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Detrended partial cross-correlation analysis of two nonstationary time series
influenced by common external forces
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When common factors strongly influence two power-law cross-correlated time series recorded in complex
natural or social systems, using detrended cross-correlation analysis (DCCA) without considering these common
factors will bias the results. We use detrended partial cross-correlation analysis (DPXA) to uncover the intrinsic
power-law cross correlations between two simultaneously recorded time series in the presence of nonstationarity
after removing the effects of other time series acting as common forces. The DPXA method is a generalization of
the detrended cross-correlation analysis that takes into account partial correlation analysis. We demonstrate the
method by using bivariate fractional Brownian motions contaminated with a fractional Brownian motion. We find
that the DPXA is able to recover the analytical cross Hurst indices, and thus the multiscale DPXA coefficients are
a viable alternative to the conventional cross-correlation coefficient. We demonstrate the advantage of the DPXA
coefficients over the DCCA coefficients by analyzing contaminated bivariate fractional Brownian motions. We
calculate the DPXA coefficients and use them to extract the intrinsic cross correlation between crude oil and
gold futures by taking into consideration the impact of the U.S. dollar index. We develop the multifractal DPXA
(MF-DPXA) method in order to generalize the DPXA method and investigate multifractal time series. We analyze
multifractal binomial measures masked with strong white noises and find that the MF-DPXA method quantifies
the hidden multifractal nature while the multifractal DCCA method fails.
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I. INTRODUCTION

Complex systems with interacting constituents are ubiq-
uitous in nature and society. To understand the microscopic
mechanisms of emerging statistical laws of complex sys-
tems, one records and analyzes time series of observable
quantities. These time series are usually nonstationary and
possess long-range power-law cross correlations. Examples
include the velocity, temperature, and concentration fields
of turbulent flows embedded in the same space as joint
multifractal measures [1,2], topographic indices and crop
yield in agronomy [3,4], temporal and spatial seismic data
[5], nitrogen dioxide and ground-level ozone [6], heart rate
variability and brain activity in healthy humans [7], sunspot
numbers and river flow fluctuations [8], wind patterns and
land surface air temperatures [9], traffic flows [10] and traffic
signals [11], self-affine time series of taxi accidents [12], and
econophysical variables [13–17].

A variety of methods have been used to investigate the long-
range power-law cross correlations between two nonstationary
time series. The earliest was joint multifractal analysis to
study the cross-multifractal nature of two joint multifractal
measures through the scaling behaviors of the joint moments
[1,2,18–20], which is a multifractal cross-correlation analysis
based on the partition function approach (MF-X-PF) [21]. Over
the past decade, detrended cross-correlation analysis (DCCA)
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[14,22–24] has become a popular method of investigating
the long-range power-law cross correlations between two
nonstationary time series, and this method has numerous
variants [25–33]. Statistical tests can be used to measure
these cross correlations [34–36]. There is also a group
of multifractal detrended fluctuation analysis (MF-DCCA)
methods of analyzing multifractal time series, e.g., MF-X-DFA
[37], MF-X-DMA [38], and MF-HXA [39].

The observed long-range power-law cross correlations
between two time series may not be caused by their intrinsic
relationship but by a common third driving force or by
common external factors [40–42]. If the influence of the
common external factors on the two time series are additive,
we can use partial correlation to measure their intrinsic
relationship [43]. To extract the intrinsic long-range power-
law cross correlations between two time series affected by
common driving driving forces, we previously developed and
used detrended partial cross-correlation analysis (DPXA) and
studied the DPXA exponents of variable cases, combining
the ideas of detrended cross-correlation analysis and partial
correlation [44]. In Ref. [45], the DPXA method has been
proposed independently, focusing on the DPXA coefficient.

