Author's Proof

BookID 188016_ChapID 001_Proof# 1 - 01/02/10

Trend Switching Processes in Financial Markets

Tobias Preis and H. Eugene Stanley

Abstract For an intriguing variety of switching processes in nature, the underlying 3 complex system abruptly changes at a specific point from one state to another 4 in a highly discontinuous fashion. Financial market fluctuations are characterized 5 by many abrupt switchings creating increasing trends ("bubble formation") and 6 decreasing trends ("bubble collapse"), on time scales ranging from macroscopic 7 bubbles persisting for hundreds of days to microscopic bubbles persisting only on very short time scales. Our analysis is based on a German DAX Future data base containing 13,991,275 transactions recorded with a time resolution of 10^{-2} s. For a 10 parallel analysis, we use a data base of all S&P500 stocks providing 2,592,531 daily 11 closing prices. We ask whether these ubiquitous switching processes have quantifi- 12 able features independent of the time horizon studied. We find striking scale-free 13 behavior of the volatility after each switching occurs. We interpret our findings as 14 being consistent with time-dependent collective behavior of financial market par- 15 ticipants. We test the possible universality of our result by performing a parallel 16 analysis of fluctuations in transaction volume and time intervals between trades. We 17 show that these financial market switching processes have features identical to those present in phase transitions. We find that the well-known catastrophic bubbles that occur on large time scales - such as the most recent financial crisis - may not be

T. Preis

Center for Polymer Studies, Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, USA e-mail: mail@tobiaspreis.de

and

Institute of Physics, Johannes Gutenberg University Mainz, Staudinger Weg 7, 55128 Mainz, Germany

and

Artemis Capital Asset Management GmbH, Gartenstr. 14, 65558 Holzheim, Germany

H.E. Stanley (⊠)

Center for Polymer Studies, Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, USA e-mail: hes@bu.edu

M. Takayasu et al. (eds.), *Econophysics Approaches to Large-Scale Business Data and Financial Crisis*, DOI 10.1007/978-4-431-53853-0_1, © Springer 2010

T. Preis and H.E. Stanley

23

outliers but in fact are single dramatic representatives caused by the formation of upward and downward trends on time scales varying over nine orders of magnitude 21 from the very large down to the very small.

1 Introduction

In physics and in other natural sciences, it is often a successful strategy to ana-24 lyze the behavior of a complex system by studying the smallest components of that 25 system. For example, the molecule is composed of atoms, the atom consists of a 26 nucleus and electrons, the nucleus consists of protons and neutrons, and so on. The 27 fascinating point about analyses on steadily decreasing time and length scales is 28 that one often finds that the complex system exhibits properties which cannot only 29 be explained by the properties of its components alone. Instead, a complex behavior 30 can emerge due to the interactions among these components [1]. In financial mar-31 kets, these components are comprised by the market participants who buy and sell 32 assets in order to realize their trading and investment decisions. The superimposed 33 flow of all individual orders submitted to the exchange trading system initiated by 34 market participants and of course its change in time generate a complex system with fascinating properties, similar to physical systems.

One of the key conceptual elements in modern statistical physics is the concept 37 of scale invariance, codified in the scaling hypothesis that functions obey certain 38 functional equations whose solutions are power laws [2–5]. The scaling hypothesis 39 has two categories of predictions, both of which have been remarkably well verified 40 by a wealth of experimental data on diverse systems. The first category is a set of 41 relations, called *scaling laws*, that serve to relate the various critical-point exponents 42 characterizing the singular behavior of functions such as thermodynamic functions. 43 The second category is a sort of *data collapse*, where under appropriate axis nor-44 malization, diverse data "collapse" onto a single curve called a scaling function. 45

Econophysics research has been addressing a key question of interest: quantify- 46 ing and understanding large stock market fluctuations. Previous work was focussed 47 on the challenge of quantifying the behavior of the probability distributions of large 48 fluctuations of relevant variables such as returns, volumes, and the number of trans- 49 actions. Sampling the far tails of such distributions require a large amount of data. 50 However, there is a truly gargantuan amount of pre-existing precise financial market 51 data already collected, many orders of magnitude more than for typical complex sys- 52 tems. Accordingly, financial markets are becoming a paradigm of complex systems, 53 and increasing numbers of scientists are analyzing market data [6-18]. Empirical 54 analyses have been focused on quantifying and testing the robustness of power- 55 law distributions that characterize large movements in stock market activity. Using 56 estimators that are designed for serially and cross-sectionally independent data, find-57 ings thus far support the hypothesis that the power law exponents that characterize 58 fluctuations in stock price, trading volume, and the number of trades [19–26] are 59 seemingly "universal" in the sense that they do not change their values significantly 60 for different markets, different time periods, or different market conditions. 61

Trend Switching Processes in Financial Markets

In contrast to these analyses of global financial market distributions we focus on the temporal sequence of fluctuations in volatility, transaction volume, and intertrade times before and after a trend switching point. Our analysis can provide insight 64 into switching processes in complex systems in general and financial systems in particular. The study of dramatic crash events is limited by the fortunately rare number 66 of such events. Increasingly, one seeks to understand the current financial crisis by 67 comparisons with the depression of the 1930s. Here we ask if the smaller financial 68 crises – trend switching processes on all time scales – also provide information of 69 relevance to large crises. If this is so, then the larger abundance of data on smaller crises should provide quantifiable statistical laws for *bubbles of all scales*.

2 Financial Market Data

To answer whether smaller financial crises also provide information of relevance 73 to large crises, we perform parallel analyses of bubble formation and bursting 74 using two different data bases on two quite different time scales: (1) from $\approx 10^1$ 75 to $\approx 10^6$ ms, and (2) from $\approx 10^8$ to $\approx 10^{10}$ ms. 76

2.1 German Market: DAX Future

For the first analysis, we use a multivariate time series of the German DAX Future 78 contract (FDAX) traded at the European Exchange (Eurex), which is one of the 79 world's largest derivatives exchanges. A future contract is a contract to buy or sell at a specified price at a specific future date an underlying asset – in this case the 81 German DAX index, which measures the performance of the 30 largest German 82 companies in terms of order book volume and market capitalization.¹ The time 83 series comprises $T_1 = 13,991,275$ transactions of three disjoint 3-month periods 84 (see Table 1). Each end of the three disjoint periods corresponds to a last trad-85 ing day of the FDAX contract which is ruled to be the third Friday of one of the quarterly months March, June, September, and December apart from the exceptions of national holidays. The data base we analyze contains the transaction prices, 88 the volumes, and the corresponding time stamps [31–34], with a large liquidity 90 microtrends.

The time series analysis of future contracts has the advantage that the prices are 92 created by trading decisions alone. In contrast, stock index data are derived from 93 a weighted summation of a bunch of stock prices. Furthermore, systematic drifts

77

72

¹ More detailed information about German DAX index constituents and calculation principles can be found on http://www.deutsche-boerse.com.

