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Robustness of a partially interdependent network formed of clustered networks
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Clustering, or transitivity, a behavior observed in real-world networks, affects network structure and function.
This property has been studied extensively, but most of this research has been limited to clustering in single
networks. The effect of clustering on the robustness of coupled networks, on the other hand, has received
much less attention. Only the case of a pair of fully coupled networks with clustering has recently received
study. Here we generalize the study of clustering of a fully coupled pair of networks and apply it to a partially
interdependent network of networks with clustering within the network components. We show, both analytically
and numerically, how clustering within networks affects the percolation properties of interdependent networks,
including the percolation threshold, the size of the giant component, and the critical coupling point at which the
first-order phase transition changes to a second-order phase transition as the coupling between the networks is
reduced. We study two types of clustering, one proposed by Newman [Phys. Rev. Lett. 103, 058701 (2009)] in
which the average degree is kept constant while the clustering is changed, and the other by Hackett et al. [Phys.
Rev. E 83, 056107 (2011)] in which the degree distribution is kept constant. The first type of clustering is studied
both analytically and numerically, and the second is studied numerically.
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I. INTRODUCTION

Complex networks are a useful approach to understanding
the structure, stability, and function of complex systems
[1–17]. Clustering, the propensity of two neighbors of the same
node to be also neighbors of each other, has been observed
in many real-world networks [1,18–20]. For example, in a
social network, if B and C are friends of A, they have a high
probability of also being each other’s friends. The average of
this probability over the whole network is called the clustering
coefficient. Empirical studies show that in many real-world
networks, e.g., the Internet, scientific collaboration networks,
metabolic and protein networks, and movie actor networks,
the measured clustering coefficient is of the order of 10%,
significantly higher than that of random networks [4,21].

Many computational models have been proposed to gen-
erate the clustering coefficient in networks, but all have
been limited to numerical analysis [22–26]. Newman recently
developed an analytical approach that incorporates clustering
into random graphs by extending the generating function
method, a widely used analytical tool in network research [27].
He considered two properties for each node, single links
and triangles, and constructed a joint distribution for both.
The clustering coefficient can be tuned by changing the ratio
between the average number of single links and triangles. This
approach enables us to evaluate analytically many properties
of the resulting networks, such as component size, emergence
and size of a giant component, and other percolation properties.

Previous studies of clustering have focused on single
network analysis, but real-world networks interact with and
depend on other networks. In 2010 Buldyrev et al. [28]
developed a theoretical framework for studying percolation
in two fully interdependent networks and observed an unusual
first-order (abrupt) percolation transition that differed from
the known second-order (continuous) phase transition in a
single network. Parshani et al. [29] generalized this framework
to partially interdependent networks and found a change

from a first-order to a second-order phase transition when
the coupling strength was reduced below a critical value.
Since 2010 there have been many studies of interdependent
networks, sometimes called “networks of networks” [30–47].
With respect to percolation properties, the specific case in
which interdependent nodes in the network of networks are
treated as identical is the multiplex network. However, from
a dynamical point of view, e.g., diffusion or transport, these
two systems (interdependent and multiplex) could be very
different [48–50]. Recently Huang et al. [51] developed an
approach to site percolation on clustered networks and studied
the robustness of a pair of fully interdependent networks with
clustering within each network.

Here we generalize the framework of Huang et al. [51]
and extend it (i) to the study of percolation in two partially
interdependent networks with clustering within each network
and (ii) to the study of a network of clustered networks (NON),
i.e., a network consisting of more than two interdependent clus-
tered networks. We study how clustering within the networks
influences such percolation properties as the critical threshold
pc at which the giant component collapses, the sizes of the
giant components ψ∞ and φ∞ in the two networks, the critical
coupling qc at which the first-order phase transition changes to
a second-order phase transition, and the dynamics of cascading
failure between two clustered networks. Simulation results
agree well with theoretical results in all cases.

