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Abstract. A new Monte Carlo method for studying bond percolation clusters is developed 
and used to identify new critical quantities associated with the percolation threshold. The 
bonds in each cluster are partitioned into three distinct connectivity classes, ‘red’ (singly 
connected backbone bonds), ‘blue’ (multiply connected backbone bonds) and ‘yellow’ 
(non-backbone bonds, often called dangling ends). Among the new cluster properties 
studied are the mean number of red bonds, a critical quantity diverging at p c  with exponent 
yR = 1, and the length of the shortest connected path through the cluster which is critical 
with exponent ymin = 1.35 f 0.02. For all cluster properties studied, we also compute 
averages over only the largest clusters; the corresponding critical exponents are found to be 
significantly different from those obtained by averaging over clusters of all sizes. 

Introduction 

Phase transitions are characterised by a distinct change in the manner in which 
correlations propagate through a system. How does one describe the propagation of 
order near a critical point? Although the classical literature focused on this question 
(see e.g. Zernike 1940, Ashkin and Lamb 1943), it was largely ignored for many years 
because intuitively plausible schemes such as the Ornstein-Zernike theory could not 
provide an answer consistent with experiment. 

Interest in the propagation of order was rekindled a few years ago in the context of 
disordered systems (Stauffer 1975b, Birgeneau et a1 1976, 1980, Cowley et a1 1977, 
1980a, b, Stanley et a1 1976, Lubensky 1977). Consider for example, a site-dilute 
random magnet. When the fraction p of magnetic sites is very small, the system consists 
of small disconnected clusters of magnetically correlated sites. As p + p L ,  the mean 
cluster size increases until at p = p c  a single cluster spans the entire lattice. The 
percolation threshold p c  is a critical point. By studying the propagation of magnetic 
correlations through the incipient infinite cluster that appears in the dilute magnet at its 
percolation threshold, one can obtain information about order propagation near this 
critical point. 

The incipient infinite cluster dominates the behaviour of the system, and it is 
important to be able to describe its structure. If a cluster is considered as a network of 
wires carrying electrical current between two parallel bus bars, it can be decomposed 
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into a conducting ‘backbone’ (Kirkpatrick 1978, Shlifer et al 1979) and many ‘dangling 
ends’ that do not contribute to the electrical conductivity (and hence order propagation) 
between the ends. Describing the topology of the backbone is a formidable unsolved 
problem. In this letter we report findings for bond percolation in two dimensions that 
provide insight into this problem. 

Method 

The backbone bonds may be divided into two classes, conveniently visualised as 
‘red’ and ‘blue’ (see figure 1 of Stanley 1977). Red (blue) bonds are singly connected 
(multiply-connected) ; removing a single red bond breaks (does not break) the connec- 
tion between the bus bars. The backbone is a linear chain of red bonds interrupted by 
blue ‘blobs’. To study the connectivity distribution of bonds in the lattice, we have 
written a Monte Carlo computer program that generates complete percolation clusters 
and partitions their bonds into three distinct ‘colours’: red, blue and yellow (the 
dangling ends). To obtain correct statistics, the program must efficiently generate and 
analyse clusters of tens of thousands of bonds, without introducing an artificial cut-off on 
cluster size. The program implements a novel simulation procedure that includes 
several substantial improvements over previous algorithms. Each cluster starts as an 
initial ‘seed’ bond on a square lattice. Using a pseudorandom number generator, all 
adjacent bonds either join to the initial bond with probability p ,  or are marked as 
disconnected with probability 1 - p .  This procedure continues recursively until the 
cluster is completely surrounded by a vacant perimeter. The cluster is stored as a 
doubly linked graph, with each cluster bond linked to each of its z = 4d - 2 neighbours, 
but not to the perimeter. In the d-dimensional hypercubic lattice, the data consume 
( d / 2  + l ) ( b  + t )  + ( z  + l ) b  words of computer memory, where b and t are the numbers of 
cluster and perimeter bonds, respectively. Since for large clusters, t Cc b (see e.g. the 
recent reviews Stauffer 1979, Essam 1980), the storage and time to generate even the 
largest clusters increases only linearly with b, an important distinguishing feature of the 
method+. 

