

Physica A 316 (2002) 153-159

www.elsevier.com/locate/physa

Stochastic processes with power-law stability and a crossover in power-law correlations

Boris Podobnik^{a,b,*}, Ivo Grosse^{a,c}, H. Eugene Stanley^a

^aCenter for Polymer Studies and Department of Physics, Boston University, Boston, MA 02215, USA ^bDepartment of Physics, Faculty of Science, University of Zagreb, Zagreb, Croatia ^cCold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA

Received 20 May 2002

Abstract

Motivated by the goal of finding a more accurate description of the empirically observed dynamics of financial fluctuations, we propose a stochastic process that yields three statistical properties: (i) short-range autocorrelations in the index changes, (ii) long-range correlations in the absolute values of the index changes, with a crossover between two power-law regimes at approximately one week, and (iii) power-law stability in the tails of the probability distributions of the index changes. We find that this stochastic process can surprisingly well reproduce statistical properties observed in the high-frequency data of the S&P 500 stock index. (c) 2002 Elsevier Science B.V. All rights reserved.

PACS: 02.50.Ey; 05.40.Fb; 89.90.+n

Keywords: Stochastic processes; Random walks and Levy flight econophysics

The recent activity at the interface of statistical physics and economics [1-8] is partly due to the finding that financial data exhibit power-law spatial and temporal scaling behaviors, which are commonly encountered in many different natural phenomena [9]. One common features of those systems is that the power-law spatial or temporal scaling behavior extends over several orders of magnitude. Here, we investigate the possibility that power-law scaling in distributions and correlations may have the same dynamical origin. To exemplify that hypothesis, we study an extensively studied financial time series, the S&P 500 stock index s_t , ¹ which has been found to possess the following

^{*} Corresponding author. Department of Physics Faculty of Sciences, University of Zagreb, Zagreb, Croatia.

¹ Here Δt denotes the sampling time interval, and we set $\Delta t = 10$ min throughout this paper. We use the S&P 500 data, sampled at 10-min intervals, covering the period 1 January 1984 through 31 December 1995. The length of a trading day is roughly 400 min, and the length of a trading week is 5 days, which corresponds to roughly 2000 min.

three intriguing statistical features:

- (i) The price *changes* defined as $\tilde{r}_t \equiv \log s_{t+\Delta t} \log s_t^{-1}$ are short-range correlated [10,11].
- (ii) $|\tilde{r}_t|$ are long-range correlated [10,11], and the correlations in $|\tilde{r}_t|$ can be approximated by two piece-wise power laws [11].
- (iii) The tails of the probability distributions of the price changes exhibit a stable power-law functional form over a wide range of time scales, called *power-law stability* [12].

In order to develop some understanding of the dynamical origin and of the interrelation of these three statistical features, we propose a stochastic process r_t that is capable of reproducing—qualitatively and quantitatively—the statistical features (i)–(iii) observed in the empirical data \tilde{r}_t . Specifically, we define r_t by the following set of coupled equations:

$$r_t = cr_{t-\Delta t} + x_t , \qquad (1)$$

$$x_t = v_t e_t , \qquad (2)$$

$$v_t = \sum_{n=1}^{\infty} a_n |x_{t-n\Delta t}| .$$
(3)

Here, e_t denotes an independent and identically distributed (i.i.d.) random variable with truncated Lévy [13] probability distribution $P(e_t)$,² and the weights a_n ³ are defined by

$$a_n \sim \begin{cases} n^{-1-\delta_1} & [n < n_{\times}], \\ n^{-1-\delta_2} & [n \ge n_{\times}], \end{cases}$$
(4)

where c, δ_j , and n_{\times} are four free parameters.⁴ The parameter c, which models the short-range correlations, as well as the scaling parameters δ_j and the crossover parameter n_{\times} can be easily obtained from the data. Note that the values of x_t are not correlated with each other and independent of v_t because e_t are i.i.d. random variables. In contrast, the absolute values of x_t are correlated with each other through the choice of v_t .

