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We study the residual entropies of the antiferromagnetic Ising systems, in the maximum 
critical field, situated on checkerboard (CB) type of fractals embedded in d-dimensional 
Euclidean space. For a given d, the CB fractals constitute a family, whose each member is 
labelled by b, where b is an odd integer (3 <~ b < ~). Each family itself furnishes a crossover 
to the corresponding d-dimensional hypercubic lattice. By calculating explicitly residual 
entropies ~r(b) for finite b, and by using a specific method of extrapolating the obtained 
results, we were able to establish the crossover behavior of tr(b). It turns out that the 
established crossover is of the same type as the one found in the case of fractal families of the 
Sierpinski gasket type. 

I .  Introduct ion 

In  the preceding  paper  [1] we have s tudied the residual  en t ropies  of the Ising 

an t i fe r romagnet ic  systems, in the m a x i m u m  critical field, s i tuated on  Sierpinski  

gasket (SG)  type of fractals that  are e m b e d d e d  in the d -d imens iona l  Euc l idean  

space. For  a given d, the SG fractals comprise  a family [2], so that  each 

m e m b e r  is label led by an in teger  b (2 ~< b < ~) and  the cor responding  fractal 
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dimensions df tend to d when b--> 2. Thus, when d = 2, for instance, the SG 
fractal family furnishes a crossover to the Euclidean triangular lattice. In this 

case we have found [1] the following crossover formula for the residual 
entropy: 

P 
o'(b) = ~E.~,,., ..... b ' b - - ~  ( l )  

where P is a constant. It is interesting to observe that the correction term in (1) 

is not logarithmic and thus it is neither of the type that appears  for the fractal 
dimension dr, nor of the type that is pert inent to the spectral dimension d~ 
[2-4]. Besides, the crossover formula (1) was also found to be valid [1] in the 

case of SG fractals embedded  in the three-dimensional  (3D) Euclidean space, 
and thus one may conjecture that it could be valid for residual entropies in 
general. Indeed,  in this paper  we present a study of residual entropies for 
checkerboard (CB) type of fractals, and confirm that formula (1) is again valid 
both in the d = 2 and d = 3 cases. 

This paper  is organized as follows. In section 2 we survey general propert ies 
of the CB type of fractals, and elaborate  the case of the CB fractal family 

embedded  in the two-dimensional (2D) Euclidean space. The 3D case is 
e laborated in section 3. Finally, in section 4 we derive formulas valid in the 
case of arbitrary d, and conclude with a general discussion concerning the 
residual entropy behavior  at the fractal to Euclidean crossover. 

2. Residual entropies of the 2D checkerboard type of fractals 

The CB fractals are, similarly to the SG fractals, of deterministic nature. All 
members  of a checkerboard  fractal family, embedded  in a d-dimensional 
Euclidean space, may be obtained from an infinite set of d-dimensional 
generators  G(b ,  d) ,  where b is an odd integer (b = 2k + 1, k = 1,2 . . . . .  ~). 
Each generator  G(b ,  d) is a d-dimensional  hypercube of side length b, 

composed of b layers of d-dimensional  hypercubes of unit side length, so that 
within each layer and along each direction of alignment of the e lementary 
hypercubes every other  of them is removed  (see fig. 1). A CB fractal lattice is 
grown in stages. The (n + 1)th stage of a fractal lattice is obtained by enlarging 
the generator  by b" and substituting each of the physically present e lementary  
hypercubes by the nth stage structure. The complete  fractal lattice is obtained 
in the limit n--~ oo. In fig. 1 we depict the first few steps of the above growing 
process in the d = 2 case, for b = 3 and b = 5. In the general case, it can be 
shown that the fractal dimension of a CB fractal lattice, for given d and b, has 
the form 
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Fig. 1. (a) The first three steps of construction (n = 1,2, 3) of the 2D CB fractal lattice with b = 3. 
(b) The first two steps of construction (n = 1,2) of the 2D CB fractal with b = 5. (c) The generators 
(n = 1) of the 3D CB fractals with b = 3 and b = 5. 

ln([½(b + 1)] a + [ ½ ( b -  1)] a} 
de = In b (2) 

Hence one can notice that, in analogy with the SG case [2], the fractal 
dimension of the CB fractals approaches, for large b, the Euclidean value d 
with a logarithmic correction of the form (1 - d) In 2/ln b. 

