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The purpose of this comment, inspired by
[1], is to offer some perspective on the cri-
teria used to establish the credibility of
power-law behaviour, and to offer some
thoughts on the interpretation of such be-
haviour when it exists.

That at least some economic phenomena
are described by power laws has been rec-
ognized for over 100 years since Pareto in-
vestigated the statistical character of the
wealth of individuals by modelling them
using the scale-invariant distribution

f (x) ∼ x−α (1)

where f (x) denotes the number of people
having income x or greater than x , and α is
an exponent that Pareto estimated to be 1.5
[2].  Pareto noticed that his result was uni-
versal in the sense that it applied to nations
‘as different as those of England, of Ire-
land, of Germany, of the Italian cities, and
even of Peru’. A physicist would say that
the universality class of the scaling law (1)
includes all the aforementioned countries
as well as Italian cities, since by definition
two systems belong to the same univers-
ality class if they are characterized by the
same exponents.  

In the century following Pareto’s dis-
covery, the twin concepts of scaling and
universality have proved to be important in
a number of scientific fields [3, 4].  A strik-
ing example was the elucidation of the
puzzling behaviour of systems near their
critical points.  Over the past few decades
it has come to be appreciated that the scale-

free nature of fluctuations near critical
points also characterizes a huge number of
diverse systems also characterized by
strong fluctuations.  This set of systems 
includes examples that, at first sight, are 
as far removed from physics as is 
economics.  For example, consider the per-
colation problem, which in its simplest
form consists of placing blue pixels on a
fraction p of randomly chosen plaquettes
of a yellow computer screen (figure 1).  A 
remarkable fact is that the largest connect-
ed component of blue pixels magically
spans the screen at a threshold value pc .
This purely geometrical problem has noth-
ing to do with the small branch of physics
called critical-point phenomena. Nonethe-
less, the fluctuations that occur near
p = pc are scale free and functions de-
scribing various aspects of the incipient
spanning cluster that appears at p = pc

are described by power laws.  Indeed, the
concepts of scaling and universality pro-
vide the conceptual framework for under-
standing this geometry problem.  

It is becoming clear  that almost any sys-
tem comprised of a large number of inter-
acting units has the potential of displaying
power-law behaviour. Since economic
systems are in fact comprised of a large
number of interacting units having the po-
tential of displaying power-law behaviour,
it is perhaps not unreasonable to examine
economic phenomena within the concep-
tual framework of scaling and universality
[3–8].  We will discuss this topic in detail
below.  

So having embarked on a path guided by
these two theoretical concepts, what does
one do?  Initially, critical phenomena re-
search—guided by the Pareto principles of
scaling and universality—was focused  on
finding which systems display scaling
phenomena, and on discovering the actual
values of the relevant exponents.  This ini-
tial empirical phase of critical phenomena
research proved vital, for only by carefully
obtaining empirical values of exponents
such as α could scientists learn which sys-
tems have the same exponents (and hence
belong to the same universality class).
The fashion in which physical systems
partition into disjoint universality classes
proved essential to later theoretical devel-
opments such as the renormalization
group [6]—which offered some insight in-
to the reasons why scaling and universality
seem to hold; ultimately it led to a better
understanding of the critical point.  

Similarly, the initial research in eco-
nomics guided by the Pareto principles has
largely been concerned with establishing
which systems display scaling phenome-
na, and with measuring the numerical 
values of the exponents with sufficient 
accuracy that one can begin to identify uni-
versality classes if they exist.  Economics
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systems differ from often-studied physical
systems in that the number of subunits are
considerably smaller in contrast to macro-
scopic samples in physical systems that
contain a huge number of interacting sub-
units, as many as Avogadro’s number,
6 × 1023.  In contrast, in an economic sys-
tem, one initial work was limited to
analysing time series comprising of order
of magnitude 103 terms, and nowadays
with high-frequency data the standard, one
may have 108 terms. Scaling laws of the
form of (1) are found that hold over a range
of a factor of ≈ 106 on the x-axis [9–11].
Moreover, these scaling laws appear to be

universal in that they, like the Pareto scal-
ing law, hold for different countries [12]
and for other social organizations [13, 14].

