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Understanding Second Critical Points in Real Systems
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We consider the novel properties of the Stell-Hemmer core-softened potentials.
First we explore how the theoretically predicted second critical point for these
potentials is related to the occurrence of the experimentally observed solid—solid
isostructural critical point. We then discuss how this class of potentials can
generate anomalies analogous to those found experimentally in liquid water.
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Simple liquids are often modeled by pairwise potentials possessing a
repulsive core, mimicking the impenetrability of atoms or molecules, and
an attractive part, responsible for the gas-liquid transition. For a fluid in
which the interaction potential ¢(r) has a hard core plus an attractive part,
a “softened” hard core (Fig. 1) can produce an additional line of phase
transitions.") A general argument by Stell and Hemmer based on the sym-
metry between occupied and unoccupied cells in lattice gas models of fluids
predicts that the additional line of phase transitions can end at a novel criti-
cal point."*? An explicit example of the occurrence of a second line of first
order transitions is given in ref. 1 for a one-dimensional continuum model
of a fluid with long-range attraction;® this first order line can end in a
critical point depending on the details of the core-softened potential. The
general result is that if the repulsive part (core) of the interaction potential
has a concave part (which makes it “core-softened”), then it is likely that
such a novel transition occurs.® Stell and Hemmer") relate the occurrence
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Fig. 1. Example of core-softened potential (the soft core is a region where the potential is
concave).

of a high-density, low-temperature critical point to the known isostructural
solid-solid critical point observed in some experiments.®’

To understand the occurrence of a second transition, consider the
Gibbs potential at zero temperature. The shape of the energy U as a fuction
of the volume V should have the same “core-softened” shape (i.e., possesses
a region where it is concave) as the inter-particle potential. The stable
phase is then determined by the Gibbs potential

G(P,T)=min {U+PV—-TS} (1)

where S is the entropy. The right hand side of (1) is shown in Fig. 2 as a
function of V, for T=0 and for different values of pressure P. At low P,
the stable phase of the system has a specific volume at which the average
inter-particle distance is near to the minimum of the inter-particle potential.
The concavity in U assures that, on increasing P, an additional minimum
appears in U+ PV —TS. For high enough P, this minimum will become
the lowest one and the stable phase of the system will be the one for which
the mean inter-particle distance is “inside” the softened part of the core.

For one-dimensional models, a first-order transition at 7'=0 between
a dense and an open phase occurs at a pressure that can be determined
exactly with the graphical construction of Fig. 2.(57
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Fig. 2. The shape of U+ PV — TS at T=0 for various P. Note the evolution of the minima
with pressures: at high enough pressure the absolute minimum is at higher densities than the
absolute minimum at low pressures, signaling a first order transition. The transition occurs at
the pressure P* equal to the absolute value of the slope of the long-dashed line, representing
the tangent to U+ PV — TS for T=0, P=0. By geometrical construction, U+ PV — TS has
a horizontal tangent between two minima of equal depth at 7=0, P= P*.

For short-range interactions, the entropy gives a huge contribution in
one dimension, making any phase transition disappear for 7'> 0. Hence,
the contribution of the entropic term 7S makes the double well structure
of Fig. 2 disappear when 7'> 0. This may not be true in higher dimensions,
and so a line of first order transitions (eventually ending in a critical point)
could be present for 7> 0.

Stronger evidence for the occurrence of a high-density, low-tempera-
ture critical point is given in ref. 8 upon developing and refining analytic
methods to investigate the high-density region of the phase diagram of a
fluid. The methods used are in principle for a dense fluid, and hence would
predict a liquid-liquid transition. However, the second critical point can be
related to the isostructural critical point occurring in the solid phase of
materials such as Cs, Ce and of mixtures such as Sm-S and Ce-Th.®’ For
all these materials the shape of the effective pair potential is “core-
softened.” ')



100 Scala et al.

Fig. 3. Schematic form of the potential as obtained from the inversion of scattering data or
from first principle calculations. See, e.g., refs. [12] and [16].

