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We analyze the dynamic properties of 107 words recorded in English, Spanish and Hebrew over the period
1800–2008 in order to gain insight into the coevolution of language and culture. We report language
independent patterns useful as benchmarks for theoretical models of language evolution. A significantly
decreasing (increasing) trend in the birth (death) rate of words indicates a recent shift in the selection laws
governing word use. For new words, we observe a peak in the growth-rate fluctuations around 40 years after
introduction, consistent with the typical entry time into standard dictionaries and the human generational
timescale. Pronounced changes in the dynamics of language during periods of war shows that word
correlations, occurring across time and between words, are largely influenced by coevolutionary social,
technological, and political factors. We quantify cultural memory by analyzing the long-term correlations in
the use of individual words using detrended fluctuation analysis.

S
tatistical laws describing the properties of word use, such as Zipf ’s law1–6 and Heaps’ law7,8, have been
thoroughly tested and modeled. These statistical laws are based on static snapshots of written language
using empirical data aggregated over relatively small time periods and comprised of relatively small corpora

ranging in size from individual texts1,2 to relatively small collections of topical texts3,4. However, language is a
fundamentally dynamic complex system, consisting of heterogenous entities at the level of the units (words) and
the interacting users (us). Hence, we begin this paper with two questions: (i) Do languages exhibit dynamical
patterns? (ii) Do individual words exhibit dynamical patterns?

The coevolutionary nature of language requires analysis both at the macro and micro scale. Here we apply
interdisciplinary concepts to empirical language data collected in a massive book digitization effort by Google Inc.,
which recently unveiled a database of words in seven languages, after having scanned approximately 4% of the
world’s books. The massive ‘‘n-gram’’ project9 allows for a novel view into the growth dynamics of word use and
the birth and death processes of words in accordance with evolutionary selection laws10.

A recent analysis of this database by Michel et al.11 addresses numerous well-posed questions rooted in cultural
anthropology using case studies of individual words. Here we take an alternative approach by analyzing the
aggregate properties of the language dynamics recorded in the Google Inc. data in a systematic way, using the word
counts of every word recorded over the 209-year time period 1800 – 2008 in the English, Spanish, and Hebrew text
corpora. This period spans the incredibly rich cultural history that includes several international wars, revolu-
tions, and numerous technological paradigm shifts. Together, the data comprise over 1 3 107 distinct words. We
use concepts from economics to gain quantitative insights into the role of exogenous factors on the evolution of
language, combined with methods from statistical physics to quantify the competition arising from correlations
between words12–14 and the memory-driven autocorrelations in ui(t) across time15–17.

For each corpora comprising millions of distinct words, we use a general word-count framework which
accounts for the underlying growth of language over time. We first define the quantity ui(t) as the number of
uses of word i in year t. Since the number of books and the number of distinct words have grown dramatically over
time, we define the relative word use, fi(t), as the fraction of uses of word i out of all word uses in the same year,

fi tð Þ:ui tð Þ=Nu tð Þ, ð1Þ

where the quantity Nu tð Þ:
PNw tð Þ

i~1 ui tð Þ is the total number of indistinct word uses digitized from books printed
in year t and Nw(t) is the total number of distinct words digitized from books printed in year t. To quantify the
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dynamic properties of word prevalence at the micro scale and their
relation to socio-political factors at the macro scale, we analyze the
logarithmic growth rate commonly used in finance and economics,

ri tð Þ: ln fi tzDtð Þ{ ln fi tð Þ~ ln
fi tzDtð Þ

fi tð Þ

! "
: ð2Þ

Here we analyze the single year growth rates, Dt;1.
The relative use fi(t) depends on the intrinsic grammatical utility of

the word (related to the number of ‘‘proper’’ sentences that can be
constructed using the word), the semantic utility of the word (related
to the number of meanings a given word can convey), and other
idiosyncratic details related to topical context. Neutral null models
for the evolution of language define the relative use of a word as its
‘‘fitness’’18. In such models, the word frequency is the only factor
determining the survival capacity of a word. In reality, word com-
petition depends on more subtle features of language, such as the
cognitive aspects of efficient communication. For example, the emer-
gence of robust categorical naming patterns observed across many
cultures is regarded to be the result of complex discrimination tactics
shared by intelligent communicators. This is evident in the finite set
of words describing the continuous spectrum of color names, emo-
tional states, and other categorical sets19–21.

In our analysis we treat words with equivalent meanings but with
different spellings (e.g. color versus colour) as distinct words, since
we view the competition among synonyms and alternative spellings
in the linguistic arena as a key ingredient in complex evolutionary
dynamics10,22. For instance, with the advent of automatic spell-check-
ers in the digital era, words recognized by spell-checkers receive a
significant boost in their ‘‘reproductive fitness’’ at the expense of their
misspelled or unstandardized counterparts.