Recent attempts to make models that re-
produce the empirical scaling relation-
ships suggest that significant progress on
understanding firm growth may be well
underway [15–18], leading to the hope of
ultimately developing a clear and coherent
‘theory of the firm’.  One use of the recent
empirical work is that now any acceptable
theory must respect the fact that power
laws hold over typically six orders of mag-
nitude; as Axtell put the matter rather
graphically: ‘the power-law distribution is
an unambiguous target that any empirical-
ly accurate theory of the firm must hit’ [9].  

With this background on power laws and
scale invariance in geometry and in eco-
nomics, we turn now to [1], which con-
cerns the well-studied problem of finance
fluctuations, where a consistent set of em-
pirical facts is beginning to emerge.  One
fact that has been confirmed by numerous,
mostly independent, studies is that stock
price fluctuations are characterized by a
scale-invariant cumulative distribution
function of the power-law form (1) with
α ≈ 3 [19, 20].  This result is also univer-
sal, in the sense that this inverse cubic law
exponent is within the error bars of results
for different segments of the economy, dif-
ferent time periods, and different coun-
tries—and is the same for stock averages
as different as the S&P and the Hang Seng
[21].  Many commodity prices appear to
have exponent α ≈ 3 also [22], with the
exception of cotton fluctuations [3] for
which α ≈ 1.7; this difference is of some
interest because only if α < 2 is the distri-
bution of the Lévy form.  

Other quantities characterizing stock
movements (such as the volatility, share
volume traded and number of trades) also
display a range of power-law behaviour
over a range of typically 102.  The expo-
nents characterizing the power-law decays
are different for different quantities
[23–26]; it is tempting to conjecture that in
finance there may exist a set of relations
among the power-law exponents found,
just as there exist relations among the ex-
ponents characterizing different quantities
near the critical point. Finally, it is well
known that while the autocorrelation func-
tion of price returns decays rapidly, the au-
tocorrelation function of the absolute
values of price returns is power-law corre-
lated in time (see [23] and extensive earlier
work cited therein).  

The question of how to 
interpret these different
power laws remains open

Figure 1. We can experience the striking self-similarity of a fractal when we examine a
series of pictures of a large percolation cluster created at the percolation threshold
p = pc .  A little box is cut out of the first picture, blown up, and used as the second 
picture. The same little box procedure can be repeated in the second picture, creating the
third picture, and in the third, creating the fourth.  The untrained eye immediately recog-
nizes that the statistical properties in all four pictures are the same, and to confirm this by
a simple experiment, we can remove the labels, mix the pictures up, and then see how
long it takes to put them back into sequence.  It takes a remarkably long time and, signifi-
cantly, can be carried out only by searching for non-statistical features of the patterns,
such as specific invaginations of a specific part of the cluster.  An educational game is to
time how long it takes each player to detect by eye which of the 24 possible panel order-
ings is the correct one that arranges the four panels in increasing order of magnification.
This figure is courtesy of J Kantelhardt.
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The question of how to interpret these
different power laws remains open.  The
three-factor stochastic volatility process
presented in [1] possesses three built-in
scales at values that one can choose at will,
so does not generate power-law behaviour,
but instead generates a strongly curved
plot on log–log paper which is never even
approximately linear, even if the range is
as small as that shown by the straight line
in figures 2–5 of [1] (a factor of ≈ 3—ful-
ly 30 times smaller than the domain of
power-law behaviour displayed by empiri-
cal data [20, 23]).  

To test the possibility that facts might
support a conclusion which is the opposite
of what the title of [1] claims, we compare
in figure 2 the model with empirical data.
We deliberately choose the same number
of points to analyse for both.  Two different
sample sizes are shown, 500 000 (the size
chosen in figures 2–5 of [1] and hence also
used to analyse empirical data) and
12 000 000 (the size of the empirical data
set, and hence also used for the model).
One thereby obtains a sense of the depen-
dence of the results on the size of the data
set.  We use the TAQ database listing all
transactions of all stocks over the 2-year
period 1994–1995) [20,23].  Both plots are
consistent with equation (1), with α ≈ 3
(‘the inverse cubic law’); a regression fit
from 2 to 80 standard deviations yields
α = 3.10 ± 0.03.  Plots for the model are
not at all linear, but rather display a strong
downward curvature, strikingly seen since
all plots lie well above every possible
chord—in contrast to the empirical data
which do not consistently lie above
chords.  Accordingly, there is no evi-
dence—in contrast to the claim of [1]—
that the model displays any region of
approximate power law behaviour; addi-
tionally, there is no evidence that the mod-
el resembles the empirical data. 