Partitioning cluster bonds into the three colours is a problem in graph theory (Ah0 et 
a1 1974). To identify the red bonds, the program first finds the criticalpath, which is the 
shortest path through the cluster from the furthest north bond (source) to the furthest 
south bond (sink). The critical path consists of all the red bonds and some of the blue 
bonds. The red bonds are then isolated by recursively descending the blue blobs until 
all paths converge at a critical path bond-the red bond that leads out of the blob. 

We generated 40 000 clusters for the d = 2 (square) lattice, at each of 22 different 
values of p ,  from p = 0.050 to p = 0.485. In this system, p c  is exactly 3, so the minimum 
value of E = ( p , - p ) / p ,  is 0.03, well inside the critical region. The cluster distribution 
n (b, p )  differs by a factor of b /2p  from the distribution no(b, p )  generated by the more 
conventional method of filling a large finite box with bonds (Dean 1963, Hoshen and 
Kopelman 1976), 

i. Methods which embed clusters in a lattice, if implemented naively may consume time and storage 
proportional to rd ,  whereas our method is proportional to b, Leath (1976a, b) and Reich and Leath (1980) 
used a hashing technique to limit resources to a small constant factor times b. We found clusters at p = 0.485 
with over 60 000 bonds; the surrounding square lattice contains over lo6 bonds. 
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because each cluster starts from a given bond (the factor b / p )  at a fixed orientation (the 
factor d ) .  The factor b makes the physically important large clusters much more 
numerous. For example, to generate one 60 000-bond cluster near pc  by the box-filling 
method requires generating 60 000 times as many one-bond clusters as required in the 
present method, 30 000 times as many two-bond clusters, and so forth. Thus for a given 
number of clusters generated, our method provides much more accurate statistics for 
large clusters. 

The method has several other important advantages. There are no boundary 
problems: the lattice on which the simulation is carried out has no walls. Because the 
entire cluster and its perimeter are stored, and isolated from the rest of the lattice, it is 
simple to study directly many properties of the clusters and their perimeters. There are, 
however, some disadvantages. The most important is that the finite memory of our 
computer limits the clusters to about 100 000 bonds. It is this limit which keeps the 
simulation below p = 0.485; at higher values of p ,  some large clusters would have to be 
rejected and the complete statistical distribution would not be obtained. 

Is the present procedure sufficiently accurate with 40 000 cluster realisations? Our 
answer is that it is in fact accurate enough with only 10 000 realisations, and our main 
results were checked by averaging separately four groups of 10 000 realisations apiece. 
Among the checks on the accuracy are the following. 

(i) The critical threshold pc ,  calculated several different ways, is within 0.01 of the 
exact value, (Sykes and Essam 1963). 

(ii) The cluster distribution n(b,  p )  agrees with exact results for b S 13 (Sykes et a1 
1981), and with Monte Carlo results using the box-filling method (Nakanishi and 
Stanley 1980 and references therein). We find, of course, fluctuations about the exact 
values; however the deviations are of order J n ( 6 ,  p )  and there is no systematic 
discrepancy such as occurs in box-filling methods due to finite-size effects. 

(iii) The functions G k ( p )  defined through 

agree with calculations for k = 1,2 ,  . . . , 13 (Sykes et a1 1981) and, when extrapolated 
to p c ,  with the exact result Gm(pc) = 0.0981 -(1 -pc)4 (Temperley and Lieb 1971). 

Results for individual clusters 

For each cluster j ( j  = 1, , , . , 4 0  000 for each value of p ) ,  we first calculated four 
quantities x m ( j ) :  

(1) the total number of cluster bonds x l ( j ) = b ( j ) ,  
(2) the perpendicular distance between the bus bars or 'cluster diameter' x z ( j )  = 

(3) the number of bonds on the critical path x 3  = bmin( j )  and 
(4) the number of red bonds x 4  

r(i), 

bR( j ) .  
To examine the dependence of x , ( j )  on xf l  ( j ) ,  we then make six 'scatter plots' on double 
logarithmic paper, with one point for each cluster j .  We did this for each of the 22 values 
of p ;  an example for p = 0.485 is given in figure 1. The plots are remarkably linear, 
motivating the definition of a family of numbers &,,(p)  defined by 

x , ( j )  -xfl(j)bm"'p' as x,, ( j )  + 00. (3) 
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Figure 1. A double logarithmic scatter plot showing the relationship between bm,"(j) and 
r (  j )  at p = 0.485; E = 0.03. Each point is one realisation; 10 000 realisations are shown. 