Many liquid metals (Ga and Sn are prominent examples) have static
structure factors ¥ (k) that show weak subsidiary maxima, or asymmetries,
in the main peak of & (k) that suggest the presence of a “structured” core
that is not infinitely steep. First-principle calculation of the effective ion—ion
potential for Ga leads to a core-softened potential.!") Mone Carlo simula-
tions with this potential reproduce for Ga the observed anomalies in (k).
In this case, the core-softening is not related to the oscillations seen in the
tails of effective ion—ion potentials for liquid metals, but arises from the
fluctuations in polarizability of the nuclues; hence, core-softening can be
expected for highly polarizable ions. Inversion of the experimental structure
factors for In, Zn, Al, Ge, Sn, Cs, Rb, Tl, and Pb, using random phase
approximation or the Ornstein—Zernike equation with a closure, also
results in effective core-softened potentials (Fig. 3).\'?

In addition to the second critical point, core-softened potentials can
produce a density anomaly, i.e., the material can expand upon cooling. The
occurrence of crossing isotherms was observed in the model.'® It was
noted that, although isotherms crossing is not a common feature in fluids,
it is to be found whenever (0V/0T ), changes sign, as it does in water at
approximately 4°C and atmospheric pressure. Using thermodynamic
arguments, Debenedetti ez al. also noted that a “softened core” can cause
the thermal expansion coefficient a,=(1/V)(8V/0T)p to be negative.'¥

One-dimensional fluids'® with core-softened potentials have been
studied in relation to the molecular origin of the negative thermal expansion
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in two fluids, water and tellurium,® which have an effective core-softened
potential.'* ')

Conversely, various lines of reasoning led to the introduction of phe-
nomenological potentials for water that are core-softened.!'”’ Although the
hydrogen bond is highly directional so that an anisotropic potential is
needed in order to reproduce quantitatively the behavior of water, a first
approximation consists in assigning a lower energy to a state in which par-
ticles are further away from the hard-core, in order to induce a solid phase
with a specific volume higher than the liquid phase, as is the case of water.
The strong entropy reduction due to orientational bonding of water
molecules can be mimicked having a narrow energy well corresponding to
the inter-molecular distances of the “expanded” solid.

The inversion of the oxygen—oxygen radial distribution function g, (r)
for water gives an effective potential ¢ (Fig. 3) that is core-softened.'® Thus
core-softened potentials can be considered as zeroth-order models for water.

It is natural to expect that a core-softened potential can induce a den-
sity anomaly. In a liquid, the typical inter-particle distance is distributed
inside the attractive part of the potential. As temperature decreases, the
distribution peaks around the minimum of the potential, causing the
system to expand (Fig. 4).

o A

Fig. 4. On cooling from high temperatures, the system first condenses in a liquid where the
typical inter-particle distance is distributed inside the attractive part of the potential. Further
cooling causes the distribution to be more peaked around the minimum of the potential,
making the liquid expand (HD = high density, LD = low density).
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In addition to the density anomaly, further studies”’ of core-softened
one-dimensional fluids have discovered anomalies in the isothermal com-
pressibility and specific heat response functions in water. These anomalies
are related to the existence of a critical point at 7=0 and high density,
similar to what is conjectured to occur in real water.'®

The region where the liquid has a density anomaly must have an
upper boundary in the P-T plane; this boundary defines the line of density
maxima (7). The occurrence of this boundary can be understood by first
recalling that"®

ap o {OVISY oc (PL(SV )2+ {SVIED) (2)

When o, is negative, the term {JV dE ) must also be negative; the fluctua-
tions that give a negative sign to {6V JE) correspond to the regions of
the fluid where particles penetrate the softened part of the core. However,
the ap anomaly must vanish at high enough pressures where the positive
P{6V?)» term dominates.

Core-softened potentials with no attractive part and no liquid—gas
transition were studied in 2 and 3 dimensions by Young and Alder, giving
a P-T phase diagram with a solid—fluid coexistence line similar to Ce or
Cs.?” The fluid-solid coexistence line has a negatively sloped region, as in
water. The phase diagram for a core-softened potential in 2d with no
attractive part has been studied by Jagla,®® who explicitly finds a density
anomaly in the fluid region. These results indicate that the softened part of
the core can be solely responsible for the density anomaly and suggest that
it can be related to the existence of negatively-sloped melting lines.

