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The purpose of this supporting information is to describe the
model presented by Fu and colleagues (1) and summarize the
empirical evidence that supports it.

The Model. We model business firms as classes consisting of a
random number of units of variable size. The number of units is
defined as in the Simon model (2). The size of the units evolves
according to the Gibrat growth process (3).

Firms grow by capturing new business opportunities and the
probability that a new opportunity is assigned to a given firm is
proportional to the number of opportunities it has already got (2,
4, 5). At each time t a new opportunity is assigned.

With probability b, the new opportunity is taken up by a new
firm, so that the average number of firms at time t is N(t) � N
(0) � bt.

With probability 1 � b, the new opportunity is captured by an
active firm � with probability P� � (1 � b)K�(t)/t, where K�(t)
is the number of units of firm � at time t.

In the absence of the entry of new firms (b � 0) the probability
distribution of the number of the units in the firms at large t, i.e.,
the distribution P(K), is exponential:

P�K� �
1

K�t�
exp(�K�K� t�), [1]

where K(t) � [n (0) � t]/N(0) is the average number of units
in the classes, which linearly grows with time.

If b � 0, P(K) becomes a Yule distribution that behaves as a
power law for small K:

P�K� � K��, [2]

where � � 2 � b/(1 � b) � 2, followed by the exponential decay
of Eq. 1 for large K with K(t) � [n (0) � t]1�bn(0)b/N(0) (2, 6).

In the Simon model opportunities are assumed to be of unit
size so that S�(t) � K�(t). On the contrary, we assume that each
opportunity has a randomly determined but finite size. To
capture new opportunities firms launch new products, open up
new establishments, divisions, or units. Each opportunity is
assigned to exactly one firm and the size of the firm is measured
by the sum of the sizes of the opportunities it has taken up (4).
In this article, we consider products as the relevant constituent
parts of the companies and measure their size in terms of sales,
even if alternative decompositions of the firm into subunits (e.g.,
plants, divisions) and measures of size (e.g., the number of
employees, total assets) can be applied.

At time t, the size of each product �i(t) � 0 is decreased or
increased by a random factor �i(t) � 0 so that

�i�t � 1� � �i�t��i�t�, [3]

where �i(t), the growth rate of product i, is an independent
random variable taken from a distribution P�(�i), which has a
finite mean and standard deviation.

Thus, at time t a firm � has K�(t) products of size �i(t), i � 1,
2, . . ., K�(t) so that its total size is defined as the sum of the sales
of its products S�(t)' ¥i � 1

K� �i(t) and its growth rate is measured
as g � log(S�(t � 1)/S�(t)).

The probability distribution of firm growth rates P(g) is given
by

P�g� � �
K�1

�

P�K�P�g�K�, [4]

where P(g�K) is the distribution of the growth rates for a firm
consisting of K products. By using central limit theorem, one can
show that for large K and small g, P(g�K) converge to a Gaussian
distribution

P�g�K� �
�K

�2�V
exp���g 	 m�2K

2V 	 , [5]

where V and m are functions of the distributions P� and P�. For
the most natural assumption of the Gibrat process for the sizes
of the products these distributions are lognormal:

P���i� �
1

�2�V�

1
�i

exp(�(ln �i 	 m�)2�2V�), [6]

P���i� �
1

�2�V�

1
�i

exp(�(ln �i 	 m�)2�2V�). [7]

In this case,

m � m� � V��2 [8]

and

V � K
2 � exp(V�)�exp(V�� 	 1), [9]

but for large V� the convergence to a Gaussian is an extremely
slow process. Assuming that the convergence is achieved, one
can analytically show (1) that P(g) has similar behavior to the
Laplace distribution for small g, i.e., P(g) � exp(�
	2�g�/	V)/
	2V, whereas for large g P(g) has power-law wings P(g) 
 g�3,
which are eventually truncated for g 3 � by the distribution P�

of the growth rate of a single product.
Using the fact that the nth moment of the lognormal distri-

bution

Px�x� �
1

�2�Vx

1
x

exp(�(ln xi 	 mx)2�2Vx), [10]

is equal to

�n,x � � xn  � exp(nmx � n2Vx�2) [11]

we can make an expansion of a logarithmic growth rate in inverse
powers of K:

g � ln
�

i�1

K
� i� i

�
i�1

K
� i

� ln �1,� � ln�1 �
A

K�1 � B�K�
	

� m� �
V�

2
�

A�1 	 B�K � B2�K2. . .�
K

	
A2�1 	 B�K � B2�K2. . .�2

2K2 � . . .
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� m� �
V�

2
�

A
K

	
AB � A2�2

K2 � O�K 	 3�

A �

�
i�1

K
� i�� i 	 �1,��

�1,��1,�
[12]

where

B �

�
i�1

K
� i 	 �1,�

�1,�
. [13]

Using the assumptions that �i and �i are independent: ��i�i� �
��i���i�, ��i�j� � ��i���j�, and ��i�j� � ��i���j� for i  j, we find �A�
� 0, �AB� � 0, �A2� � CK, where C � a(b � 1) with a � exp(V�)
and b � exp(V�). Thus

� � � g  � �
n�0

� mn

Kn


2 � � g2  	 �2 � �
n�1

� Vn

Kn, [14]

where m0 � m� �V�/2, m1 � �C/2, V1 � C, V2 � C[a(5b � 1)/2
�1 � a2b(b � 1)]. The higher terms involve terms like �An �/Kn,
which will become sums of various products � �i

k(�i � �1,�)k�,
where 2 � k � n. The contribution from k � n has exactly K
terms of �n,��1,�

�n
¥j � 0

n �j,��1,�
�j (�1)n�j(n

j ) with �j,x�1,x
�j � ex-

p(Vxj(j � 1)/2). Thus, there are contributions to mn and Vn that
grow as (ab)n(n � 1)/2 with ab � 1, which is faster than the nth
power of any � � 0. The radius of convergence of the expansions
(14) is equal to zero, and these expansions have only a formal
asymptotic meaning for K 3 �. However, these expansions
demonstrate that � and 
 do not depend on m� and m� except
for the leading term in �: m0 � m� � V�/2.

