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We study the residual entropies of the antiferromagnetic Ising systems, in the maximum
critical field, situated on checkerboard (CB) type of fractals embedded in d-dimensionat
Euclidean space. For a given d, the CB fractals constitute a family, whose each member is
labelled by b, where b is an odd integer (3 < b < ). Each family itself furnishes a crossover
to the corresponding 4-dimensional hypercubic lattice. By calculating explicitly residual
entropies (b} for finite b, and by using a specific method of extrapolating the obtained
results, we were able to establish the crossover behavior of o(b). It turns out that the
established crossover is of the same type as the one found in the case of fractal families of the
Sierpinski gasket type.

1. Introduction

In the preceding paper [1] we have studied the residual entropies of the Ising
antiferromagnetic systems, in the maximum critical field, situated on Sierpinski
gasket (SG) type of fractals that are embedded in the d-dimensional Euclidean
space. For a given d, the SG fractals comprise a family [2], so that each
member is labelled by an integer b (2 < b <) and the corresponding fractal
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dimensions d, tend to d when b — =, Thus, when 4 = 2, for instance, the SG
fractal family furnishes a crossover to the Euclidean triangular lattice. In this
case we have found [1] the following crossover formula for the residual
entropy:

g, b—x (N

U(b) = Opyclidean

wherc P is a constant. Lt is interesting to obscrve that the correction term in (1)
is not logarithmic and thus it is neither of the type that appears for the fractal
dimension d;, nor of the type that is pertinent to the spectral dimension d,
[2-4]. Besides, the crossover formula (1) was also found to be valid [1] in the
case of SG fractals embedded in the three-dimensional (3D) FEuclidean space,
and thus one may conjecture that it could be valid for residual entropies in
general. Indeed, in this paper wc present a study of residual entropies for
checkerboard (CB) type of fractals, and confirm that formula (1) is again valid
both in the d =2 and d =3 cases.

This paper is organized as follows. In section 2 we survey general properties
of the CB type of fractals, and elaborate the case of the CB fractal family
embedded in the two-dimensional (2D) Euclidean space. The 3D case is
elaborated in section 3. Finally, in section 4 we derive formulas valid in the
casc of arbitrary d. and conclude with a general discussion concerning the
residual entropy behavior at the fractal to Euclidean crossover.

2. Residual entropies of the 2D checkerboard type of fractals

The CB fractals are, similarly to the SG fractals, of deterministic nature. All
members of a checkerboard fractal family, cmbedded in a d-dimensional
Euclidean space, may be obtained from an infinite set of d-dimensional
generators G(h, d), where b is an odd integer (b=2k +1. k=1,2,. .., x).
Each generator G(f,d) is a d-dimensional hypercube of side length b,
composed of b layers of d-dimensional hypercubes of unit side length, so that
within each laycer and along cach direction of alignment of the elementary
hypercubes every other of them is remaved (see fig. 1}. A CB fractal lattice is
grown in stages. The (n + 1)th stage of a fractal lattice is obtained by enlarging
the generator by b” and substituting each of the physically present elementary
hypercubes by the ath stage structure. The complete fractal lattice is obtained
in the limit n— <. In fig. 1 we depict the first few steps of the above growing
process in the d =2 case, for b=3 and b =5. In the general case, it can be
shown that the fractal dimension of a CB fractal lattice, for given d and b, has
the form
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(b}

Fig. 1. (a) The first three steps of construction (n = 1,2, 3) of the 2D CB fractal lattice with b = 3.
(b) The first two steps of construction (r = 1, 2) of the 2D CB fractal with & = 5. (c) The generators
(n =1) of the 3D CB fractals with b=3 and b =5.

_ {3+ DI+ [0 - 1Y
4= In b ‘ )

Hence one can notice that, in analogy with the SG case [2], the fractal
dimension of the CB fractals approaches, for large b, the Euclidean value d
with a logarithmic correction of the form (1 —d)in2/1n b.

In what follows we study the antiferromagnetic Ising systems, with the
nearest-ngighbor (nn) interaction J, in the maximum critical field /. The value
of H_is determined by the maximum coordination number z of the lattice the
Ising system is situated on {5]. In the case of the CB fractal lattices, the relation
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z=2d holds (for each b) and thereby it follows [5] that H, = 2d|J|. Here it
should be emphasized that, contrary to the SG case, within one CB fractal
family (for a given d) the maximum critical field H, docs not depend on b.
Consequently, in investigating the residual entropies o(b) one does not have to
study scparate cases defined by some particular values of £. This will be first
demonstrated in the case of the CB fractal family in the d =2 space.

