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Abstract

We analyze auto-correlations of human chromosomes 1–22 and rice chromosomes 1–12 for seven binary mapping rules

and find that the correlation patterns are different for different rules but almost identical for all of the chromosomes,

despite their varying lengths and gc contents. We propose a simple stochastic process for modeling these correlations, and

we find that the proposed process can reproduce, quantitatively and qualitatively, the correlation patterns found in the

genomes of human and rice.

r 2006 Elsevier B.V. All rights reserved.

PACS: 87.10; 05.40.+j
DNA is the carrier of genetic information of many living organisms. It is comprised of the four nucleotides
a, t, c, and g. In order to study correlations in DNA sequences one commonly maps each nucleotide to a
binary number and then studies correlations in the resulting numerical sequence. There are three different
partitions of four nucleotides into two subsets of two nucleotides each, and so there are three different binary
mapping rules that map a nucleotide s onto a binary number x 2 f�1;þ1g:
�
 sw rule: x ¼ 1 for c or g, and x ¼ �1 otherwise.

�
 km rule: x ¼ 1 for a or c, and x ¼ �1 otherwise.

�
 ry rule: x ¼ 1 for a or g, and x ¼ �1 otherwise.
There are many studies on long-range correlations in various DNA sequences using different binary
representations of the four nucleotides [1–12] with partially contradicting results. As it is possible that a
symbolic sequence shows long-range correlations for one rule and no correlations for another rule, we
conjecture that some of these apparent contradictions might be due to the fact that different research groups
e front matter r 2006 Elsevier B.V. All rights reserved.
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have chosen different binary mapping rules. In the following, we analyze long-range correlations in DNA
sequences using each of the three binary mapping rules.

First, we map a DNA sequence ðs0; s1; . . . ; sN�1Þ of length N to a binary sequence ðx0; x1; . . . ; xN�1Þ by one of
the three binary mapping rules. Then, we compute correlations by employing the detrended fluctuation analysis

(DFA) [13], a variant of the root-mean-square analysis of a random walk. In the DFA method, one measures
the standard deviation F ð‘Þ of the detrended fluctuations within a window of length ‘ as a function of ‘ [14]. If
the auto-correlation function Cð‘Þ � hxnxnþ‘i � hxnihxnþ‘i can be approximated by a power-law with
exponent g, i.e., if Cð‘Þ / ‘�g, then F ð‘Þ can be approximated by a power-law with exponent a, i.e., F ð‘Þ / ‘a,
with a � 1� g=2 [15]. If a40:5, the time series is power-law correlated; if a ¼ 0:5, the time series is
uncorrelated or short-range correlated; and if ao0:5, the time series is power-law anti-correlated.

By using the DFA method, we analyze auto-correlations in two completely sequenced genomes, one from
the animal kingdom and one from the plant kingdom. Fig. 1(a) shows F ð‘Þ versus ‘ for all 22 autosomes of
Homo sapiens using the sw rule, the km rule, and the ry rule [16]. First, we find that for each binary mapping
rule the F ð‘Þ curves corresponding to different chromosomes are almost identical. Second, we find in
agreement with Ref. [17,18] that for the sw rule the F ð‘Þ curves can be approximated by a power-law with
scaling exponent a! 1 for scales ‘ exceeding 106 bp, corresponding to 1=f noise. Third, we find that for the
km rule and the ry rule the F ð‘Þ curves can also be approximated by power-laws, but with scaling exponents
akm and ary that are substantially smaller than asw, i.e., asw4akm � ary.

In view of the many known differences among the 22 autosomes of Homo sapiens it is surprising that their
auto-correlations are almost indistinguishable. In order to study if the phenomenon that auto-correlations of
different chromosomes are almost indistinguishable whereas auto-correlations of different binary mapping
rules are different from each other is ubiquitous, we analyze all 12 autosomes of Oryza sativa using the sw

rule, the km rule, and the ry rule. From Fig. 1(b) we find that for each binary mapping rule the F ð‘Þ curves
corresponding to different chromosomes are almost indistinguishable. We find that the F ð‘Þ curves for the km
rule and the ry rule can be approximated by a power-law with almost the same scaling exponent, i.e.,
akm � ary, and that for the sw rule there is a significant crossover in the F ð‘Þ curves at approximately
‘ � 104 bp. In agreement to Fig. 1(a) we find that also for rice the scaling exponent asw is greater than
akm � ary in the asymptotic regime.