In what follows we study the antiferromagnetic Ising systems, with the 
nearest-neighbor (nn) interaction J, in the maximum critical field H c. The v a lu e  
of H c is determined by the maximum coordination number z of the lattice the 
Ising system is situated on [5]. In the case of the CB fractal lattices, the relation 
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z = 2d holds (for each b) and thereby it follows [5] that H c = 2 d l J  I. Here it 
should be emphasized that, contrary to the SG case, within one CB fractal 
family (for a given d) the maximum critical field Hc does not depend on b. 
Consequently, in investigating the residual entropies o-(b) one does not have to 
study separate cases defined by some particular values of b. This will be first 
demonstrated in the case of the CB fractal family in the d = 2 space. 

In the maximum critical field H~ = 4J, the configuration with all spins 
oriented up has the same energy (the ground state energy) as all other 
configurations with an arbitrary number of spins oriented down, provided that 
each of the latter is surrounded by 4 upward oriented neighbors. Hereafter,  we 
will use the term bulk spins for those spins which have the maximum number 
of nearest neighbors. When the (n + 1)th stage fractal structure is formed out 
of the nth stage structures, some of the apex spins of the latter become bulk 
spins. However, they may take arbitrary orientations since they are not 
neighbors to the other bulk spins. Therefore, the recursion relation between 
the nth stage ground state degeneracy/~,, and the (n + 1)th stage degeneracy 
~On+~, is given by 

a , , + ,  = , (3 )  

where 

B = (b - 1) 2 (4) 

is the number of bulk spins in the generator, and 

C = [½(b + 1)] 2 + [~(b - 1)] 2 (5 )  

is the number of nth stage structures that comprise the (n + 1)th stage structure 
(this is also the number of elementary squares in the generator). By iterative 
application of (3), starting from the generator ground state degeneracy g~G, we 
obtain the expression for the nth stage ground state degeneracy 

(28/(c- l)g2c,)C "~ 
no = C -  1 (6) 

The number of spins in the nth stage of construction of the fractal is obtained 
using the recursion relation 

N,+ I = C N  n - B ,  (7) 
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and thereby it is found that 

C " - I [ ( C -  1)N C - B l + B 
N . =  C - 1  (8) 

where 

N G = (b + 1) 2 (9) 

is the number of spins in the generator.  
The residual entropy of an infinite fractal lattice is given by 

In ~ 
or = lim - -  (10) 

so that by inserting (6) and (8) into (10) we find 

B In 2 + (C - 1) In OG(b ) 
o-(b) = (c - 1)N G - B (11) 

Finally, inserting (4), (5) and (9) into (11) we obtain 

4(b - 1) 2 In 2 + [(b + 1) 2 + (b - 1) 2 - 41 In g2G(b ) 
o'(b) = (b + 1)2[(b + 1) 2 + (b - 1) 2 - 4] - 4(b - 1) 2 (12) 

Thus, the residual entropy of 2D CB fractals depends explicitly on the 
generator side length b and the generator ground state degeneracy g2~. In 
order  to evaluate the explicit values of or from (12) it remains to find the 
generator ground state degeneracies O G. Keeping in mind that we want to 
study the crossover behavior of o-(b), it is preferable to learn O~ for as large 
generators as possible. To accomplish this task we have used a special 
numerical technique, similar to the one used in the case of Sierpinski gasket 
type of fractals [1, 6], and have calculated OG(b ) for b ~< 17. In table I we 
present the calculated values of o-(b), as well as the values of the residual 
entropies cr'(b) of the corresponding generators. The values o-'(b) were 
calculated according to the formula 

In /2~(b)  
o"(b) = NG (13) 

