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Abstract. One challenge of biology, medicine, and economics is that the systems
treated by these sciences have no perfect metronome in time and no perfect spatial
architecture – crystalline or otherwise. Nonetheless, as if by magic, out of nothing but
randomness one finds remarkably fine-tuned processes in time and remarkably fine-tuned
structures in space. To understand this ‘miracle’, one might consider placing aside the
human tendency to see the universe as a machine. Instead, one might address the chal-
lenge of uncovering how, through randomness (albeit, as we shall see, strongly corre-
lated randomness), one can arrive at many spatial and temporal patterns in biology,
medicine, and economics. Inspired by principles developed by statistical physics over
the past 50 years – scale invariance and universality – we review some recent applica-
tions of correlated randomness to fields that might startle Boltzmann if he were alive
today.

Keywords. Correlations; randomness; Alzheimer disease; water; amyloid protein.

PACS Nos 87.10.+e; 05.40.-a

1. Introduction

The title I have given to this talk, ‘Correlated randomness’, I owe in part to in-
teractions with biological and medical researchers. They think that randomness
means uncorrelated randomness. They learn that statistical physics deals solely
with random phenomena, so they imagine that our field cannot possibly yield any
insights into the real world as they correctly know that no system in which they are
interested corresponds to simple uncorrelated randomness. Hence we found using
the adjective ‘correlated’ helped persuade our collaborators that what we do may
possibly be applicable to systems in which they are interested.

To help educate our collaborators, as well as ourselves, we have learned to present
simple visual examples of the concept of correlated randomness. One example we
found useful was comparing a simple, unbiased random walk in two dimensions (un-
correlated randomness) and a simple, self-avoiding random walk in two dimensions
(correlated randomness). In the case of the uncorrelated walk, the spread of a 104
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Figure 1. (a) The trail of a random walk of 104 steps, compared with (b) the
trail of a self-avoiding random walk of the same number of steps. The ‘corre-
lated randomness’ of the latter results in drastically different behavior. Specif-
ically, the characteristic diameter jumps by a factor of 10, from approximately
(104)1/2 = 100 to approximately (104)3/4 = 1000, where we have used the fact
that the fractal dimensions (defined as the exponent to which the length is
raised to obtain the mass) are 2 and 4/3 respectively. This figure is courtesy
of S V Buldyrev.

step path is 102. In the correlated random walk, the spread of a 104 step path is
on the order of 103 steps, an order of magnitude larger (figure 1).

A second simple example of correlated randomness that people from other fields
can appreciate is critical opalescence, first discovered and interpreted – in terms of
correlated randomness – by Andrews in 1869 [1]. This can occur in two-component
fluids but also in one-component fluids – the so-called liquid–liquid phase transition
[2]. In the more traditional two-component fluid, the concentrations of the two
components and the temperature have been adjusted so that the system is near its
consolute point. The correlated fluctuations observed at that consolute point are so
strong that their length scale has become comparable to the wavelength of visible
light and one sees a scattering of that visible light in the form of an opalescent
glow.

In this talk, I will discuss recent applications of correlated randomness to three
areas of science for which statistical physics is essential: liquid water, economics,
and Alzheimer’s disease. I organize each of these seemingly unrelated topics around
the same three questions: (i) what is the question or problem that has emerged
from the area of inquiry? (ii) why should we (practically and scientifically) care
about this question or problem? and (iii) what have we actually done in response
to the question or problem? The ‘we’ in each case involves a sizable subset of
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collaborators who have both (i) made our fruitful scientific results possible and
(ii) reinforced my changed attitude toward ‘working well with others’. The list of
collaborators in each area appears in the abstract book, and at the end of this docu-
ment.

