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Static and dynamic heterogeneities in water
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The thermodynamic behaviour of water seems to be related to static heterogeneities.
These static heterogeneities are related to the local structure of water molecules and,
when properly characterized, may offer an economical explanation of thermodynamic
data. ‘What matters’ most in determining some of the unusual properties of liquid
water may be the fact that the local geometry of the liquid molecules is not spheri-
cal or oblong, but rather tetrahedral. In respect to static heterogeneities, this local
geometry is critical. The dynamic behaviour of water seems to be related to dynamic
heterogeneities, which seem to explain the dynamics of supercooled liquid water well.
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1. Puzzling behaviour of liquid water

Every cook knows that we can superheat water above its boiling temperature. Every
scientist knows we can supercool water below its freezing temperature: down to
ca.−40 ◦C, below which water inevitably crystallizes. In this deeply supercooled
region, strange things happen: response functions and transport functions appear as
if they might diverge to infinity at a temperature of ca.−45 ◦C. These experiments
were pioneered by Angell and co-workers over the past 30 years (Debenedetti 2003;
Debenedetti & Stanley 2003; Mishima & Stanley 1998b; Angell 1983). Down in the
glassy region of water (see, for example, figure 1), additional strange things happen,
e.g. there is not just one glassy phase (Angell 2004). Rather, just as there is more
than one polymorph of crystalline water, so also there appears to be more than
one polyamorph of glassy water. The first clear indication of this was a discovery by
Mishima et al . (1985): at low pressure there is one form, called low-density amorphous
(LDA) ice (Brügeller & Mayer 1980), while at high pressure there is a new form called
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Figure 1. Schematic indicating the various phases of liquid water (colour coded).
(Reproduced courtesy of Dr O. Mishima.)

high-density amorphous (HDA) ice (Mishima et al . 1985). The volume discontinuity
separating these two phases is comparable with the volume discontinuity separating
low-density and high-density polymorphs of crystalline ice, 25–35% (Mishima 1994,
1996; Suzuki & Mishima 2002).

In 1992, Poole and co-workers hypothesized that the first-order transition line
separating two glassy states of water does not terminate when it reaches the no
man’s land, but extends into it (figure 1) (Poole et al . 1992). If experiments could
avoid the no man’s land connecting the supercooled liquid with the glass, then the
LDA–HDA first-order transition line would continue into the liquid phase. This first-
order liquid–liquid (LL) phase-transition line separates two phases of liquid, high-
density liquid (HDL) and low-density liquid (LDL), which are the precise analogues
of the two amorphous solids LDA and HDA. Like many first-order transition lines,
the LL transition line between non-crystalline phases terminates in a critical point.
Above the critical point is an analytic extension of the LL phase-transition line.
Called the Widom line, this extension exhibits apparent singularities, i.e. if the sys-
tem approaches the Widom line, then thermodynamic response functions appear to
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diverge to infinity until the system is extremely close, at which point the functions
will round off and ultimately remain finite, as seen in the adiabatic compressibility
(Trinh & Apfel 1980).

2. Plausibility arguments for static heterogeneities

That an LL phase transition exists is at least plausible. Plausibility arguments are
designed to convince a stranger. My grandmother is not a stranger to me, but she
is a stranger to the puzzling behaviour of liquid water. One day she asked, ‘Why do
liquids condense? Why do molecules floating around in the air suddenly decide to
condense?’. To answer, I drew the interaction potential between two water molecules,
and explained that there is a minimum at which the water molecules are closer to
one another and are more ordered than in the gas, i.e. they have a lower specific
volume and a lower entropy. Associated with that minimum is a condensed phase,
which we call a liquid.

My grandmother’s follow-up question was right on point: ‘Why is there only one
minimum?’. This was relevant because in liquid water there may very well be two
minima. This is because liquid water is a tetrahedral liquid, and two water tetrahedra
can approach each other in many different ways. One way is coplanar, as in ordinary
hexagonal ice Ih, creating a ‘static heterogeneity’ with a local density not far from
that of ordinary ice: ca. 0.9 g cm−3 (figure 2). A second way is altogether different:
one of the two tetrahedra is rotated by 90◦, resulting in a closer distance where the
minimum of potential energy occurs, and hence a static heterogeneity with a local
density substantially larger (by ca. 30%) than that of ordinary ice (Canpolat et al .
1998). In fact, this rotated configuration occurs in solid crystalline water (‘ice VI’),
which occurs at very high pressure.

