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h i g h l i g h t s

• A generalized majority-vote model is used to model financial markets.
• Two agents: fundamentalists and noise traders with different couplings.
• The model presents stylized facts of real financial markets.
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a b s t r a c t

We use a heterogeneous agent-based two-state sociophysics model to simulate financial
markets. Focusing on stock market trader dynamics, we propose a model with two kinds
of individual – the contrarian agent and the noise trader – in which the dynamics of buying
and selling investors are governed by local and global interactions. We define an antifer-
romagnetic coupling that relates the option of contrarian agents to global magnetization
and a ferromagnetic interaction that connects noise traders to their local neighborhood.
Our model presents such stylized facts of real financial markets as clustered volatility,
power-law distributed returns, and the long-time correlation of the absolute returns with
exponential decay.We also observe that the distribution of logarithmic returns can be fitted
by the Student’s t distribution in which its degree of freedom changes with the percentage
of contrarian agents in the market.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In recent years there has been widespread interest in using the techniques and methods of statistical mechanics to
investigate the trader dynamics of financial markets and the spread of opinions in a social network. This use of the
mathematical tools and methods of physics to understand the dynamics of financial markets and human interactions has
produced the interdisciplinary fields of econophysics and sociophysics, respectively, and many agent-based models have
proposed to describe the dynamics of traders in a financial market or opinions in a social network [1–16].

Using the Ising model, an agent-based model was proposed to investigate the factors that drive expectation dynamics
in financial and stock markets [4]. The model introduces a coupling that relates each spin to the global magnetization of
the system and to the Ising couplings connecting each spin to its nearest neighbors. For temperatures below the critical
temperature of the Ising model, the competition between local and global interactions causes the magnetization dynamics
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of the system to become metastable. Despite its simplicity this model presents such main features observed in real markets
as volatility clustering and long-time correlations with exponential decay, and thus allows us to understand the basic
mechanisms at work in real-world financial markets [4–6].

The majority-vote model is another widely studied agent-based statistical physics model [9,10]. It shows the opinion
dynamics in a society by assuming that each spin in a network of interactions is either +1 or −1, a value that represents the
opinion of each network agent. Each spin in the model assumes with probability q a state opposite to that of the majority of
its neighboring spins and with probability (1 − q) the same state. Here q is the noise parameter of the model and measures
system temperature. As in the Ising model, the majority-vote model exhibits a phase transition at a critical value of the
noise parameter, which is qc ≈ 0.075 in a square lattice network.We find that themajority-votemodel has the same critical
exponents as the Ising model [11–14].

Financial markets are driven by rational and emotional behavior of their agents, which first appears to be difficult to
simulate and predict. Besides that, there are few situations where the human behavior tends to be simple to anticipate and
may bewell fitted using spinmodels. In social systems, humans tend to adopt herding behavior and follow the crowdbecause
they feel more comfortable when their decisions are supported by the like decisions of other people. In financial markets
this behavior is reinforced by so-called noise traders agents, who follow trends and over-react to both good and bad news
when they buy and sell. In contrast, some agents find that following the globalminority brings the best return, i.e., they buy
when noise traders depress prices and sell when noise traders push prices up. These ‘‘contrarian traders’’ are also called
fundamentalists, sophisticated traders or α-investors [2–6,17,18]. They base their decisions not on market euphoria but on
rational expectation, and they push prices toward fundamental values. Another classification of agents in terms of two basic
financial market strategies has also been investigated using realistic models. These models considered the presence of two
subgroups containing individuals who are optimistic or pessimistic about the future development of the market [2,3].

Using the two-state majority-vote model, we propose a model that simulates two interactions that drive the evolution
of financial markets, (i) the ‘‘follow the majority’’ herd behavior of noise traders and (ii) the ‘‘follow the minority’’
fundamentalist behavior of the contrarian traders. In our model, the option (the spin variable) of an agent is influenced by
the option of its neighbors and by the globalmagnetization. In our ‘‘global-vote’’ configuration, we combine sociophysics and
econophysics to create an agent-based model with different investors to study the opinion dynamics in economic systems.

The remaining sections continue as follows. In Section 2 we describe the global-vote model for financial markets and
introduce the relevant quantities used in our computational analysis. Section 3 summarizes the numerical results, and in
Section 4 we present our conclusions.

