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Understanding how institutional changes within academia may
affect the overall potential of science requires a better quantitative
representation of how careers evolve over time. Because knowl-
edge spillovers, cumulative advantage, competition, and collabora-
tion are distinctive features of the academic profession, both the
employment relationship and the procedures for assigning recog-
nition and allocating funding should be designed to account for
these factors. We study the annual production niðtÞ of a given
scientist i by analyzing longitudinal career data for 200 leading
scientists and 100 assistant professors from the physics community.
Our empirical analysis of individual productivity dynamics shows
that (i) there are increasing returns for the top individuals within
the competitive cohort, and that (ii) the distribution of production
growth is a leptokurtic “tent-shaped” distribution that is remark-
ably symmetric. Our methodology is general, and we speculate
that similar features appear in other disciplines where academic
publication is essential and collaboration is a key feature. We intro-
duce a model of proportional growth which reproduces these two
observations, and additionally accounts for the significantly right-
skewed distributions of career longevity and achievement in
science. Using this theoretical model, we show that short-term
contracts can amplify the effects of competition and uncertainty
making careers more vulnerable to early termination, not necessa-
rily due to lack of individual talent and persistence, but because
of random negative production shocks. We show that fluctuations
in scientific production are quantitatively related to a scientist’s
collaboration radius and team efficiency.

career trajectory ∣ labor market ∣ science of science ∣ tenure ∣
computational sociology

Institutional change could alter the relationship between science
and scientists as well as the longstanding patronage system in

academia (1, 2). Some recent shifts in academia include the chan-
ging business structure of research universities (3), shifts in the
labor supply demand balance (4), a bottleneck in the number of
tenure track positions (5), and a related policy shift away from
long-term contracts (3, 6). Along these lines, significant factors
for consideration are the increasing range in research team size
(7), the economic organization required to fund and review col-
laborative research projects, and the evolving definition of the
role of the academic research professor (3).

The role of individual performance metrics in career appraisal,
in domains as diverse as sports (8, 9), finance (10, 11), and aca-
demia, is increasing in this data rich age. In the case of academia,
as the typical size of scientific collaborations increases (7), the
allocation of funding and the association of recognition at the
varying scales of science [individual ⇆ group ⇆ institution
(12)] has become more complex. Indeed, scientific achievement
is becoming increasingly linked to online visibility in a consider-
able reputation tournament (13).

Here we seek to identify (i) quantitative patterns in the scien-
tific career trajectory towards a better understanding of career
dynamics and achievement (14–20), and (ii) how scientific pro-
duction responds to policies concerning contract length. Using
rich productivity data available at the level of single individuals,
we analyze longitudinal career data keeping in mind the roles

of spillovers, group size, and career sustainability. Although our
empirical analysis is limited to careers in physics, our approach is
general. We speculate that similar features describe other disci-
plines where academic publication is a primary indicator and
collaboration is a key feature.

Specifically, we analyze production data for 300 physicists i ¼
1…300 who are distributed into 3 groups: (i) Group A corre-
sponds to the 100 most cited physicists with average h-index
hhi ¼ 61$ 21, (ii) Group B corresponds to 100 additional highly
cited physicists with hhi ¼ 44$ 15, and (iii) Group C corre-
sponds to 100 assistant professors in 50 US physics departments
with hhi ¼ 15$ 7. We define the annual production niðtÞ as the
number of papers published by scientist i in year t of his/her ca-
reer. We focus on academic careers from the physics community
to approximately control for significant cross-disciplinary produc-
tion variations. Using the same set of scientists, a companion
study has analyzed the rank-ordered citation distribution of each
scientist with a focus on the statistical regularities underlying
publication impact (17). We provide further description of the
data and present a parallel analysis of 21,156 sports careers in
SI Appendix.

We begin this paper with empirical analysis of longitudinal
career data. Our empirical evidences serve as statistical bench-
marks used in the final section where we develop a stochastic pro-
portional growth model. In particular, our model shows that a
short-term appraisal system can result in a significant number
of “sudden” early deaths due to unavoidable negative production
shocks. This result is consistent with a Matthew Effect model
(16) and recent academic career survival analysis (21), which de-
monstrate how young careers can be stymied by the difficulty in
overcoming early achievement barriers. Altogether, our results
indicate that short-term contracts may increase the strength of
the “rich-get-richer” mechanism in science (22, 23) and may
hinder the upward mobility of young scientists.

Results
Scientific Production and the Career Trajectory.The academic career
depends on many factors, such as cumulative advantage (16, 19,
22, 23), the “sacred spark,” (24, 25), and other complex aspects
of knowledge transfer manifest in our techno-social world (26).
To exemplify this complexity, a recent case study on the impact
trajectories of Nobel prize winners shows that “scientific career
shocks” marked by the publication of an individual’s “magnum
opus” work(s) can trigger future recognition and reward, resem-
bling the cascading dynamics of earthquakes (27).

We model the career trajectory as a sequence of scientific out-
puts which arrive at the variable rate niðtÞ. Because the reputation
of a scientist is typically a cumulative representation of his/her
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contributions, we consider the cumulative production NiðtÞ ≡
∑t

t 0¼1 niðt 0Þ as a proxy for career achievement. Fig. 1A shows
the cumulative production NiðtÞ of six notable careers which dis-
play a temporal scaling relationNiðtÞ ≈Aitαi where αi is a scaling
exponent that quantifies the career trajectory dynamics. The
average and standard deviation of the αi values calculated for
each dataset are hαii ¼ 1.42$ 0.29 [A], 1.44$ 0.26 [B], and
1.30$ 0.31 [C]. We justify this two-parameter model in the SI
Appendix text using scaling methods and data collapse.

There are also numerous cases of NiðtÞ which do not exhibit
such regularity (see SI Appendix: Fig. S1), but instead display
marked nonstationarity and nonlinearity arising from significant
exogenous career shocks. Positive shocks, possibly corresponding
to just a single discovery, can spur significant productivity and
reputation growth (24, 27). Negative shocks, such as in the case
of scientific fraud, can end the career rather suddenly. We also
acknowledge that the end of the career is a difficult phase to ana-
lyze, because such an event can occur quite abruptly, and so our
analysis is mainly concerned with the growth phase and not the
termination phase.

In order to analyze the average properties of NiðtÞ for all 300
scientists in our sample, we define the normalized trajectory
N 0

i ðtÞ ≡ NiðtÞ∕hnii. The quantity hnii is the average annual pro-
duction of author i, with N 0

i ðLiÞ ¼ Li by construction (Li corre-
sponds to the career length of individual i). Fig. 1B shows the
characteristic production trajectory obtained by averaging to-
gether the 100 N 0

i ðtÞ belonging to each dataset,

hN 0ðtÞi ≡
!
NiðtÞ
hnii

"
≡ 1

100∑

100

i¼1

NiðtÞ
hnii

: [1]

The standard deviation σðN 0ðtÞÞ shown in SI Appendix: Fig. S2B
begins to decrease after roughly 20 y for dataset [A] and [B] scien-
tists. Over this horizon, the stochastic arrival of career shocks can
significantly alter the career trajectory (20, 24, 27, 28).

Each N 0
i ðtÞ exhibits robust scaling corresponding to the scaling

law hN 0ðtÞi ∼ t ᾱ. This regularity reflects the abundance of careers
with αi > 1 corresponding to accelerated career growth. This
acceleration is consistent with increasing returns arising from
knowledge and production spillovers.

Fluctuations in Scientific Output over the Academic Career. Indivi-
duals are constantly entering and exiting the professional market,
with birth and death rates depending on complex economic and
institutional factors. Due to competition, decisions and perfor-
mance at the early stages of the career can have long lasting con-
sequences (16, 29). To better understand career uncertainty
portrayed by the common saying “publish or perish” (30), we ana-
lyze the outcome fluctuation

riðtÞ ≡ niðtÞ − niðt − ΔtÞ [2]

of career i in year t over the time interval Δt ¼ 1 y. Fig. 2 A and B
show the unconditional probability density function (pdf) of r va-
lues which are leptokurtic but remarkably symmetric, illustrating
the endogenous frequencies of positive and negative output
growth. Output fluctuations arise naturally from the lulls and
bursts in both the mental and physical capabilities of humans
(31, 32). Moreover, the statistical regularities in the annual pro-
duction change distribution indicate a striking resemblance to the
growth rate distribution of countries, firms, and universities
(33, 34).

To better account for individual growth factors, we next define
the normalized production change

r 0
i ðtÞ ≡ ½riðtÞ − hrii&∕σiðrÞ [3]

which is measured in units of the fluctuation scale σiðrÞ unique to
each career. We measure the average hrii and the standard devia-
tion σiðrÞ of each career using the first Li available years for each
scientist i. r 0

i ðtÞ is a better measure for comparing career uncer-
tainty, because individuals have production factors that depend
on the type of research, the size of the collaboration team,
and the position within the team. Fig. 2C shows that Pðr 0Þ,
the pdf of r 0 measured in units of standard deviation, is well ap-
proximated by a Gaussian distribution with unit variance. The
data collapse of each Pðr 0Þ onto the predicted Gaussian distribu-
tion (solid green curve) indicates that individual output fluctua-
tions are consistent with a proportional growth model. We note
that the remaining deviations in the tails for jr 0j ≥ 3 are likely
signatures of the exogenous career shocks that are not accounted
for by an endogenous proportional growth model.