Here we provide a general framework for the DPXA and
multifractal DPXA (MF-DPXA) methods that is applicable to
various extensions, including different detrending approaches
and higher dimensions. We adopt two well-established math-
ematical models (bivariate fractional Brownian motions and
multifractal binomial measures) in our numerical experiments,
which have known analytical expressions, and demonstrate
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how the (MF-)DPXA method(s) is superior to the correspond-
ing (MF-)DCCA method(s). Due to very broad application of
DCCA methods, we can expect that the DPXA and MF-DPXA
method will also attract researchers from different fields
seeking intrinsic cross correlations between two time series.

II. DETRENDED PARTIAL CROSS-CORRELATION
ANALYSIS

A. DPXA exponent

Consider two stationary time series {x(t) : t = 1, . . . ,T }
and {y(t) : t = 1, . . . ,T } that depend on a sequence of time
series {zi(t) : t = 1,2, . . . ,T } with i = 1, . . . ,n. Each time
series is covered with Ms = [T/s] nonoverlapping windows
of size s. Consider the vth box [lv + 1,lv + s], where lv =
(v − 1)s. We calibrate the two linear regression models for xv

and yv , respectively,

xv = Zvβx,v + rx,v
(1)

yv = Zvβy,v + ry,v,

where xv = [xlv+1, . . . ,xlv+s]T, yv = [ylv+1, . . . ,ylv+s]T, rx,v

and ry,v are the vectors of the error term, and

Zv =




zT
v,1
...

zT
v,p



 =




z1(lv + 1) · · · zp(lv + 1)

...
. . . · · ·

z1(lv + s) · · · zp(lv + s)



 (2)

is the matrix of the p external forces in the vth box, where xT

is the transform of x. Equation (1) gives the estimates β̂x,v and
β̂y,v of the p-dimensional parameter vectors βx,v and βy,v and
the sequence of error terms,

rx,v = xv − Zvβ̂x,v
(3)

ry,v = yv − Zvβ̂y,v.

We obtain the disturbance profiles, i.e.,

Rx,v(k) =
k∑

j=1

rx(lv + j )

(4)

Ry,v(k) =
k∑

j=1

ry(lv + j ),

where k = 1, . . . ,s.
We assume that the local trend functions of Rx,v and Rx,v

are R̃x,v and R̃y,v , respectively. The detrended partial cross
correlation in each window is then calculated,

F 2
v (s) = 1

s

s∑

k=1

[Rx,v(k) − R̃x,v(k)][Ry,v(k) − R̃y,v(k)], (5)

and the second-order detrended partial cross correlation is
calculated,

Fxy:z(2,s) =
[

1
m − 1

m∑

v=1

F 2
v (s)

]1/2

. (6)

If there are intrinsic long-range power-law cross correlations
between x and y, we expect the scaling relation

Fxy:z(2,s) ∼ shxy:z . (7)

There are many ways of determining R̃x,v and R̃y,v . The
local detrending functions could be polynomials [46,47],
moving averages [48–51], or other possibilities [52]. To
distinguish the different detrending methods, we label the
corresponding DPXA variants as, e.g., PX-DFA and PX-DMA.
When the moving average is used as the local detrending
function, the window size of the moving averages must be
the same as the covering window size s [53].

To measure the validity of the DPXA method, we perform
numerical experiments using an additive model for x and y,
i.e.,

x(t) = βx,0 + βxz(t) + rx(t)
(8)

y(t) = βy,0 + βyz(t) + ry(t),

where z(t) is a fractional Gaussian noise with Hurst index Hz,
and rx and ry are the incremental series of the two components
of a bivariate fractional Brownian motion (BFBMs) with Hurst
indices Hrx

and Hry
[54–56]. The properties of multivariate

fractional Brownian motions have been extensively studied
[54–56]. In particular, it has been proven that the Hurst index
Hrxry

of the cross correlation between the two components is
[54–56]

Hrxry
=

(
Hrx

+ Hry

)
/2. (9)

This property allows us to assess how the proposed method
performs. We can obtain the hxy of x and y using the DCCA
method and the hxy:z of rx and ry using the DPXA method. Our
numerical experiments show that Hrxry

= hrxry
= hxy:z #= hxy .