In summary, we find that the F ð‘Þ curves for all chromosomes are (i) identical and (ii) can be approximated
by power-laws for each rule, (iii) the power-law for the sw rule is different from the power-laws for the km rule
and the ry rule, and (iv) the power-laws for the km rule and the ry rule are almost identical.
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Fig. 1. Detrended fluctuation functions F ð‘Þ versus ‘. For the sw rule, the km rule, and the ry rule we show the F ð‘Þ curves (a) for all 22
human chromosomes (autosomes) and (b) for rice. For both human and rice, the F ð‘Þ curves for each rule practically overlap. (a) For

human, we find for the sw rule that the F ð‘Þ curves tend to 1=f noise for very large scales. For very large scales we find akm � aryoasw.

(b) For rice, we find that the F ð‘Þ curves for the km rule and the ry rule collapse onto each other, and for large scales we find

akm � aryoasw.



ARTICLE IN PRESS
B. Podobnik et al. / Physica A 373 (2007) 497–502 499
Several stochastic models have been proposed to generate long-range correlations, but most of them are
focused on reproducing correlations for only one binary mapping rule [6,19]. In order to model the scaling
properties observed in the genomes of human and rice, we proceed in two steps. First, we introduce two
mutually independent ARFIMA processes [20,21] zðswÞn and zðkmÞn defined by [22]

zðjÞn ¼
X1
‘¼1

a‘ðrjÞz
ðjÞ
n�‘ þ eðjÞn , (1a)

a‘ðrjÞ ¼
Gð‘ � rjÞ

Gð�rjÞGð1þ rjÞ
, (1b)

where j 2 fsw;kmg, eðjÞn are independent and identically distributed Gaussian variables, G denotes the Gamma
function, and each stochastic process zðjÞn is parameterized by one parameter rj 2 ð�0:5; 0:5Þ. Second, we define
the nucleotide

sn ¼

a if zðswÞn od ^ zðkmÞn o0;

t if zðswÞn od ^ zðkmÞn 40;

g if zðswÞn 4d ^ zðkmÞn o0;

c if zðswÞn 4d ^ zðkmÞn 40;

8>>>><
>>>>:

(2)

where d is a cutoff value controlling the excess of gc over at nucleotides. This assignment can be interpreted in
terms of two spin models, where each nucleotide is represented by two spins, one spin corresponding to the sw
state of the nucleotide, and the other spin corresponding to the km state of the nucleotide.

To simulate DNA sequences we choose two ARFIMA processes due to the fact that the ARFIMA process
generates power-law correlated time series zðjÞn with scaling exponent aj � 1þ rj [20,21,23,24]. We find by
numerical simulations that the scaling relation aj � 1þ rj also holds for the time series sgnðzðjÞn Þ. Hence, two
ARFIMA processes running simultaneously generate sequences with asw � 1þ rsw and akm � 1þ rkm.

If d in the above equation is chosen to be zero, the probability of occurrence of each nucleotide is identical
to 0:25, due to the choice of mutually independent variables enðjÞ in Eq. (1) drawn from a symmetrical Gaussian
distribution.

The relative frequency of nucleotides c and g is equal (� 0:21 for chromosome 1), and the same holds for a
and t (� 0:28 for chromosome 1). To obtain the two model parameters, ps � PðzðswÞn 4dÞ and
pk � PðzðkmÞn 40Þ, we equate the relative frequency of nucleotide a � ð�1;þ1Þ with pw � pk, t � ð�1;�1Þ
with pw � pm, c � ðþ1;þ1Þ with ps � pk, and g � ðþ1;�1Þ with ps � pm. From these equations and by using the
obvious relations, pw ¼ 1� ps and pm ¼ 1� pk, we easily obtain pa ¼ 0:5 and pw ¼ 0:582 for chromosome
1. Thus, asymmetry is needed only for the sw rule, in accordance to the Chargaff rule.

For this simple model, one can easily derive the auto-correlation function for the ry rule

Cryð‘Þ ¼ 4Cswð‘ÞCkmð‘Þ þ Cswð‘Þðpk � pmÞ
2
þ Ckmð‘Þðpw � psÞ

2, (3)

where for pk � pm and pwaps, which is the case for DNA sequences, Cryð‘Þ reduces to Ckmð‘Þðpw � psÞ
2,

implying

ary � akm. (4)

Hence, the model predicts that Cryð‘Þ shows the same scaling behavior as Ckmð‘Þ. Interestingly, this behavior
predicted for the model for asymptotically large ‘ is observed in real DNA (Fig. 1).