Our overall ‘take-home’ message today sounds pretty general. In general, systems
that display correlated randomness cannot be solved exactly. Not even the simple
self-avoiding random walk can be solved! Nonetheless, there are two unifying prin-
ciples that have organized many of the results we will be presenting today – scale
invariance and universality. The key idea is that scale invariance is a statement not
about algebraic equations of the form x−3 = 1/8 with a numerical solution (2) but
about functional equations of the form f(λx) ∼ λpf(x) and its relevant generaliza-
tions. These functional equations have as their solutions functional forms, and the
solution to this homogeneous functional equation is a power-law form.

2. Water

2.1 What is the phenomenon?

We start with three thermodynamic functions. The first is the compressibility – the
response of the volume to an infinitesimal change in pressure. In a typical liquid,
this response function decreases when we lower the temperature. I understand this
decrease via statistical physics. This thermodynamic response function is propor-
tional to the thermal average of all the fluctuations in specific volume in the system.
As we lower the temperature, we imagine that fluctuations of necessity decrease,
thus the compressibility decreases.

Water is unusual in three respects. First, the average compressibility of water
is twice as large as what one would expect were water a typical fluid and were
one to plug all the prefactors into the formulas that give compressibility in terms
of volume fluctuations. Second, the magnitude of that factor of two actually in-
creases as one lowers the temperature. That being the case, there is ultimately
a minimum – which occurs at 46◦C. Below that temperature, the compressibility
increases dramatically. At the lowest attainable temperature (−40◦C) the com-
pressibility takes on a value that is twice of that at the minimum. This is not a
tiny effect; it is huge (figure 2).

The second thermodynamic function is the specific heat, and we observe three
similar anomalies: it is twice as large as that of a typical liquid, the discrepancy
gets bigger as the temperature is lowered, and a minimum occurs at 35◦C.

The third thermodynamic function is the coefficient of thermal expansion, the
response of the volume to an infinitesimal change in temperature. This quantity we
assume to always be positive because if there is a local region of the liquid in which
the specific volume is larger than the average, then there will be more arrangements
of the molecules and hence the entropy will be larger than the average. This is
true of almost all liquids, but the magnitude of this cross-fluctuation of volume and
entropy in water is approximately three times smaller than we would expect, and at
4◦C the coefficient of thermal expansion passes through zero and actually becomes
negative.
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Figure 2. Schematic dependence on temperature of (a) the isothermal com-
pressibility KT, (b) the constant-pressure specific heat CP, and (c) the thermal
expansivity αP. The behavior of a typical liquid is indicated by the dashed
line, which, very roughly, is an extrapolation of the high-temperature behavior
of liquid water. Note that while the anomalies displayed by liquid water are
apparent above the melting temperature Tm, they become more striking as
one supercools below Tm.

2.2 Why do we care about this anomalous behavior?

To begin with, if we do not understand water we will never understand biology.
That is a major reason to care. Scientifically, water is the prototype complex
fluid. It is not a simple, ‘bag-of-marbles’ liquid, but a ‘bag of tetrahedra’. These
tetrahedra are not only irregularly shaped, but are charged. Two of the arms are
positively-charged, corresponding to the protons on each water molecule, and two
are negatively-charged, corresponding to the lone pairs. In addition to short-range
forces, these ‘charged tetrahedra’ interact with long-range Coulomb forces.

2.3 What do we do?

Our approach is based on the fact that water has a tetrahedral local geometry. In
this sense water shares features with other liquids such as silicon (studied in Ban-
galore by Prof. Srikanth Sastry). Because water is both tetrahedral and charged, a
simple Lennard–Jones potential is not sufficient to describe its complexity. One way
to modify the Lennard–Jones potential to provide at least a simplified description
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Figure 3. Physical arguments relating to the plausibility of the existence of
the known liquid–gas critical point C and the hypothesized LDL-HDL critical
point C′. (a) Idealized system characterized by a pair interaction potential
with a single attractive well. At low enough T (T < Tc) and high enough P
(P > Pc), the system condenses into the ‘liquid’ well shown. (b) Idealized
system characterized by a pair interaction potential whose attractive well has
two sub-wells, the outer of which is deeper and narrower. For low enough T
(T < T ′c) and low enough P (P < P ′c), the one-phase liquid can ‘condense’ into
the narrow outer ‘LDL’ sub-well, thereby giving rise to a LDL phase, and leav-
ing behind the high-density liquid phase occupying predominantly the inner
subwell. (c) Two idealized interaction clusters of water molecules (‘Walrafen
pentamers’) in configurations that may correspond to the two sub-wells of (b).
This figure is courtesy of O Mishima.

