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One of the key con-
ceptual elements in
modern statistical phy-
sics is the concept of
scale invariance, codi-
fied in the scaling
hypothesis that func-
tions obey certain func-
tional equations whose
solutions are power laws. The scaling hypothesis has two
categories of predictions, both of which have been verified
by a wealth of experimental data on diverse systems. The
first category is a set of relations, called scaling laws, that
serve to relate the various critical-point exponents character-

izing the singular
behavior of functions
such as thermodynamic
functions. The second
category is a sort of
data collapse, where
under appropriate axis
normalization, diverse
data “collapse” onto a

single curve. 

Econophysics research has been addressing a key ques-
tion of interest: focusing on the challenge of quantifying
the behavior of probability distributions of large fluctua-
tions of relevant variables such as returns, volumes, and the
number of transactions. Sampling the fat tails of such distri-
butions require a large amount of data. However, there is a
truly gargantuan amount of pre-existing precise financial
market data already collected, many orders of magnitude
more than for typical complex systems. Accordingly, finan-
cial markets are becoming a paradigm of complex systems,
and increasing numbers of scientists are analyzing market
data [1-7]. Empirical analysis has been focused on quanti-
fying and testing the robustness of power-law distributions
that characterize large movements in stock market activity.
Using estimators that are designed for serially and cross-
sectionally independent data, findings support the hypothe-
sis that the power law exponents that characterize fluctua-
tions in stock price, trading volume, and the number of
trades [8, 9] are seemingly “universal” in the sense that
they do not change their values significantly for different
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markets, different time periods, or different market condi-
tions. 

In contrast to these analysis of averaged distributions we
focus on the temporal sequence of fluctuations in volatility,
volume, and inter-trade times before and after trend switch-

ing points. Our analysis can provide insights into switching
processes in complex systems in general and financial sys-
tems in particular. The study of dramatic crash events is
limited by the fortunately rare number of such events.
Increasingly, one seeks to understand the current financial
crisis by comparisons with the depression of the 1930’s.
Here we ask if the smaller financial crises trend switch-
ing processes on all time scales also provide information
of relevance to large crises. If this is so, then the larger
abundance of data on smaller crises should provide quan-
tifiable statistical laws for bubbles on all scales. 

To answer whether smaller financial crises also provide
information of relevance to large crises, we perform a paral-
lel analysis of bubble formation and bursting using two dif-
ferent data bases on two quite different time scales: (i) from

101 ms to 106 ms, and (ii) from 108 ms to 1010 ms.

For the first analysis, we use a multivariate time series of
the German DAX Future contract (FDAX) traded at the

European Exchange (Eurex). The time series comprises 
T1 = 13, 991, 275 trades of three disjoint three-month peri-
ods (16 March 2007 - 15 June 2007, 20 June 2008 - 19
September 2008, and 19 September 2008 - 19 December
2008). The data contains transaction prices, volumes, and
corresponding time stamps, with inter-trade times down to
10 ms, which allows us to perform an analysis of
microtrends.

For the second analysis, which focuses on macrotrends,
we use price time series of daily closing prices of all stocks
of the S&P500 index. This index consists of 500 large-cap
common stocks which are actively traded in the United
States of America. The time series comprises overall T2 =
2, 592, 531 closing prices of US stocks till 16 June 2009
which were constituent of the S&P500 at this date. Our old-
est closing prices date back to 2 January 1962. The data
base we analyze contains the daily closing prices and the
daily cumulative trading volume. As spot market prices
undergo a significant shift by inflation over time periods of
more than 40 years we study logarithmized stock prices
instead of the raw closing prices. Thus, the results between
the two different data bases on two quite different time
scales become more comparable.

Less studied than the large fluctuations of major national
stock indices such as the S&P500 are the various jagged
functions of time characterizing complex financial fluctua-
tions down to time scales as short as a few milliseconds.
These functions at first sight are not amenable to math-
ematical analysis because they are characterized by sudden
reversals between up and down microtrends (see Fig. 1 and
Fig. 2a) which can also be referred as microscopic bubbles.
On these small time scales evidence can be found [2] that
the three major financial market quantities of interest 
price, volume, and inter-trade times are connected in a
non-trivial way creating complex financial market patterns.