Not being able to derive close-form expressions for 
 we
perform extensive computer simulations, in which � and � are
independent random variables taken from lognormal distribu-
tions P� and P� with various V� and V� (supporting information
(SI) Figs. S1 and S2).

Empirical Evidence. The model relies on the assumptions of
independence of the growth of products from each other and

from the number of products K. However, these assumptions
could be violated and at least three alternative explanations must
be analyzed:
1. Size dependence. The probability that an active firm captures a
new market opportunity is more or less than proportional to its
current size. In particular, there could be a positive relationship
between the number of products of firm � (K�) and the size
(�i(�)) and growth (�i(�)) of its component parts due to
monopolistic effects and economies of scale and scope. If large
and small companies do not get access to the same distribution
of market opportunities, large firms can be riskier than small
firms simply because they tend to capture bigger opportunities.
2. Units interdependence. The growth processes of the constituent
parts of a firm are not independent. One could expect product
growth rates to be positively correlated at the level of firm
portfolios, due to product similarities and common management,
and negatively correlated at the level of relevant markets, due to
substitution effects and competition. Based on these arguments,
one would predict large companies to be less risky than small
companies because their product portfolios tend to be more
diversified.
3. Time dependence. The growth of firms’ constituent units does not
follow a pure Gibrat process because of serial autocorrelation
and life cycles. Young products and firms are supposed to be
more volatile than predicted by the Gibrat Law because of
learning effects. If large firms are older and have more mature
products, they should be less risky than small firms. On the
contrary, aging and obsolescence would imply that incumbent
firms are more unstable than newcomers.

The first two hypotheses are not falsified by our data (Fig. S3).
The number of products of a firm and their average size

defined as ��(K)� � �1/K ¥i � 1
K �i�, where � � indicates averaging

over all companies with K products, has an approximate power
law dependence ��(K)� 
 K�, where � � 0.38.

The mean correlation coefficient of product growth rates at
the firm level ��(K)� shows an approximate power-law depen-
dence ��(K)� 
 K�, where � � �0.36.

Because larger firms are composed by bigger products and are
more diversified than small firms, the two effects compensate
each other. Thus, if products are randomly reassigned to com-
panies, the size-variance relationship will not change.

As for the time dependence hypothesis, despite some depar-
tures from a Gibrat process at the product level (Fig. S4) because
of life cycles and seasonal effects, they are too weak to account
for the size-variance relationship. Moreover, asynchronous prod-
uct life cycles are washed out on aggregation.
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Fig. S1. Simulation results for the conditional growth rate distribution P(g�S,K) for the case of lognormal P� and P�, with V� � 6, V� � 1, and m� � m� �

0. For K � 1 the distribution is perfectly Gaussian with V� � 1 and m� � 0. However, for large K the distribution develops a tent-shape form with the central
part close to a Gaussian with mean m � 1/2 as predicted by Eq. 8. The vast majority of firms (99.7%) have sizes in the vicinity of K�� which for K � 215 and ��

� exp(m�� V�/2) � 20.1 belongs to the bin [219, 220] and only 0.25% of firms belong to the next bin [220, 221]. These firms are due to a rare occurrence of extremely
large products. The real number of products in these firms is Ke � 2.4, whereas the normally sized firms have Ke � 31. The fluctuations of these extremely large
products dominate the fluctuations of the firm size and, hence, P(g�S,K) for such abnormally large firms is broader than for normally sized firms. Accordingly,

 � 0.09 and 
 � 0.41, respectively, for the normally sized and abnormally large firms.
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Fig. S2. The behavior of 
(S) for the exponential distribution P(K) � exp(�K/� K�)/� K� and lognormal P� and P�. We show the results for K0 � 1, 10, 100, 1,000,
and 10,000 and V� � 1, 5, and 10. The graphs 
(KS) and the asymptote given by


�S� � �V/KS �
exp(3V�/4 � m�/2)exp(V�)�1

�S

are also given to illustrate our theoretical considerations. One can see that for V� � 1, 
(S) almost perfectly follows 
(KS) even for �K� � 10. However, for V� �
5, the deviations become large and 
(S) converges to 
(KS) only for �K� � 100. For V� � 10 the convergence is never achieved.
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Fig. S3. The relationship between the average product size and the number of products of the firm. The log-log plot of ��(K)� vs. K shows power-law dependence
��(K)� � K0.38.
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Fig. S4. The average growth rate and the autocorrelation coefficient of firms from entry. The departures of product growth from a Gibrat process are washed
out on aggregation. The growth rates do not depend on age and do not show a significant autocorrelation.
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