The slope of a melting line is related through the Clausius—Clapeyron
equation dP/dT = AS/AV to the difference 4S in the entropies and AV in
the volumes between the fluid and the solid. On the other hand, the sign
of the coefficient of thermal expansion ap oc (S V) depends of the cross-
correlation between entropy and volume fluctuations. Near a melting line,
one expects the relevant fluctuations in a liquid to be “solid-like” as they
trigger the nucleation process leading to the first order liquid—-solid transi-
tion (Fig. 5). This means that the sign of ap oc <V S ) will be likely the
same as dP/dT = AS/AV.

Extensive studies of core-softened potentials in two dimensions via
molecular dynamics simulations'” reveal a phase diagram (Fig. 6) similar
to that of water (Fig. 7).?® Near the negatively-sloped part of the liquid—
solid freezing line (A4S/4V <0), the liquid exhibits a density anomaly
(ap oc <3S VY <0). In agreement with the thermodynamic considerations
of ref. 23, the model also reproduces the existence of a region where the
isothermal compressibility grows anomalously upon cooling in the same
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Fig. 5. Snapshot of a low density crystal (left panel) and of a liquid (right panel), both near
the freezing line at low pressures, for the two-dimensional core-softened model of ref. [7].
Corresponding to the fact that the freezing line is negatively sloped, we note the appearance
in the liquid of local arrangements of the particles (black “fences”) resembling the low density
crystal.

way as in water. Moreover, the model succeeds in reproducing anomalies
not only in the statics, but also in the dynamics: there is a region in which
the diffusion constant anomalously increases with pressure!”’ as in water.
The locus of points where the diffusivity has a maximum upon varying
pressure defines the pressure of maximum diffusivity line (P ), which has
been observed in water, in core-softened models, and in SPC-E simulated
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Fig. 6. Sketch of the phase diagram as found in ref. [7]. On the left of the K, line, the
isothermal compressibility increases upon cooling. On the left of the T4 line density
decreases upon cooling. Below the Py, line, diffusivity increases upon pressure. Note that the
density anomaly is in the region of the liquid where the melting line is negatively sloped.
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Fig. 7. Sketch of the phase diagram of water. The portions of the K ;n, Tmq and Pyp that
are beyond the melting line corresponds to experiments in the supercooled region of water.
Notice that the presence of a density anomaly in the region of the negatively sloped melting
line can occur in the metastable phase of the liquid. Data are obtained from ref. [22].

water; "% 2%2% in all these cases the Py, line occurs at higher pressures
than the T4 line. The joint occurrence of density and diffusivity anomalies
is also observed in two-dimensional simulations of the Gaussian-core
model®® that, although not possessing a hard core, has a concave region
in the repulsive part of the potential.

Theories relating diffusivity to entropic contributions?”’ would predict
the occurrence of an anomaly in the diffusion (0D/0P),> 0 to be related to
an anomaly in the entropy (0S/0P),;>0. On the other hand, whenever
there is a density anomaly, an entropy anomaly occurs, as the entropy
reaches a maximum along isotherms on the T, line. This is a consequence
of the Maxwell relation (0S/0P),= —(0V/0T)p.

In conclusion, core-softened potentials are simple realistic potentials
that can model complex fluid behavior. In addition to the well-known
liquid—gas transition, an analysis of the shape of free energies at low tem-
peratures reveals the presence of a second transition, which can either be
interpreted as a solid-solid or a liquid-liquid transition. Simulations
indicate that if a liquid-liquid critical point exists it is likely to be in the
region of the phase diagram where the liquid is metastable, at least for
core-softened potentials in two dimensions.”” The presence of a liquid—
liquid critical point provides one explanation of how anomalies in the
response functions for core-softened potentials could occur—although
other scenarios are also possible.*®) Although core-softened potentials are
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capable of exhibiting most of the anomalies present in liquid water, most
materials that are known to have an effective core-softened potential have
not been studied as extensively as water, and thus the presence of
anomalies in them is still an open question. Moreover, the relationship
between anomalies of static (e.g., entropy) and dynamic (e.g., diffusivity)
quantities is still an open issue that can be explored using core-softened
potentials, possibly within the framework of existing theories.®”
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