T. Preis and H.E. Stanley

t1.1 **Table 1** Three disjoint 3-month periods of the German DAX Future contract (FDAX) which we analyze. Additionally, the mean volume per transaction \bar{v} and the mean inter-trade time $\bar{\tau}$ is given

t1.2	Contract	Records	Time period	\overline{v}	$\bar{\tau}$ (s)
t1.3	FDAX JUN 2007	3,205,353	16 March 2007 – 15 June 2007	3.628 ^a	2.485 ^b
t1.4	FDAX SEP 2008	4,357,876	20 June 2008 – 19 September 2008	2.558 ^a	1.828 ^b
t1.5	FDAX DEC 2008	6,428,046	19 September 2008 – 19 December 2008	2.011 ^a	1.253 ^b
	^a Measured in units o	of contract			7

^bIncluding overnight gaps

by inflation are eliminated by construction. The theory of futures pricing based on 95 arbitrage states that for an asset that can be stored at no cost and which does not 96 yield any cash flows, the futures price F has to be equal to the spot price S plus the 97 cost of financing the purchase of the underlying between the spot date and the expiry 98 date [35, 36]. This theoretical futures price can be referred as *fair value*. In the case of the German DAX index, the underlying purchase can be financed till expiry with 70 a loan rate. Using a continuously compounded rate r the *fair value* equation can be written as

$$F(t) = S(t)e^{rt},\tag{1}$$

whereas *t* denotes the remaining time till expiry. The theoretical futures price expression – see (1) –, which simply reflects the *cost of carry*, compensates interest 104 rate related effects of the underlying. At expiry t = 0, futures price and underlying price are identical.

2.2 US Market: S&P500 Stocks

For the second analysis, which focuses on macrotrends, we use price time series 108 of daily closing prices of all stocks of the S&P500 index. This index consists of 109 500 large-cap common stocks which are actively traded in the United States of America.² The time series comprises overall $T_2 = 2,592,531$ closing prices of US stocks till 16 June 2009 which were constituent of the S&P500 at this date. Our oldest closing prices date back to 2 January 1962. The data base of closing prices we 113 analyze contains the daily closing prices and the daily cumulative trading volume. 114 As spot market prices undergo a significant shift by inflation over time periods of 115 more than 40 years we study the logarithm of stock prices instead of the raw closing prices. Thus, the results between the two different data bases on two quite different time scales become more comparable. 118

6

Author's Proo

² More detailed information about S&P500 constituents and calculation principles can be found on http://www.standardandpoors.com.

Trend Switching Processes in Financial Markets

3 Renormalization Method

Less studied than the large fluctuations of major national stock indices such as the 120 S&P500 are the various jagged functions of time characterizing complex financial 121 fluctuations down to time scales as short as a few milliseconds. These functions at first sight are not amenable to mathematical analysis because they are characterized by sudden reversals between up and down microtrends (see Figs. 1 and 2a) which can also be referred as microscopic *bubbles* on small time scales. On these small time scales evidence can be found [br hat the three major financial market quantities of interest – price, volume, and inter-trade times – are connected in a complex way overburdening standard tools of time series analysis such as linear cross-correlation functions. Thus, more sophisticated methods are necessary in order analyze these complex financial fluctuations creating complex financial market patterns.

We do not know how to characterize the sudden microtrend reversals. For ex- 132 ample, the time derivative of the price p(t) is discontinuous. This behavior is 133 completely different than most real world trajectories, such as a thrown ball for

Fig. 1 Visualization of a *microtrend* in the price movement p(t). (a) Positive microtrend starting at a local price minimum p_{\min} of order Δt and ending at a local price maximum p_{\max} of order Δt . The hatched region around p_{\max} indicates the interval in which we find scale-free behavior of related quantities. This behavior is consistent with "self-organized" [27] macroscopic interactions among many traders [28], not unlike "tension" in a pedestrian crowd [29, 30]. The reason for tension among financial traders may be found in the risk aversions and profit targets of financial market participants. (b) Renormalized time scale ε between successive extrema, where $\varepsilon = 0$ corresponds to the start of a microtrend, and $\varepsilon = 1$ corresponds to the end. The hatched region is surprisingly large, starting at $\varepsilon = 0.6$ and ending at $\varepsilon = 1.4$

7

T. Preis and H.E. Stanley --**Positive Microtrends** $\Delta t=75$

Fig. 2 Visualization of the quantities analyzed. (a) A small subset comprising 5,000 trades (0.04%) of the full $T_1 = 13,991,275$ trade data set analyzed, extracted from the German DAX future time series during part of one day. Shown as circles and triangles are the extrema of order Δt , defined to be the extremum in the interval $t + \Delta t \le t \le t + \Delta t$. We performed our analysis for $\Delta t = 1, 2, \dots, 1000$ ticks; in this example, $\Delta t = 75$ ticks. Positive microtrends are indicated by black bars on the top, which start at a Δt -minimum and end at the next Δt -maximum. A negative microtrend (black bars on the bottom) starts at a Δt -maximum and ends at the consecutive Δt -minimum. (b) Time series of the corresponding inter-trade times $\tau(t)$ reflecting the natural time between consecutive trades in units of 10 ms, where $t = 1, 2, \dots, 5000$ is the transactions index. (c) The volume v(t) of each trade t in units of contracts

which the time derivative of the height is a smooth continuous function of time. Here we find a way of quantitatively analyzing these sudden microtrend reversals which exhibit a behavior analogous to transitions in systems in nature [2,37], and we interpret these transitions in terms of the cooperative interactions of the traders involved. 138 A wide range of examples of transitions exhibiting scale-free behavior ranges from 139 magnetism in statistical physics to heartbeat intervals (sudden switching from heart 140 contraction to heart expansion) [38] and macroscopic social phenomena such as traffic flow (switching from a free traffic phase to a jammed phase) [39].

To focus on switching processes of price movements down to a microscopic time scale, we first propose how a switching process can be quantitatively analyzed. Let p(t) be the transaction price of trade t, which is in the (=) wing a discrete variable t = 1, ..., T. Each transaction price p(t) is defined to be a *local maximum* $p_{max}(\Delta t)$ of order Δ bere is no higher transaction price

BookID 188016_ChapID 001_Proof# 1 - 01/02/10

Trend Switching Processes in Financial Markets

in the interval $t - \Delta t \le t \le t + \Delta t$. Thus, if $p(t) = p_{\max}(t, \Delta t)$ is p(t) a local maximum $p_{\max}(\Delta t)$, where $p_{\max}(\Delta t)$ is a local maximum $p_{\max}(\Delta t)$ is p(t).

$$p_{\max}(t, \Delta t) = \max\{p(t)|t - \Delta t \le t \le t + \Delta t\}.$$
(2)

Analogously, each transaction price p(t) is defined to be a *local minimum* $p_{\min}(\Delta t)$ of order $\Delta \psi$ here is no lower transaction price in this interval. With

$$p_{\min}(t, \Delta t) = \min\{p(t)|t - \Delta t \le t \le t + \Delta t\},$$
(3)

it follows that p_{win} a *local minimum* $p_{\min}(\Delta t)$ if $p(t) = p_{\min}(t, \Delta t)$. In this sense, the two points in the time series in Fig. 1 marked by circles are a local minimum and a local maximum, respectively. Figure 2a shows a short subset of the FDAX time series for the case $\Delta t = \frac{1}{\sqrt{2}}$.

For the analysis of financial market quantities in dependence of trend fraction, we introduce a renormalized time scale ε between successive extrema as follows be the time (measured in units of ticks) at which the corresponding transactions take place of a successive pair of $p_{\min}(\Delta t)$ and $p_{\max}(\Delta t)$ (see Fig. 1). For a positive microtrend, the renormalized time scale is given by

$$e(t) \equiv \frac{t - t_{\min}}{t_{\max} - t_{\min}},\tag{4}$$

with $t_{\min} \le t \le t_{\max} + (t_{\max} - t_{\min})$, and for a negative microtrend by

$$\varepsilon(t) \equiv \frac{t - t_{\max}}{t_{\min} - t_{\max}},\tag{5}$$

with $t_{\text{max}} \le t \le t_{\text{min}} + (t_{\text{min}} - t_{\text{max}})$. Thus, $\varepsilon = 0$ corresponds to the beginning of the microtrend and $\varepsilon = 1$ indicates the end of the microtrend. We analyze a range of ε for the interval $0 \le \varepsilon \le 2$, so we can analyze trend switching processes both before as well as after the critical value $\varepsilon = 1$ (Fig. 1). The renormalization is essential to assure that microtrends of various lengths can be aggregated and that all switching points have a common position in the renormalized time scale.

