
J. Phys. C: Solid State Phys., Vol. 10, 1977. Printed in Great Britain. @ 1977 

LETTER TO THE EDITOR 

A real-space renormalization group for site and bond percolation? 

P J Reynolds$, W Klein5 and H E Stanley$§ 
$ Physics Department, Massachusetts Institute of Technology, Cambridge, Massachusetts 
02139, USA 
0 Physics Department, Boston University, Boston, Massachusetts 02215, USA 

Received 3 1 January 1977 

Abstract. We develop a real-space renormalization group which renormalizes probabilities 
directly in the percolation problem. An exact transformation is given in one dimension, and 
a cluster approach is presented for other lattices. Our results are in excellent agreement 
with series calculations for the critical percolation concentration p, (both site and bond), 
and in good agreement for the correlation length exponent vp. Additionally, in one dimension 
we include a field-like variable and calculate the remaining exponents. 

The percolation problem (Shante and Kirkpatrick 1971) has been receiving renewed 
attention lately, and with its similarity to thermal phase transitions, the renormalization 
group (RG) comes readily to mind. See, for example, Wilson and Kogut (1974) and 
Niemeyer and Van Leeuwen (1974). Several workers have in fact attempted various RG 
approaches, and these have met with fair success. Harris et a1 (1975) and Dasgupta (1976) 
used the fact that the bond percolation problem has a direct mapping onto the s-state 
Ashkin-Teller-Potts model when s -P 1 (Kasteleyn and Fortuin 1969). They then use this 
model to do RG transformations both in real space and in eexpansion from d = 6 
dimensions. Others have transformed the bond probabilities directly. In particular, 
Young and Stinchcombe (1975) and Stinchcombe and Watson (1976) use decimation, 
while Kirkpatrick (1 977) uses Migdal recursion relations. 

The previous work concerns only the bond percolation problem. In this Letter we 
present a cluster approach which works on the probabilities directly, and applies to 
site as well as bond percolation. First we treat the site problem. We start by choosing a 
lattice which we partition into cells that both cover the lattice and maintain its original 
symmetry (figure 1). These cells will play the role of renormalized sites. Given that 
sites in the original lattice are independently occupied with probability p ,  we must 
choose a cell occupation probability p’ = W(p)  in such a way that W(p)  contains the 
essential physics of percolation. To this end we note that percolation involves the 
formation of an infinite connected network-that is, one that actually ‘gets across’ 
the entire lattice. Below percolation only finite clusters are present. Thus it is sensible 
to  define a cell as occupied if and only if it contains a set of sites such that the cell ‘per- 
colates.’ This will define %?@) for us. 

Since our transformation rescales the lattice spacing by a factor of b, we expect the 
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mean size of a cluster, tP, to decrease as t 
<l, = b-‘5 P’ ( 1) 

Thus (see figure 2) if we start off at some p < p , ,  then our transformation should give 
us p’ < p ,  with iteration taking us to a stable fixed point p* = 0. Likewise if p > p , ,  we 

Figure 1. Rescaling a lattice by forming cells out of groups of sites: (a) The linear chain 
lattice is covered with cells of I sites, with l = 3 pictured. (b) Four-site cells on the square 
lattice are shown, with dots representing occupied sites. Cells C and D, for example, are 
both occupied (each cell can be traversed), but we cannot get from one cell to the other. This 
problem is overcome in the cluster approach treated in the text. Cells A, B, and C are con- 
nected on the site level, though only the next-nearest neighbour cells, A and C, are occupied. 
This forces us to introduce further-neighbour percolation probabilities. 

expect p’ > p in order that <, decrease, and we should flow toward a stable fixed point 
p* = 1. If, however, we start off at p = p , ,  5 ,  is infinite, and equation (1) is satisfied. 
Therefore, we expect W to have an unstable fixed point p* = p , .  Further, as p --f p , ,  
lp diverges as 