We use H for theoretical or true values and h for numerical
estimates.

In the simulations we set βx,0 = 2, βx = 3, βy,0 = 2, and
βy = 3 in the model based on Eq. (8). Three Hurst indices
Hrx

, Hry
, and Hz are input arguments and vary from 0.1 to

0.95 with a step of 0.05. Because rx and ry are symmetric,
we set Hrx

! Hry
, resulting in (18+1)×18

2 × 18 = 3078 triplets
of (Hrx

,Hry
,Hz). The BFBMs are simulated using the method

described in Refs. [55,56], and the components of fractional
Brownian motion (FBMs) are generated using a rapid wavelet-
based approach [57]. The length of each time series is 65 536.
For each (Hrx

,Hry
,Hz) triplet we conduct 100 simulations. We

obtain the Hurst indices for the simulated time series rx , ry ,
z, x, and y using detrended fluctuation analysis [46,58]. The
average values hrx

, hry
, hz, hx , and hy over 100 realizations

are calculated for further analysis, which are shown in Fig. 1.
A linear regression between the output and input Hurst indices
in Figs. 1(a)–1(c) yields 〈hrx

〉 = 0.009 + 0.990Hrx
, 〈hry

〉 =
0.009 + 0.990Hry

, and 〈hz〉 = 0.010 + 0.991Hz, suggesting
that the generated FBMs have Hurst indices equal to the input
Hurst indices. Figure 1(d) shows that when hrx

! hz, hx is
close to hz. When it is not, hz < hx < hrx

.
Figure 1(e) shows that hrxry

= (hrx
+ hry

)/2. Because hrx
≈

Hrx
and hry

≈ Hry
[see Figs. 1(a) and 1(b)], we verify

numerically that

hrxry
≈ Hrxry

. (10)
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FIG. 1. (Color online) Detrended partial cross-correlation exponents. (a, b) Dependence of the average Hurst indices hrx and hrx of the two
components of the generated bivariate fractional Brownian motions on the input Hurst indices Hrx and Hrx . (c) Dependence of the average
Hurst index hz of the generated univariate fractional Brownian motions on the input Hurst index Hz. (d) Dependence of hx on Hz for different
hrx values. (e) Relative error "hrxry = hrxry − Hrxry . (f) Relative error "hxy:z between the DPXA estimate 〈hxy:z〉z and the true value hrxry as a
function of hrx and hry .

Note also that hxy ≈ (hx + hy)/2, and that hxy:z is a function
of hrx

, hry
and hz. A simple linear regression gives

hxy:z = 0.003 + 0.509hrx
+ 0.493hry

+ 0.012hz, (11)

which indicates that the DPXA method can be used to extract
the intrinsic cross correlations between the two time series x
and y when they are influenced by a common factor z. We
calculate the average 〈hxy:z〉z over different Hz and then find
the relative error

"hxy:z =
〈hxy:z〉z − hrxry

hrxry

. (12)

Figure 1(f) shows the results for different combinations of hrx

and hry
. Although in most cases we see that "hxy:z ( 0.05,

when both hrx
and hry

approach 0, "hxy:z increases. When
hrx

= hry
= 0.11, "hxy:z = 0.192, and when hrx

= 0.11 and
hry

= 0.16, "hxy:z = 0.113. For all other points of (hrx
,hry

),
the relative errors "hxy:z are less than 0.10.

B. DPXA coefficient

In a way similar to detrended cross-correlation coefficients
[31,35], we define the detrended partial cross-correlation
coefficient (or DPXA coefficient) as

ρDPXA(s) = ρxy:z(s) =
F 2

xy:z(2,s)

Fx:z(2,s)Fy:z(2,s)
. (13)

As in the DCCA coefficient [31,36], we also find −1 !
ρDPXA(s) ! 1 for DPXA. The DPXA coefficient indicates the
intrinsic cross correlations between two nonstationary series.