With the goal to establish the limiting behavior of or(b) when b---~ 0% we 
apply the degeneracy factor method (DFM) introduced in ref. [7]. The essence 
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Table 1 
Residual entropies ~r(b) and ¢r'(b) of the Ising antiferromag- 
net in the maximum critical field, situated on the 2D checker- 
board fractal lattices and on the corresponding finite size 
generators, respectively. Values ~r(b) are calculated using 
(12), whereas values ~r'(b) are obtained using (13) and (9). 

b *r(b) tr'(b) 

3 (l.17593716 0.12161938 
4 0.16572539 
5 0.23198690 0.19772267 
6 0.22292210 
7 (I.26524471 (I.24278240 
8 0.25889169 
9 0.28786100 0.27216487 

1() 0.28329028 
I 1 0.30428457 0.29274022 
12 0.30086461 
13 0.31675443 0.30792147 
14 0.31410711 
15 0.32654310 0.31957256 
16 0.32443614 
17 0.33442996 0.32879168 

of  t he  D F M  is t h e  sca l ing  r e l a t i o n  

g2c;(b)~_c2w~h 1) 2 th 2)~/2c;(b_ 1 ) ,  b ~ k ,  (14)  

w h e r e  c is a c o n s t a n t  ( c h a r a c t e r i s t i c  fo r  t h e  s q u a r e  la t t i ce ) ,  a n d  o~ is t he  

d e g e n e r a c y  f a c t o r  t h a t  a p p e a r s  on  a d d i n g  a n e w  spin  to  a f r ac ta l  g e n e r a t o r .  T h e  

r e l a t i o n  (14)  is a s s u m e d  to  be  va l id ,  fo r  a p r e s e t  a c c u r a c y ,  b e y o n d  a c e r t a i n  

v a l u e  b = k. By  s u c c e s s i v e  a p p l i c a t i o n  o f  (14)  we  find 

(15)  

and  i n s e r t i n g  (15)  i n to  (12)  we  o b t a i n  

$2 b2 + S l b  + S o 
o-(b) ~ In a~ + b3 + 3 b 2  + b + 3  ' (16)  

wi th  

Sz = 2 1 n  c - 4 1 n  ~o , 

S 1 = 2 I n  2 -  2 (k  - 1) In c -  (k  2 - 2k  + 3)  In o~ + I n  ~2c,(k ) , 

S 0 = - 2 1 n  2 -  2k  In c -  (k  2 - 2k  + 3) In w + In ~2~;(k).  

(17a) 

(17b)  

(17c) 
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To evaluate the numerical values of these coefficients we assume that (14) is 

valid beyond k = 16, and use the calculated values of OG(b) (b ~< 17) to obtain 

In w = 0.4074945, (18a) 

In c = 0.0670637. (18b) 

For the coefficients in (16) we now find 

S 2 = -1 .49585 ,  (19a) 

S 1 = 0.635168, (19b) 

S o = -2 .27155 .  (19c) 

Since the constants (19) are finite, it follows that the leading term in (16) is 
of the order 1 / b  for large b, and we can now claim that the asymptotic law (1) 
is true in the case of the 2D CB fractals as well. Also, comparing our limiting 
value of tr(b) for b--+ ~, given by (18a), with the value of the residual entropy 
found in ref. [7] for the infinite square lattice O'Euclidea n = 0.40749510126068, we 
see that knowledge of exact data up to b = 17 provides a six digit accuracy of 
the approximate formulas for larger b. In fig. 2 we depict values of o-(b) for 
b ~< 1000, calculated using (16), together with the residual entropies ~r'(b) of 
the corresponding fractal generators,  calculated using (13) and (15). Thus we 
can see that the limiting value of o-(b), when b--+ ~, lies slightly above the 
region predicted [5] for the Euclidean lattices with coordination number z = 4. 
On the other hand, the extrapolated values or(b) surpass the lower Euclidean 
boundary o- e = 0.3584 [5] for b i> 26, corresponding to fractals containing more 
than 86% of the bulk spins, which is the same percentage of bulk spins at 
which the residual entropies of 2D Sierpinski gasket type of fractals surpass the 
corresponding lower Euclidean bound (see ref. [1]). 