5, - / P  - P,/-v”, (2)  
where vp is the critical exponent for the ‘correlation length’. We may calculate vp  by 
linearizing about the fixed point and looking for the eigenvalue A, of the linearized 
transformation WL : 

g L ( P  - P3 = .a”p(P - P A  (3 )  

where here 

= dW‘(P)/dPlp=p*. (4) 

4‘ P = L - v P t  P P‘ ( 5 )  

From equation (3 )  we get 

Comparing this with equation (1) we immediately find for the ‘temperature’ scaling 
power 

yp = In AP/ln b = v i 1 .  (6) 
We demonstrate our approach first in one case where the transformation is exact. 

t For p > p c ,  5 ,  refers to the mean size of the pnite clusters 
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Figure 2. (a) The mean cluster size &, diverges at p c ,  and thus ought to be an unstable fixed 
point under an RG transformation. At p = 0 and p = 1 we have stable fixed points. We also 
sketch a typical transformation p‘ = B(p) (full line) and its limiting form as the cell size goes 
to infinity (broken line). The intersections with the line pi = p locate the fvted points. (b)  We 
show the special case d = 1. The transformation is p‘ = p L  (full line). Due to the simple form 
of &(p) we may take the limit I -+ CO (broken line), which should be compared with (a). 

For the d = 1 linear chain lattice (figure l(u)) we define an l-site cell as occupied if we 
can get across it, and this requires that all the sites be present. Thus 

p’ = 9 ( p )  = p’ .  (7) 
Setting p‘ = p ,  we find fixed points at p* = 0, 1. The unstable fixed point gives p c ,  and 
so (cf equations (4) and (Q) p ,  = 1 and vp = 1. These are in fact the exact results. When 
we plot p’  = W(p) (figure 2(b)) for some finite 1, and then take the limit 1 --f 00, we get 
precisely the features we expect as the cell size approaches infinity. In particular, this 
shows that our rule of requiring a cell to ‘percolate’ makes sense, since by the definition 
of percolation, if p < p c  we cannot ‘get across’ the (infinite) cell, and so p’ = 0 ; if p > p ,  
we can get across with probability unity, and so p’ = 1 (note the broken curves in 
figure 2). 

For d = 2 the simplest cell is the three-site cell on the triangular lattice. Applying 
our rule, the cell is occupied if all three sites are occupied or if any two sites are occupied 
and one is vacant, since in both cases we can ‘get across’. However, with one or no 
sites the cell is vacant. Thus, 

p’ = B(p) = p 3  -t 3p2(1 - p) ,  (8) 

with fixed points at p* = 0, 1, ). This RG therefore predicts p ,  = 3 for the triangular 



L170 Letter to the Editor 

lattice, which is in agreement with the exact results known for this lattice (Shante and 
Kirkpatrick 1971). Using equations (4) and (6) we calculate vp, 

vp = In J3/ln (3/2) = 1.354..  . , (9) 
which is in excellent agreement with the series result of Dunn et a1 (1975)t, vp = 1.34 If: 
0.02. 

When d > 1, our transformation involves an approximation. This can be seen by 
considering a group of neighbouring cells (cf figure l(b)). There are some site configura- 
tions in which two nearest-neighbour cells (e.g. C and D) are occupied, though no path 
from one to the other exists, while other site configurations have two next-nearest 
neighbour cells joined via a ‘vacant’ intermediate cell. 

To improve our approximation for d > 1, we use a cluster approach where we 
choose a group of cells for which the connectivity problem is treated exactly. The single- 
cell renormalization described earlier is then just a zeroth-order approximation, account- 
ing for only the internal (‘getting across’) degrees of freedom. When clusters contain more 
than one cell we introduce ‘interactions’ (getting between cells). We now indicate how 
these interactions may be included. We will consider the square lattice with cells of four 
sites (figure l(b)) because here the single-cell approximation is considerably worse. 
It leads to the recursion relation 

B@) = p4 + 4p3(1 - p )  -t 4p2(1 - p)’, (10) 
since, as before, we must be able to traverse a cluster for it to be considered full. Equation 
(10) gives p* x 0.38 and vp x 1.6, whereas numerically (Shante and Kirkpatrick 1971) 
p c  x 0.59. The next larger cluster contains two adjacent cells. For both cells to be present 
(probability 02) we require that each cell is separately occupied, and that you can get 
from one cell to the other. (For example, none of the two cell configurations shown in 
figure l(b), are counted.) One finds 

@(p) = [ p s  + 8p7(1 - p )  + 20p6(1 - p)’ + 20p5(l - p)3  + 7p4(1 - p)4]1)2 (1 1) 
for which p* x 0.57 and vp x 1.78. 

