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Confined Water . Widom Line

We report recent efforts to understand the new MIT-Messina experimental discovery of a dy-
namic crossover at low temperatures in confined water. Preliminary calculations are not incon-
sistent with one tentative interpretation of this dynamic crossover as resulting from the system
passing from the high-temperature high-pressure "HDL" side of the Widom line (where the
liquid might display fragile behavior) to the low-temperature low-pressure "LDL" side of the
Widom line (where the liquid might display strong behavior). The Widom line - defined to be
the line in the pressure-temperature plane where the correlation length has its maximum - arises
only if there is a critical point. Hence interpreting the MIT experiments in terms of a Widom
line is of potential relevance to testing experimentally, for confined water, the liquid-liquid
critical point hypothesis.

1. Introduction

This author's water research began 30 years ago - when, under the auspices of a
Guggenheim Fellowship, he learned "the facts of water" under the tutelage of
three mentors, J. Teixeira, A. Geiger, and C. A. Angell. The most puzzling facts
dealt with understanding what are the various experimentally-observed cross-
overs and non-monotonic behavior telling us about the underlying physics and
chemistry of water. How can we understand the observed facts that as one cools
below 46°C and 35°C, respectively, the volume and entropy fluctuations (com-

* Corresponding author. E-mail: hes@bu.edu
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940 H. E. Stanley

pressibility and specific heat) increase? Even more puzzling is the Angell discov-
ery that these increase can be fit by power laws with the identical singularity
temperatures, about 228K ± 5K [1–20]. This temperature is within the experi-
mentally-inaccessible "No-Man's land," where bulk water is normally found only
in its crystalline phase. Nonetheless, the water research community has remained
fascinated with these apparent divergences for more than 30 years [13]. Despite
this widespread interest, and despite the huge influence of this "unattainable"
apparent singularity (appearing in the metastable region of bulk water) on func-
tions in the stable region, an accepted cause for the observed behavior has not
been found.

In order to understand what the Angell phenomena might be telling us, Teix-
eira and the author developed a fairly crude qualitative picture [21,22] which
ultimately has been improved considerably (called the "singularity-free" hypoth-
esis [23,24]). It envisages only apparent singularities, due to anticorrelated vol-
ume and entropy fluctuations which arise from correlations in locally-structured
"spatial heterogeneities." This qualitative picture was confirmed by Geiger who
analyzed extensive simulations of the ST2 model [25–34]. In 1992, it was conjec-
tured, on the basis of simulations using the ST2 and TIP4P potentials by the
authors's students and postdocs, that these spatial heterogeneities might actually
"condense," forming thereby a low-density liquid phase below a line of liquid-
liquid (LL) phase transition [35–38], and that the line of apparent singularity
temperature discovered by Angell and co-workers coincides with the analytic
continuation (the "Widom line") of the line of LL phase transitions extending
above the hypothesized LL critical point [39–41].

The LL phase transition hypothesis has the feature that, if it were valid, it
would connect the anomalies of water, such as the presence of not one but rather
two forms of glassy water. Hence others [42–61] have begun to test the possible
validity of this still rather tentative conjecture, and we have ourselves partici-
pated in some of these tests [62–94].

To understand "why" water might display such a novel feature, which Stuart
Rice calls "liquid polymorphism" [18], we have attempted to create various trac-
table models that display a LL phase transition, and to find solutions of these
models using both analytic solution of the simplest cases and approximate solu-
tion (such as by integral equation approaches) for the more complex cases. Re-
sults thus far are not definitive, and one goal of our current research is to attempt
to seek new avenues whereby definitive work can be undertaken to test the truth
or falsehood of the LL phase transition hypothesis. In collaboration with many
others, we are focusing largely on understanding new experiments on confined
water, where the LL critical point - if it exists - is in the stable region of the
phase diagram. Confined water differs from bulk water, but nonetheless is a
material of interest in its own right. Moreover, the collective features may be
quite related, as in phase transition models where the collective features of di-
verse systems are related by the concept of universality [14,95].
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Liquid Polymorphism (sometimes called by the neologism polyamorphism or
simply amorphous polymorphism ) refers to the existence of distinctly different
amorphous forms of a pure substance, and is a topic of huge current interest in
chemistry and materials science. Water's hypothesized LL phase transition, an
example of polymorphism, is difficult to detect experimentally because water
freezes readily to crystalline ice below the homogeneous nucleation temperature
TH, and TH is above the temperature TC' of the hypothesized critical point. Be-
cause it is so difficult to make experiments in the No-Man's land below TH, any
kind of information in this region has the potential of being extremely valuable.
Previous work largely concerns bulk water, but much current work largely con-
cerns confined water, since for appropriate forms of confinement, the No-Man's
land is very small or may not even exist [17].

