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We study ^s(M B ,r)&, the average conductance of the backbone, defined by two points separated by Eu-
clidean distance r, of mass M B on two-dimensional percolation clusters at the percolation threshold. We find
that with increasing M B and for fixed r ,^s(M B ,r)& asymptotically decreases to a constant, in contrast with the
behavior of homogeneous systems and nonrandom fractals ~such as the Sierpinski gasket! in which conduc-
tance increases with increasing M B . We explain this behavior by studying the distribution of shortest paths
between the two points on clusters with a given M B . We also study the dependence of conductance on M B

above the percolation threshold and find that ~i! slightly above pc , the conductance first decreases and then
increases with increasing M B and ~ii! further above pc , the conductance increases monotonically for all values
of M B , as is the case for homogeneous systems.

PACS number~s!: 64.60.Ak, 64.60.Fr, 05.45.Df

I. INTRODUCTION

There has been considerable study of the bond percolation
cluster considered as a random-resistor network, with each
occupied bond having unit resistance and nonoccupied bonds
having infinite resistance @1–3#. In two dimensions, the con-
figuration studied is typically an L3L lattice and the con-
ductance is measured between two opposite sides which are
assumed to have infinite conductance @4–16#. The backbone
of the cluster is then defined as the set of bonds that are
connected to the two sides having infinite conductance
through paths that have no common bond.

At the percolation threshold, the backbone mass scales as
^M B&;LdB with dB51.643260.0008 @17# and in this ‘‘bus
bar’’ geometry is strongly correlated with L. The average
conductance of the backbone as a function of L has been
studied extensively and has been found to scale as ^s&

;L2m̃ with m̃50.982660.0008 @17#.
Recently, the distribution of masses of backbones defined

by two points, i.e., backbones defined as the set of those
bonds that are connected by paths having no common bonds
to two points separated by distance r within an L3L lattice,
has been studied @18#. This geometry has particular relevance
to the oil industry where the oil field is represented by the
percolation cluster and the two points represent the location
of injection and production wells. One finds that when r
!L , there is a very broad distribution of backbone masses
for a given r. Figure 1 illustrates some typical percolation
clusters and their backbones defined in this configuration.
Because of the broad distribution of backbone masses we
have the opportunity to study the conductance between these
two points separated by a fixed distance r as a function of the

mass of the backbone defined by these points.
One might expect that, for fixed r, the average conduc-

tance would increase with increasing backbone mass be-
cause there could be more paths through which current can
flow. In fact, we find that the average conductance decreases
monotonically with increasing backbone size, in contrast
with the behavior of homogeneous systems and nonrandom
fractals in which conductance increases. We explain our
finding by first noting that the conductance is strongly cor-
related with the shortest path between the two points, and
then studying the distribution of shortest paths along the
backbone between the two points for a given M B . This
analysis extends recent studies of the distribution of shortest
paths where no restriction on M B is placed @19–22#.

II. SIMULATIONS

Our system is a two-dimensional square lattice of side L
51000 with points A and B defined as A5(L2r/2, 500),B
5(L1r/2, 500). For each realization of bond percolation on
this lattice, if there is a path of connected bonds between A
and B, we calculate ~i! the length of the shortest path be-
tween A and B, ~ii! the size of the backbone defined by A and
B, and ~iii! the total conductance between A and B. We per-
form 100 000 realizations at the percolation threshold, pc
50.5, for each of 8 values of r ~1, 2, 4, 8, 16, 32, 64, and
128!. We bin these results based on the value of the back-
bone mass, M B , by combining results for all realizations
with 2n

,M B,2n11 and choosing the center of each bin as
the value of M B .

In Fig. 2~a!, we plot the simulation results for the average
conductance ^s(M B ,r)& and find that the conductance, in
fact, decreases with increasing M B . The decrease is seen
more clearly in Fig. 2~b!, in which we plot scaled values as
discussed below.

III. SIERPINSKI GASKET

In nonfractal systems, the conductance increases as the
mass of the conductor increases. We next consider the aver-
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age conductance on the Sierpinski gasket, a nonrandom frac-
tal, the first three generations of which are illustrated in Figs.
3~a!–3~c!. Because the Sierpinksi gasket is not translation-
ally invariant, the analog of the average conductivity be-
tween two points in the percolation cluster is the conductiv-
ity averaged over all pairs of points separated by distance r.
At each successive generation, there are two types of pairs:
~i! pairs which correspond to pairs in the previous generation
~e.g., A and B! and ~ii! pairs which do not correspond to
pairs in the previous generation ~e.g., D and E!. It is obvious
that as we move from one generation to the next, the con-
ductance between pairs of type ~i! increases because there
are more paths between the points than in the previous gen-
eration. On the other hand, the conductance between the
pairs of type ~ii! are lower on average than between the pairs
present in the previous generation because on average the
shortest path between the two points is longer than between
the pairs in the previous generation. However, for any given
r, the shortest path between any two points has a fixed upper
bound independent of the generation. Due to this bound on
the shortest path, the average conductivity increases with
succeeding generations. This is shown in Fig. 3~d! which
shows the average conductivity calculated exactly for gen-
erations 1 to 6 for r51, 2 and 4.

IV. SHORTEST PATH DISTRIBUTION

In order to understand why the average conductance of
the percolation backbone decreases with increasing M B , we
must ~i! recognize that the conductance is strongly correlated
with the shortest path @23# between the two points and ~ii!
study P(l uM B ,r), the distribution of shortest paths between
the two points for a given backbone mass. Hence we next
create the P(l uM B ,r) probability distribution, binning our

results logarithmically by forming the average over samples
centered at log2l .