The ability to collaborate on large projects, both in close
working teams and in extreme examples as remote agents [i.e.
Wikipedia (35)], is one of the foremost properties of human
society. In science, the ability to attract future opportunities
is strongly related to production and knowledge spillovers
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Fig. 1. Persistent accelerating career growth. (A) The career trajectory
NiðtÞ ∼ tαi of six stellar careers from varying age cohorts. The αi value char-
acterizes the career persistence, where careers with α > 1 are accelerating. αi

values calculated using OLS regression in alphabetical order are: α ¼ 1.25$
0.02, α ¼ 1.72$ 0.02, α ¼ 1.62$ 0.04, α ¼ 1.23$ 0.02, α ¼ 1.34$ 0.05, α ¼
1.35$ 0.04. (B) Defined in Eq. 1, the average career trajectory hN 0ðtÞi calcu-
lated from 100 individual NiðtÞ in each dataset demonstrates robust acceler-
ating career growth within each cohort. We use the normalized career
trajectory N 0

i ðtÞ in order to aggregate NiðtÞ with varying publication rates
hnii. As a result, the aggregate scaling exponent ᾱ quantifies the acceleration
of the typical career over time, independent of hnii. For the scientific careers,
we calculate ᾱ values: 1.28$ 0.01 [A], 1.31$ 0.01 [B], and 1.15$ 0.02 [C].
These values are all significantly greater than unity, ᾱ > 1, indicating that cu-
mulative advantage in science is closely related to knowledge and production
spillovers. We calculate ᾱ using OLS regression and plot the corresponding
best-fit lines (dashed) for each dataset.
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(28, 36, 37) that are facilitated by the collaboration network
(7, 12, 38–42). Indeed, there is a tipping point in a scientific ca-
reer that occurs when a scientist’s knowledge investment reaches
a critical mass that can sustain production over a long horizon,
and when a scientist becomes an attractor (as opposed to a pur-
suer) of new collaboration/production opportunities. To account
for collaboration, we calculate for each author the number kiðtÞ
of distinct coauthors per year and then define his/her collabora-
tion radius Si as the median of the set of his/her kiðtÞ values,
Si ≡ Med½kiðtÞ&. We use the median instead of the average
hkiðtÞi because extremely large kiðtÞ values can occur in specific
fields such as high-energy physics and astronomy.

Given the complex scientific coauthorship network, we ask
the question: what is the typical number of unique coauthors
per year? Fig. 2D shows the cumulative distribution function
CDFðSiÞ of Si values for each dataset. The approximately linear
form on log-linear axes indicates that Si is exponentially distrib-
uted, PðSiÞ ∼ exp½−λSi&. We calculate λ ¼ 0.15$ 0.01 [A], λ ¼
0.11$ 0.01 [B], and λ ¼ 0.11$ 0.01 [C]. The exponential size
distribution has been shown to emerge in complex systems where
linear preferential attachment governs the acquisition of new op-
portunities (43). This result shows that the leptokurtic “tent-
shaped” distribution PðrÞ in Fig. 2 follows from the exponential
mixing of heterogenous conditional Gaussian distributions (44).

The exponential mixture of Gaussians decomposes the uncon-
ditional distribution PðrÞ into a mixture of conditional Gaussian
distributions

PðrjSiÞ ¼ exp½−r2∕2VSψ
i &∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πVSψ

i

q
; [4]

each with a fluctuation scale σiðrÞ depending on Si by the scaling
relation

σ2
i ðrÞ ≈ VSψ

i : [5]

Hence, the mixture is parameterized by ψ

PψðrÞ ¼
Z

∞

0
PðrjSÞPðSÞdS ≈

∑

i¼1

PiðrjSiÞPðSiÞ: [6]

The independent case ψ ¼ 0 results in a Gaussian PψðrÞ and
the linear case ψ ¼ 1 results in a Laplace (double-exponential)
PψðrÞ. See SI Appendix and ref. 44 for further discussion of
the ψ dependence of PψðrÞ.

The Size-Variance Relation and Group Efficiency. The values of
ψ for scientific and athletic careers follow from the different
combination of physical and intellectual inputs that enter the pro-
duction function for the two distinct professions. Academic knowl-
edge is typically a nonrival good, and so knowledge-intensive
professions are characterized by spillovers, both over time and
across collaborations (36, 37), consistent with αi > 1 and ψ > 0.
Interestingly, Azoulay, et al. show evidence for production spil-
lovers in the 5–8% decrease in output by scientists who were close
collaborators with a “superstar” scientists who died suddenly (28).

We now formalize the quantitative link between scientific col-
laboration (38, 39) and career growth given by the size-variance
scaling relation in Eq. 5 visualized in the scatter plot in Fig. 3B.
Using ordinary least squares (OLS) regression of the data on log-
log scale, we calculate ψ∕2 ≈ 0.40$ 0.03 (R ¼ 0.77) for dataset
[A], ψ∕2 ≈ 0.22$ 0.04 (R ¼ 0.51) [B], and ψ∕2 ≈ 0.26$ 0.05
(R ¼ 0.45) [C]. Interdependent tasks that are characteristic of
group collaborations typically involve partially overlapping ef-
forts. Hence, the empirical ψ values are significantly less than
the value ψ ¼ 1 that one would expect from the sum of Si inde-
pendent random variables with approximately equal variance V .
Collectively, these empirical evidences serve as coherent motiva-
tions for the preferential capture growth model that we propose
in the following section.

Alternatively, it is also possible to estimate ψ using the relation
between the average annual production hnii and the collabora-
tion radius Si. The input-output relation hnii ∼ Sψ

i quantifies
the collaboration efficiency, with ψ ¼ 0.74$ 0.04 (R ¼ 0.87)
for dataset [A] and ψ ¼ 0.25$ 0.04 (R ¼ 0.37) for dataset
[B]. If the autocorrelation between sequential production values
niðtÞ and niðtþ 1Þ is relatively small, then we expect the scaling
exponents calculated for hnii and σ2

i ðrÞ to be approximately
equal. This result follows from considering riðtÞ as the convolu-
tion of an underlying production distribution PiðnÞ for each scien-
tist that is approximately stable. Interestingly, the larger ψ values
calculated for dataset [A] scientists suggests that prestige is
related to the increasing returns in the scientific production
function (45).

Next we use an alternative method to estimate the annual col-
laboration efficiency by relating the number of publications niðtÞ
in a given year to the number of distinct coauthors kiðtÞ over the
same year. We use a single-factor production function,

niðtÞ ≈ qi½kiðtÞ&γi ; [7]

to quantify the relation between output and labor inputs with a
scaling exponent γi. We estimate qi and γi for each author using
OLS regression, and define the normalized output measure
Qi ∝ niðtÞ∕kiðtÞγi using the best-fit qi and γi values calculated
for each scientist i. Fig. 3C shows the efficiency parameter γ
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Fig. 2. Empirical evidence for the proportional growth model of career pro-
duction. (A) pdf of the annual production change r in the number of papers
published over a Δt ¼ 1 y period. In the bulk of each PðrÞ, the growth distri-
bution is approximately double-exponential (Laplace). (B) To test the stability
of the distribution over career trajectory subintervals, we separate riðtÞ
values into 5 nonoverlapping 10-year periods and verify the stability of
the Laplace PðrÞ. For each PðrÞ, we also plot the corresponding Laplace dis-
tribution (solid line) with standard deviation σ and mean μ ≈ 0 calculated
using the maximum likelihood estimator method. To improve graphical
clarity, we vertically offset each PðrÞ by a constant factor. For visual compar-
ison, we also plot a Normal distribution (dashed black curve) with σ ≡ 1which
instead decays parabolically on the log-linear axes. (C) Accounting for indi-
vidual production factors by using the normalized production change r 0, the
resulting pdfs Pðr 0Þ collapse onto a Gaussian distribution with unit variance.
Deviations in the tails likely correspond to extreme “career shocks.” (D) The
cumulative distribution CDFðX ≥ SiÞ is exponential, indicating that the
unconditional distributions PðrÞ in (A) and (B) follow from an exponential
mixing of conditional Gaussian distributions PðrjSiÞ.
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calculated by aggregating all careers in each dataset, and indi-
cates that this aggregate γ is approximately equal to the average
hγii calculated from the γi values in each career dataset:
γ ¼ 0.68$ 0.01 [A], γ ¼ 0.52$ 0.01 [B], and γ ¼ 0.51$ 0.02
[C]. Furthermore, the ψ and γ values are approximately equal,
which is not surprising, because both scaling exponents are effi-
ciency measures that relate the scaling relation of output niðtÞ per
input kiðtÞ.

A Proportional Growth Model for Scientific Output. We develop a
stochastic model as a heuristic tool to better understand the
effects of long-term vs. short-term contracts. In this competition

model, opportunities (i.e., new scientific publications) are cap-
tured according to a general mechanism whereby the capture rate
PiðtÞ depends on the appraisal wiðtÞ of an individual’s record of
achievement over a prescribed history. We define the appraisal to
be an exponentially weighted average over a given individual’s
history of production

wiðtÞ ≡
∑

t−1

Δt¼1

niðt − ΔtÞe−cΔt; [8]

which is characterized by the appraisal horizon 1∕c. We use the
value c ¼ 0 to represent a long-term appraisal (tenure) system
and a value c ≫ 1 to represent a short-term appraisal system. Each
agent i ¼ 1…I simultaneously attracts new opportunities at a rate

PiðtÞ ¼
wiðtÞπ

∑

I
i¼1

wiðtÞπ
[9]

until all P opportunities for a given period t are captured. We as-
sume that each agent has the production potential of one unit per
period, and so the total number of opportunities distributed per
period P is equal to the number of competing agents, P ≡ I.