In Sec. V we also examine two joint distribution models
for incorporating clustering into random graphs, i.e., (i) the
model proposed by Newman [27], in which a double-Poisson
distribution (see Sec. III) is assumed for the joint degree
distribution, and the average degree is kept constant while the
clustering is changed; and (ii) the clustering model developed
by Hackett et al. [52], in which a different joint distribution
keeps both the average degree and the degree distribution
constant while the clustering is changed. We discuss the
similarities and differences in the percolation properties of
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the networks generated by these two distribution models. The
model presented by Newman is studied both analytically and
via simulations (Secs. III and IV), and the model presented by
Hackett et al. is studied using only simulations (Sec. V).

II. THE MODEL

In our model we consider two networks A and B that
have the same number of nodes N . Within each network
the nodes are connected with joint degree distribution PA(s,t)
and PB(s,t), which specifies the fraction of nodes connected
to s single links and t triangles in networks A and B,
respectively [27]. The generating functions [53,54] of the joint
degree distributions are

GA0(x,y) =
∞∑

s,t=0

PA(s,t)xsyt ,

GB0(x,y) =
∞∑

s,t=0

PB(s,t)xsyt .

(1)

The conventional degree of a node is k = s + 2t , and the
conventional degree distributions of the networks are

PA(k) =
∞∑

s,t=0

PA(s,t)δk,s+2t ,

PB(k) =
∞∑

s,t=0

PB(s,t)δk,s+2t .

(2)

The clustering coefficient is defined in Ref. [53] as

c ≡ 3 × (number of triangles in network)
number of connected triples

= 3N$

N3
, (3)

where 3N$ ≡ N
∑

st tP (s,t) and N3 = N
∑

k ( k
2 )P (k).

Our initial attack is the random removal of a (1 − p) fraction
of nodes from network A. The generating function of the
resulting network is [51]

G
′

A0(x,y) ≡ GA0(x,y,p)

= GA0[xp + 1 − p,p2y + 2xp(1 − p) + (1−p)2],

(4)

and the fraction of nodes belonging to the giant component in
the remaining network is

gA(p) = 1 − GA0(u,v2,p), (5)

where u,v satisfy

u = GAw(u,v2,p), v = GAr (u,v2,p). (6)

The functions GAw(x,y,p) and GAr (x,y,p) are defined as

GAw(x,y,p) ≡ 1
〈s ′ 〉

∂GA0(x,y,p)
∂x

,

GAr (x,y,p) ≡ 1
〈t ′ 〉

∂GA0(x,y,p)
∂y

,

(7)

where 〈s ′ 〉 = ∂GA0(x,y,p)
∂x

|x=1,y=1 and 〈t ′ 〉 = ∂GA0(x,y,p)
∂y

|x=1,y=1.
Similar equations hold for network B.

We next consider the interaction between clustered net-
works A and B [29]. Assume a qA fraction of nodes in network
A is dependent on nodes in network B and a qB fraction of
nodes in network B is dependent on nodes in network A.
This means that if a node in network B upon which a node in
network A depends fails, the corresponding node in network A
will also fail, and vice versa. We also assume that a node from
one network may be dependent on no more than one node from
the other network and if a node i in network A is dependent on
a node j in network B and j depends on a node l in network
A, then l = i (a no-feedback condition [45–47]). After n steps
of cascading failures, ψn and φn are the fractions of nodes in
the giant components of networks A and B, respectively. After
the two-network system reaches stationarity, the sizes of giant
components in the two networks are [29]

ψ∞ = xgA(x), φ∞ = ygB(y), (8)

where the two variables x and y satisfy

x = p{1 − qA[1 − gB(y)]},
y = 1 − qB[1 − pgA(x)].