The long-range correlations in $|x_t|$ are accomplished through Eqs. (2) and (3), and the specific functional form of the correlations depends on the choice of the weights a_n . If the weights are chosen to decay as a geometric series in n, then the correlations

² We find that the choice of the probability distribution $P(e_t)$ is *not* relevant for the correlation analysis. We find that once the parameters responsible for the correlations in r_t and $|r_t|$ are fixed, the probability distribution for the data can be better approximated by r_t if $P(e_t)$ is chosen to be a truncated Lévy distribution [13] rather than a Gaussian distribution.

³ Precisely, the weights a_n are defined as $D_j \delta_j \Gamma(n - \delta_j)/(\Gamma(1 - \delta_j)n!)$, where the two constants D_j are set to meet normalization and continuity in the weights a_n . Due to the asymptotic behavior of the Gamma function Γ , the weights a_n can be approximated by $n^{-1-\delta_j}$.

⁴ Our choice of a_n is inspired by Ref. [10], which can be understood as a special case of x_t for $\delta_1 = \delta_2$ and $D_1 = D_2 = 1$.

in $|x_t|$ versus time scale τ decay exponentially in τ [14]. If the weights are chosen to decay as a power-law series in n with a single exponent for the whole range of n, then the correlations in $|x_t|$ decay with a power-law in τ with a unique scaling exponent [10]. (That case refers to Eq. (4) when, e.g., $\delta_1 = \delta_2$ or $n_{\times} = 1$ or $n_{\times} \to \infty$ [10].) In order to obtain a *crossover* in the power-law correlations of $|x_t|$, we choose the weights to decay by two piece-wise power laws $n^{-1-\delta_j}$ in the two regimes $n < n_{\times}$ and $n \ge n_{\times}$, with a crossover at n_{\times} .

We find that Eq. (1) generates short-range correlations in r_t [result (i)]. We will show that Eqs. (2)–(4) generate the piece-wise power-law correlations in $|r_t|$ [result (ii)], i.e., we will show that the piece-wise power-law form of the weights a_n as a function of n is responsible for creating the piece-wise power-law correlations in $|x_t|$ and $|r_t|$. We will demonstrate that Eqs. (2)–(4) are capable of generating power-law stability in the distribution of the sum of m consecutive stochastic variables r_t [result (iii)]. We will also show that with the choice of c = 0.23, $\delta_1 = 0.21$, $\delta_2 = 0.43$, and $n_{\times} = 100$,⁵ the stochastic process r_t can reproduce—qualitatively and quantitatively—the statistical features of results (i)–(iii) observed in the empirical data \tilde{r}_t .¹

In studying the effect of the choice of parameter values on the correlation properties of $|x_t|$ and $|r_t|$, we will focus on the three parameters δ_1 , δ_2 , and n_{\times} , because the parameter *c* affects only the short-range correlation properties of r_t . As we cannot derive closed-form expressions for the autocorrelation functions of $|x_t|$ or $|r_t|$ (except for $|x_t|$ when $\delta_1 = \delta_2$),⁶ we study the temporal correlations in $|x_t|$ and $|r_t|$ by numerical simulations and compare them to the correlations observed in the empirical data $|\tilde{r}_t|$.

In order to reliably compute correlations from the empirical and simulated time series, we employ a method called *detrended fluctuation analysis* (DFA) [15], which yields results in cases where traditional correlation analyses fail due to the presence of nonstationarities [11]. The idea of the DFA is to construct a random walk

$$z_t(\tau) \equiv \sum_{n=1}^m y_{t+n\Delta t}$$
(5)

based on the studied time series y_t (where y_t may stand for $|\tilde{r}_t|$, $|r_t|$, or $|x_t|$, with $\tau \equiv m\Delta t$, where *m* is a positive integer) and to compute the mean standard deviation $F(\tau)$ of the *detrended* fluctuations of $z_t(\tau)$ as a function of τ .

