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Here we discuss recent advances in applying ideas of fractals and disordered systems to two 
topics of biological interest, both topics having in common the appearance of scale-free 
phenomena, i.e., correlations that have no characteristic length scale, typically exhibited by 
physical systems near a critical point and dynamical systems far from equilibrium. (i) DNA 
nucleotide sequences have traditionally been analyzed using models which incorporate the 
possibility of short-range nucleotide correlations. We found, instead, a remarkably long-range 
power law correlation. We found such long-range correlations in intron-containing genes and 
in non-transcribed regulatory DNA sequences as well as intragenomic DNA, but not in 
cDNA sequences or intron-less genes. We also found that the myosin heavy chain family gene 
evolution increases the fractal complexity of the DNA landscapes, consistent with the 
intron-late hypothesis of gene evolution. (ii) The healthy heartbeat is traditionally thought to 
be regulated according to the classical principle of homeostasis, whereby physiologic systems 
operate to reduce variability and achieve an equilibrium-like state. We found, however, that 
under normal conditions, beat-to-beat fluctuations in heart rate display long-range power law 
correlations. 

1. Introduction 

The purpose of this paper is to describe some recent progress in fractals and 
disordered systems [l] that overlap two topics from biology. The first of these 
concerns a discovery about the difference in the long-range correlations 
between base pairs in the coding and non-coding parts of DNA [2,3]. The 
second concerns long-range correlations in the intervals between heartbeats 
[4]. For both examples, we analyzed the data by producing contours reminis- 
cent of irregular “fractal” (self-affine) landscapes that are widely studied in 
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physical systems [l]. Both examples are found to be similar, in that their fractal 
landscapes display long-range correlations of the sort recently studied in 
various abstract physical models of porous media [5]. This work is being 
carried out by a remarkable team of interdisciplinary workers, and I am 
pleased that they have consented to join me as co-authors. 

2. DNA 

DNA nucleotide sequences have been previously analyzed using models - 
such as an n-step Markov chain - which incorporate the possibility of short- 
range nucleotide correlations [6]. To study the possibility of long-range correla- 
tions, we first introduced a novel method for studying the stochastic properties 
of nucleotide sequences by constructing a 1: 1 map of the nucleotide sequence 
onto a walk-which we term a DNA walk [2]. We used this mapping to 
provide a quantitative measure of the correlation between nucleotides over 
long distances along the DNA chain. We discovered in the nucleotide sequence 
a remarkably long-range power law correlation that is significant because it 
implies a new scale invariant property of DNA [2]. Most intriguingly, we found 
such long-range correlations in intron-containing genes and in non-transcribed 
regulatory DNA sequences, but not in cDNA sequences or intronless genes 
(see also the independent work of ref. [7]). 

In the one-dimensional random walk model, a walker moves either up 
(u(i) = +l) or down (u(i) = -1) one unit length for each step i of the walk. 
The DNA walk is defined by the rule that the walker steps up (u(i) = +l) if a 
pyrimidine occurs at position a linear distance i along the DNA chain, while 
the walker steps down (u(i) = -1) if a purine occurs at position i. For the case 
of an uncorrelated walk, the direction of each step is independent of the 
previous steps. For the case of a uncorrelated walk, the direction of each step 
is independent of the previous steps. For the case of a correlated random walk, 
the direction of each step depends on the history (“memory”) of the walker. 
The question we ask is whether such a walk displays only short-range correla- 
tions (as in an n-step Markov chain) or long-range correlations (as in critical 
phenomena and other scale-free “fractal” phenomena). 

This DNA walk provides a novel graphical representation for each gene and 
permits the degree of correlation in the nucleotide sequence to be directly 
visualized, by constructing a one-dimensional landscape. The “altitude” at 
each coordinate point I is given by the “net displacement” y(Z) of the walker 
after I steps, which is the sum of the unit steps u(i) for each step i, 
y(l) = cf,, U(i) - z- U, where U is the average value of u over the entire 
sequence. 
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An important statistical quantity characterizing any landscape (or surface) is 
the root mean square fluctuation F(I) about the average altitude. A calculation 
of F(1) can distinguish three possible types of behavior. 

(i) If the nucleotide sequence were random, then F(I) - 11’2 - as expected 
for a normal random walk or any system where the correlation function 
decreases exponentially - cf. eq. (8.23) of ref. [8]. 

(ii) If there were a local correlation extending up to a characteristic range 
(such as in Markov chains), then the asymptotic behavior F(l) - Z1’2 would be 
unchanged from the purely random case. 