(9)

III. THE DOUBLE-POISSON DISTRIBUTION

As an example, consider two Erdős-Rényi (ER) net-
works [55–57] with clustering, in which the number of single
links s and triangles t of a node obey a double-Poisson
distribution Pst=e−〈s〉 〈s〉s

s! e−〈t〉 〈t〉t
t! (s and t follow a Poisson

distribution independently) [27]. Here 〈s〉 and 〈t〉 are the
average number of single links and triangles per node,
respectively. Assuming that in network A 〈s〉 = 〈s〉A and
〈t〉 = 〈t〉A, then the generating functions in Eq. (4) and Eq. (7)
become

GA0(x,y,p) = GAw(x,y,p) = GAr (x,y,p)

= e[〈s〉Ap+2p(1−p)〈t〉A](x−1)+〈t〉Ap2(y−1), (10)

and the same holds for network B. Denoting fA(x) = 1 −
gA(x) and fB(y) = 1 − gB(y), we now have

fA(x) = exp{〈t〉Ax2[1 − fA(x)]2 − 〈k〉Ax[1 − fA(x)]},
fB(y) = exp{〈t〉By2[1 − fB(y)]2 − 〈k〉By[1 − fB(y)]},

(11)

where 〈k〉A and 〈k〉B are the average degrees for networks A
and B, respectively (〈k〉A = 〈s〉A + 2〈t〉A, and 〈k〉B = 〈s〉B +
2〈t〉B). By combining Eqs. (9) and (11) and eliminating x and
y, we obtain two transcendental equations for fA and fB :

fA = e〈t〉Ap2(1−fA)2(1−qAfB )2−〈k〉Ap(1−fA)(1−qAfB ),

fB = e〈t〉B (1−fB )2{1−qB [1−p(1−fA)]}2−〈k〉B (1−fB ){1−qB [1−p(1−fA)]}.

(12)

By substituting the parameter vector (〈k〉A,〈t〉A,〈k〉B,〈t〉B,
qA,qB,p), we can solve for fA and fB , and thus find the size of
the giant components in network A, ψ∞, and network B, φ∞.
By substituting the double-Poisson distribution into Eq. (3),
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the clustering coefficients in the two networks become

cA = 2〈t〉A
〈k〉2

A + 2〈t〉A
,

cB = 2〈t〉B
〈k〉2

B + 2〈t〉B
.

(13)

If we fix the other parameters and increase p, the fraction
of nodes not removed in the initial attack, a phase transition
occurs at a critical threshold pc and a giant component
appears. As we decrease the coupling strength qA and qB , the
behavior of this phase transition will change from first-order
to second-order. A first-order phase transition, denoted by I,
corresponds to a scenario in which the size of one or both giant
components in the two networks collapses discontinuously
from a finite value to zero. If we plot fA and fB in Eqs. (12)
in a two-dimensional graph, this corresponds to the scenario
that two curves fA(fB) and fB(fA) are tangential with each
other ( dfB (fA)

dfA

dfA(fB )
dfB

= 1) [29]. By adding this condition into
Eqs. (12), we can solve for fA = fAI

, fB = fBI
, and p = pI .

A second-order phase transition (denoted by II), corresponding
to a scenario in which the size of one or both giant components
decreases continuously to zero, is obtained by substituting
fA → 1 or fB → 1 into Eqs. (12), which allows us to find
fAII

, fBII
, and pII . The critical coupling strength qc is solved

by making the conditions for both first-order and second-order
phase transitions equal.

