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Abstract

Motivated by the goal of /nding a more accurate description of the empirically observed

dynamics of /nancial 0uctuations, we propose a stochastic process that yields three statistical

properties: (i) short-range autocorrelations in the index changes, (ii) long-range correlations in

the absolute values of the index changes, with a crossover between two power-law regimes at

approximately one week, and (iii) power-law stability in the tails of the probability distribu-

tions of the index changes. We /nd that this stochastic process can surprisingly well reproduce

statistical properties observed in the high-frequency data of the S&P 500 stock index.
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The recent activity at the interface of statistical physics and economics [1–8] is partly

due to the /nding that /nancial data exhibit power-law spatial and temporal scaling

behaviors, which are commonly encountered in many di@erent natural phenomena [9].

One common features of those systems is that the power-law spatial or temporal scaling

behavior extends over several orders of magnitude. Here, we investigate the possibility

that power-law scaling in distributions and correlations may have the same dynamical

origin. To exemplify that hypothesis, we study an extensively studied /nancial time

series, the S&P 500 stock index st ,
1 which has been found to possess the following

∗ Corresponding author. Department of Physics Faculty of Sciences, University of Zagreb, Zagreb, Croatia.
1 Here Ft denotes the sampling time interval, and we set Ft = 10 min throughout this paper. We use

the S&P 500 data, sampled at 10-min intervals, covering the period 1 January 1984 through 31 December

1995. The length of a trading day is roughly 400 min, and the length of a trading week is 5 days, which

corresponds to roughly 2000 min.
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three intriguing statistical features:

(i) The price changes de/ned as r̃t ≡ log st+Ft − log st
1 are short-range correlated

[10,11].

(ii) |r̃t | are long-range correlated [10,11], and the correlations in |r̃t | can be approxi-

mated by two piece-wise power laws [11].

(iii) The tails of the probability distributions of the price changes exhibit a stable

power-law functional form over a wide range of time scales, called power-law

stability [12].

In order to develop some understanding of the dynamical origin and of the in-

terrelation of these three statistical features, we propose a stochastic process rt that

is capable of reproducing—qualitatively and quantitatively—the statistical features

(i)–(iii) observed in the empirical data r̃t . Speci/cally, we de/ne rt by the following

set of coupled equations:

rt = crt−Ft + xt ; (1)

xt = vtet ; (2)

vt =

∞
∑

n=1

an|xt−nFt | : (3)

Here, et denotes an independent and identically distributed (i.i.d.) random variable with

truncated LMevy [13] probability distribution P(et),
2 and the weights an

3 are de/ned

by

an ∼

{

n−1−1 [n¡n×] ;

n−1−2 [n¿ n×] ;
(4)

where c; j, and n× are four free parameters. 4 The parameter c, which models the

short-range correlations, as well as the scaling parameters j and the crossover pa-

rameter n× can be easily obtained from the data. Note that the values of xt are not

correlated with each other and independent of vt because et are i.i.d. random variables.

In contrast, the absolute values of xt are correlated with each other through the choice

of vt .

The long-range correlations in |xt | are accomplished through Eqs. (2) and (3), and

the speci/c functional form of the correlations depends on the choice of the weights

an. If the weights are chosen to decay as a geometric series in n, then the correlations

2 We /nd that the choice of the probability distribution P(et) is not relevant for the correlation analysis.

We /nd that once the parameters responsible for the correlations in rt and |rt | are /xed, the probability

distribution for the data can be better approximated by rt if P(et) is chosen to be a truncated LMevy distribution

[13] rather than a Gaussian distribution.
3 Precisely, the weights an are de/ned as Djj�(n − j)=(�(1 − j)n!), where the two constants Dj are

set to meet normalization and continuity in the weights an. Due to the asymptotic behavior of the Gamma

function �, the weights an can be approximated by n−1−j .
4 Our choice of an is inspired by Ref. [10], which can be understood as a special case of xt for 1 = 2

and D1 = D2 = 1.
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in |xt | versus time scale � decay exponentially in � [14]. If the weights are chosen to

decay as a power-law series in n with a single exponent for the whole range of n, then

the correlations in |xt | decay with a power-law in � with a unique scaling exponent

[10]. (That case refers to Eq. (4) when, e.g., 1 = 2 or n× = 1 or n× → ∞ [10].)

In order to obtain a crossover in the power-law correlations of |xt |, we choose the

weights to decay by two piece-wise power laws n−1−j in the two regimes n¡n×
and n¿ n×, with a crossover at n×.