In the linguistic arena, not just ‘‘defective’’ words die, even signifi-
cantly used words can become extinct. Fig. 1 shows three once-sig-
nificant words: ‘‘Radiogram,’’ ‘‘Roentgenogram,’’ and ‘‘Xray’’. These
words compete for the majority share of nouns referring to what is
now commonly known as an ‘‘X-ray’’ (note that such dashes are
discarded in Google’s digitization process). The word ‘‘Roent-
genogram’’ has since become extinct, even though it was the most
common term for several decades in the 20th century. It is likely that

two main factors – (i) communication and information efficiency
bias toward the use of shorter words23 and (ii) the adoption of English
as the leading global language for science – secured the eventual
success of the word ‘‘Xray’’ by the year 1980. It goes without saying
that there are many social and technological factors driving language
change.

We begin this paper by analyzing the vocabulary growth of each
language over time. We then analyze the lifetime growth trajectories
of the set of words that are new to each language to gain quantitative
insight into ‘‘infant’’ and ‘‘adult’’ stages of individual words. Using
two sets of words, (i) the relatively new words, and (ii) the most
common words, we analyze the statistical properties of word growth.
Specifically, we calculate the probability density function P(r) of
growth rate r and calculate the size-dependence of the standard
deviation s(r) of growth rates. In order to gain insight into the
long-term cultural memory, we conclude the analysis by measuring
the autocorrelations in word use by applying detrended fluctuation
analysis (DFA) to individual fi(t).

Results
Quantifying the birth rate and the death rate of words. Just as a
new species can be born into an environment, a word can emerge in a
language. Evolutionary selection laws can apply pressure on the
sustainability of new words since there are limited resources
(topics, books, etc.) for the use of words. Along the same lines, old
words can be driven to extinction when cultural and technological
factors limit the use of a word, in analogy to the environmental
factors that can change the survival capacity of a living species by
altering its ability to survive and reproduce.

We define the birth year y0,i as the year t corresponding to the
first instance of fi tð Þ§0:05 f m

i , where f m
i is median word use

f m
i ~Median fi tð Þf g of a given word over its recorded lifetime in

the Google database. Similarly, we define the death year yf,i as the last
year t during which the word use satisfies ft tð Þ§0:05 f m

i . We use the
relative word use threshold 0:05 f m

i in order to avoid anomalies
arising from extreme fluctuations in fi(t) over the lifetime of the
word. The results obtained using threshold 0:10 f m

i did not show a
significant qualitative difference.

The significance of word births Db(t) and word deaths Dd(t) for
each year t is related to the vocabulary size Nw(t) of a given language.
We define the birth rate cb and death rate cd by normalizing the
number of births Db(t) and deaths Dd(t) in a given year t to the total
number of distinct words Nw(t) recorded in the same year t, so that

cb tð Þ:Db tð Þ=Nw tð Þ,

cd tð Þ:Dd tð Þ=Nw tð Þ:
ð3Þ

This definition yields a proxy for the rate of emergence and dis-
appearance of words. We restrict our analysis to words with birth-
death duration yf,i 2 y0,i 1 1 $ 2 years and to words with first
recorded use t0,i $ 1700, which selects for relatively new words in
the history of a language.

The cb(t) and cd(t) time series plotted in Fig. 2 for the 200-year
period 1800–2000 show trends that intensifies after the 1950s. The
modern era of publishing, which is characterized by more strict
editing procedures at publishing houses, computerized word editing
and automatic spell-checking technology, shows a drastic increase in
the death rate of words. Using visual inspection we verify most
changes to the vocabulary in the last 10–20 years are due to the
extinction of misspelled words and nonsensical print errors, and to
the decreased birth rate of new misspelled variations and genuinely
new words. This phenomenon reflects the decreasing marginal need
for new words, consistent with the sub-linear Heaps’ law observed for
all Google 1-gram corpora in24. Moreover, Fig. 3 shows that cb(t) is
largely comprised of words with relatively large f while cd(t) is almost
entirely comprised of words with relatively small f (see also Fig. S1 in

Figure 1 | Word extinction. The English word ‘‘Roentgenogram’’ derives
from the Nobel prize winning scientist and discoverer of the X-ray,
Wilhelm Röntgen (1845–1923). The prevalence of this word was quickly
challenged by two main competitors, ‘‘X-ray’’ (recorded as ‘‘Xray’’ in the
database) and ‘‘Radiogram.’’ The arithmetic mean frequency of these three
time series is relatively constant over the 80-year period 1920–2000, Æ f æ <
10–7, illustrating the limited linguistic ‘‘market share’’ that can be achieved
by any competitor. We conjecture that the main reason ‘‘Xray’’ has a higher
frequency is due to the ‘‘fitness gain’’ from its efficient short word length
and also due to the fact that English has become the base language for
scientific publication.

www.nature.com/scientificreports
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the Supplementary Information (SI) text). Thus, the new words of
tomorrow are likely be core words that are widely used.