2. Indirect experimental probe of the region between TH
and TX ("No-Man's land")

Mishima used a new method to probe the region below TH and so provided a
test for the hypothesized LL transition [47]. This paper - and its sequel [48] -
provide an indirect experimental probe of a large region of the P-T phase diagram
that previously could not be explored, the region below TH and above the crystal-
lization temperature TX (about 150 K). This "No-Man's Land" is of considerable
general interest because the hypothesized LL critical point, if it exists at all, is
believed to lie in this region. Reference [47] found that along the decompression-
induced melting (DIM) line of ice IV, a discontinuity in the slope occurs, a
significant finding since a melting line must have a smooth behavior unless it
intersects some other relevant line in the phase diagram such as a line of LL
phase transitions. Mishima measured metastable DIM curves of other high-pres-
sure forms of ice and constructed the Gibbs potential surface of the liquid by
knowing the Gibbs potential of the melting lines of each of the high-pressure
ices and then interpolating between this set of lines. He found that a "crease"
emerges on the Gibbs potential surface of the liquid. Accordingly, a large volume
change appears on the equation of state V(P,T) of liquid, given by the pressure
derivative ∂G.∂P. Moreover, the location of the kink in the DIM line of ice IV
is exactly the same as the location of the LL transition on the Gibbs surface.

The LL phase transition hypothesis is of interest outside the domain of con-
fined water because the underlying mechanism responsible for the LL phase
transition suggests that for other liquids with local tetrahedral symmetry, analo-
gous anticorrelated entropy.volume heterogeneities could appear and might in-
deed, under appropriate conditions, condense out as a low-density liquid phase
[58,96]. This possibility has motivated high-quality work on other materials [97–
108] such as Si, SiO2, C, and, P. For P [98,108], the line of LL phase transitions
has been probed experimentally. Recent experiments detect a first-order LL
phase transition in yttrium oxide-aluminum oxide melts [109]. Thus it is quite
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942 H. E. Stanley

possible that the LL phase transition hypothesis fails for water, but nonetheless
could prove useful in guiding research on other materials [12,102].

3. Direct experimental probe of the "No-Man's land"
region for confined water

Recently, the MIT group of Professor S.-H. Chen succeeded in probing the No-
Man's land by using the trick of confining liquid water to nanopores of diameter
16–20Å [49,50,110–119]. The Boston University group, in collaboration with
Professor Chen, offered a possible interpretation of their experimental results
[40]. Specifically, they found a correlation between the dynamic fragility transi-
tion and the locus of specific heat maxima CP

max and thermal expansion coeffi-
cient maxima αP

max [73,78,120,121] ("Widom line") emanating from the critical
point. Their preliminary findings are consistent with a possible relation between
the hypothesized LL phase transition and the transition in the dynamics recently
observed in neutron scattering experiments on confined water. More generally,
they are finding that this connection between CP

max and the dynamic crossover
may not be limited to the case of water, a hydrogen bond network forming liquid,
but could be a more general feature of crossing the Widom line, and can also
apply to confined water.