3.1 Volatility Analysis

143

First we analyze the fluctuations $\sigma^2(t)$ of the price time series during the short time 144 interval of increasing microtrends from one price minimum to the next price maximum (see Fig. 3a) and decreasing microtrends from one price maximum to the next 146 price minimum (see Fig. 3b). The quantity studied is given by several price differences, $\sigma^2(t) = (p(t) - p(t-1))^2$ for t > 1, and can be referred price volatility. 148

BookID 188016_ChapID 001_Proof# 1 - 01/02/10

T. Preis and H.E. Stanley

Fig. 3 Renormalization time analysis of volatility σ^2 for microtrends. (a) The greyscaled volatility profile, averaged over all positive microtrends in the German DAX future time series and normalized by the average volatility of all positive microtrends studied. The greyscale key gives the normalized mean volatility $\langle \sigma_{\text{pos}}^2 \rangle(\varepsilon, \Delta t) / \bar{\sigma}_{\text{pos}}$. The greyscaled profile exhibits the clear link between mean volatility and price evolution. New maximum values of the price time series are reached with a significant sudden jump of the volatility, as indicated by the vertical white regions and the sharp maximum in the volatility aggregation $\sigma^{2*}(\varepsilon)$ shown in the top panel. Here, $\sigma^{2*}(\varepsilon)$ denotes the average of the volatility profile, averaged only for layers with $50 \le \Delta t \le 100$. After reaching new maximum values in the price the volatility decays and returns to the average value (top panel) for $\varepsilon > 1$. (b) Parallel analysis averaged over all negative microtrends in the time series. New minimum values of the price time series are reached with a pronounced sudden jump of the volatility, as indicated by the vertical dark gray regions in the volatility aggregation $\sigma^{2*}(\varepsilon)$ shown in the top panel. (c) The volatility (50 ticks $\leq \Delta t \leq 1000$ ticks) before reaching a new maximum price value ($\varepsilon < 1$, *circles*) and after reaching a new maximum price value ($\varepsilon > 1$, *tri*angles) aggregated for increasing microtrends. The straight lines correspond to power law scaling with exponents $\beta_{\sigma^2}^+ = -0.30$ and $\beta_{\sigma^2}^- = 0.01$. The *shaded interval* marks the region in which this power law behavior is valid. (d) Log-log plot of $\sigma^{2*}(\varepsilon)$ for negative microtrends. The *straight lines* correspond to power law scaling with exponents $\beta_{\sigma^2}^+ = -0.54$ and $\beta_{\sigma^2}^- = 0.04$. The *left* border of the shaded region is given by the first measuring point closest to the switching point

Trend Switching Processes in Financial Markets

For the analysis of $\sigma^2(t)$ in dependence of period factors, we use the renormalization time scale ε . In Fig. 3, the greyscale key gives the mean volatility $\langle \sigma^2 \rangle (\varepsilon, \Delta t)$ 150 in dependence of ε and Δ period malized by the average volatility dependence of ε and Δ period malized by the average volatility dependence of ε and Δ period malized by the average volatility dependence of ε and Δ period malized by the average volatility dependence of ε and Δ period malized by the average volatility dependence of ε and Δ period malized by the average volatility dependence of ε and Δ period malized by the average volatility dependence of ε and Δ period malized by the average volatility dependence of ε and Δ period malized by the average volatility dependence of ε and Δ period malized by the average volatility dependence of ε and Δ period ε period

$$\langle \sigma_{\text{pos}}^2 \rangle(\varepsilon, \Delta t) = \frac{1}{N_{\text{pos}}(\Delta t)} \sum_{i=1}^{N_{\text{pos}}(\Delta t)} \sigma_i^2(\varepsilon)$$
 (6)

for positive microtrends and

č

$$(\sigma_{\text{neg}}^2)(\varepsilon, \Delta t) = \frac{1}{N_{\text{neg}}(\Delta t)} \sum_{i=1}^{N_{\text{neg}}(\Delta t)} \sigma_i^2(\varepsilon)$$
 (7)

for negative microtrends. The mean volatility can be normalized by the average 158 volatility the is determined by 159

$$\bar{\sigma}_{\text{pos}} = \frac{\varepsilon_{\text{bin}}}{\varepsilon_{\text{max}} \Delta t_{\text{max}}} \sum_{\varepsilon=0}^{\varepsilon_{\text{max}}/\varepsilon_{\text{bin}}} \left(\sum_{\Delta t=0}^{\Delta t_{\text{max}}} \langle \sigma_{\text{pos}}^2 \rangle(\varepsilon, \Delta t) \right)$$
(8)

and

$$\bar{\sigma}_{\text{neg}} = \frac{\varepsilon_{\text{bin}}}{\varepsilon_{\text{max}} \Delta t_{\text{max}}} \sum_{\varepsilon=0}^{\varepsilon_{\text{max}}/\varepsilon_{\text{bin}}} \left(\sum_{\Delta t=0}^{\Delta t_{\text{max}}} \langle \sigma_{\text{neg}}^2 \rangle(\varepsilon, \Delta t) \right), \tag{9}$$

where ε_{max} is the maximum value of the renormalization time scale ε studied which is fixed to $\varepsilon_{\text{max}} = 1$, ε_{bin} denotes the bin size of the renormalization time 162 scale. The maximum value of the extrema order Δt which we analyze is given by 163 Δt_{max} . The bin size is related to Δt_{max} by 164

$$\varepsilon_{\rm bin} = \frac{\varepsilon_{\rm max}}{\Delta t_{\rm max}} \tag{10}$$

for convenience as ons. The absence of changes of the greyscaled volatility profiles 165 in Fig. 3 is consistent with a *data collapse* for Δt values larger than a certain $\epsilon = 66$ off value Δt_{cut} . Thus, we calculate the volatility aggregation $\sigma^{2*}(\varepsilon)$. This volatility 167 aggregation $\sigma^{2*}(\varepsilon)$ is the average of the mean volatility $\langle \sigma_{\text{neg}}^2 \rangle(\varepsilon, \Delta t)$, averaged only 168 for layers with $\Delta t_{\text{cut}} \leq \Delta t \leq \Delta t_{\text{max}}$. It is given by 169

$$\sigma_{\rm pos}^{2*}(\varepsilon) = \frac{1}{\Delta t_{\rm max} - \Delta t_{\rm cut}} \sum_{\Delta t = \Delta t_{\rm cut}}^{\Delta t_{\rm max}} \frac{\langle \sigma_{\rm pos}^2 \rangle(\varepsilon, \Delta t)}{\bar{\sigma}_{\rm pos}}$$
(11)

T. Preis and H.E. Stanley

and the equivalent definition

$$\sigma_{\text{neg}}^{2*}(\varepsilon) = \frac{1}{\Delta t_{\text{max}} - \Delta t_{\text{cut}}} \sum_{\Delta t = \Delta t_{\text{cut}}}^{\Delta t_{\text{max}}} \frac{\langle \sigma_{\text{neg}}^2 \rangle(\varepsilon, \Delta t)}{\bar{\sigma}_{\text{neg}}}$$
(12)

for negative microtrends. Note that red a prove the readability subscripts 171 "pos" and "neg" are removed if the context assures whether positive or negative 172 microtrends are considered.