Newcomers to the field of scale invari-
ance often ask why a power law does 
not extend ‘forever’ as it would for a 
mathematical power law of the form
f (x) = x−α .  This legitimate concern is
put to rest by by reflecting on the fact that
power laws for natural phenomena are not
equalities, but rather are asymptotic rela-
tions of the form f (x) ∼ x−α .  Here the
tilde denotes asymptotic equality.  Thus
f (x) is not ‘approximately equal to’ a
power law so the notation f (x) ≈ x−α is

Figure 2. The empirical cumulative distribution function of stock price fluctuations (the
probability that the stock price change is larger than x , where x is measured in units of
standard deviations).  This figure is designed to compare the model proposed in [1],with
empirical data, first for the identical number, 500 000, of statistical samples used in [1]
and then for 24 times as many samples, 12 000 000.  The bottom panel displays no hint of
linearity, even over a small region of the plot.  The top panel shows that even the smaller
500 000 data sample displays a region of clear linearity (≈ one order of magnitude) and
this power-law regime increases for the larger 12 000 000 sample and becomes almost
two orders of magnitude (see also figure 2 of [20], which analyses ≈ 40 000 000 records
at 5 minute intervals).  That the region of linearity decreases on successive improve-
ments of the model, yet increases on successive improvements of the data set and
demonstrates conclusively that the 3-factor stochastic volatility model fails a reasonable
test for power-law behaviour, while in contrast the empirical data pass this test.
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inappropriate.  Similarly, f (x) is not pro-
portional to a power law, so the notation
f (x) ∝ x−α is also inappropriate.  Rather,
asymptotic equality means that f (x)

becomes increasingly like a power law as
x → ∞.   Moreover, crossovers abound in
financial data, such as the characteristic
crossover from power-law behaviour to
simple Gaussian behaviour as the time
horizon �t over which fluctuations are cal-
culated increases; such crossovers are  also
characteristic of other scale-free phenome-
na in the physical sciences [4], where the
Yule distribution often proves quite useful.  

For reasons of this sort, standard statisti-
cal fits to data are inappropriate, and often
give distinctly erroneous values of the ex-
ponent α.  Rather, one reliable way of esti-
mating the exponent α is to form
successive slopes of pairs of points on a
log–log plot, since these successive slopes
will be monotonic and converge to the true
asymptotic exponent α.  In the case of fig-
ure 2, one finds that successive slopes for
the empirical data converge rapidly to a
value α ≈ 3 while successive slopes for
the model diverge. In summary, we cannot
support the claim in the title of [1] that the
model is a ‘simple generator of financial
power laws and long memory’ when in
light of the above results it appears that the
model does not generate power laws and
does not agree with empirical data which
do follow a power law.  

Our experience in discussing [1] with
colleagues has often led to the first reaction
that the model agrees with the empirical 
data shown, at least over the limited range
of a factor of three on the abscissa. While it
is clear that a three-factor model cannot
generate power-law behaviour, it is less
clear why the empirical data analysed ap-
pear at first glance to be well approximated
by the model.  The first fact is that the region
of linearity of the data is not so large as in
typical modern studies because the total
quantity of data analysed is not that large,
since only a low-frequency time series com-
prising daily data is used.  Only 28 094
records are analysed (not 4 × 107 as in re-
cent studies [20, 23]) and the model simula-
tions are presented for limited sample size.
The second fact is that when one superposes
a curved line (the model) on a straight line
(the data), the untrained eye is easily tempt-
ed to find agreement where none exists—
and closer inspection of figures 2–5 of [1]

actually reveals a rather poor agreement be-
tween model and data due to the pro-
nounced downward curvature of the model.  