3. Residual entropies of the 3D checkerboard type of fractals 

In the maximum critical field H c = 6J, the configuration with all spins 
oriented up has the same energy (the ground state energy) as all other  
configurations with an arbitrary number of bulk spins oriented down, provided 
that they are not nearest neighbors to each other.  Argumentat ion similar to 
that used in the 2D case (see section 2) shows that now eq. (11) is also valid, 
except for the fact that B, C and N c are here different. The number of bulk 
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Fig. 2. Residual entropies ~r(b) and O-'(b) of the 2D CB fractals and their generators, represented 
by circles and triangles, respectively. Exact values for 3 ~< b ~< 17 are depicted by full circles and 
triangles, while the extrapolated values for 18 ~< b <~ 1000 are depicted by the corresponding open 
geometrical shapes. The extrapolated values of o-(b) are obtained using eqs. (16)-(19), whereas 
the extrapolated values O-'(b) are found using (13) and (14). The symbol © represents the value 
found [7] for the residual entropy of the infinite square lattice O'Euclidea n = 0.40749510126068, and 
the nearby shaded region corresponds to the upper and lower bounds, o- u - 0.4024 and O-, = 0.3584, 
predicted {5] for the Euclidean lattices with the coordination number z = 4. The full lines serve as 
guides to the eye. 

sp ins  in t h e  g e n e r a t o r  is h e r e  g i v e n  by  

B = (b - 1 / ,  (20)  

w h e r e a s  t h e  n u m b e r  o f  n t h  s t age  s t r u c t u r e s  t h a t  c o m p r i s e  t he  (n + 1) th  s t age  

s t r u c t u r e  ( th i s  is a l so  t he  n u m b e r  o f  e l e m e n t a r y  c u b e s  in t h e  g e n e r a t o r )  is 

C = [½(b + 1)] 3 + [ l ( b  - 1)] 3 , (21)  

a n d  f inal ly  t he  to t a l  n u m b e r  o f  sp ins  in t he  g e n e r a t o r  is 

N G = (b  + 1) 3 . (22)  

I n s e r t i n g  (20) ,  (21)  and  (22)  i n to  (11)  w e  f ind 

8(b  - 1) 3 l n 2  + [ ( b  + 1 )  3 + ( b -  1 )  3 -  8 ]  In  O G ( b )  

~r(b) = (b + 1)3[(b + 1) 3 + (b - 1) 3 - 8] - 8(b  - 1) 3 (23)  
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Again, the residual entropy o-(b) depends explicitly on the generator side 
length b and on the generator ground state degeneracy O G. To determine g26, 
we have used a numerical technique similar to that used in the 2D case, and 
thus we have calculated g~G exactly up to b ~< 6, In table II we present the 
values of ~r(b) calculated using (23), as well as the values of the residual 
entropies tr '(b) of the corresponding generators, calculated according to (13) 
and (22). 

To study the crossover behavior of tr(b) when b--+ m, we apply the DFM 
method [7]. In this case it provides the following recursion relation for the 
ground state degeneracies: 

OG(b ) ~ c3(b-l)to(b-1)3-(b-2)3~'~G(b -- 1) ,  b i> k ,  (24) 

where c is a constant (characteristic for the simple cubic lattice), and to is the 
degeneracy factor that appears on adding a new spin to a fractal generator.  The 
relation (24) is assumed to be valid, for a preset accuracy, beyond a certain 
value b = k. By successive application of (24) we find 

OG(b ) ~ C(3/2)[b(b-1)-k(k-1)]tob3-3b2+3b-k3+3k2-3k~'~G(k), (25) 

and inserting this expression into (23) we obtain 

1 Ss b5 + $4 b4 -t- $3 b3 -1- Sz b2 + S l b  -k S O 
tr(b) ~ In to + - 

b b s -I- 3b 4 -t- 6b 3 + 2b 2 + 9b - 21 
(26) 

with 

S 5 = - 6  In to + 3 In c ,  (27a) 