We use Monte Carlo (MC) simulation to analyze this two-
parameter model over the course of t ¼ 1…T sequential periods.
In each production period (i.e., representing a characteristic time
to publication), a fixed number of P production units are cap-
tured by the competing agents. At the end of each period, we
update each wiðtÞ and then proceed to simulate the next prefer-
ential capture period tþ 1. BecausePiðtÞ depends on the relative
achievements of every agent, the relative competitive advantage
of one individual over another is determined by the parameter π.
In the SI Appendix we elaborate in more detail the results of our
simulation of synthetic careers dynamics. We vary π and c for a
labor force of size I ≡ 1; 000 and maximum lifetime T ≡ 100 per-
iods as a representative size and duration of a real labor cohort.
Our results are general, and for sufficiently large system size, the
qualitative features of the results do not depend significantly on
the choice of I or T.

The case with π ¼ 0 corresponds to a random capture model
that has (i) no appraisal and (ii) no preferential capture. Hence,
in this null model, opportunities are captured at a Poisson rate
λp ¼ 1 per period. The results of this model (see SI Appendix:
Fig. S13) show that almost all careers obtain the maximum career
length T with a typical career trajectory exponent hαii ≈ 1. Com-
paring to simulations with π > 0 and c ≥ 0, the null model is si-
milar to a “long-term” appraisal system (c → 0) with sublinear
preferential capture (π < 1). In such systems, the long-term ap-
praisal time scale averages out fluctuations, and so careers are
significantly less vulnerable to periods of low production and
hence more sustainable because they are not determined primar-
ily by early career fluctuations.

However, as π increases, the strength of competitive advantage
in the system increases, and so some careers are “squeezed out”
by the larger more dominant careers. This effect is compounded
by short-term appraisal corresponding to c ≈ 1. In such systems
with superlinear capture rates and/or relatively large c, most in-
dividuals experience “sudden death” termination relatively early
in the career. Meanwhile, a small number of “stars” survive the
initial selection process, which is governed primarily by random
chance, and dominate the system.

We found drastically different lifetime distributions when
we varied the appraisal (contract) length (see SI Appendix:
Figs. S12–S16). In the case of linear preferential capture with
a long-term appraisal system c ¼ 0, we find that 10% of the labor
population terminates before reaching career age 0.94T (where
T is the maximum career length or “retirement age”), and only
25% of the labor population terminates before reaching career
age 0.98T. On the contrary, in a short-term appraisal system
with c ¼ 1, we find that 10% of the labor population terminates
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Fig. 3. Quantitative relations between career growth, career risk, and col-
laboration efficiency. The fluctuations in production reflect the unpredict-
able horizon of “career shocks” which can affect the ability of a scientists
to access new creative opportunities. (A) Relation between average annual
production hnii and collaboration radius Si ≡ Med½ki & shows a decreasing
marginal output per collaborator as demonstrated by sublinear ψ < 1. Inter-
estingly, dataset [A] scientists have on average a larger output-to-input effi-
ciency. (B) The production fluctuation scale σiðrÞ is a quantitative measure
for uncertainty in academic careers, with scaling relation σiðrÞ ∼ Sψ∕2

i . (C)
Management, coordination, and training inefficiencies can result in a γ < 1
corresponding to a decreasing marginal return with each additional coau-
thor input. The significantly larger γ value for dataset [A] scientists seems
to suggest that managerial abilities related to output efficiency is a common
attribute of top scientists.
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before reaching age 0.01T, and 25% of the labor population dies
before reaching age 0.02T (see SI Appendix: Table S1). Hence,
in model short contract systems, the longevity, output, and impact
of careers are largely determined by fluctuations and not by per-
sistence.

Fig. 4 shows the MC results for π ¼ 1. For c ≥ 1 we observe a
drastic shift in the career longevity distribution PðLÞ, which
becomes heavily right-skewed with most careers terminating ex-
tremely early. This observation is consistent with the predictions
of an analytically solvable Matthew effect model (16) which de-
monstrates that many careers have difficulty making forward pro-
gress due to the relative disadvantage associated with early career
inexperience. However, due to the nature of zero-sum competi-
tion, there are a few “big winners” who survive for the entire
duration T and who acquire a majority of the opportunities al-
located during the evolution of the system. Quantitatively, the
distribution PðNÞ becomes extremely heavy-tailed due to agents
with α > 2 corresponding to extreme accelerating career growth.
Despite the fact that all the agents are endowed initially with the
same production potential, some agents emerge as superstars
following stochastic fluctuations at relatively early stages of the
career, thus reaping the full benefits of cumulative advantage.

Discussion
An ongoing debate involving academics, university administra-
tion, and educational policy makers concerns the definition
of professorship and the case for lifetime tenure, as changes
in the economics of university growth have now placed tenure

under the review process (3, 6). Critics of tenure argue that te-
nure places too much financial risk burden on the modern com-
petitive research university and diminishes the ability to adapt to
shifting economic, employment, and scientific markets. To ad-
dress these changes, universities and other research institutes
have shifted away from tenure at all levels of academia in the last
thirty years towards meeting staff needs with short-term and non-
tenure track positions (3).

For knowledge intensive domains, production is characterized
by long-term spillovers both through time and through the knowl-
edge network of associated ideas and agents. A potential draw-
back of professions designed around short-term contracts is that
there is an implicit expectation of sustained annual production
that effectively discounts the cumulative achievements of the in-
dividual. Consequently, there is a possibility that short-term con-
tracts may reduce the incentives for a young scientist to invest in
human and social capital accumulation. Moreover, we highlight
the importance of an employment relationship that is able to
combine positive competitive pressure with adequate safeguards
to protect against career hazards and endogenous production un-
certainty an individual is likely to encounter in his/her career.

In an attempt to render a more objective review process
for tenure and other lifetime achievement awards, quantitative
measures for scientific publication impact are increasing in use
and variety (17–20, 24, 27, 46, 47). However, many quantifiable
benchmarks such as the h-index (17) do not take into account
collaboration size or discipline specific factors. Measures for
the comparison of scientific achievement should at least account

1,000 2,000

2,000 4,000 6,000 8,000 10,000 12,000

3,000 4,000 5,000

Fig. 4. MC simulation of the linear preferential capture model (π ¼ 1) for varying contract length parametrized by c. We plot the probability distributions for
(i) Ni , the total number of opportunities captured by the end period T , (ii) the growth acceleration exponent αi , (iii) the single period growth fluctuation riðtÞ
including for comparison the Laplace (solid green) and Gaussian (dashed red) best-fit distributions calculated using the respective MLE estimator, and (iv) the
career longevity Li defined as the time difference between an agent’s first and last captured opportunity. Results for c → 0 systems shows that for a “long-term
appraisal” scenario careers are less vulnerable to low-production phases, and as a result, most agents sustain production throughout the career. Conversely,
results for c ≥ 1 systems show that for a “short-term appraisal” scenario the labor system is driven by fluctuations that can cause career “sudden death” for a
large fraction of the population. In this short-term appraisal model, there are typically a small number of agents who are able to capture the majority of the
production opportunities with remarkably accelerating career growth reflected by significantly large αi ≥ 1. Thus, a few “lucky” agents are able to survive the
initial fluctuations and end up dominating the system. In SI Appendix: and Figs. S12–S16, we further show that systems with increased levels of competition
(π > 1) mimic systems with short-term contracts, resulting in productivity “death traps” whereby most careers stagnate and terminate early.
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for variable collaboration, publication, and citation factors (19,
46, 47). Hence, such open problems call for further research into
the quantitative aspects of scientific output using comprehensive
longitudinal data for not just the extremely prolific scientists, but
the entire labor force.

Current scientific trends indicate that there will be further in-
creases in typical team sizes that will forward the emergent com-
plexity arising from group dynamics (7, 12, 42), and overall, an
incredible growth of science. There is an increasing need for in-
dividual/group production measures, such as the output measure
Q, following from Eq. 7, which accounts for group efficiency
factors. Normalized production measures which account for co-
authorship factors have been proposed in refs. 19, 46, but the
measures proposed therein do not account for the variations
in team productivity.

The complexity of large collaborations raises open questions
concerning scientific productivity and the organization of teams.
We measure a decreasing marginal return γ < 1 with increasing
group size which identifies the importance of team management.
A theory of labor productivity can help improve our understand-
ing of institutional growth, for organizations ranging in size from
scientific collaborations to universities, firms, and countries (33,
34, 44, 47–50).
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I. DATA

To test the intriguing possibility that competition leads to common growth patterns in complex systems of arbitrary

size S, we analyze the production dynamics of two professions that are dissimilar in many regards, but share the

common underlying driving force of competition for limited resources. In order to establish empirical facts that we

believe are independent of the details of a given competitive profession, we analyze a large dataset of production ni(t)
values and corresponding growth fluctuation ri(t) ⌘ ni(t) � ni(t � 1) values. We define the appropriate measures

for ni(t) to be (a) the annual number of papers published by scientist i and (b) the seasonal performance metrics

of professional athlete i. While these two professions both display a high level of competition, they di⇤er in their

employment term structure and salary scale. In the case of academia, the tenure system rewards high performance

levels with lifelong employment (tenure). In contrast, professional sports are characterized by relatively short contracts

that emphasize continued performance over a shorter time frame and thereby exploit the high levels of athletic prowess

in a player’s peak years. The large number of careers in these two professions readily lend themselves to quantitative

analysis because the data that quantify the career production trajectory are precisely defined and comprehensive

throughout an individual’s entire career. Furthermore, because of the generic nature of competition, we use these two

distinct professions to compare and contrast the distribution of career impact measures across a cohort of competitors.