2. The model

In our agent model we place the individuals into the nodes of a regular square lattice network of size N = L × L. The
option of one individual in a given time t is represented by a spin variable that can assume values of either +1 or −1. To
simulate the composition of real-world financial markets, we define a fraction p to be contrarian individuals and a fraction
1 − p to be noise traders, represented by spin variables α and λ, respectively. Contrarian traders are influenced by global
magnetization, and noise traders are influenced by nearest neighbors. The two types of traders are randomly distributed in
the interaction network and the option of a contrarian investor αi flips with a probability

w(αi) =
1
2
[1 − (1 − 2q)ciαisgn (M)] , (1)

where sgn(x) = −1, 0, +1 when x < 0, x = 0, and x > 0, respectively. The constant ci is the strategy of the contrarian
traders and ci = −1 for all α individuals, indicating that contrarian traders tend to agree with the global minority traders.
We denote Nα = Np to be the number of contrarian agents and Nλ = N(1 − p) to be the number of noise traders. Thus
N = Nα + Nλ and we define the magnetization of the system to be

M =
1
N

⎛⎝ Nα∑
i=1

αi +

Nλ∑
j=1

λj

⎞⎠ , (2)

The option of a noise trader λj flips with a probability

w(λj) =
1
2

⎡⎣1 − (1 − 2q)cjλjsgn

⎛⎝ kj∑
δ=1

λj+δ

⎞⎠⎤⎦ , (3)

and the sum extends over the kj = 4 neighbors of site j in a square lattice network. Here we set the strategy cj to be equal to
+1 for all λ investors, reflecting the trend that noise traders agree with the local majority. The variable q in Eqs. (1) and (3) is
the noise parameter of themodel, quantifies the temperature of the system, and adds randomness to agent decision-making
process.When q increases, contrarian agents become themajority and noise traders theminority. For simplicity, we suppress
the time variable t in αi, λj and M .
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Fig. 1. Snapshots of a simulation on a square network of agents in the steady state. Here we have q = 0.05 with (a) p = 0.2 and (b) p = 0.5. In (a) and (b)
we can observe clusters of ordered options and in (b) these structures are smaller. White dots denote spin up and black dots spin down.

3. Results and discussion

WeperformMonte Carlo simulations on a lattice of linear size L = 101. Here one unity of time corresponds toN attempts
to change the state of randomly selected network agents, measured in Monte Carlo Steps (MCS). We start the simulations
with a random configuration of investor options, simulate 106 MCS and discard 100 MCS as the thermalization time.

When p = 0 we recover the original majority-vote model. When q is above zero, near qc ≈ 0.075 some clusters generate
smaller interior clusters in a Matryoshka doll configuration and become a system with zero magnetization at qc in the
thermodynamic limit (N → ∞) [9]. At higher values of q the system is fully disordered and magnetization approaches zero.
When p ̸= 0, system clusters emerge when the values of q drop below qc(p = 0) and the system also exhibit real-world
market features. This configuration is the focus of our analysis.

Fig. 1 shows snapshots of q = 0.05 when the fraction of contrarian agents set at (a) p = 0.2 and (b) p = 0.5. Note the
cluster formation occurring in (a), where the value of the noise parameter is below the critical value when p = 0 [9]. This
indicates that the presence of contrarian agents causes the system to transition from order to disorder when q values are
lower than qc(p = 0) ≈ 0.075. Further increasing the fraction of contrarian traders causes clusters to shrink or disappear and
the system to become increasingly disordered, consistent with previous findings that noise traders increase stock market
volatility and contrarian traders increase market stability [2,17,19].

Designating a buyer and a seller to have options+1 and−1, respectively, we relate themagnetizationM to the aggregate
excess demand for the asset at time t [4–6,20].When themagnetization oscillates near zero, the number of buyers and sellers
is approximately the same and the market fluctuates around equilibrium.We can also relate magnetization and global price
changes because an aggregate excess demand impacts stock prices. If the excess demand is positive (M > 0) the prices rise,
if negative (M < 0) they fall. Thus we use magnetization to quantify price and investigate the statistical properties of a
financial time series in logarithmic returns and price changes. We define the logarithmic return at time t to be

r(t) = log[|M(t)|] − log[|M(t − 1)|]. (4)