Fig. 1 shows plots of the mean standard deviation $F(\tau)$ of the detrended fluctuations of $|\tilde{r}_t|$, $|r_t|$, and $|x_t|$ versus τ . We find that for the empirical data $F(\tau)$ is composed of two power-law regimes [11],

$$F_j(\tau) \sim \tau^{\beta_j} \,, \tag{6}$$

⁵ In order to determine the values of the parameters D_1 and D_2 , we compute numerically $S_1 \equiv \sum_{n=1}^{n_{\times}} a_n$ and $S_2 \equiv \sum_{n=n_{\times}+1}^{\infty} a_n$. As a_n must be continuous at n_{\times} and normalized to 1, we calculate D_1 and D_2 from the following two equations: $D_1 a_{n=n_{\times}} = D_2 a_{n=n_{\times}+1}$ and $S_1 D_1 + S_2 D_2 = 1$.

⁶ For the special case of $\delta \equiv \delta_1 = \delta_2 < \frac{1}{2}$ the autocorrelation function of $|x_t|$, $C(\tau) \equiv (\langle |x_t| |x_{t+\tau}| \rangle - \langle |x_t| \rangle^2)/(\langle |x_t|^2 \rangle - \langle |x_t| \rangle^2)$, converges for asymptotically large τ to the power-law form $C(\tau) \sim \tau^{-1+2\delta}$ [10]. Ref. [15] shows that a power-law functional form of $C(\tau) \sim \tau^{-\gamma}$ corresponds to a power-law functional form of $F(\tau) \sim \tau^{\beta}$, where the exponents γ and β are related by $\beta = 1 - \gamma/2$ [15]. Hence, we obtain that δ and β are related by $\delta = \beta - 0.5$.

Fig. 1. Log-log plot of the mean standard deviation $F(\tau)$ of the detrended fluctuations of $|\tilde{r}_t|$ for the high-frequency data of the S&P 500 stock index (\circ). We find that for $\tau < \tau_{\times}$, $F(\tau)$ follows a power law, $F(\tau) \sim \tau^{\beta_1}$, with exponent $\beta_1 = 0.71$, while for $\tau > \tau_{\times}$, $F(\tau)$ also follows a power law, $F(\tau) \sim \tau^{\beta_2}$, with a different exponent $\beta_2 = 0.93$. We find that the crossover time scale τ_{\times} is approximately $2 \times 10^3 \text{ min} \approx 1$ week.¹ We also find that the stochastic processes $|x_t|$ and $|r_t|$, with $\delta_1 = 0.21$, $\delta_2 = 0.43$ [18], and $n_{\times} = 100$ yield a function $F(\tau)$ that is almost identical to the function $F(\tau)$ obtained for the empirical data $|\tilde{r}_t|$.

with a crossover time $\tau_{\times} \approx 2 \times 10^3$ min and exponents $\beta_1 = 0.71$ for $\tau < \tau_{\times}$ and $\beta_2 = 0.93$ for $\tau \ge \tau_{\times}$.⁷ Fig. 1 also shows that the stochastic processes x_t and r_t possess almost identical correlations in $|x_t|$ and $|r_t|$ and, more importantly, Fig. 1 shows that both stochastic processes x_t and r_t can reproduce the piece-wise power-law long-range correlations $F(\tau)$ observed in the empirical data.⁸

We next investigate how the correlation behavior of $|r_t|$ depends on the choice of n_{\times} . Fig. 2 shows $F(\tau)$ of $|r_t|$ for $n_{\times}=1$, $n_{\times}=100$, and $n_{\times} \to \infty$. We find that the empirical crossover time τ_{\times} is proportional to n_{\times} and can be approximated by $\tau_{\times} \approx 2n_{\times}\Delta t$.¹ Hence, we choose $n_{\times} = 100$ in the simulations leading to Fig. 1, which reproduces the empirically observed crossover at $\tau_{\times} \approx 2 \times 10^3$ min. In the limit $n_{\times} \to \infty$ the crossover vanishes, and we recover the exponent $\beta_1 = 0.71$, which is in agreement with analytic results that can be derived for the stochastic process x_t [10] with unique exponent $\beta_2 = 0.93$, which is again in agreement with analytic results for the stochastic process x_t [10] with unique exponent $\delta_2 = 0.43$.⁶

⁷ Here, we analyze the distributions and correlations for the *same* time series of empirical data. The DFA exponent β_1 and the crossover time scale τ_{\times} are slightly larger than those found in Ref. [11], where the "normalized" time series of $|\tilde{r}_t|$ is analyzed, from which the "intraday pattern" is excluded. In contrast, the authors of Ref. [12] investigate the distributions for the *same* time series as in this paper.