We /nd that Eq. (1) generates short-range correlations in rt [result (i)]. We will show

that Eqs. (2)–(4) generate the piece-wise power-law correlations in |rt | [result (ii)],
i.e., we will show that the piece-wise power-law form of the weights an as a function

of n is responsible for creating the piece-wise power-law correlations in |xt | and |rt |.
We will demonstrate that Eqs. (2)–(4) are capable of generating power-law stability

in the distribution of the sum of m consecutive stochastic variables rt [result (iii)]. We

will also show that with the choice of c= 0:23; 1 = 0:21; 2 = 0:43, and n× = 100, 5

the stochastic process rt can reproduce—qualitatively and quantitatively—the statistical

features of results (i)–(iii) observed in the empirical data r̃t :
1

In studying the e@ect of the choice of parameter values on the correlation properties

of |xt | and |rt |, we will focus on the three parameters 1; 2, and n×, because the

parameter c a@ects only the short-range correlation properties of rt . As we cannot

derive closed-form expressions for the autocorrelation functions of |xt | or |rt | (except
for |xt | when 1=2),

6 we study the temporal correlations in |xt | and |rt | by numerical

simulations and compare them to the correlations observed in the empirical data |r̃t |.
In order to reliably compute correlations from the empirical and simulated time

series, we employ a method called detrended 7uctuation analysis (DFA) [15], which

yields results in cases where traditional correlation analyses fail due to the presence of

nonstationarities [11]. The idea of the DFA is to construct a random walk

zt(�) ≡

m
∑

n=1

yt+nFt (5)

based on the studied time series yt (where yt may stand for |r̃t |; |rt |, or |xt |, with
� ≡ mFt, where m is a positive integer) and to compute the mean standard deviation

F(�) of the detrended 0uctuations of zt(�) as a function of �.

Fig. 1 shows plots of the mean standard deviation F(�) of the detrended 0uctuations

of |r̃t |; |rt |, and |xt | versus �. We /nd that for the empirical data F(�) is composed of

two power-law regimes [11],

Fj(�) ∼ �
�j ; (6)

5 In order to determine the values of the parameters D1 and D2, we compute numerically S1 ≡
∑n×
n=1 an

and S2 ≡
∑

∞

n=n×+1 an. As an must be continuous at n× and normalized to 1, we calculate D1 and D2

from the following two equations: D1an=n× = D2an=n×+1 and S1D1 + S2D2 = 1.

6 For the special case of  ≡ 1 = 2¡
1
2

the autocorrelation function of |xt |; C(�) ≡ (〈|xt‖xt+�|〉 −

〈|xt |〉2)=(〈|xt |2〉 − 〈|xt |〉2), converges for asymptotically large � to the power-law form C(�) ∼ �−1+2 [10].

Ref. [15] shows that a power-law functional form of C(�) ∼ �−� corresponds to a power-law functional

form of F(�) ∼ ��, where the exponents � and � are related by � = 1− �=2 [15]. Hence, we obtain that 

and � are related by  = � − 0:5.
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Fig. 1. Log–log plot of the mean standard deviation F(�) of the detrended 0uctuations of |r̃t | for the

high-frequency data of the S&P 500 stock index (◦). We /nd that for �¡ �×; F(�) follows a power law,

F(�) ∼ ��1 , with exponent �1 = 0:71, while for �¿ �×; F(�) also follows a power law, F(�) ∼ ��2 , with

a di@erent exponent �2 = 0:93. We /nd that the crossover time scale �× is approximately 2× 103 min ≈ 1

week.1 We also /nd that the stochastic processes |xt | and |rt |, with 1 =0:21; 2 =0:43 [18], and n× =100

yield a function F(�) that is almost identical to the function F(�) obtained for the empirical data |r̃t |.

with a crossover time �×≈ 2× 103 min and exponents �1 = 0:71 for �¡�× and �2 =

0:93 for �¿ �×.
7 Fig. 1 also shows that the stochastic processes xt and rt possess

almost identical correlations in |xt | and |rt | and, more importantly, Fig. 1 shows that

both stochastic processes xt and rt can reproduce the piece-wise power-law long-range

correlations F(�) observed in the empirical data. 8

We next investigate how the correlation behavior of |rt | depends on the choice of n×.