In liquids close to the freezing temperature, there can be heterogeneities with local
order resembling that of the nearby crystalline phases. Not surprisingly then, in water
at low pressure there are more heterogeneities that have ice-like order (entropy) and
density, while at high pressure there are more heterogeneities that have an order and
density not altogether unlike ice VI.

The potential that I drew for my grandmother could not represent all the possi-
ble relative orientations of two water tetrahedra; rather, it simply had two wells: a
deeper, ‘high-volume, low-entropy’ well corresponding to the LDL and a shallower,
‘low-volume, high-entropy’ well corresponding to the HDL. Note that the LDL has
a higher specific volume and a lower entropy. Therefore, if this double-well potential
exists, when water cools, each molecule must decide how to partition itself between
these two minima. The specific volume fluctuations increase because of these two
possibilities. The entropy fluctuations also increase and the cross-fluctuations of vol-
ume and entropy have a negative contribution, i.e. high volume corresponds to low
entropy, so that the coefficient of thermal expansion, proportional to these cross
fluctuations, can become negative.

The possibility that these static heterogeneities gradually shift their balance
between low density and high density as pressure increases is plausible, but need
not correspond to a genuine phase transition. There is no inherent reason why these
heterogeneities need to ‘condense’ into a phase, and the first guess might be that
they do not condense, an idea which is now called the singularity-free hypothesis
(Stanley 1979; Stanley & Teixeira 1980; Stanley et al . 1981; Sastry et al . 1996).
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Figure 2. Physical arguments relating to the plausibility of the existence of the known liquid–gas
critical point C and the hypothesized LDL–HDL critical point C′. (a) Idealized system charac-
terized by a pair-interaction potential with a single attractive well. At low enough T (T < Tc)
and high enough P (P > Pc), the system condenses into the ‘liquid’ well shown. (b) Idealized
system characterized by a pair-interaction potential whose attractive well has two sub-wells, the
outer of which is deeper and narrower. For low enough T (T < Tc′) and low enough P (P < Pc′),
the one-phase liquid can ‘condense’ into the narrow outer ‘LDL’ sub-well, thereby giving rise to
an LDL phase, and leaving behind the high-density liquid phase occupying predominantly the
inner sub-well. (c) Two idealized interaction clusters of water molecules (‘Walrafen pentamers’)
in configurations that may correspond to the two sub-wells of (b).

However, if we suppose that the intramolecular interaction for water molecules has
a characteristic energy scale Jσ, at low enough temperature T the ratio Jσ/T will
become large enough to influence the Boltzmann factor sufficiently for the system
to condense, giving rise to an LL first-order phase transition line ending in a critical
point (figure 3) (Franzese & Stanley 2002a, b; Franzese et al . 2003). Therefore, the
singularity-free scenario is strictly valid only in the limit Jσ = 0.

3. Classic experiments: statics

The most obvious hallmark of a phase-transition line terminating at a critical point
is that there occur fluctuations on all length-scales up to the size of the correlation
length. Since the correlation length is substantial even relatively far from the critical
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point, one can see manifestations of critical fluctuations in an entire ‘critical region’,
typically extending by a factor of approximately 2 in all thermodynamic directions
away from the critical point.

For example, extremely close to water’s gas–liquid critical point, the correlation
length is so large that it becomes comparable with the wavelength of visible light,
and one can actually see with the naked eye an eerie glow called critical opalescence
(Andrews 1869). Since the LL critical point lies well within the no man’s land, it is
not possible to see critical opalescence in water. Our experimental evidence for this
kind of phase transition must therefore be indirect. Nonetheless, the critical region
is sufficiently large to significantly perturb measured functions even outside the no
man’s land. For example, Angell and his collaborators have found linear behaviour
when they plot functions double-logarithmically against T − Ts, where Ts = Ts(P ) is
the equation of the Widom Line. Typically, the dimensionless temperature variable
(T − Ts)/Ts does not become smaller than about 7/228 ≈ 0.03 (Angell 2004), due to
the presence of the line of homogeneous nucleation temperatures TH(P ) which lies
just a few degrees above the line of apparent singularity temperatures Ts(P ).