Fig. 2 shows the systemic logarithmic returns with q = 0.05 for p = 0.2 and p = 0.5, which are the same values as those
in Figs. 1(a) and 1(b), respectively. Fig. 2 shows ordered and turbulent phases of trader dynamics, reflecting the rapid agent
option rearrangement. These return transitions are related to the metastable phases of spin model magnetization, as shown
in Fig. 1(a). Fig. 2 also shows that when p = 0.5 there are oscillations in the logarithmic returns, but an order of magnitude
smaller, related to the smaller cluster configuration showed in Fig. 1(b). We thus assign two model regimes when q = 0.05:
a ‘‘strong market phase’’ for p = 0.2 and a ‘‘weak market phase’’ for p = 0.5. In Fig. 3 we show a comparison between the
magnetization for these two phases. Note that the magnetization for the weak market is randomly distributed and becomes
unstable for the strong market, denoting that the system is close to a metastable phase with high volatility. We find similar
results for other values of the noise parameter q. Therefore, in this work, we investigate how the probability of contrarian
traders p affects the market.

This logarithmic return behavior is the analogue to a bubble-related asset value that initially increases, seeminglywithout
reason. A bubble is an economic cyclewith a rapid increase in asset prices followed by a rapid decrease. It is caused by a surge
in asset prices unwarranted by asset characteristics and is driven by emergent market behavior. When no more agents opt
to buy it at the elevated price, a massive sell-off occurs and the bubble deflates.We see this behavior in the daily fluctuations
in the Dow Jones Index and the Bitcoin exchange rate [5,21]. Fig. 4 shows a plot of the logarithmic return of Bitcoin prices
from 16 June 2010 to 05 January 2018 for a qualitative comparison.

Volatility in finance is the degree of variation or dispersion around the average return of a trading price series over
time. Fig. 2 shows that the high-volatility phases of the global-vote model are strongly clustered when p = 0.2. In this
scenario investors become anxious, and strategic agents attempt to buy low and sell high. To characterize volatile market
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Fig. 2. Logarithmic relative change of the absolute value of the magnetization of the model for q = 0.05 with p = 0.2 (black) and p = 0.5 (gray). For this
set of parameters, the market shows long periods of inactivity with bursts of activity and the values in gray are an order of magnitude smaller.

Fig. 3. Magnetization of the model versus time for q = 0.05 with p = 0.2 (black) and p = 0.5 (gray).

Fig. 4. Logarithmic returns of the exchange rate of Bitcoin from 16 June 2010 to 05 January 2018.



766 A.L.M. Vilela et al. / Physica A 515 (2019) 762–770

Fig. 5. Log–log plot of the autocorrelation function of the absolute log-returns versus time t for q = 0.05. From bottom to top we have p =

0.20, 0.25, 0.30, 0.50 and 0.70. The dashed red line is the exponential fit A(q, p, t) ∼ exp[−(1.0 × 10−6)t] for the data.

dynamics and quantify volatility clustering, we calculate the corresponding autocorrelation of absolute returns. We define
this autocorrelation

A(τ ) =

∑T
t=τ+1 [|r(t)| − |r̄|][|r(t − τ )| − |r̄|]∑T

t=1 [|r(t)| − |r̄|]2
, (5)

where τ is the time-step, r(t) the current value of the return, r̄ the average return value and T the total time simulated.
As observed in real financial markets, the global-vote model shows that the autocorrelation of returns disappears quickly
as time increases, implying that the returns themselves are uncorrelated [22]. However the autocorrelation function of the
absolute returns, defined by Eq. (5), display a positive long-time correlation with a slow decay. This behavior refers to the
observation by Mandelbrot [23] that ‘‘large changes tend to be followed by large changes of either sign, and small changes
tend to be followed by small changes’’.

We see this slow decay of the autocorrelation of absolute log-returns when the data display volatility clustering. Fig. 5
shows the autocorrelation of the absolute returns for q = 0.05 and several values of p, where the total time T = 106 MCS
and 1 ≤ τ ≤ 105 MCS. Fig. 2 shows that when p = 0.2 (black) the system is in a strong market phase. The rapid variations
in the returns are reflected in an exponential decay in the autocorrelation of absolute log-returns, in agreement with the
Bornholdt model that also shows a similar decay for this function [4–6]. To quantify this effect we fit the autocorrelation
function of absolute log-returns by the relation A(q, p, t) ∼ exp(−t/t0), where we find that 1/t0 ≈ 1.0 × 10−6 (dashed red
line). As p increases, the autocorrelation curves continue to exponentially decay with time, but the oscillation of logarithmic
returns is significantly smaller than those for p = 0.2, as seen in the gray line in Fig. 2. Nevertheless, the other values of p in
Fig. 5 can be fit using decreasing exponentials where all the exponents are close to 1.0 × 10−6.