We do not know how to characterize the sudden
microtrend reversals. For example, the time derivative of
the price p(t) is discontinuous. This behavior is completely
different than most real world trajectories, such as a thrown
ball for which the time derivative of the height is a smooth
continuous function of time. Here we find a way of quanti-
tatively analyzing these sudden microtrend reversals which
exhibit a behavior analogous to transitions in systems in
nature, and we interpret these transitions in terms of the
cooperative interactions of the traders involved. A wide
range of examples of transitions exhibiting scale-free
behavior ranges from magnetism in statistical physics to

FIG. 1: Visualization of a microtrend.
(a) Positive microtrend starting at a local price minimum

pmin of order t and ending at a local price maximum
pmax of order t. The hatched region around pmax indi-
cates the interval in which we find scale-free behavior.
This behavior is consistent with “self-organized” [10]
macroscopic interactions among many traders, not
unlike “tension” in a pedestrian crowd [11, 12].

(b) Renormalized time scale between successive extrema,
where =0 corresponds to the start of a microtrend, and

= 1 corresponds to the end. The hatched region is sur-
prisingly large, starting at =0.6 and ending at =1.4.
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macroscopic social phenomena such as traffic flow (switch-
ing from a free traffic phase to a jammed phase) [13].

To focus on switching processes of price movements
down to a microscopic time scale, we first propose how a
switching process can be analyzed quantitatively. Let p(t)
be the transaction price of trade t, which is in the following
a discrete variable t = 1,...,T. Each transaction price p(t) is
defined to be a local maximum pmax( t) of order t if
there is no higher transaction price in the sliding interval 
t t t t + t. Analogously, each transaction price
p(t) is defined to be a local minimum pmin( t) of order t
if there is no lower transaction price in the sliding interval 
t t t t + t. In this sense, the two points in the
time series in Fig. 1 marked by blue and red circles are a
local minimum and a local maximum, respectively. Figure
2a shows a short subset of the FDAX time series for the
case t = 75.

For the analysis of financial market quantities in depen-
dence of trend fraction, we introduce a renormalized time
scale between successive extrema as follows. Let tmin and
tmax be the time (measured in units of ticks) at which the
corresponding transactions take place of a successive pair
of pmin( t) and pmax( t) (see Fig. 1). For a positive
microtrend, the renormalized time scale is given by

(1)

with tmin t tmax + (tmax tmin), and for a negative
microtrend by

(2)

with tmax t tmin + (tmin tmax). Thus, = 0 corresponds to
the beginning of the microtrend and = 1 indicates the end
of the microtrend. We analyze a range of for the interval 
0 2, so we can analyze trend switching processes
both before as well as after the critical value = 1 (Fig. 1).
The renormalization is essential to assure that microtrends of
various lengths can be aggregated and that all switching
points have a common position in the renormalized time
scale.

First we analyze the fluctuations 2(t) during the short
time interval of microtrends from one price extremum to
the next. The quantity studied is given by squared price dif-
ferences, 2(t) = (p(t) p(t 1))2 for t > 1, and can be
referred to as local volatility. For the analysis of 2(t) in
dependence of trend fraction, we use the renormalization
time scale . In Fig. 3a, the color key gives the mean
volatility 2 ( , t) in dependence of and t normalized
by average volatility where the brackets denote the average

(t) t tmin ,
tmax tmin

(t) t tmax ,
tmin tmax

FIG. 2: (a) A small subset comprising 5000 trades (0.04%) of the full trade data set analyzed, extracted from the German DAX future time
series. Shown as circles are the extrema of order t. We perform our analysis for t =1, 2,..., 1000 ticks; in this example, 

t = 75 ticks. Positive microtrends are indicated by blue bars, which start at a t-minimum and end at the next t-maximum.
A negative microtrend (red bars) starts at a t-maximum and ends at the consecutive t-minimum.

