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a b s t r a c t

We examine how real-world individuals and companies can either reach an agreement or
fail to reach an agreement after several stages of negotiation. We use a modified prisoner’s
dilemma game with two-sided players who can either cooperate or not cooperate with
their neighbors. We find that the presence of even a small number of these two-sided
players substantially promotes the cooperation because, unlike the rock–paper–scissors
scenario, when the cooperators change to the non-cooperators to gain a payoff, they can
turn to the two-sided players and continue negotiating.We find that the network structure
influences the spread of strategies. Lattice and regular-random (RR) networks benefit the
spread of both non-cooperation and two-sided strategies, but scale-free (SF) networks stop
both strategies. We also find that the Erdös–Rényi (ER) network promotes the two-sided
strategy and blocks the spread of non-cooperation. As the ER network density decreases,
and the network degree is lowered the lifetime of non-cooperators increases. Our results
expand our understanding of the role played by the two-sided strategy in the growth of the
cooperative behavior in networks.
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1. Introduction

Both cooperation and non-cooperation (defection) are ubiquitous in biological and social systems, and in recent decades
the evolution of cooperation has attracted considerable attention [1–5]. Examining the element of risk in interaction, Szabó
and Hauert introduced a third strategic type with small fixed earnings [6]. Influential nodes affect the strategies of their
neighbors but are not influenced by them [7]. Most participants want to win and also to set negotiating patterns, the
measurement of which was introduced in Ref. [2]. Neighbor selection obeys a dynamic preferential rule, i.e., the more
frequently a neighbor’s strategy is adopted in previous rounds, the higher the probability it will be adopted in subsequent
rounds [8]. A ‘‘tit-for-tat’’ cooperation in the first round encourages a participant to adopt their opponent’s previous round
strategy [9–12]. Extortive players gain the highest payoffs [13]. Cooperation is higher among participants with similar
characteristics [14], and participants can receive payoffs from both neighbors and themselves [15]. The experimental
results showed the onymity could promote cooperation behavior [16]. The rewarding of cooperative participants and the
punishing of non-cooperative players were examined in Ref. [17–19], where they found that punishment wasmore effective
than rewards. Heterogeneous punishment promote cooperation under limited conditions [20]. Because all participants
share the same memory, which may be in part either true or false, this model cannot forecast the future using this
common ‘‘understanding’’ [21]. Strategic behaviors and evolutionary game can be influenced by the multilayer networks
structure [22,23]. The scale-free networks can provide a unifying framework for the evolution of cooperation [24], and
a finding has motivated the research on many interactive networks [25], including those that co-evolved as the game
evolved [26–28].

The previous studies promote only the partial cooperation. In real-world negotiations the cooperation allows both
participants to receive a payoff and the non-cooperation allows neither to receive a payoff. Participants can either cooperate
or not. Although at every stage of negotiations they select the strategy they deemmost advantageous, they strongly tend to
cooperate with cooperators and avoid the non-cooperators. Here, we introduce two-sided players and study the evolution of
cooperation. Two-sided players choose either to cooperate or not in response to their opponent’s strategy, and will choose
to cooperate if their opponent also chooses to cooperate.

2. The model

We use an iterated prisoner’s dilemma game, which is frequently used to study the evolution of the cooperation among
selfish individuals [13,29,30]. Each player can choose between either cooperation (C), defection (D), or a two-sided strategy
(T). In the donation PD game, the cooperators provide a benefit b to their partners at a cost c to themselves (b > c = 1)
and the defectors neither provide benefits nor incur costs. Two-sided players gain benefit c with T and C partners. With
two-sided players participating in the game, the payoff matrix is

C D T
C c b c

D b 0 0
T c 0 c,

(1)

where the parameter b is the temptation to defect.
Initially each player holds a C or D strategy with equal probability. The players collect the gains according to the payoff

matrix (2) when playing with their neighbors.
Using the approach in Ref. [25], and given the payoffs (E

i

and E

j

for players i and j, respectively) from the previous round,
a player i randomly adopts the strategy of a neighbor j with a probability

W = 1
1 + exp[�(E

j

� E

i

)/] , (2)

where  is a normalization constant, i.e., the noise allows irrational choices. We set the value of  to 0.1, similar to that in
Refs. [8,15].