The datasets we analyze are:

I : Academia:

We analyze the publication careers of 300 physicists which we categorize in 3 subsets each consisting of 100

individuals:

(A) Dataset A corresponds to the 100 most-cited physicists according to the citation shares metric [19]

(with average h-index hhi = 61± 21). These 100 careers constitute 3,951 ri(t) values.

(B) Dataset B corresponds to the 100 other “control” scientists, taken approximately randomly from the

same physics database (with average h-index hhi = 44± 15). In the selection process for dataset B, we

only consider scientists who have published between 10 and 50 articles in PRL over the 50-year period

1958-2008. These 100 careers constitute 3,534 ri(t) values.

(C) Dataset C corresponds to 100 Assistant Professors (with average h-index hhi = 15±7), where we select

two physicists from each of the top-50 U.S Physics & Astronomy Departments (according to the U.S.

News rankings). These Asst. Profs. are assumed to be early in their career and relatively accomplished

given the di⌃culty in obtaining such a position in any given university. These 100 careers constitute

1,050 ri(t) values.

[1] Corresponding author: Alexander M. Petersen

E-mail: petersen.xander@gmail.com
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In order to control for discipline-specific citation patterns, we select individuals in dataset A and B from set of all

scientists who have published in Physical Review Letters (PRL) over the 50-year period 1958–2008. As a measure of

output, we define ni(t) as the number of papers published in year t of the career of individual i, where year t = 1

corresponds to the year of the first publication on record for author i. We downloaded the complete publication

records of the scientists in datasets A and B from ISI Web of Science (http://www.isiknowledge.com/) in Jan.

2010, and we downloaded the complete publication records of the scientists in dataset C from ISI Web of Science in

Oct. 2010. We used the “Distinct Author Sets” function provided by ISI in order to increase the likelihood that only

papers published by each given author are analyzed.

II : Major League Baseball (MLB):

We analyze 17,292 baseball players over the 90-year period 1920-2009 using comprehensive league data obtained

from Sean Lahman’s Baseball Archive accessed at http://baseball1.com/index.php. We separate the career

data into two distinct subsets: non-pitchers (players not on record as having pitched during a game) and pitchers.

(A) For non-pitchers, we analyze two batting metrics: an “opportunity metric” - at-bats (AB), and a

“success” metric - hits (H). Together, these 8,993 careers constitute 43,043 ri(t) values.

(B) For pitchers, we analyze two pitching metrics: an “opportunity metric” - innings-pitched measured in

outs (IPO), and a “success” metric - strikeouts (K). Together, these 8,299 careers constitute 33,965

ri(t) values.

III : National Basketball Association (NBA):

We analyze 3,864 basketball careers, constituting 15,316 ri(t) values, over the 63-year period

1946–2008 using data obtained from Data Base Sports Basketball Archive accessed at

http://www.databasebasketball.com/. We analyze two player metrics:

(A) an “opportunity metric” - minutes played (Min.), and

(B) a “success” metric - points scored (Pts.)

Since sports careers typically peak for athletes around age 30, we account for a time-dependent career trajectory

which is dominant in most sports careers by “detrended” the measures for career growth fluctuations. In the case

where we do not account for a individual fluctuation scale,

Ri ⌘ [ri(t)� r(t)]/�(t) . (S1)

In this case we detrend with respect to the average production di⇤erence r(t) and the standard deviation of production

di⇤erence �(t) which are calculated using all careers from a given sports league, conditional on the career year t.
In the case where we do account for individual variations, we first define zi(t) ⌘ (ri(t)� hrii)/�i to be normalized

with respect to the individual career scales hrii and �i which are the average and standard deviation of the production

change of athlete career i. Then we define the detrended growth rate as

R0
i ⌘ [zi(t)� hz(t)i]/�z(t) , (S2)

where in this case we detrend with respect to the average hz(t)i and standard deviation �z(t) calculated by collecting

all zi(t) values for a given career year t. This detrending better accounts for the relatively strong time-dependent

growth patterns in sports.

In this section we analyze the annual production of scientists measured as the number of papers published ni(t)
over the period of a year. Using this measure does not account for the variability in the length of production, say in

the number of pages, nor does it account for the impact of the paper, a quantity commonly approximated by a paper’s

citation number. Instead, we consider a simple definition that a scientific product is a final output of a collection of

inputs. Furthermore, in science it is assumed that the peer review process establishes a quality threshold so that only

manuscripts above a certain quality and novelty standard can be published and incorporated into the scientific body

of knowledge.

Prior theories of scientific production have also used the number of publications as a proxy for scientific output.

In particular, the Shockely model [14] proposed a simple multiplicative factor model for the production ni(t) which

predicts a log-normal distribution for P (n). An alternative null model for ni(t) is the Poisson process, which assumes

that each individual is endowed with a rate parameter ⌦ related to an individual’s production factors. This model

predicts a Poisson distribution for P (n). However, a shortfall of these models is that multiplicative parameters in
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the Shockley model and the rate parameter ⌦ are di⌃cult to measure, especially if the set of individuals span a large

range of production factors, and moreover, if the careers are non-stationary.

Fig. S8 shows the unconditional probability distribution P (n) calculated by aggregating all ni(t) values for all

scientists and all years into an aggregate dataset. Naively, the distributions are well-fit by the Log-normal distribution,

and so there is an apparent agreement with the multiplicative factor Shockley model. However, the distribution

P (n) =
P100

i=1 P (n|Si) is the aggregate distribution constructed from 100 individual career trajectories ni(t), each

with varying size Si. Indeed, we demonstrate in Figs. 1 and S1 to be non-linear, with time-dependent residuals

around the moving average. Hence, it is not possible from the unconditional pdf P (n) to determine if the process

underlying scientific production corresponds to a simple multiplicative process or a Poisson process.

In order to better account for the variable size Si of each career which a⇤ects the rate at which an individual is

able to capture publication opportunities, we plot in Fig. S7 the pdf of the normalized output

Qi =
ni(t)

fi(k)
. (S3)

We calculate the normalization factor fi(k) = qi[ki(t)]�i for each individual i by estimating the parameters qi and ⇤i

for each scientist i from the single-factor model

ni = qik
�i
i . (S4)

where ni(t) is the annual production in year t and ki(t) is the total number of distinct coauthors in year t. Hence, Qi

represents the production factor above Q > 1 or below Q < 1 what would be expected from the author i given the fact

that he/she had additional inputs from ki(t)�1 individuals that year. This model assumes that the major component

contributing to production is the collaboration degree k of the research output, and also assumes that the input of

each coauthor contributes equally to the final output. Clearly, these assumptions neglect some important idiosyncratic

details a⇤ecting scientific publication, but given the incomplete information associated with every publication, it is

a decent approximation. We estimate qi and ⇤i by performing a linear regression of log ni and log ki using the first

Li years of each career, neglecting years with ni = 0. We use Li = 35 years for dataset [A] and [B] scientists, and

Li = 10 years for dataset [C] scientists.

In Fig. 3(c) we approximate ⇤ using all n(t) within each dataset with k  50, and performing a regression of the

model

lnn = ln q + ⇤ ln k + ⌅ (S5)

to estimate ⇤, where ⌅ is the residual due to other unaccounted production factors. For each dataset we find that the

aggregate e⌃ciency parameter ⇤ is approximately equal to the average h⇤ii calculated from the 100 ⇤i values in each

career dataset: ⇤ = 0.68 ± 0.01 [A], ⇤ = 0.52 ± 0.01 [B], and ⇤ = 0.51 ± 0.02 [C]. Furthermore, the  ⇡ ⇤ since the

size-variance scaling parameter  is also an e⌃ciency measure that relates the scaling of output n to input k.

As a result of this analysis, we quantify the scaling exponent ⇤ < 1 of the decreasing marginal returns in the scientific

production function for projects with k  50. This likely stems from the ine⌃cient management costs associated with

large group collaborations which typically manifest in a larger production timescale. In fact, for years with k � 50

coauthors, scientific output shows decreasing returns to scale. Interestingly, the star scientists in dataset [A] display

significantly larger e⌃ciency, quantitatively showing the importance of management skills in scientific success.