Table 1 shows our results for the $ , , ( p ) ,  obtained using a least-squares fit to the raw 
data (40 000 points for each p value). 

The tLmn ( p )  appear (for unknown reasons) to vary roughly linearly with &, making 
possible reliable estimates (table 1) for the critical exponents Gmn defined through 

Table 1. Estimates for the quantities $ , , ( p )  defined in equation (3), based on a least- 
squares fit to 40 000 data points (the case p = 0.485 is illustrated in figure 1). Also shown are 
the extrapolated values #,,, defined by equation (4). A useful consistency check is the 
relation $iJ = @zk@kJ for any k. Because bR has a large range among clusters of a given b, the 
plots involving bR have much wider scatter than the others, and the bR exponents are less 
well determined. In particular, $34(p) cannot be estimated reliably. 

0.440 1.712*0.036 1.526*0.036 1.694*0.060 - 0.987* 0.005 
0.450 1.724i0.024 1.526*0.024 1.754*0.047 - 0.994* 0.005 
0.460 1.739*0.015 1.538*0.012 1.754*0.031 - 1.005 kO.005 
0.470 1.754*0.009 1.547k 0.010 1.8051 0.033 0 .800~0 .020  1.020*0.005 
0.475 1.773 j, 0.009 1.552* 0.005 1.818 i 0.027 0.810* 0.012 1.030* 0.005 
0.480 1.782i0.006 1.5721 0.007 1.862*0.024 0.820i0.010 1.044*0.005 
0.485 1.795*0.006 1.579&0.008 1.923i-0.026 0.835*0.007 1.060*0.005 

Extrapolation 1.88* 0.02 1.64 i 0.02 2.20* 0.15 0.92 * 0.02 1.16*0.02 
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One exponent has been discussed previously: 412, the fractal dimension d j  (4;; has 
been called p by Leath 1976a, Harrison et a1 1978, Peters et a1 1979). 

Finally, we generated 8000 clusters at p = p c ,  rejecting those that grew to over 
20 000 bonds (about two thirds of the clusters grown were rejected). The well verified 
scaling property (Stauffer 1979, Essam 1980) of the distribution no(b, b )  for large b 
and small E ,  

(with T = 2 +  1/6 and (+ = l /pS)  result in the prediction that n(b,  p c )  - b-T+l.  Our data 
produce the estimate T = 2.050* 0.005 (6 = 20* 2). 

no(b, E )  = b - T f ( E S u )  ( 5 )  

Results for averaged quantities 

We calculated the averages of the quantities xr(j) with respect to the cluster 
distribution n (b, p ) ,  

In addition to the four quantities xl( j ) ,  . . . , x4(j) defined above, we included the 
number of cluster perimeter bonds xs(j)  = t ( j ) .  

First, we tested the equation 

which has a colourful history of 'proofs' of increasing degrees of rigour and generality 
(Stauffer 1975a, Leath 1976a, Kunz and Souillard 1978, Coniglio and Russo 1979). 
Our results for all 22 values of p are displayed in figure 2, while the straight line with 
slope unity is the prediction of equation (7). The agreement is striking, and provides the 
first corroboration of (7) by direct cluster simulation (see also Coniglio and Stauffer 
1980, Leath and Reich 1978). 