We use the mathematical model in Eq. (8) with the coef-
ficients βx,0 = βy,0 = 2 and βx,1 = βy,1 = 3 to demonstrate

how the DPXA coefficient outperforms the DCCA coefficient.
The two components rx and ry of the BFBM have very small
Hurst indices Hrx

= 0.1 = Hry
= 0.1 and their correlation

coefficient is ρ = 0.7, and the driving FBM force z has a
large Hurst index Hz = 0.95. Figure 2(a) shows the resulting
cross-correlation coefficients at different scales. The DCCA
coefficients ρrx ,ry

between the generated rx and ry time series
overestimate the true value ρ = 0.7. Because the influence
of z on rx and ry is very strong, the behaviors of x and
y are dominated by z, and the cross-correlation coefficient
ρx,y(s) is close to 1 when s is small and approaches 1
when s is large. In contrast, the DPXA coefficients ρx,y:z are
in good agreement with the true value ρ = 0.7. Note that
the DPXA method better estimates rx and ry than the
DCCA method, since the ρrx ,ry

curve deviates more from the
horizontal line ρ = 0.7 than the ρx,y:z curve, especially at large
scales.

To illustrate the method with an example from finance, we
use it to estimate the intrinsic cross-correlation levels between
the futures returns and the volatilities of crude oil and gold.
It is well documented that the returns of crude oil and gold
futures are correlated [59], and that both commodities are
influenced by the USD index [60]. The data samples contain
the daily closing prices of gold, crude oil, and the USD index
from 4 October 1985 to 31 October 2012. Figure 2(b) shows
that both the DCCA and DPXA coefficients of returns exhibit
an increasing trend with respect to the scale s, and that the
two types of coefficient for the volatilities do not exhibit any
evident trend. For both financial variables, Fig. 2(b) shows
that

ρg,o:d(s) < ρg,o(s) (14)
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FIG. 2. (Color online) Detrended partial cross-correlation coef-
ficients. (a) Performance of different methods by comparing three
cross-correlation coefficients ρx,y , ρrx ,ry , and ρx,y:z of the mathe-
matical model in Eq. (8). (b) Estimation and comparison of the
cross-correlation levels between the two return time series (◦) and
two volatility time series (") of crude oil and gold when including
and excluding the influence of the U.S. dollar (USD) index.

for different scales. Although this is similar to the result
between ordinary partial correlations and cross correlations
[61], the DPXA coefficients contain more information than
the ordinary partial correlations since the former indicate the
partial correlations at multiple scales.

III. MULTIFRACTAL DETRENDED PARTIAL
CROSS-CORRELATION ANALYSIS

An extension of the DPXA for multifractal time series,
notated MF-DPXA, can be easily implemented. When MF-
DPXA is implemented with DFA or DMA, we notate it MF-
PX-DFA or MF-PX-DMA. The qth-order detrended partial
cross correlation is calculated as

Fxy:z(q,s) =
[

1
m − 1

m∑

v=1

∣∣F 2
v (s)

∣∣q/2

]1/q

(15)

when q #= 0, and

Fxy:z(0,s) = exp

[
1
m

m∑

v=1

ln |Fv(s)|
]

. (16)

We then expect the scaling relation

Fxy:z(q,s) ∼ shxy:z(q). (17)

According to the standard multifractal formalism, the multi-
fractal mass exponent τ (q) can be used to characterize the
multifractal nature, i.e.,

τxy:z(q) = qhxy:z(q) − Df , (18)

where Df is the fractal dimension of the geometric support
of the multifractal measure [62]. We use Df = 1 for our
time series analysis. If the mass exponent τ (q) is a nonlinear
function of q, the signal is multifractal. We use the Legendre
transform to obtain the singularity strength function α(q) and
the multifractal spectrum f (α) [63]:

αxy:z(q) = dτxy:z(q)/dq
(19)

fxy:z(q) = qαxy:z − τxy:z(q).

