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LETTER TO THE EDITOR 

Polychromatic Potts model: a new lattice-statistical 
problem and some exact results 

F Y WutS9 and H E Stanley$ 
t Department of Physics, Northeastern University, Boston, MA 02115, USA. 
$ Center for Polymer Studies11 and Department of Physics, Boston University, Boston MA 
02215, USA 

Received 26 September 1983 

Abstract. We propose a generalisation of the q-state Potts model in which two neighbouring 
spins in states s and s' have a coupling -J$( s, s'), and develop an exact graphical expansion 
of the partition function where each cluster in the graph can be coloured in one of C 6 q 
colours. This spin model reduces to the standard Potts model (one colour) when J ,  = J ;  
it also encompasses many new applications including correlared polychromatic bond percola- 
tion, the dilute branched polymer problem, and weighted clusters in the standard Potts 
model. 

The Potts model (for a review see Wu 1982) is a natural generalisation of the lattice-gas 
or Ising model in which each spin can exist in more (and fewer!) than two states. This 
model has attracted considerable recent attention, because the extra degree of freedom 
exhibited by q, the number of states, permits the model to encompass a wide range 
of physical phenomena of recent interest. These range from surface adsorption 
(Alexander 1975) and structural phase transitions (Aharony et a1 1977) to percolation 
(Kasteleyn and Fortuin 1969), biophysics, and diffusion in porous media (Stephen 
1983). The purpose of this letter is to propose, and present exact results for, a 
generalisation of the standard Potts model; we call this the polychromatic Potts model. 
Special cases of this model are of considerable current interest. These include the 
problem of the dilute brunched polymers, a correlated polychromatic percolation 
processll, and weighted clusters in the standard Potts model. 

Consider a lattice of N sites and E edges. Associate with the ith site a spin variable 
si = 1 , 2 , ,  . , , q such that two neighbouring spins in spin states s and s' interact with 
a Potts interaction -J,S(s, s'). There is also an external field H, applied to spins in 
state s. Thus the reduced Hamiltonian is 

where K,  = J,/ kT, L, = H,/ kT and the first summation is over all nearest-neighbour 
pairs. This defines a polychromatic Potts model which reduces to the standard 

8 Present address: Division of Materials Research, National Science Foundation, Washington DC 20550, 
USA. 

(1 Supported in part by grants from NSF, ARO and ONR. 
ll This is not to be confused with random site polychromatic percolation, introduced by Zallen (1977). 
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‘monochromatic’ Potts model upon taking J, = J for all s and H ,  = 0, s > 1.  Following 
Baxter (1973) we write 

eKsS(s, s’) = 1 + u,S(s, s’), (2) 

where U, =eKs- 1.  Then the partition function defined by ( l ) ,  

&(q;  {K,}; IL,)) = f . . f n [I + vsS(si, sj)In exp(L,,), (3) 

can be conveniently expressed in terms of a graphical expansion. There are 2“ terms 
that arise when the product in (3) is expanded. Each term of the expansion is placed 
in a 1 : 1 correspondence with a graph G embedded on the lattice if we draw a bond 
on the edge of the lattice for each factor v,S(s, s’). After carrying out the sums over 
the 4 N  states of the system, we are left with a single sum over the 2€ graphs G: 

s l = l  s N = l  ( i j )  

z N ( q ;  { K } ;  W,)) = C ~ [ U %  e x p ( ~ s , ) + &  exp(L2sc)+. . .+U> exp(~,s,)l. (4) 
G c  

Here the product is taken over all connected clusters in G, including isolated points; 
b, = 0, 1 ,2 ,  . . . and s, = 1 , 2 , 3 ,  . . . are, respectively, the numbers of bonds and sites in 
each cluster. When K ,  = K,  and L,  = LS(s, l) ,  equation (4) reduces to the known 
expansion for the monochromatic Potts model (Wu 1978), 

G c  

Here b = Z, b, is the total number of bonds in G. In the case of the standard Potts 
model the graphical formulation ( 5 )  forms the basis of developing an exact enumeration 
approach as well as relating the Potts model to other lattice-statistical problems. Here 
we shall use the graphical formulation (4) to relate the polychromatic Potts model to 
further problems of interest. 

