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Using molecular dynamics simulations, we investigate the effects of different nanoconfinements on

complex liquids—e.g., colloids or protein solutions—with density anomalies and a liquid-liquid phase

transition (LLPT). In all the confinements, we find a strong depletion effect with a large increase in liquid

density near the confining surface. If the nanoconfinement is modeled by an ordered matrix of nano-

particles, we find that the anomalies are preserved. On the contrary, if the confinement is modeled by a

disordered matrix of nanoparticles, we find a drastically different phase diagram: the LLPT shifts to lower

pressures and temperatures, and the anomalies become weaker, as the disorder increases. We find that the

density heterogeneities induced by the disordered matrix are responsible for the weakening of the LLPT

and the disappearance of the anomalies.

DOI: 10.1103/PhysRevLett.109.105701 PACS numbers: 64.70.Ja, 65.20.!w, 66.10.C!

Many experiments in recent years have shown that a
number of liquids exhibit highly anomalous properties [1].
The data for liquid metals, metalloids, nonmetals, oxides,
and alloys—including Ga, Bi, Te, S, Be, Mg, Ca, Sr, Ba,
SiO2, P, Se, Ce, Cs, Rb, Co, Ge, Ge15Te85—colloids,
protein solutions, organophosphates, such as triphenyl
phosphite (TPP), AY20 melts [ðAl-OÞ80 ! ðY-OÞ20], and
water, reveal the presence of a temperature of maximum
density (TMD) below which the density decreases under
isobaric cooling [1]. In a number of these systems, such as
P, TPP, and AY20 [2], it has been shown that a liquid-liquid
phase transition (LLPT) exists and that it ends in a liquid-
liquid critical point (LLCP) between two coexisting liquids
with the same composition but different structure: the high
density liquid (HDL) and the low density liquid (LDL).
Data from experiments on silica, C, Se, Co, and water are
consistent with a LLPT [3]. Here, we ask how the structure
of the nanoconfinement may change the anomalous behav-
ior of the liquid and affect the LLPT and the LLCP. This
question is relevant across a wide range of nanotechnolog-
ical applications, biological systems, and is of general
interest for phase transitions in confined systems [4].

We model the liquid using two different potentials,
(i) the Jagla ramp potential [5] and (ii) the continuous
shoulder potential [6], which reproduce thermodynamic
and dynamic anomalies, LLPT and LLCP in bulk. We
model the nanoconfinement by a fixed matrix of nano-
particles (NPs) connected by bonds which the liquid par-
ticles can penetrate. Potential (i) has a hard-core at distance
r ¼ a, and a linear ramp for a < r % b decreasing from
interaction energy UR > 0 to !U0 < 0, plus a linear ramp
for b < r % c increasing from !U0 to 0. We adopt b=a ¼
1:72, c=a ¼ 3, and UR ¼ 3:56U0. The liquid particles
interact with NPs via hard-core repulsion at distance r0 &
ðaþDNPÞ=2, where DNP is the NP diameter. Potential

(ii) has a repulsive shoulder and an attractive well with
energy minimum U0, with parameters chosen to fit a
potential proposed in Ref. [7]. The interaction with NPs
is given by a 1=ðr! r0Þ100 power law.
For both potentials, we perform simulations at constant

number N of liquid particles, constant volume V, and
constant temperature T, with periodic boundary condi-
tions. For (i), we employ a discrete molecular dynamics
(MD) algorithm by discretizing the linear ramp potential
into steps, with !U & U0=8 [8]. For (ii), we use a
standard MD with a velocity Verlet integrator and the
Allen thermostat [6].
We consider three different structures for the matrix: a

perfect cubic lattice (CUBE); a cubic lattice with Gaussian
distortions (DIST) with a standard deviation equal to 1=4th
the separation between centers of NPs, which still pre-
serves an approximately periodic and ordered structure of
the confinement [Fig. 1(a)]; and a completely random
(RND) configuration of NPs obtained by simulating a gas
of hard spheres [Fig. 1(b)]. The volume fraction of NPs
is xNP & VNP=V, where V is the volume of the cubic
simulation box and VNP ¼ NNP4!r