For the sake of simplicity, we now consider the symmetrical
case, 〈k〉 = 〈k〉A = 〈k〉B and c = cA = cB . Figure 1 shows
the size of the giant components in networks A and B for
several clustering coefficients. In each graph the simulation
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FIG. 1. (Color online) Size of giant components as a function of
p for 〈k〉 = 〈k〉A = 〈k〉B = 4, where solid lines are from theoretical
predictions, Eqs. (12), and symbols are from simulations with network
size N = 105. (a) and (b) For strong coupling (q = 0.8), the sizes of
giant components in (a) network A and (b) network B change abruptly
at some critical threshold pc, showing a first-order phase transition
behavior. (c) and (d) For weak coupling (q = 0.6), on the contrary,
the behavior is continuous, i.e., second-order. Note that while (c)
network A collapses (d) network B does not collapse, since the initial
failures are in A and q is relatively small to cause collapse of network
B. Thus, the giant component of B is finite for all p values.
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FIG. 2. (Color online) Percolation threshold, pc, as a function of
interdependency strength q (q = qA = qB ) for 〈k〉 = 〈k〉A = 〈k〉B =
3 and 4. Clustering coefficient c (c = cA = cB ) ranges from 0 to
0.2 for 〈k〉 = 4 and from 0 to 0.25 for 〈k〉 = 3. For each 〈k〉 and c,
there exists a critical point qc (full circles). Above qc, the system
undergoes a first-order phase transition (solid lines) and below
qc, the system undergoes a second-order transition (dashed lines).
Symbols represent simulation results and are in good agreement with
theoretical predictions (solid and dashed lines). Note that for the same
average degree 〈k〉, increasing clustering coefficient c increases pc

and yields a larger critical coupling, qc.

results agree well with the theoretical results obtained from
Eqs. (12). Note that, for strong coupling, as we increase the
clustering coefficient the two interdependent networks become
less robust. When the coupling is weak, the weakening effect
of the clustering on the robustness is smaller. This can be seen
in Fig. 2, which shows pc versus q = qA = qB for different
clustering coefficients for both 〈k〉 = 3 and 〈k〉 = 4. Note that,
for the same coupling strength q, a larger clustering coefficient
yields a larger pc, making the networks less robust. In addition,
the critical coupling strength qc below which the first-order
phase transition changes to a second-order increases slightly
as we increase clustering coefficient.

Figure 3 shows the size of the giant component in network
A after each cascading step around the critical threshold
for the first-order phase transition case [Fig. 3(a)] and the
second-order phase transition case [Fig. 3(b)]. Note that
the simulation results for the cascading failures agree well
with analytical results (8) and (9). Different realizations
give different results due to deviations from the mean field,
rendering small fluctuations around the mean-field analytical
results [58].

IV. NETWORK OF NETWORKS WITH CLUSTERING

The framework discussed above can also be generalized
to an interdependent system consisting of more than two
clustered networks. Here we consider two cases of NON
[45–47] composed of n interdependent clustered networks,
(i) a starlike NON and (ii) a random regular NON (see Fig. 4).
We assume that for each pair of interdependent networks i
and j (i,j = 1,2, . . . ,n), there is a fraction qji of nodes in
network i which depend on nodes in network j ; i.e., they
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FIG. 3. (Color online) Size of the giant component in network A
(ψn) as a function of cascading failure steps n for 〈k〉 = 4, c = 0.2
for (a) q = 0.8 (first-order transition) and (b) q = 0.6 (second-order
transition). The symbols (circles) and their connecting line are
from the theoretical prediction. The other lines are several random
realizations from simulations (N = 106). The value of p = 0.569 for
(a) the first-order phase transition case and p = 0.347 for (b) the
second-order phase transition case are both chosen to be just below
critical thresholds obtained from theoretical predictions (pc = 0.57
for the first-order case and pc = 0.3475 for the second-order case).
One can see that in both cases the agreement is very good. However,
for first-order transition, after the plateau different realizations
fluctuate.

cannot function if the nodes upon which they depend fail.
Similarly, qij denotes the fraction of nodes in network j which
depend on nodes in network i. We also assume here that a node
from one network may depend on no more than one node from
the other network and, if a node i in network A depends on a
node j in network B and j depends on a node l in network A,
then l = i (a no-feedback condition). [45–47] After an initial
attack, only a fraction pi (i = 1,2, . . . ,n) of nodes in each
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FIG. 4. (Color online) Schematic representation of two types of
NONs: (a) Starlike NON where one central network is interdependent
with (n − 1) other networks. (b) Random regular NON where
each network depends exactly on m (here, m = 3) other networks.
Circles represent interdependent networks and arrows represent
interdependency relations. For example, q12 represents a fraction q12

of nodes in network 2 depend on nodes in network 1.