(b) Time series of corresponding inter-trade times (t) reflecting the natural time between consecutive trades in units of 10 ms.
(c) The volume v(t) of each trade t in units of contracts.
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over all increasing and decreasing microtrends. In order to
remove outliers only those microtrends are collected in
which the time intervals between successive trades (t)
[14] (Fig. 2b) are not longer than 1 minute, which is rough-
ly 60 times longer than the average inter-trade time (
0.94 s), and in which the volumes are not larger than 100
contracts (the average volume is 2.55 contracts). This con-
dition ensures that time t runs only over the working hours
of the exchange removing overnight gaps, weekends,
and national holidays. As expected, the color profiles
exhibit a clear link between volatility and price evolution.
A new local price maximum is reached with a significant
sudden jump of the volatility. This qualitative effect is intu-
itively understandable and can also be reproduced by a ran-
dom walk process with Gaussian price changes. The shape
of the volatility peak around extrema is characterized by
asymmetric tails, which we analyze next. For this analysis,
we use the volatility aggregation 2 ( ), which is the mean
volatility 2 ( , t) averaged for layers from tcut = 50
ticks to tmax = 1000 ticks. Figure 4b shows 2 ( ) on a
log-log plot. The evolution of the volatility before and after
reaching a maximum shows up as straight lines and thus
are consistent with a power law scaling behavior 

2 ( 1 ) 1 2 within the range indicated by the
vertical dashed lines. Figure 4c shows 2 ( ) for
macrotrends averaged for layers from tcut = 10 days to 

tmax = 100 days which we obtain by performing a parallel
analysis for trends on long time scales using the daily clos-
ing price data base of S&P500 stocks.

We perform a parallel analysis of the corresponding vol-
ume fluctuations v(t), the numbers of contracts traded in
each individual transaction in case of microtrends for the
German market and the cumulative number of traded
stocks per day in case of macrotrends for the US market.
The colored volume profile (see Fig. 3b) exhibits that the
volume is clearly connected to the price evolution: new
extreme values of the price coincide with peaks in the vol-
ume time series, as indicated by the vertical blue regions
close to = 1. New price extrema are linked with peaks in
the volume time series but, surprisingly, we find that the
usual cross-correlation function between price changes and
volumes vanishes. Thus, one can conjecture that the ten-
dency to increased volumes occurring at the end of positive
microtrends is counteracted by the tendency to increased
volumes occurring at the end of negative microtrends. The
crucial issue is to distinguish between positive and negative
trends realized by the renormalization time between suc-
cessive extrema. Figure 4d and 4e show v ( ) versus 1
as log-log histograms supporting a power law behavior of
the form v ( 1 ) 1 v .

In order to verify a possible universality, we analyze the

FIG. 3: Renormalization time analysis of volatility 2, volumes v, and inter-trade times .
(a) The colored volatility profile, averaged over all microtrends and normalized by the average volatility. The color code gives the

normalized mean volatility. The color profile exhibits the clear link between mean volatility and price evolution. New extreme
values of the price time series are reached with a significant sudden jump of the volatility. Here, 2 ( ) denotes the average of
the volatility profile, averaged only for layers with 50 t 100.

(b) The colored volume profile, averaged over all microtrends and normalized by the average volume. The color code gives the
normalized mean volume. The volume is connected to the price evolution: new extreme values of the price coincide with peaks
in the volume time series, as indicated by the vertical blue regions close to = 1. The top panel shows the volume aggregation 
v ( ), where v ( ) is the average over layers with 50 t 100.

(c) The colored inter-trade time profile is performed analogously to our study of volatility and volume. New extreme values of the
price time series are reached with a significant decay of the inter-trade times.
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FIG. 4: Overview of time scales studied and log-log plots of quantities with scale-free properties. 
(a) Visualization of time scales studied for both the German market and the US market. For the analysis of microtrends, we use the

German DAX future data base which enables us to analyze microtrends starting at roughly 105 ms down to the smallest possi-
ble time scale of individual transactions measured in multiples of 10 ms. The log-log plots of quantities with scale-free behavior
on short time scales are shown in the left column. For the analysis of macrotrends, we use the data base of daily closing prices
of all S&P500 stocks which enables us to perform equivalent analysis of macrotrends on long time scales which are shown the
right column. Thus, our analysis of switching processes ranges over 9 orders of magnitude from 10 ms to 1010 ms.