We note that the main source of error in the calculation of birth
and death rates are OCR (optical character recognition) errors in the
digitization process, which could be responsible for a significant
fraction of misspelled and nonsensical words existing in the data.
An additional source of error is the variety of orthographic properties
of language that can make very subtle variations of words, for
example through the use of hyphens and capitalization, appear as
distinct words when applying OCR. The digitization of many books
in the computer era does not require OCR transfer, since the manu-
scripts are themselves digital, and so there may be a bias resulting
from this recent paradigm shift. We confirm that the statistical pat-
terns found using post 2000- data are consistent with the patterns
that extend back several hundred years24.

Complementary to the death of old words is the birth of new
words, which are commonly associated with new social and tech-
nological trends. Topical words in media can display long-term per-
sistence patterns analogous to earthquake shocks25,26, and can result
in a new word having larger fitness than related ‘‘out-of-date’’ words
(e.g. blog vs. log, email vs. memo). Here we show that a comparison
of the growth dynamics between different languages can also illus-
trate the local cultural factors that influence different regions of the
world. Fig. 4 shows how international crisis can lead to globalization
of language through common media attention and increased lexical
diffusion. Notably, as illustrated in Fig. 4(a), we find that inter-
national conflict only perturbed the participating languages, while
minimally affecting the languages of the nonparticipating regions,
e.g. the Spanish speaking countries during WWII.

The lifetime trajectory of words. Between birth and death, one
contends with the interesting question of how the use of words
evolve when they are ‘‘alive.’’ We focus our efforts toward
quantifying the relative change in word use over time, both over
the word lifetime and throughout the course of history. In order to
analyze separately these two time frames, we select two sets of words:
(i) relatively new words with ‘‘birth year’’ t0,i later than 1800, so that
the relative age t ; t 2 t0,i of word i is the number of years after the
word’s first occurrence in the database, and (ii) relatively common
words, typically with t0,i , 1800.

We analyze dataset (i) words (summary statistics in Table S1) so
that we can control for properties of the growth dynamics that are
related to the various stages of a word’s life trajectory (e.g. an ‘‘infant’’
phase, an ‘‘adolescent’’ phase, and a ‘‘mature’’ phase). For compar-
ison with the young words, we also analyze the growth rates of
dataset (ii) words in the next section (summary statistics in Table
S2). These words are presumably old enough that they are in a stable
mature phase. We select dataset (ii) words using the criterion Æfiæ $ fc,
where fih i~

PTi
t~1 fi tð Þ=Ti is the average relative use of the word i

over the word’s lifetime Ti 5 t0,f 2 t0,i 1 1, and fc is a cutoff threshold
derived form the Zipf rank-frequency distribution1 calculated for
each corpus24. In Table S3 we summarize the entire data for the
209-year period 1800–2008 for each of the four Google language sets
analyzed.

Modern words typically are born in relation to technological or
cultural events, e.g. ‘‘Antibiotics.’’ We ask if there exists a character-
istic time for a word’s general acceptance. In order to search for
patterns in the growth rates as a function of relative word age, for
each new word i at its age t , we analyze the ‘‘use trajectory’’ fi(t) and
the ‘‘growth rate trajectory’’ ri(t). So that we may combine the indi-
vidual trajectories of words of varying prevalence, we normalize each
fi(t) by its average Æfiæ, obtaining a normalized use trajectory
f ’i tð Þ:fi tð Þ= fih i. We perform an analogous normalization procedure
for each ri(t), normalizing instead by the growth rate standard devi-
ation s[ri], so that ri’ tð Þ:ri tð Þ=s ri½ $ (see the Methods section for
further detailed description).

Figure 3 | Survival of the fittest in the entry process of words. Trends in
the relative uses of words that either were born or died in a given year show
that the entry-exit forces largely depend on the relative use of the word. For
the English corpus, we calculate the average of the median lifetime relative
use, ÆMed(fi)æ, for all words born in year t (top panel) and for all words that
died in year t (bottom panel), which shows a 5-year moving average
(dashed black line). There is a dramatic increase in the relative use
(‘‘utility’’) of newborn words over the last 20–30 years, likely
corresponding to new technical terms, which are necessary for the
communication of core modern technology and ideas. Conversely, with
higher editorial standards and the recent use of word processors which
include spelling standardization technology, the words that are dying are
those words with low relative use. We confirm by visual inspection that the
lists of dying words contain mostly misspelled and nonsensical words.