3
0=3 is the volume

inaccessible to the liquid. Our results here, if not
otherwise indicated, are for liquid (i) confined by the
matrix of NNP ¼ 64 NPs with diameter DNP=a ¼ 3 at
xNP ¼ 24:5% and V=a3 ¼ 20:63. We control the density
" & N=ðV ! VNPÞ of the liquid particles by changing N in
the interval between 1845 and 3887. We take into account
that the excluded volume rescales the pressure P by
V=ðV ! VNPÞ. We find that the results for liquid (ii) are
consistent in similar conditions.
For liquid (i), the bulk system displays a LLCP at

kBT
bulk
c =U0 ¼ 0:375, Pbulk

c a3=U0 ¼ 0:243, and "bulk
c a3 ¼

0:37 [5]. Figures 1(c) and 1(d) show simulated isochores
for DIST and RND confinement, respectively, with the
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HDL-LDL spinodal lines calculated using conditions
ð@P=@"ÞT ¼ 0 and ð@2P=@"2ÞT ! 0 [9], and the LLCP
obtained at the point of merging of the spinodal lines,
where ð@P=@"ÞT ¼ ð@2P=@"2ÞT ¼ 0. We find that every
confinement causes the LLCP to shift to a lower T, a higher
", and a higher P than in the bulk liquid [Fig. 2(a)]. As the
disorder in the confining matrix increases, the T shift is
more pronounced and the " and P shifts less pronounced.
We find the same qualitative trend in the LLCP shifts for
liquid (ii), and that the LLCP progressively approaches
the bulk case when the NP concentration decreases
[Fig. 2(b)], consistent with previous results for NP-liquid
mixtures [10].

While the periodic DIST confinement preserves the
LDL-HDL coexistence region observed in bulk liquid
[Fig. 1(c)], which is consistent with a strong first-order
LLPT, the RND confinement shrinks the coexistence
region [Fig. 1(d)] and weakens at the LLPT, which

manifests itself in the shrinking of the region between the
spinodals in the P–T plane. This shrinking is qualitatively
consistent with that found for a model of water in a random
hydrophobic pore-like confinement [11].
The region of density anomaly is bounded by the lines of

the TMD and the temperature of minimum density
(TminD) located by the extrema of the isochores. In the
bulk system, the TminD line for high densities is hindered
by the glass temperature line and cannot be observed in the
equilibrium liquid. Here, we observe that the periodic
structure of the confinement can dramatically affect den-
sity anomaly manifestations. Compared to the bulk, con-
finement decreases TMD and increases TminD, shrinking
the T range of the density anomaly. The density anomaly
is still well-defined in the DIST case, but it appears much
less pronounced in the RND case. For a RND matrix of
NNP ¼ 19 large confining NPs with diameter DNP=a ¼ 5
at xNP ¼ 24:5% and V=a3 ¼ 20:63, the TMD and TminD
are completely absent (not shown).
To understand the origin of the different effects of the

different confinements, we study the density of the liquid in
the vicinity of NPs. We find that a layer of liquid adsorbs
onto the NPs, as revealed by the fluid density profile
gNP–liqðrÞ (Fig. 3). We understand the increase of density

near the NP surface as a consequence of entropy max-
imization. By packing near the fixed NPs, the adsorbed

FIG. 2 (color online). The effect of different confinements on
the parameters of the LLCP. Color coded circles (from dark blue
for lower " to bright red for higher") represent the LLCP
parameters in the P! T ! " phase space (a) for the liquid
confined in the fixed matrix of NPs with CUBE, DIST, and
RND configuration. Increasing disorder in the confinement, from
CUBE to DIST to RND, shifts the LLCP down in ", T, and P.
(b) Upon decreasing concentration xNP (label near the symbols)
for the CUBE confinement of the liquid (ii), the LLCP ap-
proaches the bulk case. Here, we use NNP ¼ 64 NPs with
DNP=a ¼ 3 in V=a3 ¼ 20:63 at xNP ¼ 24:5% with 1452 % N %
2508 (with spontaneous crystallization below the LLCP), or in
V=a3 ¼ 243 at xNP ¼ 15:5% with 2570 % N % 4439, or in
V=a3 ¼ 283 at xNP ¼ 9:8% with 4358 % N % 7528. We find
the same behavior for liquid (i). The models of liquid with two
potentials (i) and (ii) are described in the text.
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FIG. 1 (color online). Effect of confinement. Snapshots of the
anomalous liquid (green, small spheres) confined in a fixed
matrix of NPs (yellow, large spheres) in a DIST (a) and
RND (b) configuration. Polynomial fits of simulated isochores
of densities 0:89 % "="bulk

c % 1:59 (bottom to top in the one-
phase region) for DIST (c) and RND (d). Randomness reduces
the temperature and pressure of the LLCP (circles), the separa-
tion between the HDL (lower filled triangles) and LDL spinodals
(upper open triangles), and the separation between the TMD
(diamonds) and the temperature of minimum densities (TminD,
squares). Samples of error bars on P are given in panel (c). Lines
connecting symbols are guides for the eyes.
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liquid particles allow more free space to the the rest of the
liquid, maximizing the entropy of the system (depletion
effect). This result evokes a similar effect found for water
at confining surfaces, regardless of the hydrophobic or
hydrophilic interaction with the surface [12], and for
hard-sphere fluids in contact with purely repulsive particles
[13], showing that the increase of contact density is not
related to specific interactions or anomalous behaviors and
making a bridge between water and simple fluids.