network will remain. After the period of cascading failures,
a fraction ψ∞,i of nodes in network i will remain functional.
The final giant component of each network can be expressed
as ψ∞,i = xigi(xi) and the unknowns xi can be found from a
system of n equations [45–47],

xi = pi

K∏

j=1

[qjiyjigj (xj ) − qji + 1], (14)

where the product is taken over the K networks that are
coupled with network i. Since we consider the no-feedback
condition [45–47], we have

yji = xj

qij yij gi(xi) − qij + 1
, (15)

where yji is the fraction of nodes left in network j after it has
suffered damage from all networks other than network i. We
next consider two analytically solvable examples of a NON: a
starlike network of ER networks and a random regular (RR)
network of ER networks, shown in Fig. 4.

A. Starlike NON with clustering

For a starlike NON [Fig. 4(a)], we have a root network
which is interdependent with other (n − 1) networks. For
simplicity, the initial attack is on the root network, and a
fraction (1 − p) of its nodes is removed. This damage spreads
to the other networks and then returns to the root network,
back and forth. Here we consider the case for n clustered
ER networks with the same average degree 〈k〉 and the same
clustering coefficient c (thus the same average number of
triangles 〈t〉). Assuming, again for simplicity, that for all
i, qi1 = q1i = q, Eqs. (14) and (15) are simplified to two
equations:

x1 = p[qg2(x2) − q + 1]n−1,

x2 = pqg1(x1)[qg2(x2) − q + 1]n−2 − q + 1.
(16)

For clustered ER networks, f (x) = 1 − g(x) satisfies

f = exp[〈t〉x2(1 − f )2 − 〈k〉x(1 − f )]. (17)

By combining Eqs. (16) and (17), we find x1,x2 and f1,f2,
from which the sizes of the giant components in the root
network (ψ∞) and in the other networks (φ∞) can be obtained.

Figure 5 shows the size of the giant component in the
root network for n = 2, 3, and 4 and compares two cases,
c = 0 (no clustering) and c = 0.2 (high clustering). Note
that the simulation results agree well with the theoretical
predictions. Our results show that the NON becomes less
robust with increasing n. For fixed n, the NON composed
of networks with a larger clustering coefficient is less robust,
and the effect of clustering in reducing the robustness becomes
larger as n increases. Similarly, the critical coupling qc, where
the behavior of phase transition changes from first-order to
second-order decreases with n and increases slightly with the
clustering coefficient (see Fig. 6).

B. Random regular (RR) NON of ER networks with clustering

We now consider the case in which each clustered ER
network depends on exactly m other clustered ER networks,
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FIG. 5. (Color online) Size of the giant component in the root
network as a function of p for n = 2,3,4 and c = 0,0.2 for starlike
NON. Average degree of each network in the NON is 〈k〉 = 4.
Symbols and lines represent simulations (N = 105) and theory,
respectively.

i.e., a random regular (RR) NON formed of clustered ER
networks. Assume that the initial attack is on each network
and randomly removes a fraction (1 − p) of nodes and that
the interacting strengths are all equal to q. Assume also that
all ER networks have the same average degree 〈k〉 and the
same average number of triangles 〈t〉. Because of symmetry,
all equations in Eqs. (14) and Eqs. (15) are reduced into a
single equation, and the size of the giant component in each
network is

ψ∞ = p(1 − e〈t〉ψ2
∞−〈k〉ψ∞ )

[
1−q+

√
(1 − q)2 + 4qψ∞

2

]m

.

(18)

0 0.2 0.4 0.6 0.8 1q
0.2

0.4

0.6

0.8

1

p c

critical points
n=2,c=0
n=2,c=0.2
n=5,c=0
n=5,c=0.2

FIG. 6. (Color online) Critical threshold pc as a function of
interdependency strength, q, for clustered starlike NON for 〈k〉 = 4,
n = 2,5 and c = 0,0.2. For each n and c, there exists a critical
interdependency strength qc (solid symbols) that separates the first-
order (solid lines) and second-order (dashed lines) phase transitions.
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FIG. 7. (Color online) Size of the giant component, ψ∞, as a
function of p for RR NON of clustered ER networks for fixed q

(q = 0.51). The average degree is 〈k〉 = 9, m = 2, 3 and c = 0, 0.1.
For m = 3, the system shows a first-order percolation transition as
we change the value of p, while for m = 2, the phase transition is
second-order.