The greyscaled volatility profiles (see Fig. 3) provide the mean volatility 174 $\langle \sigma^2 \rangle (\varepsilon, \Delta t)$ averaged over all increasing or all decreasing microtrends in the full 175 time series of $T_1 = 13,991,275$ records, and are normalized by the average voltime 176 ities of microtrends studied in both cases. In order to remove outlier the studied in both cases. In order to remove outlier microtrends are collected in which the time intervals between successive trades $\tau(t)$ 178 [40] (Fig. 2b) are not longer than 1 min, which is roughly 60 times longer than the 179 average inter-trade time (≈ 0.94 s without overnight gaps), and in which the trans- 180 action volumes are not larger than 100 contracts (the average transaction volume is 181 2.55 contracts, stable 1). This condition ensures that time that time the line is measured 182 in units of ticks and only over the working hours of the exchange – removing 183 overnight game weekends, and national holidays. Furthermore, the analysis is only 184 based on the microtrends which provide a reasonable activity. The greyscale 185 profiles exhibit a very clear link between volatility and price evolution. A new local 186 price maximum is reached with a significant sudden jump of the volatility (top panel 187 of Fig. 3a). After reaching new local maximum values in the prict volatility de- 188 cays and returns to the average value for $\varepsilon > 1$. The reaching of a maximum causes 189 obviously tension among the market participants. A local price mimum can st 190 the expectations that higher prices are possible and mainter purchases. This 191 development can also raise fears of traders to find a price for selling their assets. Additionally, it is possible that market participation a short position which means that they benefit from falling asset prices and to cut their losses by 194 reaching new maximum values. For negative microtrends, the reaching of local 195 minimum values in the price coincides with a more pronounced sudden jump of the 196 volatility (see Fig. 3b). A negative asset price evolution seems to create a situation in 197 which market participants act in a more dramatic way after the end of a trend in com- 198 parison to the end of positive microtrends. One can conjecture that they are driven 199 by tension at least or even by "panic" if they try to cut their losses. But of course, 200 also the opposite situation should become relevant: A market participant who has no 201 inventory is looking for entry opportunities. As asset prices are rising after reaching 202 a local price minimum ($\varepsilon = 1$), a financial market actor, who has the intention to 203 enter into the market, has to deal with the tension to find the "right" time - the 204 optimal entry level is already missed at this time: the local price minimum. 205

This qualitative effect is intuitively understandable and should be obvious for 206 market actors. In contrast, the shape of the volatility peak around extrema is sur-207 prising. The peak is characterized by asymmetric tails, which we analyze next. For 208 this analysis, we use the volatility aggregation $\sigma^{2*}(\varepsilon)$, which is the mean volatility 209

12

Trend Switching Processes in Financial Markets

 $\langle \sigma^2 \rangle(\varepsilon, \Delta t)$ averaged for layers from $\Delta t_{cut} = 50$ ticks to $\Delta t_{max} = 1000$ ticks. 210 Figure 3c shows the aggregated average volatility $\sigma^{2*}(\varepsilon)$ for positive microtrends 211 on a log-log plot. Surprisingly, the evolution of the volatility before and after reaching a maximum shows up as straight lines and thus are consistent with a power law 213 scaling behavior 214

$$\sigma^{2*}(|\varepsilon - 1|) \sim |\varepsilon - 1|^{\beta_{\sigma^2}} \tag{13}$$

within the range indicated by the vertical dashed lines. Over one order of magnitude, 215 we find distinct exponents, $\beta_{\sigma^2}^- = 0.01$ before a price maximum and $\beta_{\sigma^2}^+ = -0.30$ 216 after. Figure 3d shows the aggregated average volatility $\sigma^{2*}(\varepsilon)$ for negative mi- 217 crotrends on a log-log plot. Over more than one order of magnitude, we find for 218 negative microtrends a qualitatively consistent behavior to positive microtrends with 219 distinct exponents, $\beta_{-2}^- = 0.04$ before a price minimum and $\beta_{-2}^+ = -0.54$ after. 220

distinct exponents, $\beta_{\sigma^2} = 0.04$ before a price minimum and $\beta_{\sigma^2}^+ = -0.54$ after. 220 Next we test the possible university of our results by performing a parallel anal-221 ysis for trends on logarithm scales form the daily closing price data base of S&P500 222 stocks. In this sense proversality means that our renormalized market quantities do 223 not change their values significantly for different markets, different time periods, or 224 different market conditions. 225

Note that for our parallel analysis on macroscopic time scale 💭 order of a 226 extremum Δt is measured in units of days, and that $\langle \sigma^2 \rangle (\varepsilon, \Delta t)$ is averaged ad-227 ditionally over all closing price time series of all S&P500 components. In order to 228 avoid biased contributions for the rescaled averaging caused by inflation based drifts 229 over more than 47 years as described in Sect. 2.2, the analyzed price time series p(t) 230 contains the logarithm of the daily closing prices. Figure 4a shows the mean volatil- 231 ity $\langle \sigma^2 \rangle(\varepsilon, \Delta t)$ for positive microtrends averaged for layers from $\Delta t_{cut} = 10$ days 232 to $\Delta t_{\rm max} = 100$ days. Figure 4b shows the mean volatility $\langle \sigma^2 \rangle(\varepsilon, \Delta t)$ for neg- 233 ative microtrends averaged for the same layers' range. As already uncovered for 234 microtrends, the sudden volatility rise is more dramatic for negative macrotrends 235 than for positive macrotrends. The aggregated average volatilities $\sigma^{2*}(\varepsilon)$ for posi-236 tive and negative macrotrends on a log-log plot show surprisingly again distinct tail 237 exponents around the switching point $\varepsilon = 1$. For positive macrotrends, we obtain 238 $\beta_{\sigma^2}^- = -0.05$ before a price maximum and $\beta_{\sigma^2}^+ = -0.40$ after. For negative mi- 239 crotrends, we obtain $\beta_{\sigma^2}^- = -0.09$ before a price minimum and $\beta_{\sigma^2}^+ = -0.50$ after, 240 which is both similar to the values obtained for our study of positive and negative 241 microtrends. 242

3.2 Volume Analysis

243

To test the possible universality of these results obtained for volatility, we perform 244 a parallel analysis of the corresponding volume fluctuations v(t), the numbers of 245 contracts traded in each individual transaction (see Fig. 2c) in case of microtrends 246 for the German market and the cumulative number of traded stocks per day in case 247 of macrotrends for the US market. In Fig. 5a, the greyscaled volume profile provides 248 the mean volume averaged over all increasing microtrends in the time series of the 249

BookID 188016_ChapID 001_Proof# 1 - 01/02/10

T. Preis and H.E. Stanley

Fig. 4 Renormalization time analysis of volatility σ^2 for macrotrends. (a) The greyscaled volatility profile, averaged over all positive macrotrends in the daily closing price time series of all S&P500 stocks and normalized by the average volatility of all positive macrotrends studied. The stylized fact that new maximum values of the price time series are reached with a significant sudden jump of the volatility can also be found for macrotrends. Note that Δt is measured in units of day for macrotrends. (b) Parallel analysis performed for all negative macrotrends in the daily closing price time series of all S&P500 stocks. As already uncovered for microtrends (see Fig. 3), the sudden jump of the volatility (10 days $\leq \Delta t \leq 100$ days) before reaching a new maximum price value ($\varepsilon < 1$, *circles*) and after reaching a new maximum price value ($\varepsilon > 1$, *circles*) and after reaching a new maximum price value ($\varepsilon > 1$, *circles*) and after reaching a new maximum price value ($\varepsilon > 1$, *circles*) and after reaching a new maximum price value ($\varepsilon > 1$, *circles*) and $\beta_{\sigma^2} = -0.05$. (d) Log-log plot of $\sigma^{2*}(\varepsilon)$ for negative macrotrends. The *straight lines* correspond to power law scaling with exponents $\beta_{\sigma^2}^+ = -0.50$ and $\beta_{\sigma^2}^- = -0.09$