⁸Note that the variance growth $F(\tau)$ for both the empirical data of the S&P 500 stock index $|\tilde{r}_t|$ and the model time series $|\tilde{r}_t|$ can be equally well approximated by a stretched exponential. We focus on the approximation of the variance growth $F(\tau)$ by two piece-wise power laws, because this is the approximation proposed in the original publication [11].

Fig. 2. Log-log plot of $F(\tau)$ of $|\tilde{r}_t|$ (\circ) and $|r_t|$ (lines) for different choices of n_{\times} . Generally, we find that the observed crossover time τ_{\times} increases monotonically with n_{\times} and is typically larger than $n_{\times}\Delta t$. We also show $F(\tau)$ for the two limit cases $n_{\times} = 1$ and $n_{\times} \to \infty$, and we find—in agreement with theoretical predictions for these two limiting cases—that $\delta_2 = 0.43$ yields $\beta_2 = 0.93$ in case of $n_{\times} = 1$, and that $\delta_1 = 0.21$ yields $\beta_1 = 0.71$ in case of $n_{\times} \to \infty$.

Fig. 3. For small time scales $\tau \equiv m\Delta t$,¹ the power-law tails of the probability distribution $P(\tilde{z}_t(\tau))$ of the *integrated* index changes, $\tilde{z}_t(\tau) \equiv \sum_{n=1}^{m} \tilde{r}_{t+n\Delta t}$, remain practically stable with exponent $\zeta = 4$. We find that the stochastic process r_t of Eqs. (1)–(3) can reproduce—qualitatively and quantitatively—the probability distribution $P(\tilde{z}_t(\tau))$, in addition to reproducing the correlation behavior of \tilde{r}_t and $|\tilde{r}_t|$. Moreover, we find that $P(z_t(\tau))$ exhibits power-law stability in the tails even for time scales longer than those that can currently be measured from empirical data.

We study the probability distribution $P(r_t)$ and compare it to the probability distribution $P(\tilde{r}_t)$ of the empirical data \tilde{r}_t (Fig. 3). In order to perform this comparison over a wide range of time scales, we define by $z_t(\tau) \equiv \sum_{n=1}^{m} r_{t+n\Delta t}$ the random walk of r_t , starting at time t and ending at time $t + \tau$, with $\tau \equiv m\Delta t$. Consistent with recent work

[12], we find that for the empirical data the central part of $P(\tilde{z}_t(\tau))$ exhibits—over a wide range of time scales τ —a scaling behavior similar to that of the Lévy distribution [16], and that the tails can be well approximated by a power law,

$$P(\tilde{z}_t(\tau)) \sim \tilde{z}_t^{-(1+\zeta)} \tag{7}$$

with exponent $1 + \zeta = 4$, which is well beyond the range $(0 < \zeta < 2)$ expected for the Lévy distribution.

We find that—caused by Eqs. (2) and (3)—the tails of the probability distributions $P(z_t(\tau))$ can be approximated by power laws, independently of the choice of $P(e_t)$ in Eq. (2).⁹ Moreover, we find that the tails of $P(z_t(\tau))$ exhibit power-law stability even *beyond* the time range that is currently measurable from experimental data. This finding is intriguing as it indicates the possibility that also in the empirical data of the S&P 500 stock index the observed power-law stability of the probability distributions might extend beyond the currently observable time scale.