When we look at experimental data, we find that they are consistent with the
possibility of an LL phase transition. The volume fluctuations are proportional to
the compressibility (figure 4), and this compressibility is a spectacularly anomalous
function. Below 46 ◦C, the compressibility starts to increase as the temperature is
lowered. This phenomenon is no longer counterintuitive if the double-well potential
is correct. Similarly, below 35 ◦C, the entropy fluctuations that correspond to the
specific heat start to increase. Finally, consider the coefficient of thermal expansion,
which is proportional to the product of the entropy and volume fluctuations. This
is positive in a typical liquid because large entropy and large volume go together,
but for water this cross-correlation function has a negative contribution, and as we
lower the temperature this contribution gets larger and larger until we reach 4 ◦C,
at which point the coefficient of thermal expansion passes through zero.

4. Simulation studies on static heterogeneities

Because the direct experimental study of supercooled water is extremely difficult,
several research groups began using computer simulations to look for static hetero-
geneities. Computer simulations depicting the microscopic nature of local density
fluctuations in water were first done in 1982 (Geiger & Stanley 1982a, b), revealing
static heterogeneities whose linear dimension was comparable with the number found
experimentally (Bosio et al . 1981) and in simulations (Geiger & Stanley 1982a). How-
ever, these authors did not identify two distinct static heterogeneities. The presence
of static heterogeneities with two well-defined local volumes is found in the detailed
simulation studies of Errington & Debenedetti, who report two separate peaks (with
an ‘isosbestic point’) in the histogram of the orientational order parameter (Erring-
ton & Debenedetti 2001). In contrast, for a simple Lennard-Jones fluid they found a
single peak.

The hypothesis that the static heterogeneities should condense at a sufficiently
low temperature is also supported by simulations using a wide range of molecular
potentials, ranging from ‘overstructured’ potentials such as ST2 to ‘understructured’
potentials such as SPC/E. Recent work has focused on the newest of all water poten-
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Figure 3. The P–T phase diagram for a water model with intramolecular interaction Jσ > 0
calculated in mean field approximation. At high T there is the standard gas–liquid first-order
phase transition line (black line) ending in the critical point C. At lower T the liquid reaches a
maximum in density (dashed blue line marking the temperature of maximum density (TMD)).
At lower T there is a first-order phase transition line (red line) between a low-density liquid
(LDL) and a high-density liquid (HDL) ending at low pressure in the critical point C′. Here
Jσ/ε = 0.05, ε is the characteristic energy of the van der Waals interaction and v0 is the volume
per molecule in the gas phase.
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Figure 4. Schematic dependence on temperature of (a) the isothermal compressibility KT , (b) the
constant-pressure specific heat CP and (c) the thermal expansivity αP . The behaviour of a
typical liquid is indicated by the dashed line, which, very roughly, is an extrapolation of the
high-temperature behaviour of liquid water. Note that, while the anomalies displayed by liquid
water are apparent above the melting temperature Tm, they become more striking as one super-
cools below Tm.
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Figure 5. Schematic of the experiments of Reichert and co-workers (Engemann et al . 2004), in
which a thin layer of liquid water appears at the interface between ordinary hexagonal ice and
an amorphous silica substrate. (Reproduced courtesy of H. Reichert.)

tials, Tip5p (Yamada et al . 2002). Regardless of potential used, all results seem to
be consistent with the LL phase-transition hypothesis (Debenedetti 2003).

The LL phase-transition hypothesis does not answer the question ‘what matters?’,
i.e. it does not tell us which liquids should exhibit LL phase transitions and which
should not. It has been conjectured that the local tetrahedral geometry of water is
what matters, since a tetrahedral local geometry leads to static heterogeneities, which
then lead to an LL phase transition (Stanley et al . 2002). But then what about other
tetrahedral liquids? If we take silicon, another tetrahedral liquid, Sastry & Angell
(2003) find evidence for an LL phase transition. Similarly, phosphorus (Katayama
et al . 2000) and SiO2 (Poole et al . 1997) share properties with liquid water and
have a local tetrahedral geometry, and experimental evidence supports the LL phase-
transition hypothesis. However, not all liquids with local tetrahedral geometry behave
like water (Angell et al . 2000). And, conversely, some liquids which do not possess a
locally tetrahedral structure exhibit LL phase transitions (see, for example, the classic
works of Aasland & McMillan (1994) and Brazhkin and collaborators as described,
for example, in the Russian articles of Brazhkin et al . (2002)). It has been argued that
LL phase transitions are associated with liquids possessing a line in the T–P phase
diagram at which the density achieves a maximum (Sciortino et al . 2003; Franzese
& Stanley 2002; Franzese et al . 2001; Skibinsky et al . 2004; Marqués et al . 2003).
Nevertheless, the LL phase transition can be observed in model systems without
maximum in density, but with two characteristic interaction distances associated to
two characteristic interaction energies (Franzese et al . 2001, 2002; Skibinsky et al .
2004).