In the maximum critical field H, =4J, the configuration with all spins
oriented up has the same energy (the ground state energy) as all other
configurations with an arbitrary number of spins oriented down, provided that
each of the latter is surrounded by 4 upward oriented neighbors. Hereafter, we
will use the term bulk spins for those spins which have the maximum number
of ncarest neighbors. When the (n + 1)th stage fractal structurc is formed out
of the nth stage structurcs, some of the apex spins of the latter become bulk
spins. However, they may take arbitrary orientations since they are not
neighbors to the other bulk spins. Therefore, the recursion relation between
the nth stage ground state degeneracy {2, and the (n + 1)th stage degeneracy
{2 _,. is given by

Qﬂ)’ i1 = ZHQD(: 4 (3)
where
B=(b-1y (4)

is the number of bulk spins in the generator, and
C=[3(b+ D +[3(h - DI (5)

is the number of nth stage structurcs that comprise the (n + 1)th stage structure
(this is also the number of clementary squares in the gencrator). By iterative
application of (3), starting from the generator ground state degeneracy f2,., we
obtain the expression for the nth stage ground state degeneracy

@M

{3, 1

(6)

The number of spins in the nth stage of construction of the fractal is obtained
using the recursion relation

N ., =CN —B, (7)



T. Siosic et al. / Residual entropies of antiferromagners on fractals Il 33

and thereby it is found that

_ C"'[(C-1)N, — B]+ B

N, = : (8)
where
Ne=(b+1) (9

is the number of spins in the generator.
The residual entropy of an infinite fractal lattice is given by

i In 12, 0
a = HLH'I:E, Nn_ B ( )
so that by inserting (6) and (8) into (10) we find
_BIn2+(C—1)In ), (b)
a(b) = © DN, —B . (11)
Finally, inserting (4), (5) and (9) into (11) we obtain
Ab -1 W2+ [(b+1)° +(b—- 1) —4]In 25(b
iy = =D 24 [ 11+ (b 1P 4)in 2g(0) )

(B+1){(h+1)Y +(b—1) —-4]-4b-1)

Thus, the residual entropy of 2D CB fractals depends explicitly on the
generator side length » and the generator ground state degeneracy 2. In
order to evaluate the explicit values of ¢ from (12) it remains to find the
generator ground state degeneracies f2;. Keeping in mind that we want to
study the crossover behavior of o(b), it is preferable to learn £2; for as large
generators as possible. To accomplish this task we have used a special
numerical technique, similar to the one used in the case of Sierpinski gasket
type of fractals [1, 6], and have calculated £2.(b) for b<17. In table I we
present the calculated values of a(b), as well as the values of the residual
entropics o'(b) of the corresponding generators. The values o'(b) were
calculated according to the formula

In 24(b
a'(b)="N—‘;(). (13)

With the goal to establish the limiting behavior of a(b) when b— =, we
apply the degeneracy factor method (DFM) introduced in ref. [7]. The essence
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Table 1

Rasidual entropies o(h) and o'(h) of the Ising antiterromag-
net in the maximum critical field, situated on the 2D checker-
board fractal lattices and on the corresponding finite size
generators, respectively. Values o(b) are calculated using
(12), whereas values o'(d) are obtained using (13) and (9).

b er(h) o'(b)
3 0.17593716 012161938
4 0.16572539
5 (0.2319869) 0.19772267
0 0.22292210
7 0.26524471 0.24278240
8 0.25889169
9 02878610 0.27216487
10 0.28329028
11 0.30428457 1.29274022
12 (1.30086461
13 0.31675443 (3.30792147
14 0.31410711
i5 0.32654310 (0.31957256
16 0.32443614

7 0.33442990 0.32879168

of the DFM 1s the scaling relation

Dby~ "0 b-1). b=k, (14)
where ¢ is a constant (characteristic for the square lattice), and w is the
dcgeneracy faclor that appears on adding a new spin to a fractal generator. The

relation (14) is assumed to be valid, for a preset accuracy, beyond a certain
value b = k. By successive application of (14) we find

!l(}(b)zC:!(b7A-)(Uh:7A-272b+2kf)G(k) ] (15)
and inserting (13) into (12) we obtain

S,b5+ 8+ 8,

bzl + B B N I6
o) =l T b3 (16)
with
S.=2Inc-4hhow, (17a)
S,=21n272(k7l)lncf(kz72k+3)lnw+lnﬂﬁ(k), (17b}

So=-2In2-2klnec— (k= 2k +3)Inw +In £2,(k) . (17¢)
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To evaluate the numerical values of these coefficients we assume that (14) is
valid beyond k = 16, and use the calculated values of 2,(b) (b = 17) to obtain

In o = 0.4074945 (18a)
In ¢ = 0.0670637 . (18b)

For the coefficients in (16) we now find

S, = —1.49585 , (19a)
S, =0.635168 (19b)
S, = —2.27155 . (19¢)