15

Trend Switching Processes in Financial Markets

Fig. 5 Renormalization time analysis of volume for microtrends. (a) The greyscaled volume profile, averaged over all positive microtrends in the FDAX time series and normalized by the average volume of all positive microtrends studied. New maximum values of the price time series coincide with peaks in the volume. (b) Parallel analysis performed for all negative microtrends in FDAX time series. (c) The volume (50 ticks $\leq \Delta t \leq 1000$ ticks) before reaching a new maximum price value ($\varepsilon < 1$, *circles*) and after reaching a new maximum price value ($\varepsilon > 1$, *triangles*) aggregated for increasing microtrends. The *straight lines* correspond to power law scaling with exponents $\beta_{\nu}^{+} = -0.20$ and $\beta_{\nu}^{-} = -0.14$. (d) Log-log plot of $\nu^{*}(\varepsilon)$ for negative microtrends. The *straight lines* correspond to power law scaling with exponents $\beta_{\nu}^{+} = -0.17$ and $\beta_{\nu}^{-} = 0$

German market and is also normalized by the average volume of all microtrends 250 studied. Analogously, Fig. 5b shows the mean volume averaged over all decreasing 251 microtrends in the time series. In order to remove outliers in this analysis, we 252 consider only those microtrends which include inter-trade times not longer than 253

T. Preis and H.E. Stanley

1 min and transaction volumes not larger than 100 contracts. As expected, new price 254 extrema are linked with peaks in the volume time series but, surprisingly, we find 255 that the usual cross-correlation function between price changes and volumes van-256 ishes. Thus, one can conjecture that the tendency of micreased volumes occurring at the end of negative microtrends. The crucial issue is to distinguish 259 between positive and negative microtrends. The renormalization time ε 260 between successive extrema.

For positive microtrends, a significant increase of volumes can be found already the before the local maximum price is reached. After reaching the local maximum value to the volatility falls dramatically back to values close to the average value. For neg-264 ative microtrends, the opposite characteristic is observable. The reaching of a local 265 price minimum causes a sudden jump of the transaction volume, whereas after the 266 local price minimum the volume decays and returns to the average value for $\varepsilon > 1$. 267 In the top panel of Figs. 5a,b, we show the volume aggregations $v^*(\varepsilon)$, obtained by 268 averaging Δt "slices" between $\Delta t_{cut} = 50$ and $\Delta t_{max} = 100$. Figure 5c shows $v^*(\varepsilon)$ 269 versus $|\varepsilon - 1|$ as a log–log histogram supporting a power law behavior of the form 270

$$v^*(|\varepsilon-1|) \sim |\varepsilon-1|^{\beta_{\nu}} \tag{14}$$

with exponents $\beta_v^- = -0.14$ before, and $\beta_v^+ = -0.20$ after a price maximum - 271 $v^*(\varepsilon)$ is obtained by averaging Δt "slices" between $\pm ut = 50$ and $\Delta t_{max} = 1000$. 272 For negative microtrends, straight lines can be detended in the log-log histogram as 273 well with exponents $\beta_v^- = -0.17$ before, and $\beta_v^+ = 0$ after a local price minimum 274 (Fig. 5d). 275

A parallel analysis for the US market on large time scales (Figs. 6a,b) provides 276 evidence that the volume peaks are symmetrically shaped around the switching point 277 $\varepsilon = 1$ and that the characteristics are similar for positive and negative macrotrends. 278 The power law exponents for positive microtrends are given by $\beta_{\nu}^{-} = -0.04$ before, 279 and $\beta_{\nu}^{+} = -0.08$ after a local price maximum (Fig. 6c). The similar behavior of 280 negative microtrends is supported by exponents $\beta_{\nu}^{-} = -0.05$ before, and $\beta_{\nu}^{+} = 281$ -0.15 after a local price minimum as shown in Fig. 6d. 282

3.3 Inter-trade Time Analysis

283

In order to verify a possible universality, we analyze additionally the behavior of 284 the inter-trade times $\tau(t)$ of the German market during the short time interval from 285 one price extremum to the next (see Fig. 2b). The linear cross-correlation function 286 between price changes and inter-trade times as standard tool of time series analysis 287 exhibits no signified correlation values as we found tool of time series analysis 288 that the tendency by accreased inter-trade times for the end of positive microtrends 289 is counteracted by the tendency for creased inter-trade times for the end of negative 290 microtrends. It is of crucial importance to distinguish between positive and negative 291

Trend Switching Processes in Financial Markets

Fig. 6 Renormalization time analysis of volume for macrotrends. (a) The greyscaled volume profile, averaged over all positive macrotrends in the daily closing price time series of all S&P500 stocks and normalized by the average volatility of all positive macrotrends studied. Consistent with our results for microtrends maximum values of the price time series are reached with a peak of the volume. Note that Δt is measured in units of day for macrotrends. (b) Parallel analysis performed for all negative macrotrends in the daily closing price time series of all S&P500 stocks. Minimum values of the price time series coincide with peaks of volume as for positive macrotrends. (c) The volume (10 days $\leq \Delta t \leq 100$ days) before reaching a new maximum price value ($\varepsilon < 1$, *circles*) and after reaching a new maximum price value ($\varepsilon > 1$, *triangles*) aggregated for increasing macrotrends. The straight lines correspond to power law scaling with exponents $\beta_v^+ = -0.08$ and $\beta_{\nu}^{-} = -0.04$. (d) Log-log plot of $\nu^{*}(\varepsilon)$ for negative macrotrends. The straight lines correspond to power law scaling with exponents $\beta_v^+ = -0.15$ and $\beta_v^- = -0.05$

T. Preis and H.E. Stanley

microtrends realized by the renormalized time ε between successive extrema. In 292 Figs. 7a and 7b, the mean inter-trade time $\langle \tau \rangle (\varepsilon, \Delta t) / \overline{\tau}$ is shown for positive and 293 negative microtrends, respectively, mirroring the clear link between inter-trade times 294 and price extrema. Far away from the critical point $\varepsilon = 1$ the mean inter-trade time 295 starts to decrease. After the formation of a new local price maximum the mean 296 inter-trade times increase and return to the average value in a very symmetrical way. 297 Negative microtrends obey the same behavior with one exception. The reaching 298 of a local price minimum ($\varepsilon = 1$) coincides with a temporary sudden increase 299 of the inter-trade times. For both types of trends, the dip of the inter-trade times 300 can be interpreted in terms of "panic". Cymbefore reaching local price extreme 301 values market participants try to participate in the forming trend or try to correct 302 their trading decision which was caused by the hope to participate in an opposite 303 trend formation. After reaching the local price extreme value, the tension persists 304 but becomes steadily smaller. 305

In the top panels of Figs. 7a,b, the aggregation of the inter-trade time profile $\tau^*(\varepsilon)$ 306 is shown calculated for all values of Δt between $\Delta t_{cut} = 50$ and $\Delta t_{max} = 100$. 307 Figure 7c shows $\tau^*(\varepsilon)$ versus $|\varepsilon - 1|$ as a log-log histogram supporting a power law 308 behavior of the form 309

$$\tau^*(|\varepsilon - 1|) \sim |\varepsilon - 1|^{\beta_{\tau}} \tag{15}$$

for positive microtrends with exponents $\beta_{\tau}^{-} = 0.10$ before, and $\beta_{\tau}^{+} = 0.12$ after a 310 local price maximum. For negative microtrends, we obtain exponents $\beta_{\tau}^{-} = 0.09$ be- 311 fore, and $\beta_{\tau}^{+} = 0.15$ after a local price minimum (see Fig. 7d). A log–log histogram 312 of a parallel analysis for the US market on large time scales is not obtainable as the 313 inter-trade times between successive closing prices are given by the constant value 314 of 1 day (exceptions are weekends and general holidays). 315