(iii) If there is no characteristic length (i.e., if the correlation is “infinite- 
range”), then the fluctuations will be described by a power law 

F(1) - I” (a #l/2). (1) 

We made double-logarithmic plots of the mean square fluctuation F(l) as a 
function of the linear distance I along the DNA chain for representative 
genomic and cDNA sequences across the phylogenetic spectrum [2]. In addi- 
tion, we analyzed other sequences encoding a variety of other proteins as well 
as regulatory DNA sequences - 84 in total. We discovered that remarkably 
long-range correlations (a > l/2) are characteristic of intron-containing genes 
and non-transcribed genomic regulatory elements [2]. In contrast, for cDNA 
sequences and genes without introns, we find that (Y z l/2 indicating the 
absence of long-range correlation. Thus, the calculation of F(Z) for the DNA 
walk representation provides a new, quantitative method to distinguish genes 
with multiple introns from intron-less genes and cDNAs based solely on their 
statistical properties. The finding of long-range correlations in intron-contain- 
ing genes appears to be independent of the particular gene or the encoded 
protein - it is observed in genes as disparate as myosin heavy chain, beta globin 
and adenovirus. The functional (and structural) role of introns remains uncer- 
tain, and although our discovery does not resolve the “intron-late” vs. “intron- 
early” controversy about gene evolution [9], it does reveal intriguing fractal 
properties of genome organization that need to be accounted for by any such 
theory. 

More recently, Buldyrev et al. [3] studied the evolution of the myosin heavy 
chain (MHC) gene family using the same technique (figs. l-3). They found 
that (Y seems to increase with evolution (fig. 4). The monotonic increase of (Y 
with evolution does not support a recent study of Voss [lo]. This apparent 
discrepancy is due to the fact that ref. [lo]: (i) did not analyze single gene 
families with evolution, (ii) did not distinguish intron-containing vs intron-less 
sequences, and (iii) did not account for “strand bias” (unequal number of 
purines and pyrimidines over some regions, see fig. 2). 
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cslegans 

Fig. 1. Fractal landscape representations of three members of the MHC family: worm (C. 
elegans), rat (Ratus norvegicus), and human (Homo sapiens). The red bars denote coding regions 
(“exons”), while the yellow denotes the non-coding regions (“introns”). As the number of introns 
increase, the average exon length decreases and the average intron length increases. 



rat 

Fig. 2. Fractal landscape formed by stitching together the coding regions (“exons”) in chicken 
(Gallus gallus), rat, and human. Note that the total exon size remains approximately constant, and 
even the general shape of the “exon landscape” is similar. 

Nee [ll] has recently raised the possibility that exon regions correspond to 
uncorrelated biased random walks, while intron regions correspond to uncorre- 
lated unbiased random walks. Since exons and introns interdigitate, the overall 
behavior could appear to be a correlated random walk. To rule out this 
possibility, we studied genes with the exons removed (“spliced together 
introns”). If Nee’s hypothesis were correct, we would have observed (Y = 0.5, 
as for an uncorrelated unbiased random walk. Instead, we observed roughly 
the same value of (Y as in the full gene (fig. 5a) [ll]. A more detailed 
comparison of the two cases is obtained by plotting the “local slope” (fig. 5b). 
For example: for the rat MHC gene (X04267) (Y = 0.64 for the entire sequence, 
and (Y = 0.67 for the “stitched together” intron sequence. 



H. E. Stanley et al. I Fractal landscapes in biological systems 

chicken 

rat 

0 2000 4000 6000 8000 10000 12000 14000 16000 

human 
300 

200 

100 

0 

-100 

-200 

-300 

-400 

-500 
0 2000 4000 6000 8000 10000 12000 14000 16000 

Fig. 3. Fractal landscape formed by stitching together the non-coding regions (“introns”) in 
chicken, rat, and human. Note that the general features of the intron landscape differ from one 
organism to another. 