(b) The volatility (50 ticks t 1000 ticks) before reaching a new extreme price value ( < 1, red circles) and after reaching a
new extreme price value ( > 1, blue triangles) aggregated for microtrends. The straight lines correspond to power law scaling
with exponents = 0.420 0.01 and = 0.030 0.01. The shaded interval marks the region in which this power law
behavior is valid. The left border of the shaded region is given by the first measuring point closest to the switching point.

(c) The volatility aggregation of macrotrends determined for the US market on long time scales (10 days t 100 days). The
straight lines correspond to power law scaling with exponents = 0.46 0.01 and = 0.08 0.02 which are consis-
tent with the exponents determined for the German market on short time scales.

(d) Log-log plot of the volume aggregation on short time scales (50 ticks t 1000 ticks) exhibits a power law behavior with
exponents v = 0.146 0.005 and v = 0.072 0.001.

(e) Log-log plot of the volume aggregation on long time scales (10 days t 100 days) exhibits a power law behavior with
exponents v = 0.115 0.003 and v = 0.050 0.002 which are consistent with our results for short time scales.

(f) Log-log plot of the inter-trade time aggregation on short time scales (50 ticks t 100 ticks) exhibits a power law behavior
with exponents = 0.120 0.002 and = 0.087 0.002. An equivalent analysis on long time scales is not possible as daily
closing prices are recorded with equidistant time steps.
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behavior of the inter-trade times (t) of the German market
(see Fig. 2b). The linear cross-correlation function between
price changes and intertrade times exhibits no significant
correlation values as well. Thus, it is of crucial importance
to distinguish between positive and negative microtrends
realized by the renormalized time . In Fig. 3c, the mean
inter-trade time is shown mirroring the clear link between
inter-trade times and price extrema. Far away from the crit-
ical point = 1 the mean inter-trade time starts to decrease.
After the formation of a new local price maximum the
mean inter-trade times increase and return to the average
value in a very symmetrical way. Figure 4f shows ( )
versus 1 as a log-log histogram supporting a power law
behavior of the form ( 1 ) 1 for
microtrends. A log-log histogram of a parallel analysis for
the US market on large time scales is not obtainable as the
inter-trade times between successive closing prices are con-
stant (exceptions are weekends and general holidays).

The straight lines in Fig. 4 offer insight into financial
market fluctuations: (i) a clear connection between volatili-
ty, volumes, inter-trade times, and price fluctuations on the
path from one extremum to the next extremum, and (ii) the
underlying law, which describes the tails of volatility, vol-
umes, and inter-trade times around extrema varying over 9
orders of magnitude starting from the smallest possible
time scale, is a power law with a unique exponents which
quantitatively characterize the region around the trend
switching point. As a direct consequence of the existence
of power law tails, the behavior does not depend on the
scale. With decreasing t, the number of local minima and
maxima increases (see Fig. 1), around which we find scale-
free behavior, for the same interval 0.6 1.4.

In summary we have seen that each trend in a financial
market starts and ends with a unique switching process, and
each extremum shares properties of macroscopic coopera-
tive behavior. We have seen that the mechanism of bubble
formation and bubble bursting has no scale for time scales
varying over 9 orders of magnitude down to the smallest
possible time scale the scale of single transactions mea-
sured in units of 10 ms. On large time scales, histograms of
price returns provide the same scale-free behavior. Thus, the
formation of positive and negative trends on all scales is a
fundamental principle of trading, starting on the smallest
possible time scale, which leads to the non-stationary nature
of financial markets as well as to crash events on large time
scales. Thus, the well-known catastrophic bubbles occurring
on large time scales may not be outliers but in fact single
dramatic representatives caused by the scale-free behavior of
the forming of increasing and decreasing trends on time
scales from the very large down to the very small.
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