We find that, by increasing randomness in the confine-
ment, the probability of overlap of NP exclusion volumes
increases and the depletion effect decreases. As a conse-
quence, the density of liquid near the NPs decreases
(Fig. 3). In addition, we analyze the density fluctuations
and the associated measurable response function, the local
isothermal compressibility KT (Fig. 3), of the liquid in the
vicinity of the NPs. We find that KT is extremely small at
the interface, consistent with a tight packing of liquid
particles around the NPs. Near the first minimum of
gNP–liqðrÞ, KT is, instead, twice as high as in the bulk. A

high local density causes the density increase of the LLCP
(Fig. 2) because, when part of the liquid is adsorbed onto
the NPs, an average liquid density larger than bulk is
necessary to build up the critical fluctuations. The shift is
more pronounced for CUBE and DIST confinement,
with respect to RND, because the more ordered the

confinement, the larger the NP surface available for the
depletion effect.
To better understand how confinement structure affects

the physical properties of a liquid, we study the liquid’s
local density distribution inside the confinement matrix.
We identify the region not occupied by the NPs and parti-
tion it into disconnected cavities [inset Fig. 4(c)] based on
the Delaunay tessellation algorithm described in Ref. [14].
We define the exclusion spheres concentric with NPs
and gradually increase their radius re with a small step
!re ¼ 0:1a. We designate the space not occupied by ex-
clusion spheres as void of size re and denote it "ðreÞ. ForFIG. 3 (color online). The liquid adsorbs onto the NPs. The

fluid density profile gNP–liqðrÞ at T=Tbulk
c ¼ 1:12 for CUBE

(leftmost), DIST (center), and RND (rightmost) confinements
for the density "="bulk

c ¼ 1:59 (solid lines) display large maxima
(values in parenthesis) at the closest NP-liquid particle distance
r ¼ r0 & 2a. Local compressibility KT (dashed lines) shows
large peaks near the minimum of gNP–liqðrÞ. The results for

different confinements are shifted horizontally for clarity.
Inset: Schematic representation of calculation of gNP–liqðrÞ and
local KT inside equal-volume (!W ¼ 2:77a3) conical regions
between two concentric spheres with different radii R and Rþ
!R centered at the NP (small yellow hemisphere in the middle),
where !R ¼ 0:2a and R ¼ 2:0a; 2:2a; . . . ; 8:0a (one such coni-
cal region is shown in dark red). The axis of the conical region is
chosen at random 10 000 times for each NP. gNP–liqðrÞ is com-

puted by counting the number of liquid particles and local KT ¼
½ðhn2i=hni2Þ ! 1)ð!W=kBTÞ from fluctuations of number of liq-
uid particles n.

FIG. 4 (color online). The distribution of local density
Dð"i="

bulk
c Þ of the liquid inside the pockets for global liquid

density "="bulk
c ¼ 0:94 and T=Tbulk

c ¼ 0:88. (a) In the DIST
confinement, at P=Pbulk

c ¼ 1:3, DDISTð"i="
bulk
c Þ is a Gaussian

centered at "="bulk
c ¼ 0:94 with standard deviation #D ¼ 0:055.

Inset: Cut through the simulation box. The liquid density (high to
low color coded from blue to red) is computed inside spheres of
radius 1:5a that do not intersect NPs. Areas for which we cannot
evaluate liquid density with this method are in black. (b) In RND
confinement, at P=Pbulk

c ¼ 1:25, the broad DRNDð"i="
bulk
c Þ (red

dashed line) is the result of two Gaussian components, both
centered in "="bulk

c ¼ 0:94, but with different standard devia-
tions: one is due to the local density fluctuations (black line) with
#R1 ¼ 0:052, as in DIST, and the other with #R2 ¼ 0:159
(shaded) due to the heterogeneity in pockets volumes. Inset:
As in panel (a), but for RND. (c) Calculation of PRND by taking
into account the component of DRNDð"i="

bulk
c Þ due to the

heterogeneity in pocket volumes. Polynomial fits of the iso-
therms, PDISTð"Þ at constant T (black dashed lines: from top
to bottom T=Tbulk

c ¼ 0:77; 0:69; 0:61), are used in Eq. (1) to get
an estimate of PRNDð"Þ at the same T (red solid lines), which
compare well, within a range of densities close to the LLPT, with
the simulation data for RND (symbols). Inset: 2D representation
of the exclusion spheres (black, grey, white circles) with their
radii re (yellow arrows), which for re ¼ r0 (black circles)
coincides with NPs. A cavity is shown as a blue diamond and
a pocket is shown as a red square-like segment. For clarity, the
liquid (colored regions) is shown inside cavities only.
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re ¼ r0, "ðr0Þ is a connected set for both RND and DIST
confinements. The volume of "ðr0Þ is equal to V ! VNP.