4. NMR proton chemical shift measurements as a new
method for estimating the configurational part of the
heat capacity CP(T)

Recently, Mallamace and collaborators performed NMR proton chemical shift
measurements as a new method for estimating the configurational part of the
heat capacity CP(T) [122–124]. This study introduces NMR proton chemical shift
measurements as a new method for estimating the configurational part of the heat
capacity CP(T) that results from the hydrogen bonding of the water molecules. To
test this new method, they measured the water proton chemical shift as a function
of temperature by using the same confining system of recent nanoconfinement
experiments [40,49,50,125,126,127]. Specifically, they measured using NMR the
proton chemical shift δ of supercooled nanoconfined water in the temperature
range 195 < T < 350 K. Since δ is directly connected to the magnetic shielding
tensor, they discussed the data in terms of the local hydrogen-bond geometry
and order. They argue that the derivative –(∂lnδ.∂T)P should behave roughly as
the constant pressure specific heat CP(T), and they confirm this argument by
detailed comparisons with literature values of CP(T) in the range 290K-370K.
They found that –(∂lnδ.∂T)P displays a pronounced maximum upon crossing the
locus of maximum correlation length at about 240 K, consistent with the liquid-
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liquid critical point hypothesis for water, which predicts that CP(T) displays a
maximum on crossing the Widom line. Because the NMR technique also gives
the chemical shift of each sample nucleus with non-zero spin, such an approach
may be applicable to more complex materials.

5. Possible relevance of skin of water surrounding a
macromolecule to its low-temperature glass transition

Both experiments and computer simulation studies have shown that hydrated
proteins undergo a "glass-like" transition near 200 K [128–132], above which
proteins exhibit diffusive motion, and below which the proteins are trapped in
harmonic modes. An important issue is to determine the effects of hydration
water on this dynamical transition [133–136]. Experiments and computer simula-
tions suggested that when a protein is solvated, the protein glass transition is
strongly coupled to the solvent, leading to the question of whether the protein
glass transition is directly related to a dynamic transition in the surrounding
solvent [137].

Using molecular dynamics simulations, Kumar and collaborators [113–
115,138] investigated the relation between the dynamic transitions of biomolecu-
les (lysozyme and DNA) and the dynamic and thermodynamic properties of
hydration water. They found that the dynamic transition of the macromolecules,
sometimes called a "protein glass transition", occurs at the temperature of dy-
namic crossover in the diffusivity of hydration water, and also coincides with
the maxima of the isobaric specific heat CP and the temperature derivative of
the orientational order parameter. We related these findings to the hypothesis of
a liquid-liquid critical point in water: our simulations are consistent with the
possibility that the protein glass transition results from crossing the Widom line,
which is defined as the locus of correlation length maxima emanating from the
hypothesized second critical point of water.

6. Translational and rotational dynamic heterogeneities

At temperatures where liquids have a diffusion constant similar to that of ambient
temperature water, the translational and rotational diffusion, Dt and Dr respec-
tively, are well described by the Stokes-Einstein (SE) relation Dt = kBT.6πηR
and the Stokes-Einstein-Debye (SED) relation Dr = kBT.8πηR3. Here T is the
temperature, η the viscosity, kB the Boltzmann constant and R is the "molecular"
radius. Recently, the limits of the SE and SED relations have been an active
field of experimental [125,139–141], theoretical [142–146] and computational
[127,147-,157] research. The general consensus is that the SE and SED relations
hold for low-molecular-weight liquids for T ≥ 1.5 Tg, where Tg is the glass
transition temperature. For T ≤ 1.5 Tg, deviations from either one or both of the
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944 H. E. Stanley

SE and SED relations are observed. Experimentally, it is found that the SE
relation holds for many liquids in their stable and weakly supercooled regimes,
but when the liquid is deeply supercooled it overestimates Dt relative to η by as
much as two or three orders of magnitude, a phenomenon usually referred to as
the "breakdown" of the SE relation. The situation for the SED relation is more
complex. Some experimental studies found agreement with the predicted values
of the SED relation even for deeply supercooled liquids [16,158], while others
claim also a breakdown of the SED relation to the same extent as for the SE
relation [139,159,160]. The failure of these relations provides a clear indication
of a fundamental change in the dynamics and relaxation of the system. Indeed,
the changing dynamics of the liquid as it approaches the glass transition is well
documented, but not yet fully understood [15,161].