is to bifurcate the single minimum into two minima. The first minimum, at a closer
distance, corresponds to two pentamers (a water molecule and its four neighbors) of
water interacting with each other in a rotated configuration. The second minimum,
at a greater distance, occurs in the unrotated position. This second position is
a deeper minimum because although the pentamers are farther apart there is the
potential for hydrogen bonding between the molecules and we can see the beginnings
of an ice-like hexagonal structure (figure 3).

The important point is that there are two minima with the outer one corre-
sponding to a larger specific volume – because the distance is larger – and a lower
entropy. The possibility is that liquid water could at low temperatures condense
not into a single phase – as we anticipate when a gas with a simple interaction like a
Lennard–Jones potential condenses into a fluid – but into two different phases. This
possibility was first raised by Takahashi 60 years ago and various elaborations of this
model have been made by a number of people since then, including seminal work
of Hemmer and Stell in 1971 [3–5]. The implication of this is the possibility of two
different liquid phases contributing to an increase in these fluctuations in specific
volume and a negative contribution to the cross-fluctuations, negative because the
deeper well has a larger volume and a lower entropy. The consequences of this fact
qualitatively explain the phenomenon we were describing at the beginning – volume
fluctuations are increased, entropy fluctuations are increased, and cross-fluctuations
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Figure 4. Schematic illustration indicating the various phases of liquid water
(color-coded). This figure is courtesy of O Mishima.

of volume and entropy are decreased. This picture further predicts the possibility
that at low temperatures there will be a genuine phase transition in which the single
component liquid separates into two different phases. The implications of this when
applied to real water molecules produce a phase diagram of liquid water (figure 4).
This was first uncovered by Poole et al [6]. At one atmosphere (the left axis) we see
the melting temperature and the limit of supercooling around −40◦C. At a very low
temperature we see the presence of the glassy phase, not unlike that of any other
liquid except that at high pressure this glassy phase shifts from a low-density form
to a high-density form. In typical liquids we do not find two different glassy phases.
These two forms correspond to the two different local arrangements characteristic
of water tetrahedra. The order parameter jump between these two phases is not a
trivial amount, but on the order of 30% [7].

Between the liquid and glassy phases of water we have a region in which water
does not exist as a liquid. I like to call this a ‘No Man’s Land’. The hypothesis
that follows from the reasoning we have just described is that this first-order phase
transition line known to separate the two amorphous forms of solid water extends
into this No Man’s Land and ultimately terminates at a critical point. Just as
the glassy water first-order transition line separates a low-density amorphous from
a high-density amorphous phase of water, so also this extension of the line into
the liquid region separates a low-density liquid from a high-density liquid. The
power-law behavior uncovered over the years by Angell, Anisimov and collaborators
corresponds to the fact that the extension of this first-order line beyond the critical
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point – the ‘Widom line’ – has the effect where any experiment approaching that
line looks as though it is going to diverge with critical exponents but does not.

This phase diagram is hypothesized, but it has not been proved. What has been
proved is that computer simulations using tried and tested models of liquid water
confirm the broad features of this phase diagram (see ref. [8] and references therein).
But computer models of water (like computer models of anything) are subject to
the charge ‘garbage-in, garbage-out’ – you get out what you put in. All computer
models of complex systems such as liquid water are of necessity simplifications.