Fig. 6 plots the graphical shape of the probability distribution of the logarithmic returns as its frequency for q = 0.05 and
several values of the fraction p of contrarian agents. As in real-world market, the distributions have fat tails. We perform
a statistical analysis of our data and find that the skewness S(p), which is zero for normal distributions, it is equal to
S(0.2) = −0.0135 and S(0.5) = 0.0016 in strong and weak market phases, respectively. Here positive skewness indicates
investment opportunities because the right tail of the distribution is fatter than the left, and positive returns tend to occur
more often. We also calculate the kurtosis κ(p) of the data and for a random sample from a normal distribution κ = 3. We
find that when q = 0.05, κ(0.5) = 3.04, and we conclude that the logarithmic returns of the weak market are distributed
as a Gaussian distribution. However, when q = 0.05 and p = 0.2, we find κ(0.2) = 6.33 for the strong market phase. This
positive excess kurtosis indicates that the distribution of the logarithmic returns is leptokurtic and has fat tails which are
consistentwith thewell-known empirical finding that the distribution of logarithmic returns in real-world financialmarkets
is non-Gaussian [24,25].

To analyze the fat tails of our distributions graphically, we use a comparative quantile–quantile (QQ) plot [26]. Fig. 7
shows QQ-plots for the distribution of logarithmic returns in strong and weak markets, ranging from p = 0.20 to p = 0.70
when q = 0.05, and we test all of them against the normal distribution. The red line is the reference line y = x, and
when two distributions are similar, the points in the QQ plot lie approximately on y = x. When the market is strong, the
cross shape is no longer linear, indicating that the tails of the distribution are fat and the distribution of logarithmic returns
for the global-vote model with q = 0.05 and p = 0.2 is non-Gaussian. We see a similar behavior in S&P 500 index of daily
returns [24]. In contrast to a normal distribution, in a fat tailed distribution there is a higher probability that the values of the
logarithmic returns are extreme. There are several proposed shapes for the distribution of (logarithmic) returns in financial
markets, including the generalized hyperbolic Student-t, the normal inverse Gaussian, the exponentially truncated stable,
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Fig. 6. Heavy-tailed distributions of log-returns for q = 0.05 with p = 0.20, 0.25, 0.30, 0.40, 0.50 and 0.70 in 106 MCS.

Fig. 7. Quantile–quantile plot for the strong market phase, where q = 0.05 and p = 0.20, 0.25, 0.30, 0.40, 0.50 and 0.70. Horizontal axis represents the
normal theoretical quantile Q and vertical axis represents the data quantile or frequency of returns F [r(t)] . (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

and the asymmetric Laplace distribution, but no consensus has been reached on the exact form of the tails in real-world
financial markets [25,27].

As the fraction of fundamentalist traders increases the log-return distribution transitions from a heavy-tail decay to a
exponential decay. We find that the log-returns for p < 0.5 are well fit by the Student’s t distribution and Fig. 8 shows a
log–log plot of the absolute log-returns and the Student’s t fit to the data. For p = 0.50 and 0.70 we use a Gaussian fit, once
the rate of decay is specified by the degree of freedom ν and generalizes the exponential decay of Gaussian distribution
(ν → ∞) with heavy-tail distributions (0 < ν < ∞). Assuming the mean µ is zero (see Fig. 9), the Student’s t distribution
f (r; ν, µ, σ ) = f (r; ν, σ ) with degree ν and scale σ for the log-returns values r is

f (r; ν, σ ) =
1

√
νσ 2B

(
ν
2 ,

1
2

) (
1 +

r2

νσ 2

)−
ν+1
2

, (6)

where

B
(

ν

2
,
1
2

)
=

∫ 1

0
tν/2−1(1 − t)−1/2dt, (7)

is the Beta function. Fitting the log-returns with Student’s t distribution for p = 0.20, 0.25, 0.30 and 0.40 we obtain the
degree-scale pair (ν, σ ) for p = 0.20, 0.25, 0.30 and 0.40 shown in Table 1. As the degree of freedom ν increases with p, we
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Fig. 8. Frequency F (q, p, r) versus the absolute value of logarithmic returns |r(t)| for q = 0.05 with p = 0.20, 0.25, 0.30, 0.40, 0.50 and 0.70 in 106 MCS.
The dashed red line is a Student’t fit with degree ν = 6.6 ± 0.1 and scale σ = 0.7624 ± 0.0008 to the strong market regime of p = 0.20.