We iterate the model using a synchronous updating strategy. At each Monte Carlo (MC) time step, all players get payoffs
from their neighbors and then simultaneously update their strategies according to Eq. (1). All simulations except those in
Fig. 3 are performed in the systems with 100 ⇥ 100 players and, with the exception of Figs. 4 and 5, are averaged over 1000
realizations.

3. Simulation results

We beginwith an initial state characterized by equal fractions of C and D participants and describe the initial percentages
of the two-sided strategy p

t

at step t = 0. The evolution eventually leads to a dynamic equilibrium state with small
fluctuations of defector density around an average value.

Fig. 1 shows the players driven by payoffs [see Eq. (1)]. The fraction of defectors f
d

decreaseswith p

t

. There are about 0.007
defectors at step t = 500 when the initial fraction of two-sided players is p

t

= 0.001. These defectors virtually disappear
when the initial fraction of two-sided players p

t

� 0.002 is increased.
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Fig. 1. (Color online) Stationary fractions of defection (f
d

) in each step with different fractions of two-sided players at step = 0 (p
t

) for b = 1.01.

Fig. 2. (Color online) Average fractions of defectors, f
d

, as a function of the temptation to defect b at the equilibrium state for p
t

= 0.1.

Fig. 2 shows the impact of the temptation to defect b on our expanded PDG model. The fraction of defectors (f
d

) first
increases and then decreases step by step to about 0. At step 1, f

d

grows to its highest value 0.52 and then gradually drops
to 0 for b = 1.0. At step 3, f

d

increases to 0.79 and then slowly decreases to 0 for b = 2.0. At step 3, f
d

reaches its highest
value and then slowly decreases to 0 for 1.1 < b < 2.0. The larger the value of b is, the greater the value of f

d

is at each step.
As temptation increases, the number of cooperators changing their strategy to defection increases. At the end of the game,
nearly all the defectors have left.

Fig. 3 shows the frequency of defectors for different sizes of lattice network. The stationary fractions of defectors (f
d

) are
approximately 0.147, 0.05, 0.01 and 0.0006 in the 50 ⇥ 50, 70 ⇥ 70, 90 ⇥ 90 and 110 ⇥ 110 lattice networks, respectively.
The value of f

d

is about 0 for the large size of lattice network (n > 110⇥ 110). The subfigure in Fig. 3 shows that the fraction
of T players disappears in a stable state for different lattice sizes.

We next study how the numbers of cooperators, defectors, and two-sided players changes over time. Fig. 4 shows the
snapshots of C, D, and T in the equilibrium statewhen p

t

= 0.1 and b = 1.01. Initially T participants are randomly distributed
with p

t

= 0.1, and C andD are randomly locatedwith an equal probability 0.45 [Fig. 4(a)]. At step 1when the cooperators are
attacked by the defectors for a payoff, the fraction of D is greater than that of C. The number of two-sided players increases
slowly [Fig. 4(b)]. The clusters of T continue to expand and the D clusters shrink at step 5 because D cluster players cannot
receive payoffs from each other [Fig. 4(c)]. The two-sided players can connect whereas after a few time steps the T clusters
occupy the main area of the lattice network [Fig. 4(d)]. The D clusters then rapidly shrink [Fig. 4(e)], and the C clusters
increase smoothly until they reach a stable state [Fig. 4(f)].

Fig. 5 shows the time series of the fractions of the cooperators f

c

, the defectors f

d

, and the two-sided players f

t

. The f

d

values first increase to the highest value of 0.54, which corresponds to Fig. 4(b), then decreases to 0, as shown in Fig. 4(f). In
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Fig. 3. (Color online) The fractions of defector (f
d

) in each step vs different sizes of lattice networks for p
t

= 0.001 and b = 1.01. The subfigure shows that
the fraction of T disappears as a function of lattice network size.

