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We record and analyze the noise experienced by a tracer particle in a one-dimensional 

system of particles interacting with hard-core interactions. We find that the correlations of the 

noise are long-range, with an algebraic decay in time. 

The effect of the environment of the motion of a single tracer particle is 
often described in terms of a friction force and a random force. The random 
force, termed “noise”, is of necessity correlated in time since it arises from the 
physical evolution in time of the rest of the system. Taking into account the full 
physical evolution it is found, however, that these correlations are short range 
[l], so that the correlated physical noise can be replaced by an uncorrelated 
noise. Indeed, noise with short-range correlations seems to occur in any system 
with short-range microscopic interactions which is in equilibrium (or is allowed 
to approach equilibrium). However, there has been much recent interest in 
systems in which the motion of tracer particles can be explained only in terms 
of very long-range correlations present in the noise. Famous examples are the 
behavior of tracer particles in a turbulent fluid#’ [6] or under the influence of a 
set of random velocity fields (such as a random quenched array of currents) 
[7,8]. Such systems are maintained in a non-equilibrium state; this has a crucial 

* This work is based in part on the Ph.D. thesis of C.-K. Peng. 

“See, e.g., the recent review [2] which includes photographs of Levy flights and Levy walks. 

See also the review [3]. For applications to turbulence and chaos, see ref. [4] and for a general 

discussion of the response of multivariable linear systems to Levy fluctuations, see ref. [5]. 
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effect on the noise experienced by particles coupled to them even though the 

microscopic coupling is short-range. On the other hand, we would not expect 

long-range noise correlations in a system of particles interacting via a short- 

range two-body potential. 

Here we describe an interesting and remarkably simple system that provides 

a counterexample to the expectations outlined above. We consider a one- 

dimensional hard-sphere system and find that the noise correlation is algebrai- 

cally decaying in time. 

(u(t) u(f)) x (t - t’l -3” for large It- t’l , (1) 

where u(t) is the noise at time t, and (U(I) u(P)) is the average over many 

particles. 

WC have simulated such a system in which the rule of motion [9, 101 is that at 

each time step the particle has an equal a priori probability of moving one step 

to the right or to the left. However, once a direction has been decided the 

move is aborted or not, according to whether there is a nearest neighboring 

particle present at the intended point. The velocity of the particle can thus take 

on any of three possible values 

1 if it jumps to the right , 

u(t) = 0 if it does not jump (due to a collision) , (2) 
-1 if it jumps to the left. 

We recorded the velocity u(t) of each particle over a large number (2”) of 

time steps and Fourier analyzed the resulting record. Since we are using 

discrete time steps and a finite number of time steps, what we really have are 

Fourier series representing u(t) as a function of u(w) and vice versa. Fig. la 

shows u(t) versus r for a given particle and fig. lb its Fourier transform. The 

data on a single particle is, of course, very noisy. Hence we have calculated 

lu(w)l for each particle; and averaged over 10000 particles to reduce fluctua- 

tions. Fig. 2 is a double logarithmic plot of (ICI(W)]) versus w, supporting the 

result 

(lu(w)l) - W’iJ (3a) 

for small o. It follows that 

F(w) = (Iu(w)l’) - w’/2 (3b) 

The correlation considered in (1) must be a function of the time difference. 
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Fig. 1. One-dimensional particle diffusion with hard-core interaction (at particle density l/4). (a) 

The typical velocity plot of one particle. The velocity was recorded for a very long time period (2“’ 

time steps), only part of them are shown here. (b) The Fourier spectrum for the same particle. 

and F(W) is the Fourier transform of that function. From the form of F(w) at 
small w, we conclude that the functional form of the correlation at large time 

separation is indeed (u(t) u(t’)) cz It - t’] m3’*. 
To provide an independent check on our noise analysis, we calculate 

analytically (Ax’(t)) f or a particle that is affected by such a noise and compare 
it to (Ax’(t)) obtained for the hard-sphere system [9, lo]. Consider a particle 
obeying the Langevin equation 

i = u(t) ) (4) 
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Fig. 2. Log-log plot of (lu(o)l) vs. w shows a straight line for small W. The dashed line 

corresponds to a slope equal to l/4 (A = -l/2). 
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where the needed statistical properties of u(t) are defined in terms of its 

Fourier transform u(w), 

(u(w)) =o, wq) u(bJ,)> = F(q) %w, - 02) (5) 

The mean square displacement at time t is defined as (Ax’(t)) = J,‘, dt, s,i drl X 

(U(G) u(Q). BY ~1. re dcing u(t) with its Fourier transform we obtain 

(Ax’(r)) = -$ _/ dr, i dtl i dw, 1 dWL? e’(“‘L’l~wz’z) (u(w,) u(-w,)) 

I, 0 -’ _I 

1 * =y 
_J 

dw F(w) 

4,rr- w- ’ 
7 

elwr - 11’ 

1 ’ 
=” 

I 
dw FO sin’( L,t) 7 9 (6) 

-lr co2 1 

where we have used eq. (5). We will be interested in the case that 

F(w)-w-” (-1ShSl) (7) 

for small w, which corresponds to a power law decay of the correlation function 

for large t, - tZ 

(u(q) U(L)) -It, - t,I -(I-*) . (8) 

If follows from eqs. (6) and (7) that the long-time behavior of (Ax’(f)) is given 

bY 1111 

(Ax’(t)) m t’+* . (9) 

In our case A = -112, so that (A?(t)) is expected to behave as t”’ for large t 

and this is indeed the result obtained in refs. [9, lo]. We have thus an 

independent check on the fact that the correlations of the noise experienced by 

a single particle in our system decay algebraically in time in the form given by 

eq. (1). 
It is interesting to note that in spite of the marked difference from the usual 

equilibrium system manifested in the effect of the system on a single particle, 

there is also a similarity with such systems. That similarity with equilibrium 

systems also distinguishes between our system and the non-equilibrium situa- 
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..^ 
tions mentioned above as well as in diffusion on fractals [12,13]. In those cases 

the algebraically decaying correlated noise is accompanied by a non-Gaussian 
P(x, t). In the hard-core case, however, there is both analytic [9] and numerical 
evidence [lo] (confirmed also by us) that the distribution P(x, t) is in fact 
Gaussian, as is the case for a particle affected by uncorrelated noise. We 
suggest that the method of noise recording and analysis using Fourier trans- 
forms may be a useful tool in the study of complex physical systems. 
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