3.4 Random Shuffling

316

To confirm that our results are a consequence of the exact time series sequence and 317 thus sensitive to the time ordering of the original time series of volumes and inter-318 trade times, we randomly shuffle γT pairs of data points of both the volume time 319 series and inter-trade time series in order to weaken their connection with the price 320 evolution. We find that the clear link between volumes fluctuations and price evolu-321 tion (see Fig. 8a) and between inter-trade times and price evolution (see Fig. 8b) 322 disappears with increasing γ and entirely vanishes for $\gamma \ge 1$ for microtrends. 323 The dip of the inter-trade times at $\varepsilon = 1$ becomes less pronounced with increas-324 ing γ and, correspondingly, the peak of the volume maximum decreases. For the 325 S&P500 data set (Fig. 8c), the volume peak disappears with increasing γ obeying 326 the same characteristics. These shuffling induced processes can also be character-327 ized by power law relationships which support our result that a fluctuating price time 328 series passes through a sequence of distinct transitions with scale-free properties. 329 The disappearance phenomenon follows a power law behavior. The maximum value 330 of $v^*(\varepsilon)_{\gamma}$ at $\varepsilon = 1$ scales with exponent $\beta_v^{\varphi} = -0.12$ for microtrends (Fig. 8d). The 331

Trend Switching Processes in Financial Markets

Fig. 7 Renormalization time analysis of inter-trade times for microtrends. (a) The greyscaled inter-trade time profile – averaged over all increasing microtrends in the German DAX Future time series and normalized by the average inter-trade times of all positive microtrends studied – is performed analogously to our study of volatility and volume. New maximum values of the price time series are reached with a significant decay of the inter-trade times. (b) Parallel analysis performed for all negative microtrends in the FDAX price time series. (b) Parallel analysis performed for all negative microtrends in the FDAX price time series. (b) Parallel analysis performed for all negative microtrends in the FDAX price time series. Minimum values of the price time series coincide with a dip of inter-trade times. In contrast to increasing trends, we observe for exactly $\varepsilon = 1$ an interim increase of the inter-trade times. (c) Inter-trade times (50 ticks $\leq \Delta t \leq 100$ ticks) before reaching a new maximum price value ($\varepsilon < 1$, *circles*) and after reaching a new maximum price value ($\varepsilon > 1$, *triangles*) aggregated for increasing microtrends. The *straight lines* correspond to power law scaling with exponents $\beta_{\tau}^+ = 0.12$ and $\beta_{\tau}^- = 0.10$. (d) Log–log plot of $\tau^*(\varepsilon)$ for negative microtrends. The *straight lines* correspond to power law scaling with exponents $\beta_{\tau}^+ = 0.15$ and $\beta_{\tau}^- = 0.08$

BookID 188016_ChapID 001_Proof# 1 - 01/02/10

T. Preis and H.E. Stanley

Fig. 8 Stability test of power law dependence. (a) If one shuffles randomly γT pairs of volume entries in the multivariate time series, the significant link between volume and price evolution starts to disappear as γ increases. (b) If γT pairs of inter-trade time entries are randomly shuffled the inter-trade time dip starts to disappear. (c) We find an identical behavior for the volume peak on long time scales using daily closing prices of S&P500 stocks. (d) The disappearance phenomenon also follows a power law behavior. The maximum value of $v^*(\varepsilon)_{\gamma}$ at $\varepsilon = 1$ scales with exponent $\beta_v^s = -0.115 \pm 0.005$. (e) The minimum value of $\tau^*(\varepsilon)_{\gamma}$ at $\varepsilon = 1$ scales with exponent $\beta_v^s = -0.094 \pm 0.004$. (f) In the case of the maximum of $v^*(\varepsilon)_{\gamma}$ at $\varepsilon = 1$ for the S&P500 stocks, the plot provides a power law with exponent $\beta_v^s = -0.095 \pm 0.008$

minimum value of $\tau^*(\varepsilon)_{\gamma}$ at $\varepsilon = 1$ scales with exponent $\beta_{\nu}^s = 0.09$ as shown in 332 Fig. 8e. In the case of the maximum of $\nu^*(\varepsilon)_{\gamma}$ at $\varepsilon = 1$ on large time scales, the 333 log–log plot provides a straight line with a power law exponent $\beta_{\nu}^s = -0.10$ for the 334 S&P500 stocks which is consistent with the underlying data set. In fact, deviations 335 can be observed for macrotrends which are caused by the limited number of closing 336 prices in the S&P500 data base ($T_2 \ll T_1$). 337

3.5 Universality of Power Law Exponents

Thus far, we distinguished between positive and negative trends on small and large 339 time scales. In order to emphasize the possible universality of our results we present 340 in this section a direct comparison of microtrends and macrotrends for our three 341 financial market quantities of interest – volatility, volume, and inter-trade times. 342 Figure 9 shows the renormalization time analysis of volatility σ^2 , trade volumes v, 343 and inter-trade times τ for all increasing and decreasing microtrends in the German 344 DAX Future time series. The greyscaled volatility profile exhibits the clear link 345 between mean volatility and price evolution. New extreme values of the price time 346 series are reached with a significant sudden jump of the volatility aggregation. 348 After reaching new extreme values in the price, the volatility decays and returns 349 to the average value for $\varepsilon > 1$ as observed in Sect 3.1 for positive and negative 350 microtrends, respectively. The greyscaled volume profile exhibits that the volume is 351 clearly connected to the price evolution: new extreme values of the price coincide 352

Fig. 9 Renormalization time analysis of volatility σ^2 , trade volumes v, and inter-trade times τ for all microtrends - increasing and decreasing microtrends. (a) The greyscaled volatility profile, averaged over all microtrends in the time series and normalized by the average volatility of all microtrends studied. We analyze both positive and negative microtrends. The greyscale code gives the normalized mean volatility $\langle \sigma^2 \rangle(\varepsilon, \Delta t) / \sigma^2$. The greyscaled profile exhibits the clear link between mean volatility and price evolution. New extreme values of the price time series are reached with a significant sudden jump of the volatility, as indicated by the vertical dark gray regions and the sharp maximum in the volatility aggregation $\sigma^{2*}(\varepsilon)$ shown in the top panel. Here, $\sigma^{2*}(\varepsilon)$ denotes the average of the volatility profile, averaged only for layers with $50 \le \Delta t \le 100$. After reaching new extreme values in the price the volatility decays and returns to the average value (top panel) for $\varepsilon > 1$. (b) The greyscaled volume profile, averaged over all microtrends in the time series and normalized by the average volume of all microtrends studied. The greyscale code gives the normalized mean volume $\langle v \rangle(\varepsilon, \Delta t)/\overline{v}$. The volume is connected to the price evolution: new extreme values of the price coincide with peaks in the volume time series, as indicated by the vertical dark gray regions close to $\varepsilon = 1$. The top panel shows the volume aggregation $v^*(\varepsilon)$, where $v^*(\varepsilon)$ is the average over layers with $50 \le \Delta t \le 100$. The sharp maximum in $v^*(\varepsilon)$ is shown in the top panel. (c) The greyscaled inter-trade time profile – averaged over all microtrends in the time series and normalized by the average inter-trade times of all microtrends studied – is performed analogously to our study of volatility and volume. New extreme values of the price time series are reached with a significant decay of the inter-trade times