Before concluding, we ask what sort of
understanding could eventually develop if
one takes seriously the power laws that 
appear to characterize finance fluctuations.
It is tempting to imagine that there might 
be analogies between finance and known
physical processes displaying similar
scale-invariant fluctuations.  For example,
if one measures the wind velocity in turbu-
lent air, one finds intermittent fluctuations
that display some similarities with finance
fluctuations [27]. However these similari-
ties are not borne out by quantitative analy-
sis—e.g., one finds non-Gaussian statistics
and intermittency for both turbulence fluc-
tuations and stock price fluctuations, but
the time evolution of the second moment
and the shape of the probability density
functions are different for turbulence and
for stock market dynamics [28, 29].  

More recent work pursues a rather dif-
ferent analogy: phase transitions in spin
systems.  Stock prices respond to fluctua-
tions in demand, just as the magnetization
of an interacting spin system responds to
fluctuations in the magnetic field. Periods
with large number of market participants
buying the stock imply mainly positive
changes in price, analogous to a magnetic
field causing spins in a magnet to align.
Recent work [30] quantifies the relations
between price change and  demand fluctu-
ations, and finds results  reminiscent of
phase transitions in spin systems, where
the divergent behaviour of the response
function at the critical point (zero magnet-
ic field) leads to large fluctuations [4].

Since the evidence for an analogy 
between stock price fluctuations and mag-
netization fluctuations near a critical point

is backed up by quantitative analysis of 
finance data, it is legitimate to demand a
theoretical reason for this analogy.  To this
end, we discuss briefly one possible theo-
retical understanding for the origin of scal-
ing and universality in economic systems.
As mentioned above, economic systems
consist of interacting units just as critical
point systems consist of interacting units.
Two units are correlated in what might
seem a hopelessly complex fashion—con-
sider, e.g. two spins on a lattice, which are
correlated regardless of how far apart they
are.  The correlation between two given
spins on a finite lattice can be partitioned
into the set of all possible topologically
linear paths connecting these two spins—
indeed this is the starting point of one of
the solutions of the two-dimensional Ising
model (see appendix B of [4]).  Since cor-
relations decay exponentially along a one-
dimensional path, the correlation between
two spins would at first glance seem to de-
cay exponentially.  Now it is a mathemati-
cal fact that the total number of such paths
grows exponentially with the distance be-
tween the two spins—to be very precise,
the number of paths is given by a function
which is a product of an exponential and a
power law.  The constant of the exponen-
tial decay depends on temperature while
the constant for the exponential growth
depends only on geometric properties of
the system [4].  Hence by tuning tempera-
ture it is possible to achieve a threshold
temperature where these two ‘warring 
exponentials’ balance each other, and a
previously negligible power-law factor
that enters into the expression for the num-
ber of paths will dominate.  Thus power-
law scale invariance emerges as a result of
cancelling exponentials, and universality
emerges from the fact that the interaction
paths depend not on the interactions but
rather on the connectivity.  Similarly, in
economics, two units are correlated
through a myriad of different correlation
paths; ‘everything depends on everything
else’ is the adage expressing the intuitive
fact that when one firm changes, it influ-
ences other firms.  A more careful discus-
sion of this argument is presented, not for
the economy but for the critical phenome-
na problem, in [6].  

Finally, a word of humility with respect
to our esteemed economics colleagues is
perhaps not inappropriate.  Physicists may

It is tempting to imagine that
there might be analogies 
between finance and known
physical processes display-
ing similar scale-invariant
fluctuations
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care passionately if there are analogies be-
tween physics systems they understand
(like critical point phenomena) and eco-
nomics systems they do not understand.
But why should anyone else care?  One
reason is that scientific understanding of
earthquakes moved ahead after it was 
recognized that extremely rare events—
previously regarded as statistical outliers
requiring for their interpretation a theory
quite distinct from the theories that explain
everyday shocks—in fact possess the iden-
tical statistical properties as everyday
events; e.g., all earthquakes fall on the
same straight line on an appropriate
log–log plot.  Since economic phenomena
possess the analogous property, the 
challenge is to develop a coherent under-
standing of financial fluctuations that in-
corporates not only everyday fluctuations
but also those extremely rare ‘financial
earthquakes’.
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