There is a growing body of evidence [162–165] that, upon cooling, a liquid
does not become a glass in a spatially homogeneous fashion. Instead the system
is characterized by the appearance of dynamical heterogeneities [16,158,162–
170]. In the "dynamical heterogeneities" (DH) view, the motion of atoms or mol-
ecules is highly spatially correlated. This phenomenon is often called "spatially
heterogeneous dynamics", since there are spatial regions in which the structural
relaxation time can differ by orders of magnitude from the average over the
entire system. The presence of these DH has been argued to give rise to the
breakdown of the SE relation [142,146]. Since the derivation of the Einstein
relation assumes uncorrelated motion of particles, it is reasonable that the emer-
gence of correlations could result in a failure of the SE relation. The aim of the
present work is to assess the validity of the SE and SED relations in the SPC.E
model of water, and consider to what extent the DH contribute to the SE and
SED breakdown.

Computer simulations have been particularly useful for studying DH (e.g.,
see Refs. [171–176]) since simulations have direct access to the details of
the molecular motion. For water, the existence of regions of enhanced or reduced
mobility has also been identified [176]. In particular, Ref. [176] identifies the
clusters of molecules with greater translational (or center of mass) mobility
with the hypothesized "cooperatively rearranging regions" of the Adam-Gibbs
approach [177,178]. For water, those DH are also accompanied by spatial hetero-
geneities [25,179]

Mazza and collaborators [119,180–185] found that both the SE and SED
relations break down at low temperature. To explore the relationship between
these breakdowns and dynamical heterogeneities (DH), they also calculate the
SE and SED relations for subsets of the 7% "fastest" and 7%
"slowest" molecules. They found that the SE and SED relations break down in
both subsets, and that the breakdowns occur on all scales of mobility. Thus these
breakdowns appear to be generalized phenomena, in contrast with a view where
only the most mobile molecules are the origin of the breakdown of the SE and
SED relations, embedded in an inactive background where these relations hold.
At low temperature, the SE and SED relations in both subsets of molecules are
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replaced with "fractional" SE and SED relations, Dt~(τ.T)–�
t and Dr~(τ.T)–�

r

where �t ≈ 0.84 (< 1) and �r ≈ 0.75 (< 1). They also found that there is a
decoupling between rotational and translational motion, and that this decoupling
occurs in both fastest and slowest subsets of molecules. Further, they found that
when the decoupling increases upon cooling, the probability of a molecule being
classified as both translationally and rotationally fastest also increases. To study
the effect of time scale for SE and SED breakdown and decoupling, they intro-
duce a time-dependent version of the SE and SED relations, and a time-depend-
ent function that measures the extent of decoupling. Their results suggest that
both the decoupling and SE and SED breakdowns originate at the time scale
corresponding to the end of the cage regime, when diffusion starts. This is also
the time scale when the DH are more relevant.

7. Possible cause of the experimentally-observed breakdown

of the Stokes-Einstein relation

In the Cozzarelli-Prize winning paper, the MIT group's experiments very recently
showed that supercooled water exhibits a breakdown of the Stokes-Einstein rela-
tion between the diffusion constant D and the alpha relaxation time τα [125].
For simulated water, we found that the temperature of the decoupling of diffusion
and alpha relaxation correlates with the temperature of the maximum in specific
heat that occurs at the Widom line TW(P). Specifically, they found that their
results for Dτα.T collapse onto a single master curve if temperature is replaced
by T–TW(P), where TW(P) is the temperature where the constant-pressure specific
heat achieves a maximum. Moreover they found that the size of the mobile mole-
cule clusters (dynamical heterogeneities) increases sharply near TW(P). The
crossover from the less structured locally high density liquid (HDL) environment
at high T to the more structured locally low density liquid (LDL) environment
as T / TW(P) appears to be correlated with both the breakdown of the Stokes-
Einstein relation and the growth of dynamic heterogeneities.