The normalized production values are normalized to units of “expected production” conditional on the ki inputs

for author i. We aggregate all data from each dataset and show in Fig. S7 that the Q values are well-described by

the Gamma distribution

P (Q) = Qm�1 exp[�Q/⇧]

⇧m�(m)
(S6)

where m is the shape parameter and ⇧ is the scale parameter. Surprisingly, we find that dataset [A] and [B] have

approximately equal Gamma parameters, indicating that besides their production e⌃ciency, top scientists are virtually

indistinguishable with average normalized output hQi = m⇧ > 1. For each dataset we calculate the Gamma parameters

using the maximum likelihood estimator method: m = 5.45 and ⇧ = 0.21 [A], m = 5.60 and ⇧ = 0.20 [B], and

m = 7.00 and ⇧ = 0.15 [C]. We leave it as an open question to determine why the Gamma distribution describes so

well the production statistics. We ponder the intriguing possibility that the stochastic dynamics underlying individual

production corresponds to an increasing Lévy process with variable jump length which is known to produce a Gamma

distribution.
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II. QUANTIFYING THE CAREER TRAJECTORY

The reputation of an individual is typically cumulative, based on the total sum of achievements, which we approx-

imate by the cumulative output Ni(t) (e.i. number of papers published by year t). In Figs. 1 and S1 we plot Ni(t)
for several individuals. The careers presented in Fig. 1 are more linear, indicating quantifiable career trajectory that

has the approximate form

Ni(t) =

tX

t0=1

ni(t
0) ⇡ Ai t↵i , t < Ti (S7)

where ni(t) are the number of papers in year t of the scientist’s career which begins with t ⌘ 1 in the year of his/her

first publication, and begins to decline around time Ti which is the time horizon over which the scaling regularity holds

before termination and aging e⇤ects begin to dominate the career. In our analysis of academic career trajectories

Ni(t), we only analyze Ni(t) for t  40 years in order to account for such termination a⇤ects.

The smooth career trajectories which appear as a linear curve when plotted on log-log scale are characterized by an

amplitude parameter Ai and a scaling exponent �i. However, as indicated by Fig. S1, there are also non-stationary

Ni(t) which are dominated by “career shocks” that significantly alter the career trajectory. Such career shocks have

been demonstrated using publication impact measures (e.i. citations, and h-index sequences) [20, 23, 26], and here

we show that they even occur at the more fundamental level of individual production dynamics.

In order to analyze the characteristic properties of Ni(t) for all 300 scientists analyzed, we define the normalized

trajectory N 0
i(t) ⌘ Ni(t)/hnii, where hni(t)i is the average annual production rate of author i, and so by construction

N 0
i(Li) = Li. Fig. S2(A) shows the characteristic production trajectory obtained by averaging the 100 individual

N 0
i(t) for each dataset,

hN 0(t)i ⌘
DNi(t)

hnii

E
⌘ 1

100

100X

i=1

Ni(t)

hnii
. (S8)

The standard deviation �(N 0(t)) is shown in Fig. S2(B), which has a broad peak that is a likely signature of

career shocks that can significantly alter the career trajectory. The characteristic trajectory for each dataset are

well-approximated by the scaling relation

hN 0(t)i ⇠ t↵ (S9)

with characteristic scaling exponents � > 1 that are significantly greater than unity: � = 1.28± 0.01 for Dataset A,

� = 1.31±0.01 for Dataset B, and � = 1.15±0.02 for Dataset C. This fact implies that there is a significant cumulate

advantage in scientific careers which allows for the career trajectory to be accelerating. In Fig. S2(C) and S2(D) we

plot the analogous hN 0(t)i curves for professional sports metrics, where for this profession, � ⇡ 1 for all measures

analyzed. This is likely due to the fact that annual production in professional sports is capped by the limited number

of opportunities provided by a season, whereas in academics, the number of publications a scientist can publish is in

principle unlimited. Also, in more labour-intensive activities are likely to experience smaller returns since physical

labor is non-cumulative with less spillover through time.

In Fig. S3 we plot each individual career trajectory using the rescaled time t0i = t↵i as an additional visual test of

the scaling model given by Eq. S7 . We show that on average, all curves i = 1..300 approximately collapse onto the

expected curve Ni(t)/Ai = t0, where the residual di⇤erence ⌅i(t0) ⌘ Ni(t)/Ai � t0 are likely due to career shocks of

various magnitudes. We plot the average and standard deviation of each set of 100 Ni(t)/Ai curves which show that

most of the shocks ⌅i(t0), with some significant exceptions, lie within the 1� standard deviation denoted by the error

bars. In Fig. S4 we plot the probability distributions P (�i) for each academic dataset. For each dataset, the average

value h�ii is in good agreement with �, the scaling parameter calculated for the corresponding trajectory hN 0(t)i.
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III. EXPONENTIAL MIXING OF GAUSSIANS

The idea that entities are independent and identically distributed is an unrealistic assumption commonly made in

analyses of complex systems. The unconditional pdf P (r) is commonly analyzed in empirical studies where insu⌃cient

data are present to define normalized r0i measures for each sample constituent i. Nevertheless, when modeling the

evolution of complex based on empirical data corresponding to distinct subunits (such as individual careers, companies,

or nation regions), unconditional quantities that account for variations in underlying production factors should be

used.

In the case of scientific output, there are many production factors that combine together and determine the amount

of human e⇤orts needed to produce a unit of production. In general, consider the value fi,j of individual i corresponding

to his/her relative abilities in the production factor j = 1...J corresponding to a variety of attributes: knowledge,

genius, persistence, reputation, mental and physical health, communication skills, organization skills, and access to

technology, equipment and data, etc. In this study, we compare scientists who publish in similar journals. Still, the

scientific input required for each scientific output can vary by a large amount, largely depending on the technology

needed to perform the analysis, ranging from particle accelerators to just a pencil and paper.

In a very generalized representation, an unconditional distributions P (r), such as shown in Fig. 2(a-d) for production

change r, may follow from a mixture of conditional Gaussian distributions P (r|Si)

P (r) =

Z 1

0
P (r|S)P (S)dS ⇡

IX

i=1

Pi(r|Si)P (Si) . (S10)

The underlying conditional distributions are characterized by the average hriSi and variance �2
i ⌘ V S i

P (r|Si) = exp[�(r � hri)2/2V S i ]/
q

2⌥V S i . (S11)

which are each parameterized by the characteristic collaboration size Si. In cases where the average change hri ⇡ 0,

then the distribution P (r|Si) is characterized by only the fluctuation scale �i(r). Fig. S5 demonstrates that the

normalized production change r0i(t) = (r � hrii)/�i is distributed according to a Gaussian distribution. Hence, using

normalized variables, we have mapped the process to a universal scaling distribution P (r|Si).

When the distribution P (Si) is exponential,

P (Si) = ⌃e��Si (S12)

then mixture is termed an “exponential mixture of Gaussians” [43], where the units have characteristic size Si =

1/⌃. Fig. S10 shows that the distribution of collaboration radius Si is approximately exponential for each dataset,

supporting the case for exponential mixing. Using the cumulative distribution of S for each data set we calculate

⌃ = 0.15±0.01 [A], ⌃ = 0.11±0.01 [B], and ⌃ = 0.11±0.01 [C]. While the tail behavior of P (r) can be used to better

discriminate the value of  , we do not have su⌃cient data in this analysis to perform a more rigorous test of the tail

dependencies, or in general, to investigate the distribution of significantly large ri(t) values.

The scaling relation �i(r) ⇠ S /2
i determines the functional form of the aggregate P (r). Clearly, �(r) increases

for  > 0 values, whereas for values  < 0, �(r) decreases with size Si. This latter case is empirically observed for

countries and firms [48], whereby in general, large economic entities are able to decrease growth volatility by increasing

and diversifying their portfolio of growth products. In our analysis of scientific careers we define Si ⌘ Med[ki(t)], the

median number of distinct coauthors per year, as a proxy for the ability of the career to attract new opportunities,

and hence, as a proxy for the size Si of an academic career. For professional athletes, we define the career size as the

average number of points scored over the career Si ⌘ hpi(t)i. In Fig. 3 we calculate  /2 ⇡ 0.40 ± 0.03 (regression

coe⌃cient R = 0.77) for dataset [A],  /2 ⇡ 0.22 ± 0.04 (R = 0.51) [B], and  /2 ⇡ 0.26 ± 0.05 (R = 0.45) [C].

The role of mental, physical, and group spillovers is quite di⇤erent in professional sports. Athletes attract future

opportunities largely through their historical track record, which is heavily weighted on performance in the near past,

and less on the cumulative history. Hence, for this performance-based labor force, we use a simple definition of “team

value” to define the career size Si. This quantity is easier to define for basketball, since there are smaller di⇤erences

between players of di⇤erent team position than in other sports. For NBA player i we define Si as the average number of

points scored per year, Si ⌘ hpii. Fig. S9 shows a crossover value Sc which we interpret to reflect the fact that sports

players typically fall into one of two categories: starters (everyday players) and replacement (game filler) players. We

calculate  /2 ⇡ 0.38 ± 0.02 for emerging and “second string” careers with Si < Sc, and a decreasing size variance

relation ( < 0) for high-value careers with Si > Sc. Similar values occur in the MLB. These two  regimes reflect

the crucial balance of risk and reward in short-term contract professions.
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A variety of pdfs P (r) can result from the exponential mixture of Gaussians

P (r) =

Z 1

0
⌃e��S 1p

2⌥�2(r)
exp[�r2/2�2(r)]dS (S13)

depending on the value of  which quantifies the size-variance relation. The functional form of P (r) can vary in

both the bulk and the tails of the distribution [43]. A simple result which follows from the case  = 1 is the Laplace

(double-exponential) distribution

P =1(r) =

r
⌃

2V
exp

h
�

r
2⌃

V
|r|

i
. (S14)

This distribution is a member of the family of Exponential power distributions which follow from the range of values

 � 0 [43]. In general, if the scaling values are in the range  � 0, then the exponential mixture leads to an

Exponential power distribution

P (r) =
⇥p

2��(1/⇥)
exp[�

p
2(|r|/�)� ] (S15)

with shape parameter ⇥ in the range ⇥ 2 (0, 2] [43]. The pure exponential P (r) with ⇥ = 1 corresponds to the case

 = 1. The pure Gaussian P (r) with ⇥ = 2 corresponds to the case  = 0.