Table 1
Dependence of the degree ν and scale σ on the fraction p for q = 0.05.
Fraction p 0.20 0.25 0.30 0.40
Degree ν 6.6 ± 0.1 12.3 ± 0.3 21.2 ± 0.8 53 ± 4
Scale σ 0.7624 ± 0.0008 0.5075 ± 0.0004 0.3689 ± 0.0003 0.2013 ± 0.0001

Fig. 9. Cumulative distribution function Φ for the logarithmic returns r(t) calculated in 106 MCS for several values of the contrarians concentration p. In
the inset we show the details of the distributions around zero.

find that the distribution of the absolute log-returns for p = 0.50 and 0.70 are fitted using a Gaussian function g(r; σ ) with
zero mean and variance σ (p) = σ

g(r; σ ) =
1

√
2πσ 2

e−(r/
√
2σ )2 , (8)

where σ (0.50) = 0.12169 ± 0.00007 and σ (0.70) = 0.06393 ± 0.00004. In Fig. 9 we show the cumulative distribution Φ

for the log-returns where we observe that the mean is zero for all values of p investigated. The relatively small values for the
variance σ yield a step function shape for the cumulative Gaussian function when p = 0.50 and 0.70.

The distribution of the absolute logarithmic stock returns |r(t)| exhibits power-law asymptotic behavior

F (|r(t)|) ∼ |r(t)|−θ , (9)
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where θ is between 2 and 4 for real-world financial markets [1,28,29]. The Student’s t is a multifractal distribution with an
asymptotic tail decay and the negative slope of the log–log plot is computed to be

d
d[log(r)]

f (r; ν, σ ) =
r2(ν + 1)
r2 + νσ 2 , (10)

and in the limit r2 ≫ σ 2, we obtain f (r|ν, σ 2) ∼ r−(ν+1). Thus numerical fits estimating just the tail of the distribution
tend to underestimate the asymptotic slope [30,31]. For the fraction of fundamentalist traders p between 0.2 and 0.4 we
observe power-law behavior and we estimate the asymptotic slope given by θ (p) = ν(p)+ 1 to be θ (0.20) ≈ 7.6, θ (0.25) ≈

13, θ (0.30) ≈ 22 and θ (0.40) ≈ 54. For the degree of freedom ν around and above 50, the distribution closely approximates
the Gaussian distribution.

In Fig. 8 we also note that the point on the horizontal axis corresponding to the scale parameter σ value indicates the
region where the slope begins to decrease significantly below zero. For values of the absolute logarithmic return above
the scale value the slope is continuously changing until it saturates in the asymptote. In particular, for a truly scale-free
distribution the scale parameter σ converges to zero and there is a minimal curvature in the slope.

We conclude that the global-vote model can qualitatively reproduce real-world financial market behavior when the
noise parameter q and the contrarian agents concentration p are properly tuned. We can also use its results to estimate the
distribution of agents and characterize the mechanisms that drive the behavior of interacting agents in economic systems.

4. Conclusion and final remarks

We have proposed an agent-based model of a stock market with heterogeneous traders. Our model has two kinds of
investor – contrarian agents and the noise traders – who are influenced differently bymarket interactions when they update
their market options. Contrarian agents are influenced by global market magnetization, and noise traders are influenced by
local market magnetization, i.e., the behavior of nearest neighbors. We demonstrate that trading volume and market price
are related to themagnetization in ourmodel. Because of this relation, the competition between local and global interactions
in our global-vote model reproduces such qualitative stylized facts of real-world financial data as clustered volatility, long-
time correlated slow decay, and non-Gaussian and power-law distributed returns. We have shown that the distribution of
logarithmic returns iswellmodeled by the Student’s t distribution and that the degree of freedom increases as the percentage
of contrarian traders increases. Despite its simplicity, it combines two fields of the statistical mechanics – econophysics and
sociophysics – and allows us to better understand how trading behavior effects the volatility of financial markets.
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