To understand possible evolutionary mechanisms [12] that increase the 
complexity of the fractal landscape of genomic DNA sequences, we also 
developed a model that utilizes intron insertion into pre-existing coding 
sequences [3]. The model is based on the hypotheses that originally the 
information was encoded in an mRNA molecule that later was converted into a 
DNA sequence, and that this sequence underwent modifications due to 
mutagenesis and insertion of non-coding genetic material (introns). Iterating 
this model produces sequences of increasing fractal complexity fully analogous 
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log I 
Fig. 4. Dependence on I of the local slopes for three genes in ascending order of evolution: worm 
(II), rat (o), and human (0). Each local slope, (Y,_~, is the slope of each pair of successive data 
points in a log-log plot of the fluctuation F(f) vs. 1. Note that the long-range correlation parameter 
a is increasing monotonically with evolution. 
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Fig. 5. (a) Double-logarithmic plots of the mean square fluctuation function F(l) as a function of 
the linear distance 1 along the DNA chain for the rat embryonic skeletal myosin heavy chain gene 
(0) and its “intronspliced sequence” (a). (b) The corresponding local slopes, (Y,_[, based on 
pairs of successive data points of part (a). We see that the values of (Y are roughly constant. For this 
specific gene, the sequence with exons removed has an even broader scaling regime than the DNA 
sequence of the entire gene, indicated by the fact that part (a) is linear up to 10 000 nucleotides. 

to a Levy walk (consisting of patches of different bias with lengths distributed 
according to a power law). 

3. Interbeat heart intervals 

Very recently, the idea of long-range correlations has been extended to the 
analysis of the beat-to-beat intervals in the heart [4]. The healthy heartbeat is 
generally thought to be regulated according to the classical principle of 
homeostasis whereby physiologic systems operate to reduce variability and 
achieve an equilibrium-like state [13]. We found [4], however, that under 
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normal conditions, beat-to-beat fluctuations in heart rate display the kind of 
long-range correlations typically exhibited by physical dynamical systems far 
from equilibrium [14] - in fact, we found evidence that such power-law correla- 
tions extend over thousands of heartbeats in healthy subjects. 

Clinicians describe the normal activity of the heart as “regular sinus 
rhythm”. But in fact cardiac interbeat intervals normally fluctuate in a com- 
plex, apparently erratic manner [15]. Fourier analysis of lengthy heart rate data 
sets from healthy individuals typically reveals a l/f-like spectrum for lower 
frequencies (co.01 Hz), but the long-term correlation properties of heart rate 
time series remain unstudied [16]. 

Our work was based on the analysis of the beat-to-beat heart rate fluctua- 
tions recorded for long time intervals (up to 24 hours) with an ambulatory 
electrocardiographic (Holter) monitor [4]. Fig. 6, the interbeat interval time 
series B(n) of a representative healthy adult, reveals a complex type of 
variability. Such variations could correspond to three possible cases: (i) 
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Fig. 6. (a) B(n), the beat-to-beat time interval between beat II and beat n + 1, for a period of 24 

hours in a healthy adult. Note that the trend apparent in (a) corresponds to the fact that B(n) is 
non-stationary. (b) The Fourier transform S(f) of B(n). The best-fit line of this double-logarithmic 

plot for over 3 decades has slope p = -1.07. The solid line has slope -1. The data in (b) are 
smoothed by averaging over 50 values. The peak at about 10-l corresponds to physiologic heart 

rate fluctuations associated with breathing (respiratory sinus arrhythmia). 
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random fluctuations in which the duration of each interbeat interval is entirely 
uncorrelated from the previous one, (ii) short-range correlations (e.g., those 
due to respiration) in which the duration of any interbeat interval is correlated 
only with previous beats “locally” and the correlation decays rapidly (exponen- 
tially), or (iii) long-range correlations that decay very slowly (as a power-law 
function of time), extending over hundreds to thousands of beats. The differ- 
ence between (ii) and (iii) is not only in the range of correlations but in their 
different functional form: a characteristic time scale exists in (ii) but not in 
(iii). 

The question we address, therefore, is which type of correlation behavior the 
normal heartbeat displays. A standard time series measurement is the au- 
tocorrelation function C(t) = ((B(n) - l?)(B(n + t) - I?)), which measures the 
statistical influence of how one interbeat interval deviated from the average 
will affect the deviation of other interbeat intervals after a time lag t. 

Alternatively, we can compute the Fourier power spectrum S(f). If the time 
series is stationary, i.e., the average and the variance are independent of the 
sampling length of the time series, S(f) is simply the Fourier transform of C(t) 

[17]. For a random uncorrelated process (case (i)), C(t) must fall to zero after 
one beat so S(f) is flat for a broad range of frequencies (white noise). For a 
time series with only short-range correlations (case (ii)), C(t) must decay 
exponentially so S(f) will be flat or almost constant for the low frequency 
region and fall off for the high frequencies. For long-range correlations (case 
(iii)), both C(t) and S(f) must have a power-law behavior, so a double- 
logarithmic plot must be linear. 