Figure 2 | Dramatic shift in the birth rate and death rate of words. The
word birth rate cb(t) and the word death rate cd(t) show marked underlying
changes in word use competition which affects the entry rate and the
sustainability of existing words. The modern print era shows a marked
increase in the death rate of words which likely correspond to low fitness,
misspelled and (technologically) outdated words. A simultaneous decrease
in the birth rate of new words is consistent with the decreasing marginal
need for new words indicated by the sub-linear allometric scaling between
vocabulary size and total corpus size (Heaps’ law)24. Interestingly, we
quantitatively observe the impact of the Balfour Declaration in 1917, the
circumstances surrounding which effectively rejuvenated Hebrew as a
national language, resulting in a 5-fold increase in the birth rate of words in
the Hebrew corpus.

www.nature.com/scientificreports
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Since some words will die and other words will increase in use as a
result of the standardization of language, we hypothesize that the
average growth rate trajectory will show large fluctuations around
the time scale for the transition of a word into regular use. In order to
quantify this transition time scale, we create a subset {i jTc} of word
trajectories i by combining words that meets an age criteria Ti $ Tc.
Thus, Tc is a threshold to distinguish words that were born in dif-
ferent historical eras and which have varying longevity. For the
values Tc 5 25, 50, 100, and 200 years, we select all words that have
a lifetime longer than Tc and calculate the average and standard
deviation for each set of growth rate trajectories as a function of word
age t.

In Fig. 5 we plot s ri’ t Tcjð Þ½ $ for the English corpus, which shows a
broad peak around tc < 30–50 years for each Tc subset before the
fluctuations saturate after the word enters a stable growth phase. A
similar peak is observed for each corpus analyzed (Figs. S4–S7). This
single-peak growth trajectory is consistent with theoretical models
for logistic spreading and the fixation of words in a population of
learners27. Also, since we weight the average according to Æfiæ, the time
scale tc is likely associated with the characteristic time for a new word

to reach sufficiently wide acceptance that the word is included in a
typical dictionary. We note that this time scale is close to the gen-
erational time scale for humans, corroborating evidence that lan-
guages require only one generation to drastically evolve27.

Empirical laws quantifying the growth rate distribution. How
much do the growth rates vary from word to word? The answer to
this question can help distinguish between candidate models for the
evolution of word utility. Hence, we calculate the probability density
function (pdf) of R:ri’ tð Þ

#
s r’ t Tcjð Þ½ $. Using this quantity accounts

for the fact that we are aggregating growth rates of words of varying
ages. The empirical pdf P(R) shown in Fig. 6 is leptokurtic and
remarkably symmetric around R < 0. These empirical facts are
also observed in studies of the growth rates of economic
institutions28–31. Since the R values are normalized and detrended
according to the age-dependent standard deviation s[r9(tjTc)], the
standard deviation is s(R) 5 1 by construction.

A candidate model for the growth rates of word use is the Gibrat
proportional growth process29,30, which predicts a Gaussian distri-
bution for P(R). However, we observe the ‘‘tent-shaped’’ pdf P(R)

Figure 4 | The significance of historical events on the evolution of language. The standard deviation s(t) of growth rates demonstrates the sensitivity of
language to international events (e.g. World War II). For all languages there is an overall decreasing trend in s(t) over the period 1850–2000. However, the
increase in s(t) during WWII represents a‘‘globalization’’ effect, whereby societies are brought together by a common event and a unified media. Such
contact between relatively isolated systems necessarily leads to information flow, much as in the case of thermodynamic heat flow between two systems,
initially at different temperatures, which are then brought into contact. (a) s(t) calculated for the relatively new words with Ti $ 100 years. The Spanish
corpus does not show an increase in s(t) during World War II, indicative of the relative isolation of South America and Spain from the European conflict.
(b) s(t) for 4 sets of relatively new words that meet the criteria Ti $ Tc and ti,0 $ 1800. The oldest ‘‘new’’ words (Tc 5 200) demonstrate the most
significant increase in s(t) during World War II, with a peak around 1945. (c) The standard deviation s(t) for the most common words is decreasing with
time, suggesting that they have saturated and are being ‘‘crowded out’’ by new competitors. This set of words meets the criterion that the average relative
use exceeds a threshold, Æfiæ $ fc, which we define for each corpus. (d) We compare the variation s(t) for relatively new English words, using Ti $ 100, with
the 20-year moving average over the time period 1820–1988. The deviations show that s(t) increases abruptly during times of conflict, such as the
American CivilWar (1861–1865), World War I (1914–1918) and World War II (1939–1945), and also during the 1980s and 1990s, possibly as a result of
new digital media (e.g. the internet) which offer new environments for the evolutionary dynamics of word use. D(t) is the difference between the moving
average and s(t).

www.nature.com/scientificreports
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which is well-approximated by a Laplace (double-exponential) dis-
tribution, defined as

P Rð Þ: 1ffiffiffi
2
p

s Rð Þ
exp {

ffiffiffi
2
p

R{ Rh ij j=s Rð Þ
h i

: ð4Þ

Here the average growth rate ÆRæ has two properties: (a) ÆRæ < 0 and
(b) ÆRæ = s(R). Property (a) arises from the fact that the growth rate
of distinct words is quite small on the annual basis (the growth rate of
books in the Google English database is cw < 0.01124) and property
(b) arises from the fact that R is defined in units of standard devi-
ation. Being leptokurtic, the Laplace distribution predicts an excess
number of events . 3s as compared to the Gaussian distribution. For
example, comparing the likelihood of events above the 3s event
threshold, the Laplace distribution displays a five-fold excess in
the probability P(jR 2 ÆRæj . 3s), where P R{ Rh ij j > 3sð Þ

~ exp {3
ffiffiffi
2
p% &

<0:014 for the Laplace distribution, whereas
P R{ Rh ij j > 3sð Þ~Erfc 3

# ffiffiffi
2
p% &

<0:0027 for the Gaussian distri-
bution. The large R values correspond to periods of rapid growth
and decline in the use of words during the crucial ‘‘infant’’ and
‘‘adolescent’’ lifetime phases. In Fig. 6(b) we also show that the
growth rate distribution P(r9) for the relatively common words com-
prising dataset (ii) is also well-described by the Laplace distribution.