In the standard or monochromatic Potts model we can regard the bonds as being 
coloured in, say, black. Then the logarithmic derivative of ( 5 )  at q = 1 is related to 
the bond percolation process. The polychromatic generalisation in (4) regards the 
bonds in each cluster to be coloured in one of q different colours. Generally, some 
of the interactions (‘colours’) may be identical (degenerate). Let the interaction K,, 
(Y = 1,2 ,  . . . , C, be ma-fold degenerate where C S q is the number of distinct colours, 
and Ea mu =q. Also assume the L, have the same ma-fold degeneracyt. Then (4) 
becomes 

C 

~ ~ ( 4 ;  {K,}; { L ) ,  Im,)) = n [U$ m? e x p ( ~ s , ) I .  (6) 
config a = 1 

Here b,, nu and sa are, respectively, the numbers of bonds, clusters and sites of colour 
a, and the summation is taken over all graphs G and over all C” colouring configurations 
of each graph, where n = X u  n, is the total number of clusters including isolated points. 

We now give examples of applications of this new model that follow from the 
formulation (4) and ( 6 ) .  
Connection with the dilute branched polymer (bond lattice animal) problem. A special 
case of the polychromatic Potts model was introduced by one of us (Wu 1978) and 
shown (Harris and Lubensky 1981) to reduce to the bond animal generating function. 

t In general, the fields L ,  may have a different degeneracy from the interactions K ,  (examples are (5)  and 
(13));  the most general incommensurate case will not be discussed further. 
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This result can be obtained by setting C = 2, ml = q - 1, m2 = 1 in (6), 

f ( s ) ~ z N ( q ; K , , K , ; L l , O ;  q - 1 ,  I ) =  c ~ ~ i ( q - 1 ) " i e x p ( ~ l s l ) ~ z b 2 ,  (7) 
config 

where, without loss of generality, we have taken L2 = 0. Motivated by the relationship 
of ( 5 )  with bond percolation, consider now the logarithmic derivative of (7) evaluated 
at q = 1. The presence of the factor (4  - 1)"1 in (7) means that only those graphs with 
n,  = 0 make a contribution in (7) at q = 1 so that f (  1) = (1  + u2)€.  Similarly, only those 
graphs with n,  = 1 will contribute in the derivative of (7) and we find 

where the summation is over all graphs containing a single cluster of colour 1. Next 
we sum those terms in (8) having the same single cluster. A factor 1 + u 2  arises for 
each edge other than those inside the cluster or on its perimeter. Thus we obtain 

(l /N)[(d/dq) lnf(q)]q=l = x p b Q t y s  = Q * y + ~ p Q ~ ( * - ~ ) y ~ + .  . . (9) 
A 

where p = u l / (  1 + u2) ,  0 = (1  + u Z ) - l ,  y = eL1 and b 2 0, t 2 z, s 2 0 are, respectively, 
the numbers of bonds, perimeter bonds, and sites of the single cluster (bond animal), 
z being the coordination number of the lattice. The summation (9), which is taken 
over all bond animals that are topologically different, is the generating function for 
bond animals (Q = l ) ,  percolation ( p +  Q = l ) ,  and perimeter bond animals ( p  = y = 1) .  
Note that Q = 1 corresponds to K2 = 0. 
Spin clusters in the Potts model. As a generalisation of (9) let C = 2, m 1  = q - t, m2 = t 
and L2 = 0. We obtain 

N-' [ (d /aq )  In Z d q ;  K1, Kz; L1, 0;  q -  t, t ) l q = t  

where bo, so are the numbers of bonds and sites of the cluster containing a given point, 
say, the origin. Clearly, the expression (10)  generates percolation clusters weighted 
by a factor t". Our Hamiltonian formulation thus produces the spin clusters arising 
in the t-state Potts model, a problem studied recently using Monte Carlo finite-size 
scaling (Sweeny 1983) .  Note that when u2 = K 2  = 0, the denominator of (10)  is simply 
t N  and (10)  again reduces to (9)  with p = U], 0 = 1. 
Connection with a correlated polychromatic bond percolation. As another example of 
an application of the expansions (4) and (6), we consider a bond percolation process 
in which each lattice edge can be either covered by a bond in one of C different 
colours, or be left empty. However, the coloured bonds are strongly correlated in 
that no two bonds of different colours may touch each other. Thus for C = 1 we have 
standard random bond percolation, but for C > 1 we have a more general correlated 
polychromatic bond percolation problem. 