Current experiments on this problem are of two sorts. The first is a set of
experiments inspired by Mishima that involves probing the No Man’s Land by
studying the metastable extensions of the melting lines of the various high-pressure
polymorphs of ice: ice III, ice V, ice IV, and ice XII [9,10]. Two of these lines
clearly display ‘kinks’. Since the slope of any melting line is the difference of the
volume change divided by the entropy change of the two phases that coexist at that
line, if there is a change in slope there must be a change in these quantities. Since
there is no change in the crystal part, there must be a change in the liquid part.
This means the liquid must undergo a jump in either its volume or its entropy or
both. That is the definition of a first-order phase transition.

Very recently an article appeared in Phys. Rev. Lett. describing a testing and
probing of this hypothesis that does not have to be carried out in the No Man’s Land
using the tricks of Mishima. Engemann, Reichert and collaborators at Grenoble
[11] discovered the high-density liquid by taking a silicon substrate, placing an
amorphous 2.1 Å silicon layer on top of it, placing a 1.7 Å layer that is liquid water
but below the melting temperature on top of the other two layers, and measuring
the properties of this quasi-liquid layer – interpreting the properties in terms of this
liquid–liquid phase transition hypothesis (figure 5).
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Figure 5. Schematic of the experiments of Reichert and collaborators, in
which a thin layer of liquid water appears at the interface between ordinary
hexagonal ice and an amorphous silica substrate. This figure is courtesy of
H Reichert.
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3. Statistical physics and economics

3.1 What is the phenomenon?

One quarter of any newspaper with a financial section is filled with economic fluc-
tuation data. Most economic graphs look approximately like the one we get when
we plot the S&P 500 stock index as a function of time over 40 years (figure 6).
We can compare this empirical data with that generated by a simple uncorrelated
biased random walk, a model first used over 100 years ago by Bachelier. At first
it seems that there is little difference, but looking more closely we see events in
the real data that do not have counterparts in the random walk. Black Mon-
day in October 1987 is reflected in the real data, which shows a loss of 30% of
the total value of the market in just one day. In the random walk we do not
see fluctuations anywhere near this magnitude because the probability of taking n
steps in the same direction of a random walk is (1/2)n – it decreases exponentially
with n.

Economists nevertheless have traditionally used this uncorrelated biased
Gaussian random walk to describe real economic data, relegating events such as
Black Monday to the dustbin category of ‘outliers’ [12–14].
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Figure 6. The S&P 500 index is the sum of the market capitalizations
of 500 companies. The sharp jump seen in 1987 is the market crash of
October 19. Comparison of the time evolution of the S&P 500 for the
35-year period 1962–96 (top line) and a biased Gaussian random walk (bot-
tom line). The random walk has the same bias as the S&P 500 – approx-
imately 7% per year for the period considered. This figure is courtesy of
P Gopikrishnan.
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3.2 Why do we care?

We physicists do not like to do things this way. We do not take Newton’s law
seriously part of the time, and then – if we suddenly see an example of what appears
to be levitation – simply call it an ‘outlier’. We like to find laws that describe
all examples of a phenomenon. Economists themselves, in a journal called The
Economist, have admitted failure. This is a strong motivation for we physicists to
step in and try our hand – we smell a delicious scientific challenge. Also, practically
speaking, catastrophic economic events such as Black Monday have extreme societal
impacts; widespread suffering is the usual outcome, especially among the poor.
The ability to predict economic crashes (and other large-scale risks) would have an
obvious utility.