Figure 5 | Quantifying the tipping point for word use. (a) The maximum
in the standard deviation s of growth rates during the ‘‘adolescent’’ period
t < 30–50 indicates the characteristic time scale for words being
incorporated into the standard lexicon, i.e. inclusion in popular
dictionaries. In Fig. S4 we plot the average growth rate trajectory Ær9(t | Tc)æ
which shows relatively large positive growth rates during approximately
the same 20-year period. (b) The first passage time t1

53 is defined as the
number years for the relative use of a new word i to exceed a given f-value
for the first time, fi(t1) $ f. For relatively new words with Ti $ 100 years we
calculate the average first-passage time Æt1(f)æ for a large range of f. We
estimate for each language the fc representing the threshold for a word
belonging to the standard ‘‘kernel’’ lexicon4. This method demonstrates
that the English corpus threshold fc ; 5 3 10–8 maps to the first passage
time corresponding to the peak period t < 30 – 50 years in s(t) shown in
panel (a).

Figure 6 | Common leptokurtic growth distribution for new words and
common words. (a) Independent of language, the growth rates of
relatively new words are distributed according to the Laplace distribution
centered around R < 0 defined in Eq. (4). The the growth rate R defined in
Eq. (11) is measured in units of standard deviation, and accounts for age-
dependent and word-dependent factors. Yet, even with these
normalizations, we still observe an excess number of | R | $ 3s events. This
fact is demonstrated by the leptokurtic form of each P(R), which exhibit
the excess tail frequencies when compared with a unit-variance Gaussian
distribution (dashed blue curve). The Gaussian distribution is the
predicted distribution for the Gibrat proportional growth model, which is
a candidate neutral null-model for the growth dynamics of word use29. The
prevalence of large growth rates illustrate the possibility that words can
have large variations in use even over the course of a year. The growth
variations are intrinsically related to the dynamics of everyday life and
reflect the cultural and technological shocks in society. We analyze word
use data over the time period 1800–2008 for new words i with lifetimes Ti

$ Tc, where we show data calculated for Tc 5 100 years. (b) PDF P(r9) of
the annual relative growth rate r9 for all words which satisfy Æfiæ $ fc

(dataset #ii words which are relatively common words). In order to select
relatively frequently used words, we use the following criteria: Ti $ 10
years, 1800 # t # 2008, and Æfiæ $ fc. The growth rate r9 does not account
for age-dependent factors since the common words are likely in the mature
phase of their lifetime trajectory. In each panel, we plot a Laplace
distribution with unit variance (solid black lines) and the Gaussian
distribution with unit variance (dashed blue curve) for reference.

www.nature.com/scientificreports
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For hierarchical systems consisting of units each with complex
internal structure32 (e.g. a given country consists of industries, each
of which consists of companies, each of which consists of internal
subunits), a non-trivial scaling relation between the standard devi-
ation of growth rates s(rjS) and the system size S has the form

s r Sijð Þ*S{b
i : ð5Þ

The theoretical prediction in32,33 that b g [0, 1/2] has been verified
for several economic systems, with empirical b values typically in the
range 0.1 , b , 0.333.

Since different words have varying lifetime trajectories as well as
varying relative utilities, we now quantify how the standard deviation
s(rjSi) of growth rates r depends on the cumulative word frequency

Si:
XTi

t~1

fi tð Þ, ð6Þ

of each word. We choose this definition for proxy of ‘‘word size’’
since a writer can learn and recall a given word through any of its
historical uses. Hence, Si is also proportional to the number of books
in which word i appears. This is significantly different than the
assumptions of replication null models (e.g. the Moran process)
which use the concurrent frequency fi(t) as the sole factor determin-
ing the likelihood of future replication10,18.

We estimate Eq. (5) by grouping words according to Si and then
calculating the growth rate standard deviation s(rjSi) for each group.
Fig. 7(b) shows scaling behavior consistent with Eq. (5) for large Si,
with b < 0.10 – 0.21 depending on the corpus. A positive b value
means that words with larger cumulative word frequency have

smaller annual growth rate fluctuations. We conjecture that this
statistical pattern emerges from the hierarchical organization of writ-
ten language12–16 and the social properties of the speakers who use the
words8,17,34. As such, we calculate b values that are consistent with
nontrivial correlations in word use, likely related to the basic fact that
books are topical3 and that book topics are correlated with cultural
trends.

