because past market information can be fully reflected in long
lagged networks. We have also examined the dynamic fea-
tures of time-varying extreme risk spillover networks. Our two
key empirical results indicate (i) that real estate and banks
usually act as net senders of extreme risk spillovers, and in-
surance and diversified financials as net recipients, which is
consistent with the evidence from the recent global financial
crisis and (ii) that the networks’ topological characteristics
identified the abnormal behaviour of the market during the
2008–2009 financial crisis and the European sovereign debt
crisis.

This extreme risk spillover network supplements the litera-
ture on econometric-based networks. It provides a new tool for
studying the interconnectedness among financial agents from
a systemic risk perspective. Our empirical results are valu-
able to both market participants (e.g. investors and hedgers)
and regulators. For example, we find on average that the real
estate and bank sectors are the instigators of extreme risk
spillovers and the insurance and diversified financials sectors
are the victims. Thus, when risk-averse investors in the stock
market build an asset portfolio, they should select compa-
nies that can defuse extreme risk shocks and not instigate
extreme risk spillovers. Market regulators should pay attention
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to the real estate institutions and banks in order to prevent or
ameliorate extreme risk shocks from these two sectors. For
example, regulators of the insurance sector should be wary
of real estate companies and banks and their extreme risk
shocks and should add investment restrictions and raise capital
requirements.

Both our work and the Granger causality network of Billio
et al. (2012) are limited in that the proposed network is un-
weighted and thus does not provide the information contained
in a weighted network. For example, although a financial in-
stitution may have few edges, these edges may transmit huge
amounts of risk and thus the institution is systemically relevant.
In an unweighted network, this extreme phenomenon is undec-
tectable. On the other hand, Barrat et al. (2004) investigate the
architecture of complex weighted networks and find that the
average strength s(k) of nodes with degree k (i.e. k edges)
increases with degree and that s(k) ∼ kβ . They also find
that the relationship between the strength si and degree ki of
node i is si = ⟨w⟩ki , where ⟨w⟩ is the average weight of the
network. Their findings suggest that on average a high-degree
node (institution) has a higher strength and thus our inves-
tigation based on institution-level connectivity measures are
meaningful. We leave the topic of building a weighted extreme
risk spillover network for future study. One possible direction
for constructing a weighted extreme risk spillover network is
using the statistical value and p-value or their variations in the
Granger causality risk test as the weight between two financial
institutions.

Our network can be extended into several applications. Our
study focused only on the US financial market, but more inter-
national or cross-regional financial institutions could be added
in future study, because in an international business environ-
ment the interconnectedness among financial institutions is
global and the crisis contagion is worldwide. For example,
Diebold and Yilmaz (2015) investigate the interconnectedness
among US and European financial institutions using a volatil-
ity spillover network. Another important application is using
network science to predict the systemic influence or risk in the
financial system (Hautsch et al. 2014). Our proposed network
could serve as a tool that provides an early warning when
systemic risk is growing in a financial system.
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Appendix 1. Backtesting for CAViaR and GARCH models

Testing whether the CAViaR method is necessary when estimating
time-varying VaRs. We use two GARCH(1,1) models (i.e. AR(1)-
GARCH(1,1)-Gaussian and AR(1)-GARCH(1,1)-Skewed-t) and the
variance–covariance approach to estimate time-varying VaRs for a
comparison. The autoregressive (AR) model is included because eq-
uity returns of financial institutions are autocorrelated. The AR(1)-
GARCH(1,1)-Skewed-t model is chosen because fat-tailed equity
returns is a necessary condition for the GARCH modelling and the
Skewed-t distribution addresses the fact that the standardized equity
returns (or residuals) have fat-tails. We employ three backtesting
techniques, i.e. the likelihood ratio (LR) tests of unconditional cover-
age (uc), independent (ind) coverage and conditional coverage (cc),
to assess the accuracy of VaR estimates of 84 financial institutions
during the entire period 2006–2015, where LRuc (LRind) ∼ χ2(1) and
LRcc ∼ χ2(2) (see, Kupiec 1995, Christoffersen 1998). We compare
the accuracy of VaR calculated by the CAViaR model and the two
GARCH(1,1) models, and in table A1 show the fraction of financial
institutions whose VaR estimates pass the tests of LRuc, LRind and
LRcc. From table A1, we find (i) that the CAViaR model for either
1% VaR or 5% VaR estimates performs the best, (ii) that the accuracy
of the AR(1)-GARCH(1,1)-Gaussian is the lowest, indicating that the
fat-tailed returns greatly influence the accuracy when estimating VaR
and (iii) that in estimating 1% VaR, the performance of the AR(1)-
GARCH(1,1)-Skewed-t model is close to that of the CAViaR model.
Thus the CAViaR model is the better option. It performs the best and
does not require any assumption on the distribution of equity returns.

Table A1. Fraction of financial institutions whose VaR estimates pass the likelihood ratio (LR) tests of unconditional coverage,
independent coverage and conditional coverage.

CAviaR AR-GARCH-Gaussian AR-GARCH-Skewed-t

LRuc (%) LRind (%) LRcc (%) LRuc (%) LRind (%) LRcc (%) LRuc (%) LRind (%) LRcc (%)

1% VaR 100 99 99 56 96 57 99 95 95
5% VaR 100 95 99 75 79 67 99 79 83

Notes: We use three backtesting techniques including the likelihood ratio (LR) tests of unconditional coverage (uc), independent (ind) coverage and conditional
coverage (cc) to examine the accuracy of VaR estimates of 84 financial institutions during the entire period from 3 January 2006 to 31 December 2015, where
LRuc and LRind follow the χ2(1) distribution and LRcc follows the χ2(2) distribution. For VaR estimates of each financial institution at a given risk level, if
the estimated statistic of the LR test is lower than the corresponding chi-square critical value at the significance level (corresponds to the risk level), they pass
the corresponding LR test. AR-GARCH-Gaussian and AR-GARCH-Skewed-t mean that VaR estimates are computed by AR(1)-GARCH(1,1)-Gaussian and
AR(1)-GARCH(1,1)-Skewed-t. For a detailed introduction for these three backtesting techniques, see Kupiec (1995) and Christoffersen (1998). The detailed
results are available upon request.
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