5. Recent experiments: statics

The experimental work of Angell and collaborators shows apparent singularities when
experimental data are extrapolated into the no man’s land. Mishima and co-workers
measured the metastable phase-transition lines of ice polymorphs and found that
the slopes of these lines exhibited sharp kinks in the vicinity of the hypothesized
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liquid–liquid phase-transition line as predicted by extrapolation (Mishima & Stanley
1998a; Mishima 2000; Mishima & Suzuki 2001). The nature of these kinks can be
explained if we take into account the fact that an ice polymorph must melt into
a metastable liquid before it can recrystallize into a different polymorph. By the
Clausius–Clapeyron relation, the slope of that first-order metastable melting line
must be equal to the ratio of the entropy change divided by the volume change of
the two phases that coexist. In one phase, the coexistence is always the high-pressure
polymorph of ice. The other phase is either HDL or LDL. The volumes and entropies
of those two liquids are different, and therefore, as the first-order solid–liquid phase-
transition line crosses the hypothesized LL phase-transition line, the slope changes.

The Gibbs potentials of two phases coexisting along a first-order transition line
must be equal. We already know the Gibbs potential of all the polymorphs of ice, so
we know, experimentally, the Gibbs potential of the LDL and the HDL. From the
Gibbs potential of any substance one can obtain, by differentiation, the volume. Thus,
if we know the Gibbs potential as a function of temperature and pressure, we know
the volume as a function of temperature and pressure, which is called the equation
of state. In this way Mishima & Stanley (1998a) were able to find an experimental
equation of state for water deep inside the no man’s land. This is, of course, not
quite the same as actually measuring the densities of two liquids coexisting at the
LL phase-transition line, as was recently observed in phosphorus (Katayama et al .
2000; Monaco et al . 2003), since the Mishima experiments concerned metastable
melting lines in which the Gibbs potentials of the two phases are not necessarily
equal to each other.

Novel experimental approaches able to probe the behaviour in the previously hard-
to-probe no man’s land may offer the possibility of directly observing distinct phases
of liquid water. Very recently, Reichert and collaborators (Engemann et al . 2004)
studied at ambient pressure the quasi-liquid layer of a few molecules’ thickness that
forms spontaneously between ice Ih and a solid amorphous SiO2 substrate even at
temperatures moderately below the freezing temperature (figure 5). They designed
a new experimental technique at Grenoble by which they were able to measure the
density of this quasi-liquid layer, and they found 1.17 g cm−3: a value of the density
normally obtained only by placing water under substantial pressure (Soper & Ricci
2000; Ricci & Soper 2002). Noting that this value also corresponds to the density
of HDA, Engemann et al . (2004) suggested that this high-density liquid may have a
structural relationship with HDL. Their work holds promise for new ways to exploit
the special properties of confined water to search for experimental realizations of
anomalies normally occurring only in the no man’s land. In fact, Zanotti et al . (2005)
have recently studied, under confinement conditions, water which remains liquid all
the way down to the glass-transition temperature, i.e. the no man’s land does not
exist at all.

It only takes one clear experiment to kill a hypothesis. Recently, Loerting and
collaborators claimed to find not two glassy waters, but three (Loerting et al . 2001;
Finney et al . 2002). If true, this would seem to destroy the liquid–liquid phase-
transition hypothesis because we would no longer have two phases of H2O.

In the temperature–pressure phase diagram there is a first-order transition line
separating two phases of amorphous solid water: low-density (LDA) and high-density
(HDA). Experimentally, we can press on the LDA and transform it into HDA, with
the volume dropping by ca. 30%. This is reversible: when we relieve the pressure, the
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Figure 6. Schematic of the PEL, in which HDA is shown as a valley
that is not as deep as, and hence is metastable with respect to, VHDA.

substance returns to the original LDA with hysteresis. This experiment, carried out
by Mishima (1994), can be replicated by simulations.