We perform numerical simulations with rsw ¼ 0:41 and rkm ¼ 0:25 in order to reproduce the observed
power-law correlations of the human sw and km rule, respectively, shown in Fig. 2(a). We generate a sequence
of length N ¼ 2� 107bp and compute F ð‘Þ, for ‘ ranging from ‘ ¼ 103 to 107 bp (asymptotic regime). In
Fig. 2(b) we show F ð‘Þ for the sw, the km, and the ry binary mapping rules. The model gives that F ð‘Þ
calculated for the sw rule and the km rule are power-laws as expected, and it predicts that also ry correlations
can be approximated by a power-law with an exponent given by Eq. (4). Next we perform numerical
simulations with rsw ¼ 0:1 and rkm ¼ 0:0 in order to reproduce power-law correlations of the rice sw and km
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Fig. 2. F ð‘Þ versus ‘. (a) For human chromosome 1, we find that the F ð‘Þ functions for the km rule and the ry rule are approximately the

same for very large scales, whereas for the sw rule the scaling of F ð‘Þ corresponds to 1=f noise [17]. (b) Model simulations. For parameters

asw ¼ 0:41 and akm ¼ 0:25 set to fit the scaling for the whole range for the sw rule and the km rule, and the cutoff value d ¼ 0:2 set to

model ‘‘AT rich’’ DNA, we perform numerical simulations and generate the sequences for different rules. We find the model reproduces the

correlations found in the empirical data. (c–d) For rice, we find again that the F ð‘Þ curves for the km rule and the ry rule are practically

identical, that asw4akm � ary, and that the model can reproduce the correlations found in the empirical data.
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rule, shown in Fig. 2(c). Fig. 2(d) shows that F ð‘Þ for the sw rule can be approximated by a power-law, while
for the km rule and the ry rule there are almost no correlations, consistent with the findings of Fig. 2(c).

In order to test the validity of the model, we compute the auto-correlation functions for the following four
binary mapping rules:
�
 aā rule: x ¼ 1 for a, and x ¼ �1 otherwise.

�
 gḡ rule: x ¼ 1 for g, and x ¼ �1 otherwise.

�
 cc̄ rule: x ¼ 1 for c, and x ¼ �1 otherwise.

�
 tt̄ rule: x ¼ 1 for t, and x ¼ �1 otherwise.
For the model one can easily compute

C
aā
ð‘Þ ¼ Cswð‘ÞCkmð‘Þ þ Cswð‘Þp

2
m
þ Ckmð‘Þp

2
w
, (5a)
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C
tt̄
ð‘Þ ¼ Cswð‘ÞCkmð‘Þ þ Cswð‘Þp

2
k
þ Ckmð‘Þp

2
w
, (5b)

C
cc̄
ð‘Þ ¼ Cswð‘ÞCkmð‘Þ þ Cswð‘Þp

2
m
þ Ckmð‘Þp

2
s
, (5c)

C
gḡ
ð‘Þ ¼ Cswð‘ÞCkmð‘Þ þ Cswð‘Þp

2
k
þ Ckmð‘Þp

2
s
. (5d)

One can also derive that the following relations among the scaling exponents hold for all n 2 fa; t; c;gg:

a
nn̄
¼ maxðasw; akmÞ. (6)

If asw4akm, one can easily show that C
nn̄
ð‘Þ scales as Cswð‘Þ, i.e., a

nn̄
� asw. This implies that for

asymptotically large ‘, C
nn̄
ð‘Þ has the same scaling behavior as Cswð‘Þ. All of the analytical derivations only

assume that there are two binary mapping rules characterized by power-law correlations.
In order to test if these predictions can possibly be observed in real DNA, we show in Fig. 3(a) F ð‘Þ for all

four nn̄ rules for all human autosomes. Interestingly, the F ð‘Þ curves are identical for all autosomes and for all
rules and can be approximated by a single power-law with exponent asw. Fig. 3(c) shows that the same scaling
behavior holds for the rice chromosomes, i.e., the F ð‘Þ curves for all chromosomes and for all four nn̄ rules are
almost identical and can be approximated by a single power-law. Next we perform numerical simulations and
generate sequences for all four nn̄ rules based on the parameters in Fig. 2. For the human autosomes in
Fig. 3(c) and for the rice chromosomes in Fig. 3(d), we find that the F ð‘Þ curves for the nn̄ rules are the same
and similar to the real data. Thus, the model based on two ARFIMA processes is capable of reproducing,
qualitatively and to a large extent also quantitatively, the power-law correlations in human and rice DNA.

In future work, it would be worthwhile to put some effort into combining the proposed model with Markov
models [25–29] with the goal of increasing their predictive power in a variety of bioinformatics applications.
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Fig. 3. F ð‘Þ versus ‘. For both (a) human and (b) rice chromosomes we find that the F ð‘Þ curves for the aā, the cc̄, the gḡ, and the tt̄ rule

practically overlap. Curves for different rules are shifted. (c–d) Model simulations. For parameter values set in Fig. 2, we find that the F ð‘Þ
curves for the aā, the cc̄, the gḡ, and the tt̄ rule are identical and similar to the F ð‘Þ curves observed in the empirical data.
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