In summary, we proposed a stochastic process r_t that is capable of reproducing three statistical features observed in the fluctuations \tilde{r}_t of the S&P 500 stock index, namely (i) short-range correlations in \tilde{r}_t , (ii) two regimes of long-range power-law correlations in $|\tilde{r}_t|$ with a crossover at $\tau_{\times} \approx 2 \times 10^3$ min, and (iii) power-law stability of the tails of the probability distribution $P(\tilde{z}_t(\tau)) \sim \tilde{z}_t^{-(1+\zeta)}$, which is seemingly independent of τ , and which holds even for time scales τ that go beyond the empirically measurable range of all currently available data. As power-law correlations with crossover have been found in many diverse systems or processes, such as in DNA sequences [15], time series of heart beat fluctuations [17], or small-world networks [18], we studied—in a wider sense—to which extent the presence of correlations in a physical variable r_t may contribute to the form of its probability distribution $P(r_t)$, and which class of stochastic processes could possibly be responsible for the emergence of stable power-law tails in $P(r_t)$ [6,7,19–21].

References

- [1] I. Kondor, J. Kertész (Eds.), Econophysics: An Emerging Science, Kluwer, Dordrecht, 2000.
- [2] B.B. Mandelbrot, J. Business 36 (1963) 394.
- [3] R.N. Mantegna, H.E. Stanley, Nature 376 (1995) 46.
- [4] M. Potters, R. Cont, J.-B. Bouchaud, Europhys. Lett. 41 (1998) 239.
- [5] A. Arneodo, J.-F. Muzy, D. Sornette, Eur. Phys. J. 2 (1998) 277.
- [6] D. Sornette, Phys. Rev. E 57 (1998) 4811.
- [7] O. Biham, O. Malcai, M. Lévy, S. Solomon, Phys. Rev. E 58 (1998) 1352.
- [8] T. Lux, M. Marchesi, Nature 297 (1999) 498.
- [9] A. Ott, J.-P. Bouchaud, D. Langevin, W. Urbach, Phys. Rev. Lett. 65 (1990) 2201.
- [10] C.W.J. Granger, Z. Ding, J. Econometrics 73 (1996) 61.
- [11] Y. Liu, P. Gopikrishnan, P. Cizeau, M. Meyer, C.-K. Peng, H.E. Stanley, Phys. Rev. E 60 (1999) 1390.
- [12] P. Gopikrishnan, V. Plerou, L.A.N. Amaral, M. Meyer, H.E. Stanley, Phys. Rev. E 60 (1999) 5305.

⁹ In order to obtain a good approximation of $P(\tilde{z}_t(\tau))$ by $P(z_t(\tau))$ in the central region, we choose $P(e_t)$ to be a truncated Lévy distribution [13], which is defined as the Lévy distribution $\mathscr{L}_{\alpha,\gamma}$ [16] inside the cutoff length ℓ and zero elsewhere. We set $\alpha = 1.4$ [3] to model the central part of the distribution $P(r_t)$, and we vary the rest of the parameters of $P(e_t)$ to obtain $\langle |e_t| \rangle = 1$ and $\zeta = 4$.

- [13] R.N. Mantegna, H.E. Stanley, Phys. Rev. Lett. 73 (1994) 2946.
- [14] T. Bolerslev, J. Econometrics 31 (1986) 307.
- [15] C.-K. Peng, S.V. Buldyrev, S. Havlin, M. Simons, H.E. Stanley, A.L. Goldberger, Phys. Rev. E 49 (1994) 1685.
- [16] P. Lévy, Theorie de l'Addition des Variables Al'eatories, Gauthier-Villars, Paris, 1937.
- [17] C.-K. Peng, S. Havlin, H.E. Stanley, A.L. Goldberger, Chaos 5 (1995) 82.
- [18] M. Barthélémy, L.A.N. Amaral, Phys. Rev. Lett. 82 (1999) 3180.
- [19] H. Takayasu, A.-H. Sato, M. Takayasu, Phys. Rev. Lett. 79 (1997) 966.
- [20] O. Malcai, O. Biham, S. Solomon, Phys. Rev. E 60 (1999) 1299.
- [21] B. Podobnik, P.Ch. Ivanov, Y. Lee, A. Chessa, H.E. Stanley, Europhys. Lett. 50 (2000) 711.