Fig. 4. (Color online) Typical spatial distributions of the cooperators (white), the defectors (black), and two-sided players (gray) on the square lattice by
means of synchronous strategy updating. (a) step = 0, (b) step = 1, (c) step = 5, (d) step = 10, (e) step = 15, and (f) step = 60. Parameter values in the cases
are p

t

= 0.1 and b = 1.01.

contrast, f
c

first decreases to the lowest value of about 0.34, and then grows to a stationary state at the value 0.39, which is
consistent with C in Fig. 4, i.e., it first increases and then decreases. f

t

gradually increases to 0.6 as shown in Fig. 4(f).
Fig. 6 shows the effect of network structure and compares the step-by-step defector frequency for different network

structures. Note that the defector frequency f

d

first increases and then decreases for all four types of networks. The highest
value of f

d

is about 0.72 in RR networks while f

d

= 0.68 in lattice network. The values of f
d

are 0.62, 0.54, and 0.53 in ER,
SF with � = 2.5, and � = 3.0, respectively. The value of f

d

rapidly declines to about 0 in lattice and RR networks. Thus
lattice and RR networks are beneficial to both defectors and two-sided players, but in ER networks f

d

rapidly decreases
to a low value and becomes stationary, which means that ER networks prefer the defectors over two-sided players. In
contrast, in SF networks the fraction of defectors smoothly decreases, and the spreadof defection and two-sided strategies are
resistant.
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Fig. 5. (Color online) The fractions of the cooperator f
c

(star), the defector f
d

(circle), and the two-sided player f
t

(square) in each step for special value of
p

t

= 0.1 and b = 1.01.

Fig. 6. (Color online) The fractions of the defector f
d

in each step for the special values of p
t

= 0.01 and b = 1.01 in Erdös–Rényi (ER) network, scale-free
(SF) network, regular-random (RR) network and lattice network.

The sparsity of the network affects the expanded PDG. Fig. 7 shows that increasing the fraction of removed edges in lattice
networks causes the defectors to slowly decrease. If the average degree of an ER network is increased, the defectors persist
in fewer steps. The final fraction of defectors (f

d

= 0.001) in a lattice network with a fraction of removing edges r = 0.3 and
r = 0.35 is approximately equal to that in an ER network with a average degree h

k

i = 5.

4. Analysis and discussion

In the expandedPDGperformedonnetworks, even a small number of two-sidedplayers cause defectors to leave the game.
The larger the fraction of T players at step = 0 (p

t

) is, the more quickly the D players leave the game. The defectors exist in
a small social network, and the smaller the size of a lattice network is, the larger the number of defectors in the stationary
state is. The fraction of defectors is limited by the benefit b. The f

d

rapidly increases to the highest value, then declines to
0. Initially, the D value expands and the C value shrinks, but after a few steps D smoothly decreases and T increases. This is
the case because, although the cooperators may first turn to the defectors for a good payoff, two-sided players can stop C
players from turning to D players and can cause D players to become T players. Alternatively, D collapses and T dominates.
Because two-sided players can switch strategies when facing different players, and they enhance cooperation.

Defectors are more robust in SF networks than those in other types of network. The defector strategy can more quickly
increase in lattice and RR networks than those in ER and SF networks, i.e., lattice and RR networks allow the defectors and
two-sided strategies (the value of f

d

first rapidly increases and then decreases). Although SF networks do not encourage the
spread of D (although initially it slightly increases) and T (it slowly declines), ER networks encourage the two-sided strategy



Z. Su et al. / Physica A 490 (2018) 584–590 589

Fig. 7. (Color online) The ratios of the defector f
d

in each step for the special values of p
t

= 0.01 and b = 1.01 in lattice networks with removing the edge
(symbols) and ER network with different degrees k (lines).

(f
d

quickly decreases) but not the defectors (f
d

grows only slightly). Network sparsity also affects the spreading of defectors.
Dense networks can more quickly expel defectors than sparse networks.

5. Conclusions

We have introduced two-sided players into the original PD game. The defectors inhibit the cooperators, while the
cooperators and two-sided players not. Initially the number of defectors rapidly increases, the number of cooperators rapidly
decreases, and the number of two-sided players gradually increases. For the defectors to get more benefit than cooperators,
most of the cooperators become defectors, but after reaching the maximum, the number of defectors rapidly decreases.
At the same time, the number of two-sided players rapidly increases. Because the defectors cannot benefit from each other,
almost all defectors become two-sided players. In addition, the network structure affects the spread of the strategies [31–35].
Lattice and RR networks encourage the expansion of both defectors and two-sided players, but SF networks disallow their
expansion. ER networks promote the two-sided strategy, but block the defection strategy. In sparse networks, the defectors
continue to exist for a longer period of time.
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