T. Preis and H.E. Stanley

with peaks in the volume time series, as indicated by the vertical dark gray regions 353 close to $\varepsilon = 1$. The greyscaled inter-trade time profile shows that new extreme 354 values of the price time series are reached with a significant decay of the inter-trade 355 times. The log–log plots of all these quantities can be found in Fig. 10. Additionally, 356 the time scales which we study are visualized for both the German market and the 357 US market. For the analysis of microtrends, we use the German DAX future data 358 base which enables us to analyze microtrends starting at roughly 10⁶ ms down to 359

Fig. 10 Overview of time scales studied and log–log plots of quantities with scale-free properties. (a) Visualization of time scales studied for both the German market and the US market. For the analysis of microtrends, we use the German DAX future data base which enables us to analyze

Author's Proof

BookID 188016_ChapID 001_Proof# 1 - 01/02/10

23

373

Trend Switching Processes in Financial Markets

the smallest possible time scale of individual transactions measured in multiples of 360 10 ms. The log–log plots of quantities with scale-free behavior on short time scales 361 are shown in the left column. For the analysis of macrotrends, we use the data base of 362 daily closing prices of all S&P500 stocks which enables us to perform an equivalent 363 analysis of macrotrends on long time scales which are shown the right column. Thus, 364 our analysis of switching processes ranges over nine orders of magnitude from 10 365 to 10^{10} ms. Surprisingly, the region around an extreme value in which the power 366 law scaling can be found is large, especially for inter-trade waiting times on small 367 time scales (see Fig. 10f) and volumes on long time scales (see Fig. 10c). This range 368 around a local extreme price value is marked as hatched region in Fig. 1. Far away 369 from the switching point a tension among market participants is established and 370 propagates steadily until the critical point is reached – the switching point changing 371 from an upward to a downward or from a downward to an upward trend. 372

4 Summary and Conclusions

The straight lines in Fig. 10 offer insight into financial market fluctuations: (1) a 374 clear connection between volatility, volumes, inter-trade times, and price fluctua- 375 tions on the path from one extremum to the next extremum, and (2) the underlying 376 law, which describes the tails of volatility, volumes, and inter-trade times around ex- 377 trema varying over nine orders of magnitude starting from the smallest possible time 378

Fig. 10 (continued) microtrends starting at roughly 10⁶ ms down to the smallest possible time scale of individual transactions measured in multiples of 10 ms. The log-log plots of quantities with scale-free behavior on short time scales are shown in the left column. For the analysis of macrotrends, we use the data base of daily closing prices of all S&P500 stocks which enables us to perform equivalent analysis of macrotrends on long time scales which are shown the right column. Thus, our analysis of switching processes ranges over nine orders of magnitude from 10 to 10¹⁰ ms. (b) The volatility (50 ticks $\leq \Delta t \leq 1000$ ticks) before reaching a new extreme price value ($\varepsilon < 1$, *circles*) and after reaching a new extreme price value ($\varepsilon > 1$, *triangles*) aggregated for microtrends. The straight lines correspond to power law scaling with exponents $\beta_{\sigma^2}^+ = -0.42 \pm 0.01$ and $\beta_{\pi^2} = 0.03 \pm 0.01$. The shaded interval marks the region in which this power law behavior is valid. The left border of the shaded region is given by the first measuring point closest to the switching point. (c) The volatility aggregation of macrotrends determined for the US market on long time scales (10 days $\leq \Delta t \leq 100$ days). The straight lines correspond to power law scaling with exponents $\beta_{\sigma^2}^+ = -0.46 \pm 0.01$ and $\beta_{\sigma^2}^- = -0.08 \pm 0.02$ which are consistent with the exponents determined for the German market on short time scales. (d) Log-log plot of the volume aggregation on short time scales (50 ticks $\leq \Delta t \leq 1000$ ticks) exhibits a power law behavior with exponents $\beta_{\nu}^{+} = -0.146 \pm 0.005$ and $\beta_{\nu}^{-} = -0.072 \pm 0.001$. (e) Log-log plot of the volume aggregation on long time scales (10 days $\leq \Delta t \leq 100$ days) exhibits a power law behavior with exponents $\beta_v^+ = -0.115 \pm 0.003$ and $\beta_v^- = -0.050 \pm 0.002$ which are consistent with our results for short time scales. (f) Log-log plot of the inter-trade time aggregation on short time scales (50 ticks $\leq \Delta t \leq 100$ ticks) exhibits a power law behavior with exponents $\beta_{\tau}^{+} = 0.120 \pm 0.002$ and $\beta_{\tau}^{-} = 0.087 \pm 0.002$. An equivalent analysis on long time scales is not possible as daily closing prices are recorded with equidistant time steps

T. Preis and H.E. Stanley

scale, is a power law with a unique exponents which quantitatively characterize the 379 region around the trend switching point. As a direct consequence of the existence of 380 power law tails, the behavior does not depend on the scale. Thus, we find identical 381 behavior for other sub-intervals of $50 \le \Delta t \le 1000$. With a decreasing value of 382 Δt , the number of local minima and maxima increases (see Fig. 1), around which 383 we find scale-free behavior, for exactly the same ε interval $0.6 \le \varepsilon \le 1.4$. The peaks 384 in $\sigma^2(\varepsilon)$ and $v(\varepsilon)$ around $\varepsilon = 1$ and the dip of $\tau(\varepsilon)$ around $\varepsilon = 1$ offer a challenge 385 for multi-agent based financial market models [41–47] to reproduce these empirical 386 facts. The characterization of volatility, volume, and inter-trade times by power law 387 relationships in the time domain supports our hypothesis that a fluctuating price time 388 series passes through a sequence of "phase transitions" [48]

Before concluding, we may ask "what kind of phase transition" could the end 390 of a microtrend or macrotrend correspond to, or is the end of a trend an altogether 391 different kind of phase transition that resembles all phase transitions by displaying a 392 regime of scale free behavior characterized by a critical exponent. It may be prema- 393 ture to speculate on possible analogies, so we will limit ourselves here to describe 394 what seems to be a leading candidate. Consider a simple Ising magnet characterized 395 by one-dimensional spins that can point North or South. Each spin interacts with 396 some (or even with all) of its neighbors with positive interaction strength J, such 397that when J is positive neighboring spins lower their energy by being parallel. The 398 entire system is bathed in a magnetic field that interacts with all the spins equally 399 with a strength parametrized by H, such that when H is positive the field points 400 North and when H is negative the field points South. Thus, when H is positive, the 401 system lowers its energy by each spin pointing North. Thus, there are two compet- 402 ing control parameters J and H. If, e.g., the system is prepared in a state with the 403majority of spins pointing North yet the field H points South, the competition will 404 be between the relative effects of J and H: the J interaction motivates the spins to 405point North but the H interaction motivates the spin to point South. Such a system 406 is termed *metastable* since if each North-pointing spin suddenly flips its state to 407 point South, the system can achieve a lower total energy. This flipping will occur 408 in time in a fashion not unlike the trading frequency near the end of a trend: first 409 one or two spins will randomly switch their state, then more, and suddenly in an 410 "avalanche" the majority of spins will point South. The phase transition is termed a 411 spinodal singularity, characterized by its own set of exponents. Why should the end 412 of microtrends or macrotrends have a parallel with the metastable physical system? 413 Presumably near the end of a positive trend, all the market participants watching the 414 market begin to sense that the market is metastable and that if they do not sell soon, 415 it could be too late to make any profit because the price will drop. First a few traders 416 sell, pushing the market imperceptibly lower. Then additional traders, sensing this 417 microscopic downturn, may decide that now is the time to sell and they too sell. 418 Then an "avalanche" of selling begins, with traders all hoping to protect their profits 419 by selling before the market drops. Thus, the set of N market participants "holding 420 their position" are in this sense analogous to the set of N mostly North-pointing 421spins, bathed in a South-pointing magnetic field. 422

Trend Switching Processes in Financial Markets

The above analogy may not be the best and it will be future challenge to find a 423 coherently convincing explanation for why the end of a microtrend or macrotrend 424 displays such striking parallels to a phase transition. In any case, the set of interact-425 ing spins surely is analogous to the set of interacting traders. 426

The end of the negative microtrend or macrotrend is the same mechanism but 427 with everything reversed. The N Ising spins point mostly South, the magnetic field 428 is North, and the spins flip from South to North one by one and the conclude in 429 an avalanche corresponding to the spinodal singularity. Analogously, the N traders 430 begin to suspect that the market is becoming metastable, so they one by one start to 431 buy and as all the traders witness the price increasing, they jump in to buy before 432 the price becomes too high.