A requirement for calculating C(t) is .that the time series by stationary. 
Visual inspection of the trends in fig. 6a reveals that the healthy interbeat 

intervals do not meet this criterion. As a first step toward obviating the 
difficulties arising from nonstationarity due to circadian rhythms, endocrine 
cycles and other factors, we compute S(f) to obtain some general idea of what 
the correlation may look like. Fig. 6b is a log-log plot of S(f) for the healthy 
heartbeat time series of fig. 6a. The best fit line in fig. 6b has slope -1.07 and 
corresponds to the 1 lf spectrum consistent with previous reports [16]. 

In principle, applying the Fourier transform method assumes that the time 
series under study is much longer than the largest period of the sequence, so 
that longer sequences contain no additional information. However, this is not 
the case for long-range correlated time series with power law behavior, 

S(f) -fP (P<O) 7 

because the diverging Fourier components for the low frequencies indicate that 
the longest oscillatory component is always comparable to the length of the 
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entire sequence under study. In fact, the time series is always non-stationary 
when p G -1 since if we integrate the power spectrum from some finite 
frequency to zero, the total power will diverge, implying no well-defined 
average values over long times. It is necessary, therefore, to test whether the 
long-range correlation behavior suggested by the power law scaling in fig. 6a is 
simply an artifact of a non-stationary time series with finite length. To this end, 
we measure the difference between two consecutive interbeat time intervals 
and define the interbeat increment function (I(n) = B(n + 1) - B(n). We find 
that this new function, shown in fig. 7a, is stationary by calculating the means 
and variances of several subsequences of Z(n). Since the increment is equiva- 
lent to the first derivative of the time series, it follows that if S(f) is not 
affected by non-stationarity, then S,(f), the power spectrum of the increment 
series, will behave as 

S,(f) -P (P,=P+2). G’b) 

The extra f’ factor for the increment series arises from the fact that the Fourier 
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Fig. 7. (a) The increment function Z(n) - B(n + 1) - B(n). Note that the non-stationarity is no 
longer present. (b) The power spectrum S,(f) for the increment sequence. The best-fit line has a 
slope p, = 0.93, while the solid line has slope +l (cf. eq. (2b)). THe data in (b) are smoothed by 
averaging over 50 values. 
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transform of a derivative will yield an extra factor off for the amplitude of the 
Fourier components, and the power spectrum is the square of the amplitudes. 
Fig. 7b is a double-logarithmic plot of S,(f), the power spectrum for the 
increment data of fig. 7a. The slope gives /3, = 0.93, consistent with eq. (2b) 
since p = -1.07 for the original time series in fig. 6a. Thus this measurement 
provides an important consistency check that the scaling exponent p is in fact 
due to long-range correlations (extending over lo4 heartbeats), and not to 
non-stationarity. For a group of 12 adult subjects without clinical evidence of 
heart disease (age range: 20-61 years, mean 34), we found that /3 = -1.02 ? 
0.16 and p, = 0.98 ? 0.17 [4]. Furthermore, we obtained similar results when 
we divided the time series into three subsets (approximately 8 hour periods) 
and repeated the above analysis; thus our findings are not simply related to the 
different levels of daily activities. 

Our demonstration of long range correlations without a characteristic time 
scale in healthy heart rate dynamics is consistent with observation of fractal 
properties of other physiologic processes and anatomic structures that do not 
have characteristic scale of time or length [16,18-201. This fractal-like behavior 
may be adaptive for at least two reasons. The long-range correlations serve as 
an organizing principle for highly complex, non-linear processes that may 
generate fluctuations on time scales ranging from less than milliseconds to 
greater than months. At the same time, the lack of a characteristic scale helps 
prevent excessive mode-locking that would restrict the functional responsive- 
ness of the organism. Finally, we note that the scale-invariant properties of the 
healthy heartbeat indicate that the control mechanisms are operating far from 
equilibrium [14], in violation of the classical concept of primarily “homestatic” 
regulation [ 131. 
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Note added in proof 

Very recently, Munson and Michaels [21] have reported long-range correla- 
tions extending up to almost 10’ nucleotides in an entire chromosome, yeast 
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chromosome III, consisting of many genes as well as about 50% non-coding 
regions between the genes. Munson and Michaels report (Y = 0.7, well above 
the value a = 0.5 which would be found if there were no long-range correla- 
tions. 
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