Quantifying the long-term cultural memory. Recent theoretical
work35 shows that there is a fundamental relation between the size-
variance exponent b and the Hurst exponent H quantifying the auto-
correlations in a stochastic time series. The novel relation H 5 1 2 b
indicates that the temporal long-term persistence is intrinsically
related to the capability of the underlying mechanism to absorb
stochastic shocks. Hence, positive correlations (H . 1/2) are
predicted for non-trivial b values (i.e. 0 # b # 0.5). Note that the
Gibrat proportional growth model predicts b 5 0 and that a Yule-
Simon urn model predicts b 5 0.533. Thus, fi(t) belonging to words
with large Si are predicted to show significant positive correlations,
Hi . 1/2.

To test this connection between memory correlations and the size-
variance scaling, we calculate the Hurst exponent Hi for each time
series belonging to the more relatively common words analyzed in
dataset (ii) using detrended fluctuation analysis (DFA)35–37. We plot
in Fig. S2 the relative use time series fi(t) for the words ‘‘polyphony,’’
‘‘Americanism,’’ ‘‘Repatriation,’’ and ‘‘Antibiotics’’ along with DFA
curves from which we calculate each Hi. Fig. S2(b) shows that the Hi
values for these four words are all significantly greater than Hr 5 0.5,
which is the expected Hurst exponent for a stochastic time series with
no temporal correlations. In Fig. S3 we plot the distribution of Hi
values for the English fiction corpus and the Spanish corpus. Our
results are consistent with the theoretical prediction ÆHæ 5 1 2 b
established in35 relating the variance of growth rates to the underlying
temporal correlations in each fi(t). Hence, we show that the language
evolution is fundamentally related to the complex features of cultural
memory, i.e. the dynamics of cultural topic formation17,25,26,34 and
bursting38,39.

Discussion
With the digitization of written language, cultural trend analysis
based around methods to extract quantitative patterns from word
counts is an emerging interdisciplinary field that has the potential to
provide novel insights into human sociology3,17,25,26,34,40. Nevertheless,
the amount of metadata extractable from daily internet feeds is diz-
zying. This is highlighted by the practical issue of defining objective
significance levels to filter out the noise in the data deluge. For
example, online blogs can be vaguely categorized according to the
coarse hierarchical schema: ‘‘obscure blogs’’, ‘‘more popular blogs’’,
‘‘pop columns’’, and ‘‘mainstream news coverage.’’ In contrast, there
are well-defined entry requirements for published books and maga-
zines, which must meet editorial standards and conform to the prin-
ciples of market supply and demand. However, until recently, the
vast information captured in the annals of written language was
largely inaccessible.

Despite the careful guard of libraries around the world, which
house the written corpora for almost every written language, little
is known about the aggregate dynamics of word evolution in written
history. Inspired by research on the growth patterns displayed by a
wide range of competition driven systems - from countries and busi-
ness firms28–33,41–44 to religious activities45, universities46, scientific
journals47, careers48 and bird populations49 - here we extend the
concepts and methods to word use dynamics.

This study provides empirical evidence that words are competing
actors in a system of finite resources. Just as business firms compete
for market share, words demonstrate the same growth statistics
because they are competing for the use of the writer/speaker and

Figure 7 | Scaling in the growth rate fluctuations of words. We show the
dependence of growth rates on the cumulative word frequency
Si:

Pt
t0~0 fi tð Þ using words satisfy the criteria Ti $ 10 years. We verify

similar results for threshold values Tc 5 50, 100, and 200 years. (a) Average
growth rate Æræ saturates at relatively constant values for large S. (b) Scaling
in the standard deviation of growth rates s(r | S) , S–b for words with large
S. This scaling relation is also observed for the growth rates of large
economic institutions, ranging in size from companies to entire
countries31,33. Here this size-variance relation corresponds to scaling
exponent values 0.10 , b , 0.21, which are related to the non-trivial
bursting patterns and non-trivial correlation patterns in literature
topicality as indicated by the quantitative relation to the Hurst exponent, H
5 1 – b shown in35. We calculate bEng. < 0.16 6 0.01, bEng.fict < 0.21 6 0.01,
bSpa. < 0.10 6 0.01 and bHeb. < 0.17 6 0.01.
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for the attention of the corresponding reader/listener18–21,27. A prime
example of fitness-mediated evolutionary competition is the case of
irregular and regular verb use in English. By analyzing the regular-
ization rate of irregular verbs through the history of the English
language, Lieberman et al.50 show that the irregular verbs that are
used more frequently are less likely to be overcome by their regular
verb counterparts. Specifically, they find that the irregular verb death
rate scales as the inverse square root of the word’s relative use. A
study of word diffusion across Indo-European languages shows sim-
ilar frequency-dependence of word replacement rates51.