Figures 7 and 8 show numerical solutions of Eq. (18)
and simulation results. Note that the simulations agree well
with theory. For a given 〈k〉, the size of the giant component
ψ∞ in each network displays a first- or a second-order phase
transition as a function of p, depending on the values of q, m,
and the clustering coefficient c. Figure 7 shows that, for some
fixed values of 〈k〉 and q, the behavior of the phase transition
can be either first-order or second-order for different values
of m. Similarly, as shown in Fig. 8, for fixed values of 〈k〉
and m, different values of q can cause the phase transition
to be first-order or second-order. In each scenario, when the
transition is first-order the clustering within networks reduces
the resistance of the NON to random node failure, but when
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FIG. 8. (Color online) Size of giant component, ψ∞, as a function
of p for RR NON composed of clustered ER networks for fixed m

(m = 2). The average degree is 〈k〉 = 9, q = 0.4, 0.8 and c = 0, 0.1.
The behavior of the phase transition is first-order for q = 0.8 and
second-order for q = 0.4.
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it is second-order the effect of clustering is similar but very
small. This again is due to the smaller coupling value q in
the second-order phase transition region. Note that for q = 1
and m = 1, the limit of two fully interdependent networks,
Eq. (18) reduces to an equation similar to Eq. (16) in Huang
et al. [51]. The only difference is because here we initially
attack all networks, not just network A as in Ref. [51]. For
〈t〉 = 0 (the no-clustering case), Eq. (18) reduces to Eq. (23)
in Gao et al. [47].

By adding the condition that the first derivative of both sides
of Eq. (18) with respect to ψ∞ are equal, we obtain the critical
threshold of the first-order phase transition, pI . The critical
threshold of the second-order phase transition pII is solved by
adding the condition ψ∞(pII ) → 0 to Eq. (18). If we equate
pI and pII , the critical coupling qc where the first-order phase
transition changes to a second-order phase transition can be
derived analytically:

(〈k〉2 + 2〈t〉)(1 − qc)2 = 2〈k〉qcm. (19)

By substituting c = 2〈t〉
〈k〉2+2〈t〉 , we have

qc = 1 + x −
√

x(x + 2), (20)

where x ≡ m
〈k〉 (1 − c). Note that increasing the clustering

coefficient c increases the critical dependency qc. Note also
that for c = 0, Eq. (20) reduces to Eq. (30) of Ref. [47].

V. THE FIXED DEGREE DISTRIBUTION

The double-Poisson distribution model can display the
features of clustering and it is possible to solve it analytically.
Although in this model the average degree does not change,
the degree distribution does change as the clustering coefficient
changes. Here we consider another kind of joint distribution
Pst proposed by Hackett et al. [52,59], which also preserves
the total degree distribution P (k) for different clustering
coefficients. We set

Pst = P (k)δk,s+2t [(1 − f )δt,0 + f δt,)(s+2t)/2*], (21)

where f ∈ [0,1] and ).* is the floor function.
Equation (21) allows us to construct Pst from a given degree

distribution P (k) by picking a fraction f of nodes being
attached to a maximum possible number of triangles while
the remaining (1 − f ) nodes are attached to single edges only.
From the definition of a clustering coefficient, we have

c = f

∑
k k[P (2k) + P (2k + 1)]

∑
k

(
k
2

)
P (k)

; (22)

hence the clustering coefficient can be adjusted by tuning the
parameter f .