Furthermore, if the annual production is logarithmically related to an underlying production potential, ni(t) /
lnUi(t), then ri(t) / lnUi(t) � lnUi(t � 1) quantifies the logarithmic change (“growth rate”) of Ui(t). This forms

the analogy with growth dynamics of large institutions with size S � 1. For example, in the case of financial

securities such as the stock of a company i, the growth rate ri(t) measure the logarithmic change in the market’s

expectations of the company’s future earnings potential captured by the market capitalization and price [49]. As a

result, distributions P (r) of career growth fluctuation r, which we plot in Figs. 2 (a-d), can be seen as a bridge between

the micro level and the macro level of economic growth fluctuation. A theory of micro growth processes can help

improve the growth forecasts for economic organizations ranging in size from scientific collaborations to universities

and firms [32, 33, 43, 46–49].

IV. NONLINEAR PREFERENTIAL CAPTURE MODEL

Here we describe a stochastic system in which a finite number of opportunities are distributed to a system of

individual competing agents i = 1...I. The opportunities are distributed in batches of P opportunities per arbitrary

time interval. This model has two parameters.

(i) ⌥ determines the preferential capture mechanism (the value ⌥ = 1 corresponds to the traditional “linear”

preferential attachment model) and

(ii) c determines the performance timescale 1/c which is incorporated into the calculation of the capture rates of

each individual. The value c = 0 corresponds to a long-term memory and c� 1 corresponds to short-term memory.

We use this simple model to show that a system governed by a preferential capture can become dominated by

fluctuations when c is large. The value 1/c quantifies the “performance appraisal timescale”: a small c corresponds

to a labor system with long contracts, or some alternative mechanism that provides employment insurance through

periods of low production, so that the ability to attract future opportunities is largely based on the cumulative record

of career achievement. Conversely, a large c corresponds to a labor system with short contracts in which the ability to

attract future opportunities is largely based on the accomplishments in the near past, requiring an agent to maintain

relatively high levels of production in order to survive. In this latter case, we find that (natural) fluctuations in the

annual production can cause a significant fraction of the careers to “fizzle out” leaving behind only a few “super

careers” who attract almost all of the opportunities. In other words, short contracts can tip the level of competition

into dangerous territory whereby careers are largely determined by fluctuations and not persistence.

A. System of competing agents

1) The system consists of I ⌘ 1000 agents competing for P opportunities that are allocated in a single period.

There is no entry, hence the number I is kept constant. Also, P is also kept constant, so there is no growth in

the labor supply.
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2) We run the Monte Carlo (MC) simulation for T ⌘ 100 time periods and all agents are by construction from the

same age cohort (born at same time).

3) Each time period corresponds to the allocation of P ⌘
PI

i=1 n0,i opportunities, sequentially one at a time, to

randomly assigned agents i, where n0,i ⌘ 1 is the potential production capacity of a given individual.

4) The assignment of a given opportunity is proportional to the time-dependent weight (capture rate) wi(t) of each

agent. Hence, the assignment of 1 opportunity to agent i at period t results in the production (achievement)

ni(t) to increase by one unit: ni(t)! ni(t) + 1. In the next time period t + 1, we update the weight wi(t + 1)

to include the performance ni(t) in the current period.

B. Initial Condition

The initial weight at the beginning of the simulation is wi(t = 0) ⌘ nc for each agent i with nc ⌘ 1. The value

nc > 0 ensures that competitors begin with a non-zero production potential, and corresponds to a homogenous system

where all agents begin with the same production capacity. Hence, we do not analyze the more complicated model

wherein external factors (i.e. collaboration factors) can result in a heterogeneous production capacity across scientists.

By construction, each agent begins with one unit of achievement ni(t = 1) ⌘ 1.

C. System Dynamics

1) In each Monte Carlo step we allocate one opportunity to a randomly chosen individual i so that ni(t)! ni(t)+1

2) The individual i is chosen with probability Pi(t) proportional to [wi(t)]⇡

Pi(t) =
wi(t)⇡

PI
i=1 wi(t)⇡

(S16)

where the value wi(t) is given by an exponentially weighted sum over the entire achievement history

wi(t) ⌘
t�1X

�t=1

ni(t�⇥t)e�c�t . (S17)

The parameter c � 0 is a memory parameter which determines how the record of accomplishments in the past

a⇤ect the ability to obtain new opportunities in the current period, and therefore, the future. The limit c = 0

rewards long-term accomplishment by equally weighting the entire history of accomplishments. Conversely, when

c� 1 the value of wi(t) is largely dominated by the performance ni(t�1) in the previous period, corresponding

to increased emphasis on short-term accomplishment in the immediate past. Intermediate values 0 < c < 1

weight more equally the immediate past and the entire history of accomplishment.

3) The exponent ⌥ determines how the relative ability to attract opportunities Pi/Pj = [wi(t)/wj(t)]⇡ depends

on the weights wi(t) and wj(t) between two individuals i and j. The linear capture case follows from ⌥ = 1,

uniform capture ⌥ = 0, super linear capture ⌥ > 1, and sub-linear capture ⌥ < 1.

4) At the end of each time period, the weight wi(t) is recalculated and used for the entirety of the next MC time

period corresponding to the allocation of the next I ⇥ nc achievement opportunities.

D. Model Results

We simulate this system for a realistic labor force size I = 1000 with the assumption that in any given period,

an individual has the capacity for one unit of production (nc ⌘ 1). We evolve the system for T = 100 periods

corresponding to I⇥nc⇥T Monte Carlo time steps. The timescale T represents the (production) lifetime of individuals

with finite longevity. In this model we do not include exogenous shocks (career hazards) that can result in career

death [16]. Here we analyze four quantities:

1) The distribution P (N) of the total number of opportunities Ni(T ) ⌘
PT

t=1 ni(t) captured by agent i over the

course of the T� period simulation.
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2) The distribution P (�) of the career trajectory scaling exponent �i defined in Eq. S7 which quantifies the

(de)acceleration of production over the course of the career.

3) The distribution P (r) of production outcome change r defined in Eq. 2 which quantifies the size of endogenous

production shocks.

4) The distribution P (L) of career length Li which measures the active production period of each career starting

from t = 0. We define activity as the largest period value Li for which ni(Li) = 0, which in other words,

corresponds to truncating all 0 production values from the end of the trajectory ni(t) and defining Li as the

length of this time series.

We display these four distributions, from left to right, for varying ⌥ and c values, in each panel of Figs. S12 –

S16. Empirical distributions calculated from MC simulations are plotted as blue dots, with benchmark distributions

described below plotted as solid green curves. For each ⌥ and c value we simulate 10 MC systems, and combine the

results into aggregate distributions which are shown. For simulations with ⌥ > 1 the pdf data are aggregated over

the results of 50 MC simulations. We list below some of our main observations.

For ⌥ = 1, independent of c, we observe exponential P (N), consistent with the prediction of the linear preferential

capture model in the case of no firm entry (b = 0) in the model of Kazuko et al. [42]. However, the distribution P (L)

and the distribution P (�) does depend strongly on c, reflecting the possibility of career “sudden death” for large c.

For the P (�) distributions (middle-left panels), the solid green line is a best-fit Gaussian distribution (using the

MLE method) for the set of �i values computed for careers that did not undergo “sudden death.”

For the P (r) distributions (middle-right panels), the solid green curve corresponds to a best-fit Laplace distribution

(using the MLE method) and the dashed red curve corresponds to a best-fit Guassian distribution (using the MLE

method) which we show only for benchmark comparison. Typical empirical distributions (values shown as blue dots)

range from being distributions that are Gaussian to distributions that are Laplacian in the bulk but with heavy tails.

For the P (L) distributions (right most panels), we note that the most likely career length L is typically either

L = 1 or L = T for all systems analyzed. However, there are likely c and ⌥ parameter values corresponding to P (L)

that is uniform distributed over the entire range of L values, which may be an interesting class of system to analyze

in future analyses since such a system promotes diversity across the entire longevity spectrum. The system we show

for ⌥ = 1.2 and c = 1 appears to be close to this scenario.

Fig. S12 shows the null model with no preferential capture (⌥ = 0). We confirm that the careers in this model

are driven by a stochastic accumulation process that is equivalent to a Poisson process with rate ⌃p ⌘ 1. In this

homogenous system, each career gains on average one opportunity each time period, so that at the end of the

simulation, the distribution P (N) is a Poisson distribution with hNi = ⌃pT (shown as the solid blue line) which fits

the model data excellently. For these careers, the typical � = 1, the production changes are well-approximated by

a Gaussian distribution, and most careers are sustained for the maximum possible lifetime corresponding to T periods.

Fig. S13 shows the system with c = 0 corresponding to comprehensive career appraisal corresponding to a

long-term memory system. We analyze this system for 4 values of ⌥ = 0.8, 1.0, 1.2, 1.4. This “long-term memory”

scenario corresponds to a long-term contract profession whereby careers are less vulnerable to periods of low

production. As a result, most careers sustain production throughout the career.

