JOURNAL OF APPLIED PHYSICS

VOLUME 40, NUMBER 3

1 MARCH 1969

Some Critical Properties of Quantum-Mechanical Heisenberg Ferro-
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High-temperature expansions of the staggered susceptibility for the Heisenberg antiferromagnet are
analyzed for two-dimensional lattices. The evidence favoring a divergent staggered susceptibility ¥ is
found to be essentially as strong as that presented earlier in support of a divergent susceptibility x for
the two-dimensional Heisenberg ferromagnet. Thus the very recent experimental and theoretical findings
which favor a phase transition in varjous “planar antiferromagnets” (or materials with the K;NiF, structure
in which the intraplanar interactions may be as much as 10° times stronger than any interplanar inter-
actions) would appear to be supported by the series expansions. We also consider the question of the de-
pendence of the susceptibility exponent y[x~(7T— T.)=] upon spin quantum number S for three-
dimensional lattices. The previously proposed behavior must definitely be revised in the light of additional
terms in the expansions and the availability of more refined extrapolation procedures. Here we argue (a)
that v () =1.384+0.01 and (b) that v(S) does not appear to jump, for § finite, to 1.43 (its presumed

value for S=1).

I. STAGGERED SUSCEPTIBILITY OF
TWO-DIMENSIONAL HEISENBERG
ANTIFERROMAGNETS

Initially it was assumed that a system of spins situ-
ated on a two-dimensional lattice and interacting with
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F16. 1. Ratios @,/0.1, square roots (@./@»_1) V2, and nth roots
(8,)V» formed from coefficients @, in the staggered susceptibility
series; for comparison are shown the ratios for the ferromagnetic
susceptibility series. All the plots are normalized by dividing by
@ in order that the intercept at 1/4#=0 be the ratio of the critical
temperature to the molecular-field critical temperature.

a Heisenberg Hamiltonian would possess a finite zero-
field susceptibility x for all positive temperatures T In
1966 this assumption was questioned on two grounds!:
(i) the coefficients in the high-temperature expansions
for x suggested that x diverged at a nonzero temper-
ature T, and (ii) there existed absolutely no evidence
against a divergent x; the only evidence at all was a
nonrigorous argument for zero spontaneous magnetiza-
tion M. Shortly thereafter, it was rigorously proved?
that M =0 for T>0, leaving only the possibility, as
suggested in Ref. 1, of a phase transition to a low-
temperature phase in which there is no “infinite-range
order” [M «limg..T's"*], yet there is sufficient “long-
range order” that x « ZRFR_’w : Tr=(S;*Sg) is the
two-spin correlation function. This possibility! derived
some support from a low-temperature approximation
for the quantum-mechanical Heisenberg model,? sub-
sequently applied also to the two-dimensional harmonic
solid4; these calculations predict that at large spin
separation R, Trx R~ so that M =0 yet x=o for
low T'. A different picture of the proposed M =0 “low-
temperature phase” has recently arisen from a Green’s
function calculation.?

_ TaBre I. Ratios p,=4, /G, 1 of successive coefficients i, in the staggered susceptibility series for the plane square lattice. The
@, themselves are obtained using a;=225(S541) /3. Classically (as S— ) Xx=x and the p.(=p») are given, through order n=9, in

Table IIT of Ref. 15.

n 5=} S=1 S=% S=% S=%

1 1.000000000  1.000000000  1.000000000  1.000000000  1.000000000
2 0.666666667  0.718750000 0.733333333 0.742857143  0.746031746
3 0.500000000  0.635869565  0.667272727 0.686373626  0.692502533
4 0.365625000  0.560202991  0.508100673 0.620767148 0.628021258
5 0.329059820 0.511681129 0.555934626  0.583790668  0.592892590
6 0.518939394 0.488380669 0.532227615  0.560477020  0.569711310
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PROPERTIES OF HEISENBERG FERRO-

Experimentally, it appears impossible to actually
build a truly two-dimensional lattice (although a recent
computer simulation of the classical Heisenberg model®
suggests the persistence of considerable “‘order” for
T>0). However two groups of workers”® have found
evidence supporting a “phase transition” in a class of
layered structures (generally with the K,NiF, struc-
ture) for which the intraplanar interactions are ap-
parently several orders of magnitude stronger than
any interplanar interactions. Since the magnetic struc-
ture within the planes is that of an aentiferromagnetic
square net, we have calculated the coefficients in the
high-T" expansions for the siaggered susceptibility X of
a square net antiferromagnet?; the results are sum-
marized in Table 1. Various extrapolation procedures
(see, e.g., Fig. 1) suggest that the “numerical evidence”
favoring a divergent staggered susceptibility for the
antiferromagnet is just as convincing as that presented
earlier in favor of a divergent susceptibility for the
ferromagnet. Nofe added in proof: Extremely convincing
evidence from neutron scattering experiments for
“two-dimensional ordering” in K,NiF, has recently
been obtained by R. J. Birgeneau, H. J. Guggenheim
and G. Shirane, Phys. Rev. Letters (in press).

II. DEPENDENCE OF THE HEISENBERG-MODEL
SUSCEPTIBILITY EXPONENT ON SPIN
QUANTUM NUMBER

It was once thought that the exponent vy describ-
ing the divergence of the zero-field susceptibility,
x~(T—T,)~, had the value % for all values of the
spin quantum number S. In 1964 it was suggested!
that v might have a weak spin dependence, v(.S)=
1.33+40.05/S. As additional terms in the various series
became available, it was argued that' v (1) =1.43+£0.03
and that!? y()221.36-1.38. Hence it would now ap-
pear that any spin dependence, if it exists at all, would
be barely outside the margin of “experimental error”
inherent in the extrapolation procedures.’®

§R. E. Watson, M. Blume, and G. Vineyard (unpublished).