We also studied the asymptotic dependence on E of the averaged quantities (XI) 
( I  = 1, . . . ,4) .  We found that if we include in the definition (6) only the largest P0/o of 
the clusters (P  = 15, 10 ,7 ,5 ,2 ,  l), we obtain P-dependent values of the exponents 
which are significantly different from the exponents obtained by averaging over all 
clusters (figure 3). Moreover, we find that the P-dependent exponents vary smoothly 
with P and hence can be extrapolated to P = 0. The exponents so obtained are listed in 
the second column of table 2. In particular, v is in accord with the recent conjecture of 
den Nijs (1979), with recent estimates using the renormalisation group (Reynolds et a1 
1980, Eschbach et a1 1981) and with exact enumeration methods (Dunn e ta l  1975). It 
follows from ( 5 )  that ST - E for the largest clusters. According to the extended den 
Nijs conjecture (Nienhuis et a1 1980, Pearson 1980), p6 = p + y = 91/36, which is 
comparable with our estimate 2.48 f 0.02. 

and (x4) = (bR) = SR- E - ' ~  

are also critical (table 2). Our finding ymin > v implies that the minimum path is more 
convoluted in large clusters than small clusters, and increases much faster than linearly 
with cluster radius. Kirkpatrick (1979) found a similar result for a correlated percola- 
tion model. Coniglio (1981) has independently argued that yR= 1, and our results 
(table 2) are consistent with his result. 

We find that the quantities (x3) = (bmin) = Smin - 
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Figure 2. Test of equation (7) .  Points are from the simulation while the line is equation ( 7 ) .  

The following heuristic argument may help put the new exponent yR into perspec- 
tive. Consider cluster growth to be controlled by a random number between 0 and 1 
‘attached’ to each potential bond in the lattice; p is infinitesimally slowly increased from 
0, and when it reaches the number stored at a bond, the bond becomes occupied. In this 
model, bonds form one at a time, and at the instant of formation a bond can be 
immediately ‘coloured.’ Two competing mechanisms will control the colour of a bond: 
(1) if a bond forms a connected path between two otherwise disjoint clusters, it is 
coloured red; (2) if a bond forms an alternate connected path, it is coloured blue, but 
may also force a previously red bond to change colour. Thus, as each bond forms, the 
cluster containing it is recoloured. Although the exponent for blue bonds yB is greater 
than that for red bonds (Shlifer et a1 1979), yR>O implies that mechanism (1) is an 
important one and is not fully dominated by (2): a significant fraction of cluster growth 
occurs along singly connected subsections of the cluster. 

Conclusions 

In conclusion, we have developed a Monte Carlo method that does not introduce 
boundary effects; since it stores only the cluster and its parameter, it can be used for 
clusters up to lo5  bonds. We have used this method to solve the problem of dis- 
tinguishing the singly connected (red) from the multiply connected (blue) backbone 
bonds. Among the new findings are the following. 
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Figure 3. Double logarithmic plot of &against E for all clusters (lower curve) and for the 
largest 1% of the clusters (upper curve). When only the largest P% of the clusters in 
definition (6) are used, the exponents increase, approaching a limiting value as P+ 0, in 
accord with the expectation of the cluster number scaling hypothesis (equation (5)). 

Table 2. Critical exponents for averages over all clusters, and over the largest clusters. 

Variable Exponents (all clusters) Exponent (largest clusters) 

Size (xl) = ( b )  = ST 
Spanning distance (xz) = ( r )  

y = 2.35 *0.05 
va = 1.21 *0.03 

PS = 2.48 i 0.02 
v = 1.33*0.01 

Critical path length (xj) = (bmin) ~ ~ i ~ , ~  = 1.35k0.02 ymin 1.49 * 0.02 
Red bonds (x4) = ( b R )  YR,a = 1.0*0.1 Y R =  1.0*0.1 

(i) SR, the number of singly connected 'red' bonds, is a critical quantity that diverges 
as S R  - CYR, with YR = 1, consistent with very recent independent work of Coniglio 
(1981). 

(ii) Smin, the number of bonds in the shortest connected path through the cluster, 
diverges as Smin - CY"" with ymin -- 1.35 f 0.02. 
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(iii) Averages of critical quantities over the largest P% of the clusters result in 
exponents exhibiting a smooth (approximately linear) dependence upon P ;  the limiting 
P = 0 exponents are consistent with predictions of the cluster-number scaling hypo- 
thesis (equation ( 5 ) ) .  

(iv) No deviations whatsoever occur as p + p C  in the simple relation (7) between 
cluster area and perimeter. 
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