Since the constants (19) are finite, it follows that the leading term in (16) is
of the order 1/b for large b, and we can now claim that the asymptotic law (1)
is true in the case of the 2D CB fractals as well. Also, comparing our limiting
value of o(b) for b— o, given by (18a), with the value of the residual entropy
found in ref. [7] for the infinite square lattice op,.j;4.., = 0.40749510126068, we
see that knowledge of exact data up to b =17 provides a six digit accuracy of
the approximate formulas for larger &. In fig. 2 we depict values of o(b) for
b = 1000, calculated using (16), together with the residual entropies o'(b) of
the corresponding fractal generators, calculated using (13) and (15). Thus we
can see that the limiting value of a(b), when b— o<, lies slightly above the
region predicted [5] for the Euclidean lattices with coordination number z = 4.
On the other hand, the extrapolated values o(b) surpass the lower Euclidean
boundary o, = 0.3584 [5] for b =26, corresponding to fractals containing more
than 86% of the bulk spins, which is the same percentage of bulk spins at
which the residual entropies of 2D Sierpinski gasket type of fractals surpass the
corresponding lower Euclidean bound (see ref. [1]).

3. Residual entropies of the 3D checkerboard type of fractals

In the maximum critical field H,=6J, the configuration with all spins
oriented up has the samc cnergy (the ground state energy) as all other
configurations with an arbitrary number of buik spins oriented down, provided
that they are not nearest neighbors to each other. Argumentation similar to
that used in the 2D case (sce section 2) shows that now eq. (11) is also valid,
except for the fact that B, C and N are here different. The number of bulk
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Fig. 2. Residual entropies o{b) and o'(b) of the 2D CB fractals and their generators, represented
by circles and triangles, respectively. Exact values for 3= b =17 are depicted by full circles and
triangles, while the extrapolated values for 18 = b = 1000 arc depicted by the corresponding open
geometrical shapes. The extrapolated values of o(b) are obtained using egs. (16)-(19), whereas
the extrapolated values o’(b) are found using (13) and (14). The symbol < represents the value
found |7] for the residual entropy of the infinite square lattice oy 4.0, = 0.40749510126068, and
the nearby shaded region corresponds to the upper and lower bounds, o, = 0.4024 and &, = 0.3584,
predicted [5] for the Euclidean lattices with the coordination number z = 4. The full lines serve as
guides to the cye.

spins in the generator is here given by
B=(b—-1), (20)

whereas the number of nth stage structures that comprise the (n + 1)th stage
structure (this is also the number of elementary cubes in the generator) is

C=[e+nI e DI, (21)
and finally the total number of spins in the generator is
N,=(hb+1). (22)
Inserting (20), (21) and (22) into (11) we find

8h -1 In2+[(b+1) +(b—1) —8]In £2,(h)
b+1[(b+1)+((b-1—-8]-80b 1)

a(b) = (23)
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Again, the residual entropy o(b) depends explicitly on the generator side
length b and on the generator ground state degeneracy £2;. To determine £,
we have used a numerical technique similar to that used in the 2D case, and
thus we have calculated {2, exactly up to b =<6. In table II we present the
values of a(b) calculated using (23), as well as the values of the residual
entropies o’(b) of the corresponding generators, calculated according to (13)
and (22).

To study the crossover behavior of o(b) when b— =, we apply the DFM
method [7]. In this case it provides the following recursion relation for the
ground state degeneracies:

0,(b) = P VRO b1y, b=k, (24)
where ¢ is a constant (characteristic for the simple cubic lattice), and w is the
degeneracy factor that appears on adding a new spin to a fractal generator. The
relation (24) is assumed to be valid, for a preset accuracy, beyond a certain
value b = k. By successive application of (24) we find

-Qc.(b) ~ C(3/2)[b(b—1)—1c(k—1)1wb3—3b2+3b—k3+3k2~3k06(k) ’ (25)

and inserting this expression into (23) we obtain

S+ 8,b'+ 8.0+ 8,b>+85b+
a(b)=Inw+ % TS T 9bSlb21 23 (26)
with
S;=—-6lnw+3lnc, (272)
S,=—3lnc, (27b)

Table 11

Residual entropies o(b) and '(b) of the Tsing antiferromag-
net situated on the 3D CB fractals and on the corresponding
finite size generators, respectively. Values o(b) are calculated
using formula (23), while values &'(b) are found using (13)

and (22).

b a(h) o'(b)

3 0.06743643 0.05555231
4 0.08932202
5 0.12527753 0.1181452%
6 0.14238375
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S,=4m2- 3k’ k-3)Inc— (K~ 3K+ 3k + 15) Inw + In £24(k)