In summary we have seen that each trend – microtrend and macrotrend – in a fi- 434 nancial market starts and ends with a unique switching process, and each extremum 435 shares properties of macroscopic cooperative behavior. We have seen that the mech- 436 anism of bubble formation and bubble bursting has no scale for time scales varying 437 over nine orders of magnitude down to the smallest possible time scale - the scale of 438 single transactions measured in units of 10 ms. On large time scales, histograms of 439 price returns provide the same scale-free behavior. Thus, the formation of positive 440 and negative trends on all scales is a fundamental principle of trading, starting on 441 the smallest possible time scale, which leads to the non-stationary nature of finan- 442 cial markets as well as to crash events on large time scales. Thus, the well-known 443 catastrophic bubbles occurring on large time scales – such as the recent finan- 444 cial crisis – may not be outliers but in fact single dramatic representatives caused by 445 the scale-free behavior of the forming of increasing and decreasing trends on time 446 scales from the very large down to the very small. 447

AcknowledgementsThe authors thank K. Binder, S.V. Buldyrev, C. De Grandi, S. Havlin, 448D. Helbing, U. Krey, H.-G. Matuttis, M.G. Mazza, I. Morgenstern, W. Paul, J.J. Schneider, 449R.H.R. Stanley, T. Vicsek, and G.M. Viswanathan for discussions, and we also thank the German 450Research Foundation (DFG), the Gutenberg Academy, and the NSF for financial support.451

References

452

1. Anderson PW (1972) Science 177:393	453	
2. Stanley HE (1971) Introduction to phase transitions and critical phenomena. Oxford University		
Press, London	455	
3. Stanley HE (1999) Rev Mod Phys 71:358	456	
4. Stanley HE, Amaral LAN, Gabaix X, Gopikrishnan P, Plerou V, Rosenow B (1999) Physica A	457	
301:126	458	
5. Mantegna RN, Stanley HE (2000) Introduction to econophysics correlations and complexity in	459	
finance. Cambridge University Press, Cambridge, MA	460	
6. Axtell RL (2001) Science 293:1818	461	
7. Takayasu H (ed) (2006) Practical fruits of econophysics. Springer, Berlin	462	
8. Kiyono K, Struzik ZR, Yamamoto Y (2006) Phys Rev Lett 96:068701	463	
9. Watanabe K, Takayasu H, Takayasu M (2007) Physica A 383:120	464	

10. Gabaix X, Gopikrishnan P, Plerou V, Stanley HE (2003) Nature 423:267 465

26

T. Preis and H.E. Stanley

11. Preis T, Paul W, Schneider JJ (2008) Europhys Lett 82:68005	466
12. Lillo F, Farmer JD, Mantegna RN (2003) Nature 421:129	467
13. Plerou V, Gopikrishnan P, Gabaix X, Stanley HE (2002) Phys Rev E 66:027104	468
14. Cont R, Bouchaud JP (2000) Macroecon Dyn 4:170	469
15. Krawiecki A, Holyst JA, Helbing D (2002) Phys Rev Lett 89:158701	470
16. O'Hara M (1995) Market microstructure theory. Blackwell, Cambridge, MA	471
17. Vandewalle N. Ausloos M (1997) Physica A 246:454	472
18. Eisler Z. Kertész J (2006) Phys Rev E 73:046109	473
19. Mandelbrot B (1963) J Business 36:394	474
20. Fama EF (1963) J Business 36:420	475
21. Lux T (1996) Appl Finan Econ 6:463	476
22. Guillaume DM, Dacorogna MM, Davé RR, Müller UA, Olsen RB, Pictet OV (1997) Fin	477
Stochastics 1:95	478
23. Gopikrishnan P, Meyer M, Amaral L, Stanley HE (1998) Eur J Phys B 3:139	479
24. Plerou V, Gopikrishnan P, Rosenow B, Amaral LAN, Stanley HE (1999) Phys Rev Lett 83:1471	480
25. Gopikrishnan P, Plerou V, Amaral LAN, Meyer M, Stanley HE (1999) Phys Rev E 60:5305	481
26. Gopikrishnan P, Plerou V, Gabaix X, Stanley HE (2000) Phys Rev E 62:4493	482
27. Krugman P (1996) The self-organizing economy. Blackwell, Cambridge, MA	483
28. Shleifer A (2000) Inefficient markets: an introduction to behavioral finance. Oxford University	484
Press, Oxford	485
29. Helbing D, Farkas I, Vicsek T (2000) Nature 407:487	486
30. Bunde A, Schellnhuber HJ, Kropp J (eds) (2002) The science of disasters: climate disruptions,	487
heart attacks, and market crashes. Springer, Berlin	488
31. Jones CM, Kaul G, Lipson ML (1994) Rev Fin Stud 7:631	489
32. Chan L, Fong WM (2000) J Fin Econ 57:247	490
33. Politi M, Scalas E (2008) Physica A 387:2025	491
34. Jiang ZQ, Chen W, Zhou WX (2009) Physica A 388:433	492
35. Dubil R (2004) An arbitrage guide to financial markets. Wiley, Chichester	493
36. Deutsch HP (2001) Derivate und interne modelle: modernes risk management. Schaefer-	494
Poeschel, Stuttgart	495
37. Binder K (1987) Rep Prog Phys 50:783	496
38. Peng CK, Mietus J, Hausdorff JM, Havlin S, Stanley HE, Goldberger AL (1993) Phys Rev Lett	497
70:1343	498
39. Helbing D, Huberman BA (1998) Nature 396:738	499
40. Ivanov PC, Yuen A, Podobnik B, Lee Y (2004) Phys Rev E 69:056107	500
41. Smith E, Farmer JD, Gillemot L, Krishnamurthy S (2003) Quant Finance 3:481	501
42. Lux T, Marchesi M (1999) Nature 397:498	502
43. Preis T, Golke S, Paul W, Schneider JJ (2006) Europhys Lett 75:510	503
44. Preis T, Golke S, Paul W, Schneider JJ (2007) Phys Rev E 76:016108	504
45. Bouchaud JP, Matacz A, Potters M (2001) Phys Rev Lett 87:228701	505
46. Haerdle W, Kleinow T, Korostelev A, Logeay C, Platen E (2008) Quant Fin 8:81	506
47. Halla AD, Hautsch N (2007) J Fin Markets 10:249	507
48. Preis T, Schneider JJ, Stanley HE (2009)mation and bursting of financial bubbles.	508
(Preprint)	509

AQ1

AUTHOR QUERY

AQ1. Please update reference [48].