3.3 What do we do?

We return to our two graphs, the S&P 500 stock index as a function of time over 40
years and the simple uncorrelated biased random walk, and plot not the absolute
value of the index but instead the change in the index (the numerical derivative,
the ‘return’). We normalize that by the standard deviation. We look over a 13-year
period rather than our original 40-year period (figure 7) and see, e.g., that on Black
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Figure 7. Sequence of 10-min returns for the S&P 500, normalized to unit
variance, compared with sequence of i.i.d. Gaussian random variables with
unit variance, which was proposed by Bachelier as a model for stock returns.
Note that, in contrast to the top curve, there are no ‘extreme’ events in the
bottom curve. This figure is courtesy of P Gopikrishnan.
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Monday the fluctuations were more than 30 standard deviations (both positive and
negative) for the day, and we also see a very noisy signal. The striking thing is
to look at the other curve, the uncorrelated random walk, and see the Gaussian
distribution for the fluctuations – which rarely display fluctuations greater than five
standard deviations. The ‘outliers’ that the economists are content to live with are
any fluctuations of the actual data that are greater than five standard deviations. In
this 13-year period there are exactly 64, i.e., 26. If we count only those fluctuations
of the actual data that are greater than ten standard deviations, we get exactly 8,
i.e., 23. If we count only those that are greater than 20, we get one, i.e., 20: Black
Monday. Each time we double the x-axis we change the y-axis by a power of 23.
This should ring a bell. At the top of this presentation we made reference to a power
law of the form f(x) = x−3, which corresponds to a functional equation, a scaling
equation, with p = −3. The possibility that these economic data obey scaling was
pointed out in 1963 by Mandelbrot [15] in his study of cotton price fluctuations.

If we replace our visual examination of these two graphs with a close computer
analysis of not just the S&P 500 stock index but every stock transaction over an
extended time period (approximately 1 GB of data), we find [16–18] that the actual
graph giving the number of times a fluctuation exceeds a given amount as a function
of that amount is perfectly straight on log–log paper out to 100 standard deviations
(figure 8). The slope of the line, α, is indistinguishable from the value α = 3 that
we deduced from visual inspection. Note that this slope is significantly larger (by
almost a factor of two) than the slope found by Mandelbrot in his research on
cotton prices. Note also that our slope is outside the Lévy stable regime [19].
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Figure 8. Cumulative distributions of the positive and negative tails of the
normalized returns of the 1000 largest companies in the TAQ database for the
2-year period 1994–1995. The solid line is a power-law regression fit in the
region 2 ≤ x ≤ 80. This figure is courtesy of V Plerou.
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This is how we find laws in statistical physics, but finding them is only the first
part – the empirical part – of our task. The second part – the theoretical part – is
understanding them.

When we studied critical phenomena, the empirical part was a very important
contributor toward our ultimate understanding of phase transitions and critical
phenomena. The amassing of empirical facts led to the recognition of regularities
to which certain approaches could be applied, e.g., the scaling hypothesis – first
formulated by Ben Widom and others – and the Wilson renormalization group. So
also in economics we can perhaps first discover empirical regularities – e.g., the
inverse cubic law – that will prove useful in ultimately understanding the economy.
I wish I could say that we already have an explanation for this inverse cubic law, but
I cannot. We have the beginnings of an explanation, but it is only the beginning
since the current theory explains the inverse cubic law of price changes, as well
as the ‘half cubic law’ of trade volume [20,21] but does not explain the strange
nature of the temporal correlations. The autocorrelation function of price changes
decays exponentially in time so rapidly that after 20 min it is in the level of ‘noise’
(figure 9). However the autocorrelation function of changes in the absolute value of
the price (called the ‘volatility’) decays with a power law of exponent approximately
0.3 (figure 10).

One reason the economy is of interest to statistical physicists is that, like an Ising
model, it is a system made up of many subunits. The subunits in an Ising model
are called spins, and the subunits in the economy are buyers and sellers. During
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Figure 9. Semilog plot of the autocorrelation function for the S&P
500 returns G∆t(t) sampled at a ∆t = 1min time-scale, C∆t(τ) ≡
[〈G∆t(t) G∆t(t+τ)〉−〈G∆t(t)〉2]/[〈G∆t(t)