(27¢)

S,=—12In2+%mc+12nw, (27d)
§,=12n2- 3Bk ~3k—4)Inc— 3k’ =3k +3k - 3)inw

+31In £,(k), (27¢)

S,=—4In2+6k(k—1)Inc+4(k’ -3k +3k)Inw —41n £2,(k). (27f)

The obtained approximate tormula for the residual entropy (26) is similar to
formula (16) obtained in section 2 for the 2D CB fractal family, as well as to
the corresponding formulas abtained [1] for the 2D and 3D SG fractal families.
Similarly to the 3D SG fractal case [1], the exact values £2,(b) (3= b =<06) that
we have calculated do not seem to be sufficient for a very accurate evaluation
of the constants §,, 5,. 5., 55, 5,. 5;. ¢ and w. Still, the extrapolation of data
given in table 11, according to (24), (26) and (27), provides values a(b), shown
in fig. 3, that, in the limit & — =, approach the value o(=)=0.36. This value

0.2

0.1

0.0

0 Y6 Vs Yy '3 ¥

Fig. 3. Residual entropies o(b) and o’(b) of the 3D CB fractals and their generators. represented
by circles and triangles. respectively. The notation is the same as in fg. 2. The cxact values are
depicted for 3= b =26, and the extrapolated values are shown for 7 = b = 1000. The shaded region
corresponds 1o the upper and lower hounds, o, =0.3403 and o, = (0.2971, predicted [5] for the
Euclidean lattices with the coordination number z = 6.
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(similarty to the 2D CB fractal family case presented in section 2) lies above
the region predicted [S] for the Euclidean lattices with coordination number
z =6. Besides, the extrapolated values o(b) surpass the lower Euclidean
boundary o, = 0.2971 [5] for b =28, which corresponds to fractals with more
than 819 of bulk spins. Although the accuracy of the above approximations is
not very high (to improve the accuracy one would need a new generation of
computers), it provides sufficiently firm ground to infer that the constants
which appear in (26) are finite. Consequently, we can conclude that the
crossover formula of type (1) is again valid.

4. Summary

At the beginning of section 2 we have surveyed some general properties of
CB fractals embedded in d-dimensional Euclidean space. We start this section
by deriving formulas for the residual entropy in the maximum critical field for
arbitrary d. It will turn out that formulas derived in previous sections, for the
2D and 3D CB fractal families, represent special cases of the new general
results.

In the maximum critical field H_=2dJ, the configuration with all spins
parallel to the field has the same energy (the ground state energy) as all other
configurations with an arbitrary number of bulk spins antiparallel to the field,
provided that they are not nearest neighbors to each other. Applying argu-
ments similar to those used in the 2D CB fractal family case in section 2, it can
be shown that the residual entropy of{b) is again given by (11), while the
expressions far B, C, and N are different. For the number of bulk spins in the
generator here we find

B=(b-1), (28)
for the number of nth stage structures that comprise the {n + 1)th stage
structure (this is also the number of elementary hypercubes in the generator)
we obtain

C={4b+1)"+ 4 -1)", (29)
and finally for the total number of generatbr spins we find

No=(b+1)*. (30)

Inserting (28), (29) and (30} into (11), we obtain the following general formula
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for the residual entropy of CB fractals:

b )= 24 -1 M2+ [(b+ 1) + (b — 1) =297In 2,(b)
otb, d)= B+ DY+ + -1 =272 -1

(31)

in terms of the Euclidean dimension & of the space in which the fractal is
embedded, fractal generator side length b, and the generator ground state
degeneracy £2. Inserting d =2 and d = 3 into (31), expressions (12) and (23)
are retrieved, respectively.

Therefore, we have captured formulas for residual entropies for the 2D and
3D CB [ractals within the single formula (31) valid for arbitrary ¢. Formula
(31) itself (without additional explicit calculations of §2;) does not provide
sufficient information to make gencral conclusions about the crossover be-
havior of the residual entropy of fractals embedded in higher dimensional
Euclidean spaces. However, the specific results of sections 2 and 3 make us
conclude that in the 2D and 3D CB fractal family case the behavior of the
residual entropy at the fractal to Euclidean crossover is governed by formula
(1). It should be emphasized that the validity of (1) has been checked by
calculating cxact data for the finite sequences of fractals (b =17 for d =2, and
b =6 for d = 3), and by analyzing data via the recently introduced degeneracy
factor method (DFM) [7]. Since it was shown [1] that formula (1) is also valid
for the residual entropy crossover behavior of 2D and 3D Sierpinski gasket
fractal families, we can conclude that (1) is to some extent universal. In other
words, we may expect that (1) will stay valid for other families of fractals which
furnish the crossover to Euclidean lattices.
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