54 = -- ~ In c ,  (27b) 

Table II 
Residual entropies or(b) and ~ ' (b)  of the Ising antiferromag- 
net situated on the 3D CB ffactals and on the corresponding 
finite size generators, respectively. Values tr(b) are calculated 
using formula (23), while values tr '(b) are found using (13) 
and (22). 

b ~(b) ~ ' (b)  

3 0.06743643 0.05555231 
4 0.08932202 
5 0.12527753 0.11814529 
6 0.14238375 
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S 3 = 4 In 2 - 3(k2 - k - 3) In c - (k 3 - 3k  2 + 3k  + 15) In ~o + In 12c~(k ) , 

(27c) 

S 2 = - 1 2 I n  2 + ~ In c +  121n ~o, (27d)  

S, = 12 In 2 - 3 (3k  2 - 3k  - 4) In c - 3(k 3 - 3k  2 + 3k - 3) In w 

+ 3 In 12~(k) ,  (27e) 

S , , = - 4 1 n 2 + 6 k ( k - 1 ) l n c + 4 ( k 3 - 3 k 2 + 3 k ) l n o ~ - 4 1 n Y 2 , ; ( k ) .  (27f) 

The  o b t a i n e d  a p p r o x i m a t e  f o r m u l a  for  the  res idua l  e n t r o p y  (26) is s imi lar  to 

f o rmu la  (16) o b t a i n e d  in sec t ion  2 for  the  2D CB fracta l  fami ly ,  as well  as to 

the  c o r r e s p o n d i n g  fo rmulas  o b t a i n e d  [1] for  the  2D and 3D S G  fracta l  famil ies .  

S imi la r ly  to the 3D S G  fracta l  case [1], the  exact  va lues  S2~;(b) (3 ~< b ~< 6) tha t  

we have  ca lcu la t ed  do  not  s eem to be sufficient  for  a very  accura te  eva lua t ion  

of  the  cons tan t s  So, S~, S 2, S 3, S 4, S s, c and  w. Still ,  the  e x t r a p o l a t i o n  of  da t a  

given in t ab le  II ,  acco rd ing  to (24),  (26) and  (27) ,  p rov ides  va lues  o-(b), shown 

in fig. 3, that ,  in the  l imit  b - - ~ ,  a p p r o a c h  the  va lue  (r(~) ~-0.36.  This  va lue  

T ] ] I 

0.3 

02 

0.1 ] 

0 . 0  I I 1 L 

o 1/6 I/5 g4 I/a Vu 
Fig. 3. Residual entropies  o-(b) and o- '(b) of  the 3D CB fractals and their genera tors ,  represented  
by circles and triangles, respectively. The  nota t ion is the same as in fig. 2. The exact values are 
depicted for 3 <~ b ~< 6, and the ext rapola ted  values are shown for 7 ~< b ~< 1000. The shaded region 
cor responds  to the uppe r  and lower bounds ,  ~r = 0.3403 and (r, 0.2971, predicted [5] for the 
Euclidean lattices with the coordinat ion n u m b e r  z - 6 .  
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(similarly to the 2D CB fractal family case presented in section 2) lies above 
the region predicted [5] for the Euclidean lattices with coordination number 
z = 6. Besides, the extrapolated values tr(b) surpass the lower Euclidean 
boundary o- e = 0.2971 [5] for b ~> 28, which corresponds to fractals with more 
than 81% of bulk spins. Although the accuracy of the above approximations is 
not very high (to improve the accuracy one would need a new generation of 
computers), it provides sufficiently firm ground to infer that the constants 
which appear in (26) are finite. Consequently, we can conclude that the 
crossover formula of type (1) is again valid. 

4. Summary 

At the beginning of section 2 we have surveyed some general properties of 
CB fractals embedded in d-dimensional Euclidean space. We start this section 
by deriving formulas for the residual entropy in the maximum critical field for 
arbitrary d. It will turn out that formulas derived in previous sections, for the 
2D and 3D CB fractal families, represent special cases of the new general 
results. 