7J.Koppen, R. Hamersma, J. V. Lebesque, and A. R. Miedema,
Phys. Letters 25A, 376 (1967); D. J. Breed, Physica 37, 35
(1967); G. De Vries, D. J. Breed, E. P. Maarschall, and A. R.
Miedema, J. Appl. Phys. 39, 1207 (1968).

8 G. K. Wertheim, H. J. Guggenheim, H. J. Levinstein, D. N. E.
Buchanan, and R C. Sherwood, Phys. Rev. (in press). See also
M. F:] Lines, Phys. Letters 244, 591 (1967) ; Phys. Rev, 164, 736
(1967).

® We wish to thank Prof. G. S. Rushbrooke for sending us the
“general-lattice expressions” for the coefficients in the staggered
susceptibility series (obtained by him and P. J. Wood); see,
e.g., Mol. Phys. 6, 409 (1963).
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121t was P. J. Wood and G. S. Rushbrooke, Phys. Rev. Letters
17, 307 (1966) who first suggested that v(®) was appreciably
larger than 4/3. Note added in proof: R. G. Bowers (unpublished)
ha/ssrecently put forth arguments (supporting ours) that v (o)==
11/8.

3 In fact, most current theoretical ideas concerning the critical
exponents predict;therelshould be no_spin dependence whatsoever.
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Fic. 2. Fec lattice for the classical (S= ) Heisenberg model.
(a) The function vy, n1 gives the value of v which would be ob-
tained by placing a straight line through successive ratios plotted
against 1/» (see Ref. 15 for discussion). More precisely, v,,, 1=
l—n“""’Pn/‘n,n—l, where t, n_1=np,— (n— 1) Pr—1, and anam/alan—l,
and a, are the coefficients in the susceptibility series with expan-
sion parameter x=J/kT. The function vm’ is defined by
the same equations with primes on all quantities, where p,’'=
(@n/@nsg)?/a;. Finally, Pi» are the [1, #] sequence of Padé
approximants. (b) The same functions are plotted as in part (a),
with a, replaced by A., where 4, are the coefficients in the sus-
ceptibility series with expansion parameter y= L(x). The addi-
tional function plotted is Yn,n1'=1—n+#0,11"/tns1 .2’

Here we apply various extrapolation procedures not
used before (and use a new term in the general-S
susceptibility series) (a) to argue more convincingly
that y(0)=1.38+0.01, and (b) to suggest that v(.5)
does not appear to jump suddenly to 1.43 for finite
S [as apparently some workers had expected].

" R. L. Stephenson, K. Pirnie, P. J. Wood, and J. Eve, Phys.
Letters 27A, 2 (1968). Incidentally, the additional general-S

term for two-dimensional lattices supports the arguments in Ref, 1
for a divergent susceptibility.
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Fic. 3. The function v»,»—1 (see Caption to Fig. 2 for definition)
for 6 different values of spin quantum number. The evidence for
v (3) =1.43+0.03 was based upon Padé analysis.lt
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(a) It has been observed that smoother series for the
classical Heisenberg model (S— oo limit) are frequently
obtainable by expanding not in the variable x=J/kT
but rather in the new variable y=L(x)=cothx—aL
The improvement in using the new expansion parameter
is exemplified for the fec lattice in Fig. 2, where the
extrapolation techniques described elsewhere® are used
first for the old expansion [Fig. 2(a) ] and then for the
new expansion [Fig. 2(b)]. Certainly the values y=4%
and y=1.43 are not indicated; however it would be
difficult to exclude the possibility, say, that v=1.375
(=11/8).

(b) When we apply various extrapolation procedures
to the series for finite .5, we find no indication that
v jumps to 1.43. In fact, there exists a little evidence
(see, e.g., Fig. 3) suggesting that perhaps v=1.38 for
all §> 1. However, we feel that the series are still too
short to permit a firm answer to the question, “Does
v vary smoothly or discontinuously with .S as S goes
from % to «?”

% H. E. Stanley, Phys. Rev. 158, 546 (1967).
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The Van Vleck moment expansion is applied to a pure dipole system. On the basis of the long-range
nature of the forces, sequences of diagrams are selected that give the dominant contributions in the lattice
sums. A selection of diagrams contributing to the entropy and susceptibility is given. There are three
different summations to be performed for each type of diagram: the trace over the spin variables, the
lattice summation, and the summation over the Cartesian coordinates. The second is performed on the
computer and the last by means of the Kramers—Wannier diagonalization. In order to obtain the contribu-
tions of diagrams of higher order a Fourier transform is performed. The calculations were performed for
Cerous Magnesium Nitrate using a g factor that is zero along the ¢ axis.

In order to determine the coefficients in the Van
Vleck! moment expansion for Cerous Magnesium
Nitrate, which has an almost pure dipole-dipole inter-
action, we evaluated a number of terms indicated by the
diagrams in Fig. 1. The contribution of each diagram is
the product of three factors, a weight factor, factors
from the traces of the various spin contractions in the
vertices, and a lattice summation. The last is done on a
computer.

* Supported by AF-AFOSR-66-0445a.
1], H. Van Vleck, J. Chem. Phys. 5, 320 (1937).

ENTROPY DIAGRAMS

The leading diagram for each power » of 1/kT (n=
the number of bonds) is the ring diagram with #»
vertices. The various components xx, xy, etc. of the
dipole—dipole interaction is taken care of by a Kramers—
Wannier? diagonalization. In the case of CMN this
needs only a two-by-two diagonalization since g;~20;
the second- and third-order terms :were computed
directly. The leading contribution to the fourth-order

2 H. A. Kramers and G. H. Wannier, Phys. Rev. 60, 252 (1941).
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