Fig. S14 shows the system with c = 0.1 corresponding to an e⇤ective memory timescale of 1/c = 10 periods. We

analyze this system for 4 values of ⌥ = 0.8, 1.0, 1.2, 1.4. This “medium-term memory” scenario yields a rich variety

of careers for ⌥ = 1, but for ⌥ = 1.2 the system becomes quickly dominated by “rich-get-richer” e⇤ects which results

in careers being vulnerable to low production fluctuations.

Fig. S15 shows the system with c = 1 corresponding to an e⇤ective memory timescale of 1/c = 1 period. We

analyze this system for 4 values of ⌥ = 0.8, 0.9, 1.0, 1.1. For all values of ⌥ analyzed, we observe a system that is

dominated by careers that are cut short by the high levels of competition induced by the relatively high value placed

on continued production.

Fig. S16 shows the extreme case of a “no memory” scenario in which wi(t) ⇡ ni(t � 1) whereby most careers

experience sudden death due to endogenous negative production shocks early in their career. The lucky few careers



9

who survive this period end up as rich-get-richer “superstars.” This behavior occurs for all systems analyzed using 4

values of ⌥ = 0.8, 0.9, 1.0, 1.05.

E. Discussion of the model in relation to the Academic labor market

One serious drawback of short-term contracts are the tedious employment searches, which displace career momentum

by taking focus energy away from the laboratory, diminishing the quality of administrative performance within

the institution, and limiting the individual’s time to serve the community through external outreach [3, 6]. These

momentum displacements can directly transform into negative productivity shocks to scientific output. As a result,

there may be increased pressure for individuals in short-term contracts to produce quantity over quality, which

encourages the presentation of incomplete analysis and diminishes the incentives to perform sound science. These

changing features may precipitate in a “tragedy of the scientific commons.”

Aside from promoting circumspect research, job security in academia diminishes the incentives for scientists to

“save and store” their knowledge for future liquidation in the case of employment emergency, and thus promotes the

institution of “open science” [1]. However, a policy shift towards short-term contracts, along with the heightened value

of intellectual property, may alter the course of publicly funded “open science.” This scientific commons emerged

from the noble courts during the Renaissance as a hallmark of the scientific revolution and now faces pressure from

what has been termed “intellectual capitalism,” with the vast privatization of knowledge and innovation (“closed

science”) occurring in public universities and corporate R&D [1]. An academic system that is dominated by short

term contracts, stymied by production incentives that favor quantity over quality, and jeopardized at the level of the

“open knowledge” commons, presents a new institutional scenario revealing selection pressures that could alter the

birth and death rates of high-impact careers.

The purpose of this stochastic model is to show how careers can become very susceptible to negative production

shocks if the labor market is driven by a preferential capture mechanism with ⇤ > 1 whereby early success of an

individual can lead to future advantage. However, this model also shows that the onset of a fluctuation-dominant

(volatile) labor market can also be amplified when the labor market is governed by short-term contracts reinforced by a

short-term appraisal system. In such a system, career sustainability relies on continued recent short-term production,

which can encourage rapid publication of low-quality science. In professions where there is a high level of competition

for employment, bottlenecks form whereby most careers stagnate and fail to rise above an initial achievement barrier.

Instead, these careers stagnate, and in a profession that shows no mercy for production lulls, these careers undergo a

“sudden death” because they were “frozen out” by a labor market that did not provide insurance against endogenous

fluctuations. Such a system is an employment “death trap” whereby most careers stagnate and “flat-line” at zero

production. However, at the same time, a small fraction of the population overcomes the initial selection barrier and

are championed as the “big winners”, possibly only due to random chance.

Table demonstrates how the life expectancy decreases with increasing c even for the linear preferential capture model

corresponding to ⌥ = 1. With increasing c, the model simulates systems with shorter contracts (shorter appraisal

“memory” timescales), and so larger percentages of the population die before characteristic ages Tc(p), values that

decrease with increasing c for a given p.
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Tc(p) as a % of T , (% T )

p = 0.1 p = 0.25 p = 0.5 p = 0.75

c = 0 (long term) 0.94T 0.98T 1.00T 1.00T

c = 0.1 0.20T 0.79T 0.99T 1.00T

c = 1.0 0.01T 0.02T 0.05T 0.15T

c = 10.0 (short term) 0.01T 0.01T 0.02T 0.06T

TABLE S1: Decrease in career life expectancy as a result of short-term contract length in the ⇧ = 1 linear preferential capture
model. The fraction p of the population that experienced career termination before the crossover age Tc(p): “p percent of the
population died before reaching the age L = Tc(p).” As c increases (recall the appraisal “memory” timescale is 1/c) towards a
short-term contract scenario, a significant fraction of the population (increasing p) dies before reaching a smaller and smaller
Tc(p). The empirical value of Tc(p) is given as a percentage of the maximum career length T corresponding to the stopping time
of the Monte Carlo simulation. The value Tc(p) is calculated using the equality p = CDF (T < Tc(p)), where CDF (T < L)
is the cumulative distribution function of career length L. To estimate CDF (T < L), we combine an ensemble of 10 MC
simulations for each c value. In the model simulations we use T ⇤ 100 periods.

100 101

year, t
100

101
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103

N
i (t)

Gossard, AC
Parrinello, M
Pfieffer, LN
Weinberg, S
Glashow, SL

FIG. S1: Positive career shocks likely associated with reputation boosts. Examples of career production trajectories Ni(t)
that have significant deviations from the scaling hypothesis in Eq. S7 . These significant deviations likely follow extraordinary
scientific discoveries (and the publicity and reputation that are typically rewarded) which can vault a career and result in
lasting benefits to the individual.
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FIG. S2: Regularities in the career trajectory Ni(t). We analyze the normalized career trajectory N 0
i(t) ⇤ Ni(t)/⌦ni↵ which

allows us to aggregate Ni(t) with varying publication rates ⌦ni↵. As a result, we can better quantify the scaling exponent
� which quantifies the acceleration of the typical career over time. We calculate � using OLS regression on log-log scale of

the average normalized career trajectory ⌦N 0(t)↵ ⇤
D

Ni(t)
hnii

E
. For reference, each N 0

i(t) trajectory in panels A, B, and C has a

corresponding best-fit curve that is a dashed line. (A) For the scientific careers, we calculate � values: 1.28± 0.01 for Dataset
A, 1.31±0.01 for Dataset B, and 1.15±0.02 for Dataset C. These values are all significantly greater than unity, � > 1, indicative
of a systematic cumulative advantage e⇥ect in science. (B) The standard deviation ⌃N 0(t) has a broad peak, likely related to
career shocks that can significantly alter the career trajectory. (C) The average normalized career trajectory for NBA careers
has � ⌃ 1 (D) The average normalized career trajectory for MLB careers has � ⌃ 1. For visual comparison, the solid straight
black line in panels A,B and C correspond to a linear function with � = 1.
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FIG. S3: Using scaling methods to show approximate data collapse of each Ni(t). Normalized trajectory Ñi(t) ⇤ Ni(t)/Ai

plotted using the scaled time t0 ⇤ t↵i for each career over the time horizon t  [1, 40] years. We plot the 100 Ñi(t) curves
belonging to datasets [A], [B], and [C] in the corresponding panels. There is approximate data collapse of all the normalized

trajectories Ñi(t) along the dashed green line corresponding to the rescaled career trajectory Ñi(t) = t0 with �0 ⇤ 1 by

construction. We also plot in red the corresponding average value ⌦Ñi(t)↵ with 1⌃ error bars for logarithmically spaced t0

intervals. Deviations from ⌦Ñi(t)↵ are indicative of career shocks which can significantly alter the career trajectory.
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FIG. S4: Increasing returns to scale � > 1. Probability distribution of the individual �i values calculated for each career using
the scaling model Ni(t) ⇧ t↵i over time horizon t  [1, 40] years. The average ⌦�i↵ and standard deviation ⌃(�i) for each
dataset are: 1.42± 0.29 [A], 1.44± 0.26 [B], 1.30± 0.31 [C]. The distribution of �i values indicate that career trajectories are
typically accelerating (�i > 1), most likely the result of a cumulative advantage e⇥ect.
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FIG. S5: Universal patterns in underlying production fluctuations of scientists. Accounting for variable individual publication
factors, such as academic subfield or group collaboration size, we find that the normalized annual production change r0

i(t) ⇤
[ri(t) � ⌦r↵i]/⌃i is distributed according to a Gaussian distribution, with ⌦r0↵ = 0 and ⌃(r0) = 1 by construction (solid lines
show best-fit Guassian distributions using the maximum likelihood estimator method). This results indicates that the Laplace
distribution shown in Fig. 2 results from a mixture of Gaussian distributions Pi(r = ⌃ir