If each bond of colour a carries a fugacity U,, then the usual questions regarding 
percolation processes can be asked. In particular, one wishes to compute the mean 
number of clusters and the mean cluster size for a particular colour. One wishes also 
to compute the percolation probability that clusters of particular colours will percolate. 
We now show that these quantities can be generated from (6). Consider first L, = O  
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and start from (4) for C + 1 colours: 

where we have rewritten (4) slightly by singling out the clusters of single points. Here 
I is the number of isolated points and the prime denotes that the product is taken 
over all remaining clusters having at least one bond. Note that now only the bond 
clusters are coloured. Further let Kc+, = = 0 so that the summation in (1 1) is 
over the configurations of C colours, not C + 1. Thus ZN is independent of mc+l and 
we can assign arbitrary values for 4, ml,  . . . , mc. It follows that 

(n,) = N-'[(a/am,)  In Z N I q = m l = .  , . = m c = i ,  CY = 1 , .  . . , c, 
is the (per site) mean number of bond clusters of colour CY. Here the average ( ) is 
taken over all configurations of correlated bond percolation of C colours. 

To compute the percolation probability and the mean cluster size of, say, colour 
1, introduce an external field L to one of the ma states of colour CY, CY = 1 , 2 , .  . . , C. 
Again taking uc+l = Kc+, = 0, one obtains 

(12) 

z N =  [ ~ e ~ + q - ~ ] ' u ~ l  . . .  u ~ n ( e L S C + m , - l ) ,  (13) 
conhg C 

where the product is taken over all bond clusters coloured in CY = 1 ,2 , .  . . , C. Thus 
one obtains the generating function for bond clusters of colour 1 

The summation in (14) extends to all bond clusters of colour 1. For L = 0, g ( 0 )  = ( n l )  
(cf (12)), while the derivatives of g ( L )  generate the percolation probability and the 
mean cluster size for colour 1, 

P(K1, . . . , K,) = 1 +g' (O+) ,  

S(K1 , .  . * , K,) = g"(O+). 
(15) 

(16) 
Exact results. In the formulations of branched polymers as well as the correlated bond 
percolation it is necessary to consider the case for which K,  = 0 for m of the q spin 
states (for example, m = 1 for bond animals and m = mC+l for the correlated bond 
percolation). We now show that the case of arbitrary m is always reducible to m = 1. 
Consider K,  = 0 for s = 1,2 ,  . . . , m. Since the m spin states have zero interaction with 
all states, they can be grouped together and referred to as a single state. Naming this 
single state s = 1, then each site is associated with a Boltzmann factor (eL1+. . .+ 
eLm)S(s, 1). Thus the q-state model with K, = 0 for m states is completely equivalent 
with a ( q  - m + 1)-state model with K,  = 0 for one state having an effective external 
field L = In I: ,"= eL*. 

An immediate consequence of this equivalence is that in some cases we can 
completely determine the critical properties of the model (1) whenever K, = 0 for all 
states except one, i.e. m = q - 1. Following the procedure described above we see that 
the problem is identical to that of a lattice gas and, hence, an Ising model in an external 
magnetic field. It is then straightforward to deduce that a first-order transition occurs 
in this model at zK =In Z,"=, eL= for K > aKf, where Kf is the corresponding Ising 
critical parameter and K is the only non-vanishing K,  in the Potts model. This result 
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holds in any dimension. If all interactions K ,  = 0, except for two of the q states, then 
the same procedure reduces the Hamiltonian (1) to that of the Blume-Emery-Griffiths 
model (Blume e? a1 1971). 

In summary, we have proposed a generalisation of the standard q-state Potts model, 
and developed an exact graphical expansion of the partition function valid for arbitrary 
external field and arbitrary ‘degeneracy’ of the interaction parameters J, between 
neighbouring pairs of spins. This polychromatic model is shown to encompass, as 
special cases, many interesting physical systems, including the dilute brunched polymer 
problem, correlated bond percolation problem, and the problem of weighted clusters 
in the conventional Potts model. After this work was completed, we learned that our 
polychromatic model is also applicable to the biophysical problem of cholesterol-lipid 
phase separation (Zuckermann 1983). We are currently exploring further applications. 

We thank M .I Zuckermann for calling our attention to biophysical applications of the 
polychromatic Potts model, and S Redner and A Coniglio for helpful discussions. 
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