2〉−〈G∆t(t)〉2]. The straight line cor-
responds to an exponential decay with a characteristic decay time τch = 4 min.
Note that after 20 min the correlations are at the noise level. This figure is
courtesy of V Plerou.
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Figure 10. Log–log plot of the autocorrelation function of the absolute re-
turns. The solid line is a power-law regression fit over the entire range, which
gives an estimate of the power-law exponent, η ≈ 0.3. Better estimates of
the exponent η can be obtained from the power spectrum or from other more
sophisticated methods. This figure is courtesy of P Gopikrishnan.

any unit of time these subunits of the economy may be either positive or negative
as regards perceived market opportunities. People interact with each other, and
this fact often produces what economists call ‘the herd effect’. The orientation of
whether we buy or sell is influenced not only by our neighbors but also by news.
If we hear bad news, we may be tempted to sell. So the state of any subunit is a
function of the states of all the other subunits and of a field parameter.

On a qualitative level, economists often describe a price change as a hyperbolic-
tangent-like function of the demand. The catch is that ‘demand’ is not quantified.
So one of the first things we had to do was quantify demand [22].

We did this by analyzing huge databases comprising every stock bought or
sold – which gives not only the selling price and buying price, but also the asking
price and the offer price. If we go to the Bangalore open market to buy presents we
will often be given an asking price we are not willing to pay, and we may counter
with a much smaller offer. Ultimately when the sale is struck, the price may be
above the midpoint between the asking price and the offer – and we assign a vari-
able ai = +1 to the sale – if below the midpoint, ai = −1. If we sum all these
indices ai over a time interval ∆t

H ≡
N∑

i−1

ai =

{
+ [Big demand]
− [Small demand]

N = N∆t = Number of sales in ∆t,
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then we can calculate the analog of a magnetic field, which provides a way of
quantifying demand. If most of the ai are positive, the field will be positive, and
vice versa. A hint that this definition of magnetic field makes sense is the fact
that a plot of price change as a function of the ‘magnetic field’ variable defined
above remarkably resembles a plot of the magnetization of a magnet as a function
of the magnetic field [22]. The implications of the remarkable observation that a
plot of price change as a function of the ‘magnetic field’ resembles a plot of the
magnetization in a magnet are not yet clear.

4. Alzheimer’s disease

4.1 What is the problem?

We have discussed our hypothesis concerning liquid water. I think that, that hy-
pothesis is correct. I know that our empirical results concerning the economy are
correct. In contrast, I cannot guarantee any of our work thus far in Alzheimer’s
disease (AD). Nevertheless, we must start somewhere. At present, no one knows
much for certain about AD. We do not even know what it is – we only know its
tragic effects. In societies in which lifespans are long it has been estimated that
50% of all newborns will die of this disease, if we do not find a cure, by the time
they are 85 years old.

Since we do not even know what AD is, our group’s approach is to try to discover
what it is. We are not the only ones trying to do this, but our focus is on the ‘first
three minutes’ of the disease, a phrase we like to use because it is the analog for
AD of Weinberg’s The First Three Minutes of the Universe. What initially triggers
AD? One of the current hypotheses is that it is triggered by a phase transition. In
a liquid-to-crystal phase transition, the liquid nucleates to a lower free-energy state
called a crystal. In AD, it looks as if the analogous event is a two-step process – first
of protein folding and then of protein aggregation. So one starts with a protein,
specifically a peptide, in a correlated random configuration, which first folds itself
and then aggregates into a form called an amyloid fibril. These amyloid fibrils
aggregate and form microscopic objects in the brain.

4.2 Why do we care?

Aggregation diseases appear to be universal. Alzheimer’s disease is only one form
of aggregation disease. Others may include ALS (amyotrophic lateral sclerosis) and
Parkinson’s disease.

