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Abstract

We introduce and develop new techniques to quantify DNA patchiness, and characteristics
of their mosaic structure. These techniques, which involve calculating two functions, «(/) and
p(7), measure correlation cxponents at length scale / and detect distinct characteristic patch
sizes embedded in scale invariant patch size distributions. Using these methods, it is possible to
address a number of issues relating to the mosaic structure of genomic DNA. We find several
distinct characteristic patch sizes in yeast, human, and prokaryotic sequences. We also find that
the distinct patch sizes in all 16 yeast chromosomcs are similar. ©) 1998 Published by Elsevier
Science B.V. All rights reserved.
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1. Introduction

[t is well known that DNA polymer sequences have a mosaic structure, which is
characterized by “patches” with an excess of one type of nucleotide [ 1-3]. Patchiness
is usually associated in the biological literature with the phenomenon of isochores,
which are DNA regions having homogeneous base compositions and typical scales of
about 1 Mbp [4]. Here, we extend the concept of patchiness to include nonuniformities
on scales smaller than 1 Mbp [5].

It is found that for many DNA sequences the nucleotide concentration fluctuation
o grows not with the square root of /, but as another power law: ¢ ~ /” where

™ Corresponding author.

0378-4371/98/619.00 Copyright &) 1998 Published by Elsevier Science B.V. All rights reserved
PITS0378-4371(97)00519-0



582 G M. Viswanathan et al. | Physica A 249 (1998) 581-586

x# 1/2 is a scaling exponent which describes the “roughness™ of the fluctuations [ 6—
9]. In such cases the DNA sequences have patches of all length scales, i.e., there
exists no characteristic patch size because power-law behavior i1s the signature of scale
invariance [10]. Indeed, recently a direct measurement of patchiness was performed
and a power-law distribution was found for the patch sizes [11]. The basic premise
behind our newly developed methods is that deviations from power-law behavior can be
related to characteristic scales [5]. The degree to which the mosaic structure of DNA is
related to such long-range correlation properties of DNA sequences has been discussed
[ 11-16]. However, long-range correlation measures have never been used to quantify
patchiness or to identify characteristic patch sizes in DNA sequences. Here we adapt
and extend methods [8,17] for studying patchiness in DNA by developing techniques
to quantify departures from power-law behavior and to estimate distinct characteristic
DNA patch sizes embedded in power-law distributions of patch sizes. These techniques,
which involve the calculation of two functions, «(¢) and f(/), measure correlation
exponents at length scale /# and detect distinct characteristic patch sizes embedded in
scale invariant domain size distributions. For ideal power-law correlations, the two
exponents are related by x(/) = [1 + p(/)]/2 = constant [9,17].

2. Methods and controls

In order to apply numerical methods to a DNA sequence {»n,;} consisting of the four
nucleotides A, C, T and G, we generate a binary sequence {u,} for each DNA sequence
[17]. We use the following three binary mapping rules:

(1) Purine-pyrimidine (RY) rule. 1f n; is a purine (A or G) then u;, = 1; if n; is a
pyrimidine (C or T), then u; = —1.

(ii) Hydrogen bond energy (SW) rule [18,19]. For strongly bonded pairs (G or C)
u; = 1 while for weakly bonded pairs (A or T) u; = —1.

(ii1) Hybrid (KM) rule. For A and C u; = 1, while for T and G u; = —1.

Each of these rules probes a different aspect of the mosaic structure of DNA [5], e.g.,

the SW rule is related to the energy balance of strand separation, while the RY rule

is related to strand chemical bias.

First, we develop techniques for detecting and examining characteristic scales of
patchiness by studying a “control sequence” of +1 and —1 with patches of 3 different
characteristic scales. The control sequence is constructed by concatenating uncorrelated
patches of fixed sizes of 200, 2000 and 20000bp. For each patch j of length L,
we randomly assign P; (1), the concentration of “+17, to be either P;(1) = 03 or
P(1) = 0.7 with equal probability, i.e., each patch has randomly assigned biases
b=Pi(1)—P;(—1)=1040. Then we concatenate these patches to make a sequence
of length N = 10°bp or more. We use the following rule for generating long-range
correlations [5]. For the patch j,

(1) A random number x; is chosen in the interval [0, 1].
(i1) A preliminary length quantity /; is computed as /; = 200/x;.
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Fig. 1. (a) Double log plot of the power spectrum S( /) of an artificial control DNA sequence of length
2!'bp. The solid line shows the spectrum after further smoothing using a subjective smoothing criterion
[5]. The 3 characteristic scales are not readily discernible in the spectrum. (b) Log-linear plot of the power
spectrum correlation exponent i(#) for the same sequence, where / = 1//. The solid line is f(#) after further
smoothing. (¢) DFA correlation exponent x(/) for the same sequence. The exponents x(#) and S(/) peak
at three locations corresponding to the three characteristic patch sizes. The location of the peaks is always
about 1.5 multiplied by the patch sizes. Also shown is «(4) found from the “DNA walk™ rms fuctuation
method (dashed line) [8], which is unable to detect the three characteristic patch sizes.