In the maximum critical field H e = 2d J, the configuration with all spins 
parallel to the field has the same energy (the ground state energy) as all other 
configurations with an arbitrary number of bulk spins antiparallel to the field, 
provided that they are not nearest neighbors to each other. Applying argu- 
ments similar to those used in the 2D CB fractal family case in section 2, it can 
be shown that the residual entropy tr(b) is again given by (11), while the 
expressions for B, C, and N~ are different. For the number of bulk spins in the 
generator here we find 

B = (b - 1) d , (28) 

for the number of nth stage structures that comprise the (n + 1)th stage 
structure (this is also the number of elementary hypercubes in the generator) 
we obtain 

C =  [ l (b  + 1)] a + [ l (b  - 1)] d , (29) 

and finally for the total number of generator spins we find 

N ~ =  (b + 1) a . (30) 

Inserting (28), (29) and (30) into (11), we obtain the following general formula 



42 T. Stogi( et al. / Residual entropies o f  antiferromagnets on fractals 11 

for the residual ent ropy of CB fractals: 

2d(b - 1) d In 2 + [(b + 1) '~ + (b - 1) d - 2 d] In/2G(b ) 

o-(b, d) = (b + 1)a[(b + 1) a + (b - 1) d - 2 a] - 2d(b - 1) d ' (31) 

in terms of the Euclidean dimension d of  the space in which the fractal is 
embedded,  fractal generator  side length b, and the generator  ground state 

degeneracy ,(2 G. Inserting d = 2 and d = 3 into (31), expressions (12) and (23) 

are retrieved, respectively. 

Therefore ,  we have captured formulas for residual entropies for the 2D and 
3D CB fractals within the single formula (31) valid for arbitrary d. Formula  

(31) itself (without additional explicit calculations of S2G) does not provide 
sufficient information to make  general conclusions about  the crossover be- 
havior of the residual entropy of fractals embedded  in higher dimensional 
Euclidean spaces. However ,  the specific results of sections 2 and 3 make  us 

conclude that in the 2D and 3D CB fractal family case the behavior  of the 
residual entropy at the fractal to Euclidean crossover is governed by formula 
(1). It should be emphasized that the validity of (1) has been checked by 
calculating exact data for the finite sequences of fractals (b ~< 17 for d = 2, and 
b ~< 6 for d = 3), and by analyzing data via the recently introduced degeneracy 

factor method (DFM)  [7]. Since it was shown [1] that formula (1) is also valid 
for the residual ent ropy crossover behavior  of 2D and 3D Sierpinski gasket 
fractal families, we can conclude that (1) is to some extent universal. In other  
words, we may expect that (1) will stay valid for other  families of fractals which 
furnish the crossover to Euclidean lattices. 

Acknowledgements 

This work has been supported in part  by the Yugos l av -USA Joint Scientific 

Board under  the project  JF900 (NSF),  by the Yugoslav Federal Science Funds 
under the project  P-26, and by the Serbian Science Foundation under  the 
project  1.27. 

References 

[1] T. Stogi6, B. Stogi6, S. Milo~evi6 and H.E. Stanley, Physica A 170 (1990) 14, paper I, this 
volume. 

[2] R. Hilfer and A. Blumen, J. Phys. A 17 (1984) L537. 
[3] S. Milo~evi6, D. Stassinopoulos and H.E. Stanley, J. Phys. A 21 (1988) 1477. 
[4] D. Dhar, J. Phys. A 21 (1988) 2261. 
[5] D. Hajdukovi6 and S. Milogevi6, J. Phys. A 15 (1982) 3561. 
[6] T. Sto~i6, B. Stogi6, S. Milogevi6 and H.E. Stanley, Phys. Rev. A 37 (1988) 1747. 
[7] S. Milo~evi6, B. Sto~i~ and T. Sto~i6, Physica A 157 (1989) 899. 