To test the performance of MF-DPXA, we construct two
binomial measures {rx(t) : t = 1,2, . . . ,2k} and {ry(t) : t =
1,2, . . . ,2k} from the p model with known analytic multifractal
properties [64], and contaminate them with Gaussian noise.
We generate the binomial measure iteratively [38] by using
the multiplicative factors px = 0.3 for rx and py = 0.4 for
ry . The contaminated signals are x = 2 + 3z + rx and y =
2 + 3z + ry . Figures 3(a)–3(c) show that the signal-to-noise
ratio is of order O(10−6). Figures 3(d)–3(f) show a power-law
dependence between the fluctuation functions and the scale,
in which it is hard to distinguish the three curves of Fxy .
Figure 3(g) shows that for x(t) and y(t), the τxy(q) function
is an approximate straight line and that the corresponding
fxy(α) spectrum is very narrow and concentrated around
α = 0.5. These observations are trivial because x(t) and y(t)
are Gaussian noise with the Hurst indices Hx = Hy = 0.5,
and the multifractal detrended cross-correlation analysis [37]
fails to uncover any multifractality. On the contrary, we find
that τxy:z(q) ≈ τrx ry

(q) ≈ Trx ry
(q) and fxy:z(α) ≈ frxry

(α) ≈
Frxry

(α). Thus, the MF-DPXA method successfully reveals
the intrinsic multifractal nature between rx(t) and ry(t) hidden
in x(t) and y(t).

IV. SUMMARY

In summary, we have studied the performances of DPXA
exponents, DPXA coefficients, and MF-DPXA using bivariate
fractional Brownian motions contaminated by a fractional
Brownian motion and multifractal binomial measures con-
taminated by white noise. These mathematical models are ap-
propriate here because their analytical expressions are known.
We have demonstrated that the DPXA methods are capable
of extracting the intrinsic cross correlations between two time
series when they are influenced by common factors, while the
DCCA methods fail.

The methods discussed are intended for multivariate time
series analysis, but they can also be generalized to higher
dimensions [38,53,65,66]. We can also use lagged cross
correlations in these methods [67,68]. Although comparing the
performances of different methods is always important [69],
different variants of a method can produce different outcomes
when applied to different systems. For instance, one variant
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FIG. 3. (Color online) Multifractal detrended partial cross-correlation analysis of two binomial measures contaminated by Gaussian noise
with very low signal-to-noise ratio. (a)–(c) The segments of the binomial signal rx(t) with px = 0.3, the Gaussian noise z(t), and the “observed”
signal x(t). (d)–(f) Power-law dependence of the fluctuations Fxy(q,s), Fxy:z(q,s), Frxry (q,s) on the scale s for q = −4, 0, and 4 (from top
to bottom). The values of Fxy:z and Frxry have been multiplied by 1 × 105. (g) Multifractal mass exponents τxy(q), τxy:z(q), and τrx ry (q), with
the theoretical curve Trx ry shown as a continuous line. (d) Multifractal spectra fxy(α), fxy:z(α), and frxry (α) of the singularity strength α. The
continuous curve is the theoretical spectrum Frx ry (α).

that outperforms other variants under the setting of certain
stochastic processes is not necessarily the best performing
method for other systems [53]. We argue that there are still a
lot of open questions for the big family of DFA, DMA, DCCA,
and DPXA methods.

Nevertheless, the DPXA and MF-DPXA methods are
advantageous over the DCCA and MF-DCCA methods. This
statement is straightforward when the hidden influencing
forces are known, as shown by the numerical models. When
applied to real systems, one should first identify influencing
forces based on underlying physical mechanisms. If one
is able to identify several possible influencing forces but

does not know which forces are true, one can compare
the DPXA coefficients to determine which are influenc-
ing forces and which force is more influencing. After
determining influencing forces, one can further perform
MF-DPXA.
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