We document the case example of X-ray, which shows how cat-
egorically related words can compete in a zero-sum game. Moreover,
this competition does not occur in a vacuum. Instead, the dynamics
are significantly related to diffusion and technology. Lexical diffusion
occurs at many scales, both within relatively small groups and across
nations27,34,51. The technological forces underlying word selection
have changed significantly over the last 20 years. With the advent
of automatic spell-checkers in the digital era, words recognized by
spell-checkers receive a significant boost in their ‘‘reproductive fit-
ness’’ at the expense of their ‘‘misspelled’’ or unstandardized counter-
parts.

We find that the dynamics are influenced by historical context,
trends in global communication, and the means for standardizing
that communication. Analogous to recessions and booms in a global
economy, the marketplace for words waxes and wanes with a global
pulse as historical events unfold. And in analogy to financial regula-
tions meant to limit risk and market domination, standardization
technologies such as the dictionary and spell checkers serve as
powerful arbiters in determining the characteristic properties of
word evolution. Context matters, and so we anticipate that niches34

in various language ecosystems (ranging from spoken word to pro-
fessionally published documents to various online forms such as
chats, tweets and blogs) have heterogenous selection laws that may
favor a given word in one arena but not another. Moreover, the birth
and death rate of words and their close associates (misspellings,
synonyms, abbreviations) depend on factors endogenous to the lan-
guage domain such as correlations in word use to other partner
words and polysemous contexts12,13 as well as exogenous socio-tech-
nological factors and demographic aspects of the writers, such as
age13 and social niche34.

We find a pronounced peak in the fluctuations of word growth
rates when a word has reached approximately 30–50 years of age (see
Fig. 5). We posit that this corresponds to the timescale for a word to
be accepted into a standardized dictionary which inducts words that
are used above a threshold frequency, consistent with the first-
passage times to fc in Fig. 5(b). This is further corroborated by the
characteristic baseline frequencies associated with standardized dic-
tionaries11. Another important timescale in evolutionary systems is
the reproduction age of the interacting gene or meme host.
Interestingly, a 30–50 year timescale is roughly equal to the char-
acteristic human generational time scale. The prominent role of new
generation of speakers in language evolution has precedent in lin-
guistics. For example, it has been shown that primitive pidgin lan-
guages, which are little more than crude mixes of parent languages,
spontaneously acquire the full range of complex syntax and grammar
once they are learned by the children of a community as a native
language. It is at this point a pidgin becomes a creole, in a process
referred to as nativization22.

Nativization also had a prominent effect in the revival of the
Hebrew language, a significant historical event which also manifests
prominently in our statistical analysis. The birth rate of new words in
the Hebrew language jumped by a factor of 5 in just a few short years
around 1920 following the Balfour Declaration of 1917 and the
Second Aliyah immigration to Israel. The combination of new
Hebrew-speaking communities and political endorsement of a
national homeland for the Jewish people in the Palestine Mandate

had two resounding affects: (i) the Hebrew language, hitherto used
largely only for (religious) writing, gained official status as a modern
spoken language, and (ii) a centralized culture emerged from this
national community. The unique history of the Hebrew language in
concert with the Google Inc. books data thus provide an unpreced-
ented opportunity to quantitatively study the emerging dynamics of
what is, in some regards, a new language.

The impact of historical context on language dynamics is not
limited to emerging languages, but extends to languages that have
been active and evolving continuously for a thousand years. We
find that historical episodes can drastically perturb the properties
of existing languages over large time scales. Moreover, recent
studies show evidence for short-timescale cascading behavior in
blog trends25,26, analogous to the aftershocks following earthquakes
and the cascades of market volatility following financial news
announcements52. The nontrivial autocorrelations and the lepto-
kurtic growth distributions demonstrate the significance of exo-
genous shocks which can result in growth rates that significantly
exceeding the frequencies that one would expect from non-inter-
acting proportional growth models29,30.

A large number of the world’s ethnic groups are separated along
linguistic lines. A language barrier can isolate its speakers by serving
as a screen to external events, which may further slow the rate of
language evolution by stalling endogenous change. Nevertheless, we
find that the distribution of word growth rates significantly broadens
during times of large scale conflict, revealed through the sudden
increases in s(t) for the English, French, German and Russian cor-
pora during World War II24. This can be understood as manifesting
from the unification of public consciousness that creates fertile
breeding ground for new topics and ideas. During war, people may
be more likely to have their attention drawn to global issues.
Remarkably, the pronounced change during WWII was not observed
for the Spanish corpus, documenting the relatively small roles that
Spain and Latin American countries played in the war.

Methods
Quantifying the word use trajectory. Once a word is introduced into a language,
what are the characteristic growth patterns? To address this question, we first account
for important variations in words, as the growth dynamics may depend on the
frequency of the word as well as social and technological aspects of the time-period
during which the word was born.