0) that indicate that annual production
is consistent with a proportional growth model..
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FIG. S6: Universal patterns in the production fluctuations of athletes. For athlete careers in the NBA and MLB we define
production change for (A,C) the change in the number of in-game opportunities and (B,D) the change in the number of in-
game successes. (A,B) Since the detrended production change R is defined to have standard deviation ⌃ ⇤ 1, the pdfs P (R)
approximately collapse onto a universal “tent-shaped” Laplace pdf (solid green line). (C,D) For sports careers, we also define
a measure R0 which account for variable individual production factors, such as propensity for injury, team position, etc. As a
result normalized annual growth rate R0

i ⇤ [zi(t) � ⌦z(t)↵]/⌃z(t) is normalized twice, once to account for age factors and once
to account for individual factors. The quantity zi(t) ⇤ (ri(t)� ⌦ri↵)/⌃i is normalized with respect to individual factors, where
⌦ri↵ and ⌃i are the average and standard deviation of the production change of career i. Then, we aggregate all zi(t) values for
a given career year t in order to calculate the average ⌦z(t)↵ and standard deviation ⌃z(t) over all careers. The final quantity
R0

i represents a normalized annual production change which is distributed in the bulk according to a Gaussian distribution,
with ⌦R0↵ ⌃ 0 and ⌃(r0) ⌃ 1 by construction (solid lines show best-fit Guassian distributions using the maximum likelihood
estimator method). This results indicates that the tent-shaped distributions in (A,B) results from a mixture of conditional
Gaussian distributions Pi(R = ⌃iR

0) that indicate that annual production is consistent with a proportional growth model.
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FIG. S7: Universal micro-scale output distribution P (Q) which accounts for coauthorship variability. The normalized output
Q � ni/k�i

i is a residual output after we quantitatively account for the collaboration size ki corresponding to the number of
distinct coauthors of author i. Each pdf is well-approximated by the Gamma distribution P (Q) � Qm�1 exp[�Q/⇥] which
suggests that production at the micro scale is governed by a Gamma Lévy process. We calculate the Gamma distribution
parameters using the maximum likelihood estimator method (distributions shown by solid and dashed curves), and find an
insignificant di⇥erence between [A] and [B] scientists with Gamma shape parameter m and scale parameter ⇥. However, for
dataset [C] scientists, the output distribution is more skewed towards smaller Q values, possibly reflecting the relative advantage
that senior scientists gain due to reputation, experience, and knowledge spillover factors.
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FIG. S8: Aggregate production distributions can be deceiving. Unconditional distribution of annual publication rate n(t)
appears as log-normal distributions because it is a mixture of underlying distributions that depend strongly on collaboration
factors. We define ni(t) as the number of papers published in (A) �t = 1 and (B) �t = 2 year periods, which reduces the
finite-size e⇥ects arising from the calendar year labeling of publication dates. (A) We combine ni(t) values for all values of
t, and find excellent agreement between the empirical P (n(t)) data points and the log-normal model. We use the maximum
likelihood estimator method to calculate the log-normal parameters ⌃L ⇤ ⌃(ln n) and µ = ⌦ln n↵. (B) In order to analyze the
time-dependence of P (n(t)), we separate ni(t) values from Dataset A into 5 subsets, depending on the range t years into the
career, as indicated in the figure legend. We o⇥set each pdf by a constant factor in order to distinguish each pdf, which are
also well-approximated by log-normal distributions (shown as solid curves).
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FIG. S9: Quantifying the growth fluctuations of sports careers. The size variance relation for sports careers is similar to
academic careers for small Si. However, for relatively large Si the relation becomes decreasing corresponding to ⌥ < 0,
analogous to what is found for firm growth [33, 47–49]. The decreasing relation for Si > Sc likely follows from the fact that
in sports, there is a hard upper limit to the number of opportunities available to a player in a given year. Hence, individuals
with large Si are likely the starters on their teams, since it is neither economical nor in the strategy of winning to keep players
above a threshold value Sc out of the game, and so these players typically remain as positional starters except for episodic
leaves of absence due to injury. Hence, these players experience smaller ⌃i(r) due to limitations to their potential for further
career growth. However, players with Si < Sc are typically on the fringe of being released or provide alternative value to the
team, and so these individuals experience larger fluctuations in team play because they are easily dispensable, especially in a
profession dominated by short-contracts lasting sometimes less than a year. For each dataset, we use careers with career length
Li ⌅ 3 seasons. (A) NBA basketball players: Units of ⌃i(R) are normalized minutes played. We define the scaling relation

⌃i(R) ⇧ ⌦pi↵ /2 between the average number of points scored per season ⌦pi↵ =
PLi

t=1 pi(t)/Li and the standard deviation ⌃i(R).
In this way, we utilize the average points per season as the proxy for the ability of a player to obtain future opportunities
which are realized as minutes played. Using Sc ⇤ 720 points, we calculate ⌥/2 = 0.38 ± 0.02 (regression coe⇧cient R = 0.50
and ANOVA F-test significance level p ⌃ 0) for Si < Sc and ⌥/2 = �0.25 ± 0.07 (R = 0.15 and p ⌃ 10�3) for Si > Sc.
(B) MLB pitchers: Units of ⌃i(R) are normalized IPO (innings pitched in outs). Interestingly, ⌃i(R) continues to increase
for Si > Sc, possibly due to the relatively high career risk attributed to throwing arm injury. Using Sc ⇤ 65 strikeouts, we
calculate ⌥/2 = 0.37 ± 0.01 (R = 0.48 and p ⌃ 0) for Si < Sc and ⌥/2 = +0.15 ± 0.07 (R = 0.07 and p ⌃ 0.02) for Si > Sc.
(C) MLB batters: Units of ⌃i(R) are normalized AB (at bats). Using Sc ⇤ 68 hits, we calculate ⌥/2 = 0.44± 0.01 (R = 0.59
and p ⌃ 0) for Si < Sc and ⌥/2 = �0.37± 0.03 (R = 0.21 and p ⌃ 0) for Si > Sc. The dashed black (blue) line in each panel
is a least squares linear regression on log-log scale for all data values with Si less (greater) than Sc. The data shown with error
bars represent the average ⌦⌃i(R)↵ and corresponding 1 standard deviation values calculated using equally spaced Si bins on
the logarithmic scale.
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FIG. S10: Exponential distributions of coauthor radius in Physics. We test the hypothesis that the distributions P (r) for
annual production change r (shown in Fig. 2) follow from an exponential mixing of Gaussians with varying fluctuation

scale ⌃i � Med[ki(t)]
 /2. An important criteria for this model is that the distribution of Si ⇤ Med[ki(t)] is exponential,

P (Si) ⇧ exp[�⇤Si]. We plot the cumulative distribution function (CDF) P (x > Si) for each dataset, and confirm that the
distributions are approximately linear on log-linear axes. Using linear regression, we calculate ⇤ = 0.15±0.01 [A], ⇤ = 0.11±0.01
[B], and ⇤ = 0.11± 0.01 [C].
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FIG. S11: Approximately exponential distribution of scoring value in the NBA. We further test the hypothesis that the
distributions P (R) for annual production change R in professional sports (shown in Fig. 2 C and D) follow from an exponential

mixing of Gaussians with varying fluctuation scale ⌃i � ⌦pi↵ /2. An important criteria for this model is that the distribution
of “team value” ⌦pi↵ is exponential, P (⌦pi↵) ⇧ exp[�⇤⌦pi↵]. We plot the cumulative distribution function (CDF) P (x > ⌦pi↵)
for each dataset, and confirm that the distributions are approximately linear on log-linear axes. We show the CDFs calculated
using all careers with career length Li ⌅ Lc years, for Lc = 1, 3 years.
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FIG. S12: A production output null model with ⇧ = 0 agrees with the predictions of a Poisson process. (Far left) The
cumulative distribution CDF (x > N) is in excellent agreement with the prediction of a Poisson process with rate ⇤p = 1 and
corresponding average ⌦N↵ = ⇤pT = 100. The solid green curve is the corresponding Poisson CDF using ⌦N↵ ⇤ 100. (Middle
left) Furthermore, the typical scaling exponent ⌦�↵ = 1 which is also consistent with Poisson trajectories. (Middle right) The
distribution of production changes is close to Gaussian. (Far right) The typical career length Li spans the entire system length
T , indicating low levels of career risk.
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FIG. S13: The production output model with c = 0. Results of MC simulations for a “long-term appraisal” scenario. Careers
are less vulnerable to low-production phases, and as a result, most agents sustain production throughout the career for a
relatively large range of ⇧ values.
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FIG. S14: The production output model with c = 0.1. Results of MC simulations for a “medium-term appraisal” scenario. The
corresponding memory time scale is approximately 10 time periods, and so only for significantly large ⇧ = 1.4 do we observe
a labor market scenario in which there is a significant death rate and just a few “big winners” corresponding to those agents
with � ⌅ 1.
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FIG. S15: The production output model with c = 1.0. Results of MC simulations for a “short-term appraisal” scenario. The
corresponding memory time scale is approximately 1 time period. Even for ⇧ < 1, the system is driven by fluctuations that can
cause career “sudden death” for a large fraction of the population. For ⇧ > 1 we observe a very quick transition to a significant
death rate and just a few “big winners” corresponding to those agents with � ⌅ 1.
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FIG. S16: The production output model with c = 10.0. Results of MC simulations for a “zero-memory appraisal” scenario
wherein only the previous period matters, wi(t) = ni(t� 1). Even for linear preferential capture ⇧ = 1, the systems shows “no
mercy” for careers that are stagnant for possibly just one period. As a result, just a few “lucky” agents are able to survive
the initial fluctuations and end up dominating the system. For ⇧ values close to unity, ⇧ ⌥ 1, the systems quickly becomes an
employment “death trap” whereby most careers stagnate and “flat-line.”