4.3 What do we do?

The protein that folds is actually a peptide, a fragment of a protein, and it comes
in two forms: one with 40 amino acids and the other with 42 amino acids. The
extra two amino acids are hydrophobic. The ‘first three minutes’ of Alzheimer’s
disease involves the aggregation of the entire peptide. The first step seems to
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be the formation of what are called paranuclei, the joining together of a small
number of – e.g., 6 or 12 – peptides, and then the aggregation of the paranuclei
into larger objects. The time-scale here is slow, so the study of this phenomenon by
molecular dynamics is problematic. A typical time-scale for a molecular dynamics
simulation is on the order of nanoseconds, and here we are talking about minutes.
We need to do something to speed up the simulation, and thus we draw on the
concept of universality.

One thing we learn from universality is that completely different fluids behave
the same way near phase transitions. They even have identical critical exponents,
regardless of the details. The critical factor does not seem to reside in the details
of the molecule but in the fact that they have an attractive part. Similarly, in the
spirit of universality, one finds the same generic collective behavior when one coarse
grains the actual peptide by replacing each amino acid group by only four balls:
three in the peptide backbone and one representing the side group.

A typical simulation might start with 28 of these coarse-grained peptides at time
zero [23,24]. Then using the algorithm [25] that speeds up the simulation by ten
orders of magnitude, one can achieve aggregation of these peptides in a reasonable
amount of computer time (on the order of days of computer time). The structure
of what we found is of considerable interest to those studying Alzheimer’s disease.
In particular, we find aggregation, with remarkably reproducible microscopic detail
concerning exactly what sticks to what (figure 11). This is terribly important

Figure 11. Structure of a typical aggregate of five amyloid beta peptides,
each of which has 42 amino acids. The secondary structure of the aggregate
is color coded, being shown as a silver tube (random coil structure), light blue
tube (turn) and yellow ribbon (β-strand). The five red spheres represent the
five N-terminals of the five peptides, while the ten C-terminal amino acids
Ile-41 and Ala-42 are shown in green and blue respectively. This figure is
courtesy of B Urbanc.
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because if we know what sticks to what, we can imagine covering the sticky spots
and hence offering some potentially useful hints concerning possible therapies for
Alzheimer’s disease. That is, if we know what is sticking to what we can begin to
think about how to block that sticking process.

5. Concluding remarks

Today I have talked about work that has extended over a period of approximately
ten years. This work was not done by me, but by a large number of collaborators.
Why so many? One reason is that I love people, and working with people is for
me exhilarating. There is a second, more personal reason. When in 1976 I did not
receive tenure at MIT, I asked my bosses for the reason. One reason offered was
that I worked too much ‘all alone’. Obviously I took that advice to heart – and
I am grateful that I did. I have enjoyed my many collaborations. The work that
this Boltzmann Medal honors – as most of you know – is partly work I did working
alone, as a graduate and as a nontenured member of the faculty of MIT. However a
large part is work I did with others. I have learned far more from my collaborators
than they have learned from me, so if I could divide up this disc-shaped medal
like a pie, I would give a piece to each collaborator. I am especially touched that
20 of my present and former collaborators are in this room today: A-L Barabási,
R Bansil, M C Barbosa, A Coniglio, G Franzese, S Havlin, H J Herrmann, P Kumar,
J Kertész, E La Nave, F Leyvraz, H A Makse, I Ono, P Ray, A Robledo, S Sastry,
S Sreenivasan, F W Starr, C Tsallis, and T Vicsek. An additional nine others are
also here in the sense that their names are among the co-authors of abstracts of
talks presented here: M Barthelémy, S V Buldyrev, X Gabaix, P Gopikrishnan,
V Plerou, B Rosenow, F Sciortino, A Vespignani, and G Viswanathan. A complete
list of my collaborators appears in Physica 314, 807 (2002).

I conclude with a personal statement. I would like to dedicate this medal to the
memory of my wife, who died 9 March 2003 of lung cancer – a disease which even
today knows no solution. Idahlia, like me, was a great lover of India and all things
Indian: Indian people, Indian art, and Indian food. She would be very happy to be
here with all of us today – and she is here in her spirit.
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