Here we define the age or trajectory year t 5 t – t0,i as the number of years after the
word’s first appearance in the database. In order to compare trajectories across time
and across varying word frequency, we normalize the trajectories for each word i by
the average use

fih i:
1
Ti

Xtf ,i

t~t0,i

fi tð Þ ð7Þ

over the lifetime Ti ; tf,i – t0,i 1 1 of the word, leading to the normalized trajectory,

f 0i tð Þ~f 0i t{ti,0 ti,0,Tijð Þ:fi t{ti,0ð Þ= fih i: ð8Þ

By analogy, in order to compare various growth trajectories, we normalize the relative
growth rate trajectory r0i tð Þ by the standard deviation over the entire lifetime,

s ri½ $:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Ti

Xtf ,i

t~t0,i

ri tð Þ{ rih i½ $2
vuut : ð9Þ

Hence, the normalized relative growth trajectory is

ri ’ tð Þ~ri ’ t{ti,0 ti,0,Tijð Þ:ri t{ti,0ð Þ=s ri½ $: ð10Þ

Figs. S4–S7 show the weighted averages Æf 9(tjTc)æ and Ær9(t jTc)æ and the weighted
standard deviations s[f 9(tjTc)] and s[r9(tjTc)] calculated using normalized traject-
ories for new words in each corpus. We compute % % %h i and s % % %½ $ for each trajectory
year t using all Nt trajectories (Table S1) that satisfy the criteria Ti $ Tc and ti,0 $
1800. We compute the weighted average and the weighted standard deviation using
Æfiæ as the weight value for word i, so that % % %h i and s % % %½ $ reflect the lifetime tra-
jectories of the more common words that are ‘‘new’’ to each corpus.

Since there is an intrinsic word maturity s[r9(tjTc)] that is not accounted for in the
quantity ri ’ tð Þ, we further define the detrended relative growth

R:ri’ tð Þ
#

s r’ t Tcjð Þ½ $ ð11Þ
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which allows us to compare the growth factors for new words at various life stages.
The result of this normalization is to rescale the standard deviations for a given
trajectory year t to unity for all values of ri ’ tð Þ.

Detrended fluctuation analysis of individual fi(t). Here we outline the DFA method
for quantifying temporal autocorrelations in a general time series fi(t) that may have
underlying trends, and compare the output with the results expected from a time
series corresponding to a 1-dimensional random walk.

In a time interval dt, a time series Y (t) deviates from the previous value Y (t – dt) by
an amount dY (t) ; Y (t) – Y (t – dt). A powerful result of the central limit theorem,
equivalent to Fick’s law of diffusion in 1 dimension, is that if the displacements are
independent (uncorrelated corresponding to a simple Markov process), then the total
displacementDY (t) 5 Y (t) – Y (0) from the initial location Y (0) ; 0 scales according
to the total time t as

DY tð Þ:Y tð Þ*t1=2: ð12Þ

However, if there are long-term correlations in the time series Y (t), then the relation
is generalized to

DY tð Þ*tH , ð13Þ

where H is the Hurst exponent which corresponds to positive correlations for H . 1/2
and negative correlations for H , 1/2.

Since there may be underlying social, political, and technological trends that
influence each time series fi(t), we use the detrended fluctuation analysis (DFA)
method35–37 to analyze the residual fluctuationsDfi(t) after we remove the local trends.
The method detrends the time series using time windows of varying length Dt. The
time series ~fi t Dtjð Þ corresponds to the locally detrended time series using window size
Dt. We calculate the Hurst exponent H using the relation between the root-mean-
square displacement F(Dt) and the window size Dt35–37,

F Dtð Þ~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D~fi t Dtjð Þ2
D Er

~DtH : ð14Þ

Here D~fi t Dtjð Þ is the local deviation from the average trend, analogous to DY (t)
defined above.

Fig. S2 shows 4 different fi(t) in panel (a), and plots the corresponding Fi(Dt) in
panel (b). The calculated Hi values for these 4 words are all significantly greater than
the uncorrelated H 5 0.5 value, indicating strong positive long-term correlations in
the use of these words, even after we have removed the local trends using DFA. In
these example cases, the trends are related to political events such as war in the cases of
‘‘Americanism’’ and ‘‘Repatriation’’, or the bursting associated with new technology
in the case of ‘‘Antibiotics,’’ or new musical trends illustrated in the case of ‘‘poly-
phony.’’

In Fig. S3 we plot the pdf of Hi values calculated for the relatively common words
analyzed in Fig. 6(b). We also plot the pdf of Hi values calculated from shuffled time
series, and these values are centered around ÆHæ < 0.5 as expected from the removal of
the intrinsic temporal ordering. Thus, using this method, we are able to quantify the
social memory characterized by the Hurst exponent which is related to the bursting
properties of linguistic trends, and in general, to bursting phenomena in human
dynamics25,26,38,39. Recent analysis of Google words data compares the Hurst expo-
nents of words describing social phenomena to the Hurst exponents of words
describing natural phenomena(54). Interestingly, Gao et al. find that these 2 word
classes are described by distinct underlying processes, as indicated by the corres-
ponding Hi values.
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