The breakdown of the SE relation is usually understood by the fact that
diffusion at low temperatures is dominated by regions of fast moving molecules
while the relaxation of the system as a whole is dominated by slow moving mole-
cules. Consistent with this, Kumar et al. [125,127,156] found that the growth of
mobile particle clusters occurs near the Widom line and the breakdown of the
SE ratio for P < PC. Thus the SE breakdown in water is consistent with the LL-
critical point hypothesis [1,2,11,47,186]. Their results are also consistent with
recent experimental findings in confined water [49,50,125,156]. The onset of the
fractional Stokes-Einstein effect has recently been studied [187].
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946 H. E. Stanley

8. Experimental method of testing the singularity-free
scenario

Using Monte Carlo simulations and mean field calculations for a cell model of
water, Franzese et al. [65–67,119,188–190] found that both the LL critical point
and singularity free (SF) scenarios exhibit a dynamic crossover at a temperature
close to T(CP

max), which decreases for increasing P. They interpret the dynamic
crossover as a consequence of a local breaking and reorientation of the bonds
for the formation of new and more tetrahedrally oriented bonds. Above T(CP

max),
when T decreases, the number of hydrogen bonds increases, giving rise to an
increasing activation energy EA and to a non-Arrhenius dynamics. As T de-
creases, entropy must decrease. A major contributor to entropy is the orienta-
tional disorder, that is a function of pB, as described by the mean field expression
for ΔS. They found that, as T decreases, pB - hence the orientational order -
increases. They found that the rate of increase has a maximum at T(CP

max), and
as T continues to decrease this rate drops rapidly to zero - meaning that for T <
T(CP

max), the local orientational order rapidly becomes temperature-independent
and the activation energy EA also becomes approximately temperature-independ-
ent. Corresponding to this fact the dynamics becomes approximately Arrhenius.

They found that the crossover is approximately independent of the pressure
consistent with our calculations of an almost constant number of bonds at
T(CP

max). In both scenarios, EA and TA decrease upon increasing P, but the P
dependence of the quantity EA.(kB TA) has a dramatically different behavior in
the two scenarios. For the LL critical point scenario it increases as P / PC',
while it is approximately constant in the SF scenario. We interpret this difference
as a consequence of the larger increase of the rate of change of pB in the LL
critical point scenario, where pB diverges at finite TC', compared to the SF sce-
nario, where pB can possibly diverge only at T = 0. Since experiments can detect
local changes of water structure from HDL-like to LDL-like, (e.g., [191]), it is
possible that our prediction on the dynamic consequences of this local change
may be experimentally testable.

9. Ongoing work

When data begin to deviate from extrapolations there must be an underlying
reason for the deviation. These deviations include phenomena at temperatures as
high as 46°C and 35°C (sudden change of slope of isothermal compressibility
and isobaric specific heat, respectively) and maxima in thermodyamic functions
such as the coefficient of thermal expansion (at about 225K)
[73,78,120,121,192]. Thus far there is no coherent and accepted explanation for
these anomalies - even the anomalies that occur at biologically-relevant tempera-
tures. It is unfortunate that chemistry textbooks cannot offer students a coherent
explanation of water's behavior, even though water is "essential for life", and
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even though very small perturbations on pure water are incompatible with life
(such as substituting water by heavy water).

One question we will focus on is "what features of bulk water survive
confinement"? Certainly the hydrogen bond network is perturbed, which explains
why MCM-41 nanoconfined water remains liquid down approximately 100 de-
grees lower than bulk water. But what about the collective properties of water
[193–199] which rely on the direct cooperative interactions among water molecu-
les? How are these perturbed by confinement? For example, a confined magnet
or fluid near its critical point behaves exactly as a bulk magnet or fluid until the
system is so close to the critical point that its correlation length (the length scale
over which the spins or molecules are correlated) increases to reach the size of
the confining system. The MIT.Messina water experiments on MCM-41 con-
finement are typically carried out on tubes of diameter about 1.5–2.0 nm. Hence
if we apply the principles of phase transition theory, the cooperative properties
of the system should resemble those of a bulk system for temperatures extremely
close to the critical point, about 1 percent away.
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