We have noticed that going to larger clusters of cells generally improves po unless 
the cluster has a node-like structure where a single site is crucial for getting between 
cells (as in the case of clusters of three-site cells on the triangular lattice). The value 
of the exponent vp however, seems sensitive to the symmetry of the cluster. For example 
our cluster of two cells which leads to equation (1  1) no longer has the full 90” rotational 
symmetry of the square lattice, and vp gets worse. 

At present we are generalizing our procedure both by continuing to larger clusters, 
and by including various kinds of further-neighbour percolation ‘interactions’. Such 
‘interactions’ are generated upon iteration for clusters such as that in figure l(b). In 
particular, a next-nearest neighbour interaction included in the simple four-site cell 
improves the exponent to vp z 1.40. 

For bond percolation it is not as obvious how to choose a cell that covers the lattice 
with bonds, and rescales to another bond. We choose (figure 3(4)  a simple eight-bond 
cell on the square lattice, If the cell can be traversed horizontally, then the heavy (re- 
normalized) horizontal bond is present, and similarly for the vertical direction. We find 

W(p) = p s  + 5p4(1 - p )  + 8p3(1 - p)’ + 2$(1 - P)~, (12) 

t Although this result is for bond percolation on the square lattice, it is consistent with and more precise 
than other estimates of v,(d = 2). 
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with p* = 0.5 (exact) and vp x 1.43. The closeness of this value of v, with those calculated 
earlier for the site problem supports ‘site-bond’ universality. The generalization of this 
simple cell to the cubic lattice gives p* x 0.22 and vp x 1.04. Numerical work predicts 

( b )  

P P 

+ ;p. 
P’ 

Figure 3. (a) A single cell on the square lattice used for bond percolation. The heavy lines 
represent the renormalized vertical and horizontal bonds. These are independently present 
if the cell may be traversed vertically or horizontally, respectively. (b) A cell for d = 1 bond 
percolation. Each bond in the original lattice (solid lines) is present with probability p ,  
while additional bonds (wavy lines) connect the sites in this cell to the ‘ghost site’ with 
probability h. 

(Shante and Kirkpatrick 1971 and Kirkpatrick 1976) p ,  x 0.247 and vp = 0-86 & 005. 
For the bond problem, in addition to investigating the generalizations discussed 

earlier for the site problem, we are also studying the inclusion of a ‘ghost spin’, or 
magnetic-field-like variable (Kasteleyn and Fortuin 1969), to make possible the calcula- 
tion of other exponents. We have done this exactly for d = 1. We choose a cell made 
of two bonds and two sites (see figure 3(b)). Note that one end site (open circle) belongs 
to another cell. Each site is joined to the ‘ghost site’ with probability h. Then, the 
probability that we can traverse the cell is 

p‘ = p 2  + p(l - p)h2,  (1 3 4  
where the second term arises from a path through the ‘ghost site’. By rescaling the 
probability that we can get to the ‘ghost site’ from where we enter the cell (the open 
end in figure 3(b)) we arrive at 

h’ = hCp(1 - h) + l]/[p + (1 - p ) h 2 ] .  (13b) 
From these coupled equations we find an unstable fixed point at p* = 1, h* = 0 with a 
field eigenvalue of A,, = 2. It follows that 

( 144 

I1 4 4  

vp = d + 2 - 2lnA,/lnb = 1, 

Yp = (2 - ?JVp = 1, 

and 

which are the exact results in one dimension. 

The authors are grateful to Sidney Redner for many valuable discussions. 
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