We investigate the effect of the joint degree distribution,
Eq. (21), on the robustness of partially interdependent net-
works by comparing the two joint degree distributions. One
is the fixed degree distribution (FDD), which is defined by
Eq. (21) with P (k) obeying a Poisson distribution (P (k) =
〈k〉ke−〈k〉/k!). The other is the double-Poisson distribution
(DPD) discussed in Sec. III, with Pst = e−〈s〉 〈s〉s

s! e−〈t〉 〈t〉t
t! .

Figure 9 plots the size of the giant component in network A
for two partially interdependent networks with clustering. The
joint degree distribution in each network is fixed as either FDD
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FIG. 9. (Color online) Size of giant component in network A
for two partially interdependent networks with clustering. Circles,
squares and diamonds represent results for a joint degree distribution
which fix the total degree distribution being Poisson as we change
the clustering coefficient (FDD). Circles, up-triangles, and down-
triangles represent results for a double-Poisson distribution (DPD)
with total average degree fixed. All resulted are from simulations
with N = 106, 〈k〉 = 4, and q = 0.8 > qc. The behavior of the phase
transition is first-order in both cases but pc is larger for FDD.

or DPD. The interdependent strength q is fixed as first-order.
Note that the critical threshold pc in FDD is larger than that
in DPD when the clustering coefficient is the same. This
difference in pc is caused by the broadening of P (k) in the
double-Poisson distribution. Note that for site percolation on
a single clustered network, a larger clustering coefficient leads
to a higher critical threshold for both distributions [51,52]. For
a system of two interdependent networks, the general trend
is similar, and, for both degree distributions, pc increases as
the clustering coefficient increases. Figure 10 shows the size
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FIG. 10. (Color online) Size of giant component in network A
for two partially interdependent networks with clustering. Circles,
squares, and diamonds represent results for FDD, while circles, up-
triangles, and down-triangles represent results for DPD. All results
are from simulations with N = 106, 〈k〉 = 4, and q = 0.6 < qc. The
behavior of the phase transition is second-order.
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of the giant components in partially interdependent networks
with a second-order phase transition for both FDD and DPD.
The influence of clustering on the robustness of partially
interdependent networks is larger for FDD than for DPD, but
the general trend is similar in both distributions.

VI. CONCLUSIONS

We have developed a framework for studying percolation
in a network formed of interdependent ER networks with
clustering. For each clustering coefficient, the system shows a
first-order to second-order transition as we decrease coupling
strength q. As we increase the clustering coefficient of each
network, the system becomes less robust. This influence of
the clustering coefficient on network robustness decreases as
we decrease the coupling strength, and the critical coupling
strength qc, at which the first-order phase transition changes

to second-order, increases as we increase the clustering coeffi-
cient. We have also investigated the differences and similarities
between two different joint degree distributions, FDD and
DPD. We have found that, although the percolation threshold
is different in the two cases, the general conclusion that an
increase in the clustering coefficient causes interdependent
networks to become less robust holds.
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H. J. Herrmann, Sci. Rep. 3, 1969 (2013).
[41] R. Parshani et al., Euro. Phys. Lett. 92, 68002 (2010).
[42] Y. Hu, B. Ksherim, R. Cohen, and S. Havlin, Phys. Rev. E 84,

066116 (2011).
[43] S. V. Buldyrev, N. W. Shere, and G. A. Cwilich, Phys. Rev. E

83, 016112 (2011).
[44] A. Bashan, Y. Berezin, S. V. Buldyrev, and S. Havlin, Nature

Phys. 9, 667 (2013).
[45] J. Gao, S. V. Buldyrev, S. Havlin, and H. E. Stanley, Phys. Rev.

Lett. 107, 195701 (2011).
[46] J. Gao, S. V. Buldyrev, H. E. Stanley, and S. Havlin, Nature

Phys. 8, 40 (2012).

032812-7



SHAO, HUANG, STANLEY, AND HAVLIN PHYSICAL REVIEW E 89, 032812 (2014)

[47] J. Gao, S. V. Buldyrev, H. E. Stanley, X. Xu, and S. Havlin,
Phys. Rev. E 88, 062816 (2013).
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