In DIST confinement, when re > 4:1a, "ðreÞ breaks
into 64 small disconnected cavities, associated with 64
distorted cubic pockets formed by 8 adjacent NPs. The
volume !i of each pocket i ¼ 1; . . . ; 64 is given by the
volume of all Delaunay tetrahedra comprising the corre-
sponding pocket minus the volume occupied by the NPs
forming the pocket. We define the particle density of liquid
in each pocket "i & Ni=!i, where Ni is the number of
liquid particles inside pocket i. We find that the volumes!i

are narrowly distributed, with the local liquid density
distribution DDISTð"iÞ given by a Gaussian with variance
#2

D [Fig. 4(a)].
In RND confinement, "ðreÞ remains fully connected up

to re ¼ 4:2a. As we increase re, small pockets break away
from the largest part of"ðreÞ one by one. When re ¼ 5:4a,
we count, for different random configurations, approxi-
mately 60 pockets, for which we calculate !i and "i,
finding a large variety of sizes and shapes. We compute
DRNDð"iÞ and find that in RND it can be approximated
with the sum of two Gaussian distributions: one similar to
the DIST case with #R1 * #D and the other resulting
from the heterogeneity of volumes !i of the pockets with
#R2 > #R1 [Fig. 4(b)].

We hypothesize that in RND confinement, the observed
pressure PRNDðT;"Þ results from averaging local pressures
in each pocket. At temperature T, we estimate PRND using
the average of the PDISTðT;"iÞ over all heterogeneous
pockets [Fig. 4(c)],

PRNDðT;"Þ ¼
Z

PDISTðT;"þ "$Þ exp½!$2=2#2
R2)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2!#2
R2

q d$:

(1)

Due to averaging over different densities "i & "þ "$, the
nonmonotonic subcritical isotherm PDISTð"Þ at T ¼
TRND
c < TDIST

c becomes a monotonic critical isotherm
PRNDð"Þ that closely fits the simulation results for the
RND confinement in the vicinity of the LLPT. Thus, our
averaging technique allows us to reproduce quantitatively
the differences we found when we compared DIST and
RND confinements; i.e., the critical temperature, pressure,
and density decrease [Fig. 2(a)] and density anomaly re-
gion shrinks [Figs. 1(c) and 1(d)]. Thus, the presence of
density heterogeneity and the reduced depletion effect in
the RND confinement matrix give us the key to under-
standing the effect of confinement structures. It is impor-
tant to stress the differences of the effect of confinement on
the LLPT and the liquid-gas phase transition (LGPT).
While in both cases the critical temperature is significantly
reduced, the effects of random confinement and ordered
confinement are practically indistinguishable in the case of
LGPT. This is because in LGPT, the density of liquid
particles has a much smaller increase near NPs than in

LLPT. Thus, in LGPT, randomness does not lead to local
density heterogeneities, which produce a strong effect on
the LLPT.
In conclusion, we predict that anomalous liquids with a

LLPT retain their bulk phase diagram and density anoma-
lies when they are confined in a porous matrix with an
ordered structure. Furthermore, when there is a small dis-
tortion of the confinement, the glass temperature is reduced
with respect to bulk, allowing the direct observation of the
TminD locus. A strong depletion effect induces a large
increase of density in the vicinity of the NPs. The effect is
smaller when the confinement has a random structure.
Randomness induces heterogeneity in the local density,
which weakens the LLPT, narrows the LLPT coexistence
region, and washes out the density anomalies.
Although the anomalous liquids considered here are, in

principle, different from water, our results could qualita-
tively explain recent experiments for confined water, the
prototypical anomalous liquid. While the TminD locus has
been observed in supercooled water under hydrophilic
confinement by the MCM-41 silica nanoporous matrix
[15], its absence has been reported in the hydrophobic
mesoporous material CMK [16]. MCM-41 forms a regular
matrix [15], but CMK consists of grains, each with a
disordered pore structure [16]. This suggests that the dis-
parity of results for different confinements may arise from
the different amount of disorder in the confining structures,
independent of the interaction details of the anomalous
liquid.
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