Loerting and collaborators took the same temperature and pressure found in the
Mishima experiments and pressed on the LDA to make HDA. They then heated the
HDA at constant pressure, from nitrogen temperatures up to 160 K, and cooled it
back down. They found that when the HDA was heated from 77 K to 160 K the
density increased. When it was cooled back down it did not return to the origi-
nal density, but continued to increase. The structure, as measured by X-rays, was
somewhat different. Loerting and collaborators concluded that this was a new form
of amorphous solid water, which they called very-high-density amorphous (VHDA)
solid water.

Giovambattista et al . (2005) repeated Loerting’s experiment on a computer. Loert-
ing and collaborators created HDA at T = 77 K, heated it and cooled it back down.
Giovambattista et al . replicated exactly what Loerting and collaborators had found
experimentally.

Does this new VHDA form weaken the LL phase-transition hypothesis? Giovam-
battista et al . have an alternative explanation. They performed a simulation—one
that cannot be done in a laboratory. They took the liquid at high pressure and cooled
it so rapidly that it jumped across the no man’s land. Experimentally, liquid water
is extremely difficult to cool rapidly at high pressure (Mishima & Suzuki 2001) but,
with a computer simulation, this extremely rapid cooling can be done. In fact, most
computer simulations are of much less than 100 ns in duration, a time period not
sufficient for crystallization to take place (Matsumoto et al . 2002; Yamada et al .
2002). The simulated cooling is continuous and the line extrapolates to the VHDA
phase, suggesting that it is the VHDA, not the HDA, that is the stable phase, and
that VHDA (not HDA) is the glass connected to HDL by isobaric heating/cooling.

To confirm this interpretation, they measured the structure, i.e. the pair-
correlation function g(r) for the two methods of producing VHDA, the first being
the method of the Loerting experiment, and the second being the sudden cooling
method that can only be employed in simulations. The results were the same.

Thus, we conclude that we do not have three phases of glassy water, but still
only two. There is the LDA phase at low pressure; at high pressure there is the
highly metastable HDA phase that, when heated, crosses over a barrier and becomes
VHDA (figure 6). To confirm this transition, we simply wait. If a glass is highly
metastable, it will become something else. If we plot the density as a function of time
in nanoseconds, computer simulations show that HDA’s density gradually increases
until it approaches that of VHDA.
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Figure 7. A ‘dynamic heterogeneity’ (cluster) composed by 16 ‘mobile molecules’ (mobile
molecules are defined as 7% of the molecules which displace most during a time-interval
∆t ≈ 2 ps) found in molecular dynamics simulations of supercooled water at T = 260 K.
Molecules connected by yellow tubes are neighbour molecules whose oxygen–oxygen distance
is less than 0.315 nm, the first minimum in the oxygen–oxygen radial distribution function at
T = 260 K. As T decreases, both static and dynamic clusters increase in size, and the precise
characterization of these static and dynamic heterogeneities (e.g. their shape, size and lifetime)
is an active area of current research.

So the LL phase-transition hypothesis suffered a ‘near-death experience’. It
appeared that experimentation had detected a new phase of glassy water, when
in fact it had detected the stable form of the high-density phase, i.e. VHDA.

6. Dynamic heterogeneities

How does water rearrange itself? Glotzer and co-workers (Kob et al . 1997) have
shown how simple liquids such as Lennard-Jones liquids restructure themselves in the
deeply supercooled region, not ‘democratically,’ but by a few molecules configured in
long, string-like clusters moving cooperatively. This is somewhat like the movement
of people in the Tokyo subway. When a hole opens up, someone moves into the hole,
leaving a new hole into which someone else moves, and so on. This also happens in
water.

The picture of water restructuring involves the mean-squared displacement of
molecules as a function of time, in which there is a ballistic regime with water
molecules moving like bullets with a constant velocity and a cage-like regime (the
Tokyo subway again) where there are no holes and, finally, a diffusive regime.
Therefore, macroscopic graphs of mean-squared displacement as a function of time
correspond to microscopic properties of those dynamic heterogeneities. Dynamic
heterogeneities appear to play a role in the Adam–Gibbs clusters (‘cooperatively
rearranging regions’) that were hypothesized 50 years ago to explain the dynamics of
water at low temperature. We seem to have identified those cooperatively rearranging
regions (figure 7) and the Adam–Gibbs relations that were hypothesized seem to be
borne out (Giovambattista et al . 2003, 2005).