(iii) If 7; is less than 2000 then a patch of size L; = 200bp is chosen. Otherwise if
/; 1s less than 20000 then a patch of size L, = 2000bp is chosen, Otherwise a
patch of size L; = 20000 is chosen.

The power spectrum S( /) for this control sequence is defined as the modulus squared

of the discrete Fourier transform i, of w;: S(f) = |iis|*. We find that S(f) resembles

a “l/f-type” spectrum, as shown in Fig. la. The spectrum scales approximately as

S(f)~ f~*, where =~ 1 for this sequence. However, there are important deviations

from pure power-law behavior which indicate the presence of characteristic scales. We

define the correlation exponent f5(¢) as

Py = —ldlogS(fHdlog f1,_,, (1)

where / = 1/f has dimensions of length, i.e., #(¢) represent successive slopes of
the double log plot of S(f). We find that after additional smoothing f(¢) displays
three local maxima which correspond to the three scales of patchiness of the control
sequence (Fig. 1b).

The estimation of f(/) requires an arbitrary amount of smoothing by visual in-
spection, making it susceptible to human judgement. However, detrended fluctuation
analysis (DFA) [16] does not suffer from these disadvantages. We use the variant of
the DFA method described in Ref. [17]. The net displacement y(n) of the sequence u is
defined by y(n) =3, u;, which can be thought of graphically as a one-dimensional
random walk. The sequence y(n) is then divided into a number of overlapping subse-
quences of length 7, each of which is shifted with respect to the previous subsequence
by a single nucleotide. For each subsequence, linear regression is used to calculate
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an interpolated “detrended” walk y'(n)=a + b(n — ng). Then we define the “DFA
fluctuation” by Fp(/) = \/((0¥)?), where oy = v(n) — »'(n), and the angular brack-
ets denote averaging over all points yp(n). We use a moving window to obtain better
statistics. The DFA exponent x(/) is defined by

- legFD(/)
~ dlog(/ +3)

where the +3 term is a correction important for small # [17]. As we mention above,
for an ideal power law (/) = [1 + (£)]/2 == constant [9,17]. (See also Ref. [5].) To
present both x(/) and (/) on approximately the same scale, we can plot [1 + f(¢)]/2
instead of (/) [9.17]. Fig. lc shows a(/) for the artificial contro]l model described
above.

The functions %{7) and (/) are measures of how correlated a sequence is on dif-
ferent length scales. Since peaks in 2(/) and f(/) correspond to higher correlations,
therefore, by studying peaks in z(/) and p(/), we can estimate distinct characteristic
DNA patch sizes embedded in a sequence with an apparent 1/f power spectrum. We
emphasize that such peaks corresponding to a given size do not imply the existence
or absence of domains of that size, but rather imply an abundance of patches with
that size relative to a power-law distribution of patch sizes. It can be shown [5] that
the peaks should occur at scales of the patch size multiplied by a factor a, where
a = 1/In2 ~ 1.44. This is numerically close to the measured value a = 1.5 obtained

xu7) (2)

from simulations.

3. Results for known DNA sequences

We next apply these methods for detecting and examining characteristic scales of
patchiness to the sixteen chromosomes of Saccharomyces cerevisiae. Fig. 2a shows the
DFA exponent for each of the 16 yeast chromosomes individually for the RY rule and
Fig. 2b for the SW rule. Note the similarity of x(/) for different chromosomes |[3].
See Ref. [5] for the power spectrum exponents (/).

Next, we estimate characteristic patch sizes for several eukaryotic sequences longer
than 10° bp, as well as for some E. coli bacterial sequences, as shown in Fig. 3. We
used the peaks in x(/) divided by the factor # = 1.5 to evaluate the actual patch sizes.
We find that similar patch sizes appear in several sequences, and some even appear
on sequences from different species.

4. Discussion

Our study shows that the yeast chromosomes have similar x(/). We find that for
/ < 10° bp the yeast chromosomes have almost identical mosaic structure and correla-
tion properties. This suggests that unique mechanisms organize all yeast chromosomes
and that these mechanisms may be significantly different in higher cukaryotes and
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Fig. 2. DFA exponent a(¢) for yeast chromosomes using (a) the RY rule and (b) the SW rule. We note
that the general shape of a(#) is similar for all 16 chromosomes.
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Fig. 3. Characteristic patch sizes for the 16 yeast chromosomes and other sequences estimated using the SW
rule. Patch sizes which could only estimated by visual inspection of the peaks are indicated by error bars
without circles.

prokaryotes. We also find distinct characteristic patch sizes in genomic DNA sequences.
As seen in Fig. 3, similar patch sizes appear in several sequences, and some even ap-
pear in sequences from different species. The patchiness in eukaryotic DNA could be
due partially to the elaborate organization and folding of DNA by proteins intc nu-
cleosomes and higher-order structures of chromatin. Note that the yeast sequences do
not show patchiness on scales from 50 to 200bp. Perhaps this 1s due to the absence
in yeast of the normal HI1 histones which help pack nucleosomes together [20].
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In summary, we find distinct characteristic DNA patch sizes embedded in scale
invariant patch size distributions by applying the new techniques developed here for
quantifying DNA patchiness.
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