Fig. 2 shows F(�) of |rt | for n×=1; n×=100, and n× → ∞. We /nd that the empirical

crossover time �× is proportional to n× and can be approximated by �× ≈ 2n×Ft:
1

Hence, we choose n× = 100 in the simulations leading to Fig. 1, which reproduces

the empirically observed crossover at �× ≈ 2 × 103 min. In the limit n× → ∞ the

crossover vanishes, and we recover the exponent �1 = 0:71, which is in agreement

with analytic results that can be derived for the stochastic process xt [10] with unique

exponent 1 = 0:21:6 Likewise, for n× = 1 the crossover vanishes, and we recover the

exponent �2=0:93, which is again in agreement with analytic results for the stochastic

process xt [10] with unique exponent 2 = 0:43:6

7 Here, we analyze the distributions and correlations for the same time series of empirical data. The DFA

exponent �1 and the crossover time scale �× are slightly larger than those found in Ref. [11], where the

“normalized” time series of |r̃t | is analyzed, from which the “intraday pattern” is excluded. In contrast, the

authors of Ref. [12] investigate the distributions for the same time series as in this paper.
8 Note that the variance growth F(�) for both the empirical data of the S&P 500 stock index |r̃t | and

the model time series |r̃t | can be equally well approximated by a stretched exponential. We focus on the

approximation of the variance growth F(�) by two piece-wise power laws, because this is the approximation

proposed in the original publication [11].
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Fig. 2. Log–log plot of F(�) of |r̃t | (◦) and |rt | (lines) for di@erent choices of n×. Generally, we /nd that

the observed crossover time �× increases monotonically with n× and is typically larger than n×Ft. We

also show F(�) for the two limit cases n× = 1 and n× → ∞, and we /nd—in agreement with theoretical

predictions for these two limiting cases—that 2=0:43 yields �2=0:93 in case of n×=1, and that 1=0:21

yields �1 = 0:71 in case of n× → ∞.
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Fig. 3. For small time scales � ≡ mFt;1 the power-law tails of the probability distribution P(z̃t(�)) of the

integrated index changes, z̃t(�) ≡
∑m
n=1 r̃t+nFt , remain practically stable with exponent �= 4. We /nd that

the stochastic process rt of Eqs. (1)–(3) can reproduce—qualitatively and quantitatively—the probability

distribution P(z̃t(�)), in addition to reproducing the correlation behavior of r̃t and |r̃t |. Moreover, we /nd

that P(zt(�)) exhibits power-law stability in the tails even for time scales longer than those that can currently

be measured from empirical data.

We study the probability distribution P(rt) and compare it to the probability distri-

bution P(r̃t) of the empirical data r̃t (Fig. 3). In order to perform this comparison over

a wide range of time scales, we de/ne by zt(�) ≡
∑m

n=1 rt+nFt the random walk of rt ,

starting at time t and ending at time t+ �, with � ≡ mFt. Consistent with recent work
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[12], we /nd that for the empirical data the central part of P(z̃t(�)) exhibits—over a

wide range of time scales �—a scaling behavior similar to that of the LMevy distribution

[16], and that the tails can be well approximated by a power law,

P(z̃t(�)) ∼ z̃
−(1+�)
t (7)

with exponent 1+ �=4, which is well beyond the range (0¡�¡ 2) expected for the

LMevy distribution.

We /nd that—caused by Eqs. (2) and (3)—the tails of the probability distributions

P(zt(�)) can be approximated by power laws, independently of the choice of P(et)

in Eq. (2). 9 Moreover, we /nd that the tails of P(zt(�)) exhibit power-law stability

even beyond the time range that is currently measurable from experimental data. This

/nding is intriguing as it indicates the possibility that also in the empirical data of the

S&P 500 stock index the observed power-law stability of the probability distributions

might extend beyond the currently observable time scale.

In summary, we proposed a stochastic process rt that is capable of reproducing three

statistical features observed in the 0uctuations r̃t of the S&P 500 stock index, namely

(i) short-range correlations in r̃t , (ii) two regimes of long-range power-law correlations

in |r̃t | with a crossover at �× ≈ 2× 103 min, and (iii) power-law stability of the tails

of the probability distribution P(z̃t(�)) ∼ z̃
−(1+�)
t , which is seemingly independent of

�, and which holds even for time scales � that go beyond the empirically measurable

range of all currently available data. As power-law correlations with crossover have

been found in many diverse systems or processes, such as in DNA sequences [15], time

series of heart beat 0uctuations [17], or small-world networks [18], we studied—in a

wider sense—to which extent the presence of correlations in a physical variable rt may

contribute to the form of its probability distribution P(rt), and which class of stochastic

processes could possibly be responsible for the emergence of stable power-law tails in

P(rt) [6,7,19–21].
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