7. Dynamics and the potential energy landscape

The dynamics of a system can be related to a potential energy landscape (PEL),
the hypersurface obtained by adding one coordinate to phase space, namely the
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potential energy. Seeley & Keyes (1989) used instantaneous normal-mode analysis
to ascertain what controls the dynamics of this potential-energy surface. The way
a system point goes from one valley to another valley is what matters in system
dynamics. The saddle points or ‘mountain passes between valleys’ are crucial, so the
dynamic properties depend on the number of mountain passes present.

A computer can probe the potential-energy surface and measure dynamic proper-
ties such as the diffusion constant. The diffusion constant in liquid water does not
depend separately on temperature and on pressure (the two thermodynamic vari-
ables) but on a single scaled variable: the fraction of mountain passes (La Nave et
al . 2000, 2001; Scala et al . 2000; Starr et al . 2001). For totally different tempera-
tures and pressures (and therefore densities) of liquid water, all the data for this
dynamic property collapse on a single curve. This is reminiscent of the data collapse
in systems near a critical point. A log–log plot of that same diffusion constant on the
y-axis as a function of the logarithm of the number of those mountain passes shows
that all the density data collapse on a single straight line. Thus there is a power-law
dependence on this fraction of mountain passes that characterizes diffusion in liquid
water.

When Giovambattista et al . (2002) studied the PEL in great detail at very low
temperatures and asked how water rearranges itself, they confirmed some previous
findings (Sciortino et al . 1991, 1992), namely, that the hydrogen bond itself is so
strong that water would never rearrange itself at these low temperatures. There is
not enough energy to break a hydrogen bond. There is, however, enough energy to
change a linear hydrogen bond to a bifurcated hydrogen bond. The proton finds itself
shared between two oxygens. This rearrangement does not require as much energy
as is needed in breaking apart a hydrogen bond.

8. Discussion

In summary, in the case of the statics of liquid water, the presence of a local tetra-
hedral geometry leads to two distinct forms of local order (‘static heterogeneities’),
differing in specific volume and entropy, with the specific volume and entropy anti-
correlated. This fact gives rise to anomalous fluctuations in compressibility, specific
heat, and the coefficient of thermal expansion. The possibility that at low enough
temperatures these small regions of local order condense into two separate phases
(LDA and HDA) is supported by simulations, but is an open question experimen-
tally. Recent experiments suggest there is more than one phase of amorphous solid
water, while simulations suggest that one of these phases, HDA, is metastable with
respect to another, VHDA, so that in fact there are only two stable phases: LDA
and VHDA (Giovambattista et al . 2004a, b, 2005). If in fact there are more than two
stable forms of amorphous solid water, then the LL phase-transition hypothesis could
be amended to require more than two phases of liquid water—perhaps a less elegant
picture, but a possibility consistent with the very recent simulations of Brovchenko
et al . (2003) and with the models of Buldyrev & Stanley (2003) and White (2005).

In the case of the dynamics of liquid water, the actual motion of molecules seems
to follow the same pattern as that for simple liquids, with ‘dynamic heterogeneities’
doing all the action. The potential-energy surface and the number of mountain passes
separating valleys in this potential-energy surface seems to be the controlling fac-
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tor. An intriguing open question is the relation between static and dynamic hetero-
geneities.

So far, the only indirect link is provided by the Adam–Gibbs relation. The static
heterogeneities are related to the anomalous increase of water entropy upon compres-
sion at constant temperature. Due to the Maxwell relation, the region of this anomaly
coincides exactly with the region of the negative thermal expansion coefficient. Inter-
estingly, this region is contained within a wider region of the phase diagram, in which
there is an the increase of diffusion coefficient with pressure. The Adam–Gibbs the-
ory relates the diffusion coefficient with configurational entropy and both quanti-
ties increase with pressure. The configurational entropy is inversely proportional to
the size of dynamic heterogeneities which must thus decrease with pressure. This
coincidence suggests that static and dynamic heterogeneities may correlate on the
microscopic level as well.
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