Figure 4~a! shows the simulation results for P(l uM B ,r)
for r51 for various backbone masses. The plots collapse,
the only difference in the plots being the values of the upper
cutoffs due to the finite backbone size. Figure 1 illustrates
how the size of the backbone constrains the possible values
of the shortest path. For all values of M B , a section of each
plot in Fig. 4~a! exhibits power law behavior. In Fig. 4~b!,
we show the distributions P(l uM B ,r) for different r and a
given M B . In Fig. 4~c! we see that when scaled with rdmin the
plots collapse, so we can write P(l uM B ,r) in the scaling
form

P~ l uM B ,r !;
1

rdmin
S l

rdmin
D 2c

. ~1!

An expression for c can be found by recognizing that we can
write the well-studied distribution P(l ur), the probability
that the shortest path between two points separated by Eu-
clidean distance r is l , independent of M B , as

P~ l ur !5E
c l

`

P~ l uM B ,r !P~M Bur !dM B , ~2!

where ~i! P(M Bur) is the distribution of backbone masses
given distance r between the points which determine the
backbone and ~ii! c l is the lower cutoff on M B given l .
P(M Bur) has the form @18#

P~M Bur !;
1

rdB
S M B

rdB
D 2tB

, @r!L# , ~3!

where dB is the backbone fractal dimension and

FIG. 1. Typical percolation clusters. The striped sites and the black sites are both part of the percolation cluster; only the black sites form
the cluster backbone defined by sites A and B ~black squares!. Note in ~a!, with backbone size 6, the shortest path, l , between A and B is
5—the length of the shortest path must always be less than the backbone mass; ~b! and ~c! illustrate that in clusters with large backbones,
the length of the shortest path between A and B can take on a broad range of values.
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tB5d/dB ~4!

is the exponent for the blob size distribution @1,24#. From
Ref. @19#

P~ l ur !;
1

rdmin
S l

rdmin
D 2g l

, ~5!

where dmin is the fractal dimension of the shortest path. Since
l ;rdmin and M B;rdB, implying l ;M B

dmin /dB , the lower
cutoff c l in Eq. ~2! scales as

c l ;l
dB /dmin. ~6!

As L→` , the upper cutoff is ` because the maximum back-
bone mass is not constrained by the length of the shortest
path. Substituting Eqs. ~3!, ~5!, and ~6! into Eq. ~2!, and
equating powers of r ~or powers of l ) of the left and right
hand sides of the resulting equation, we find

c5g l 2

dB

dmin
~tB21 !. ~7!

Using Eq. ~4! and the values g l 52.04 @19,25# and dmin
51.13 @21,25#, we find c51.72, in good agreement with our
simulation result

FIG. 2. Average conductance versus backbone mass. ~a! Simu-
lation results at the percolation threshold for r58, 16, 32, 64, and
128, where r is the distance between the two sites A and B; the
adjacent lines are the theoretical results. For large r, the curves for
the simulation results and the corresponding curves for the theoret-
ical results coincide for large M B . ~b! Plots of backbone conduc-
tance for r58, 16, 32, 64, and 128, scaled in accordance with Eqs.
~17! and ~18!. The solid line is a plot of Eq. ~17! with parameters a
and b chosen as 0.9 and 6, respectively, to best fit the values for
r5128 ~right-pointing triangles!. The collapse to this line for the
lower values of r improves with increasing r. ~c! Average conduc-
tance for r54 for p50.50, 0.56, and 0.60. For p50.56, the con-
ductance as a function of M B is not monotonic but rather has a
minimum indicated by the arrow. ~d! Fluctuations in conductance
h(M B ,r)5A^s2(M B ,r)&2^s(M B ,r)&2/^s(M B ,r)& from simula-
tions for r58, 16, 32, 64, and 128 at p5pc .

FIG. 3. ~a!–~c! Three generations of the Sierpinski gasket. At
each successive generation, there are two types of pairs of points:
pairs which correspond to pairs in the previous generation and pairs
which do not. For example, in the second generation the pairs AB
and AC are present in the previous generation but the pair DE has
no corresponding pair in the previous generation. Similarly, the
pairs AB, AC, and DE in the third generation correspond to pairs in
the second generation, but the pair FG does not. Because all points
are multiply connected, the mass of the backbone between any two
points in each generation is equal to the mass of the entire gasket.
~d! Average conductance between all pairs of points separated by
distance r on the Sierpinski gasket versus the gasket mass. The
points correspond to successive generations of the Sierpinski gas-
ket.
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c51.760.05. ~8!

V. AVERAGE CONDUCTANCE

We can now calculate the average conductance. Since s
is strongly correlated with l , and since s scales with r as
r2m̃ and l scales with r as rdmin, we have

s;l
2m̃/dmin. ~9!

Then using the fact that P(l uM B ,r);l
2c we have

P~suM B ,r !;P~ l 5s2dmin /m̃uM B ,r !
dl

ds

;s (c21)(dmin /m̃)21

5sz, ~10!

where

z[~c21 !~dmin /m̃ !21520.17. ~11!

Now P(l uM B ,r) is nonzero only for

~ar !dmin&l &~bM B!dmin /dB, ~12!

where a and b are constants. Hence using ^s&;l
2m̃/dmin, we

find P(suM B ,r) is nonzero for

~bM B!(dmin /dB)(2m̃/dmin)
5~bM B!2m̃/dB&s&~ar !2m̃.

~13!

Using these bounds to normalize the distribution, we find

P~suM B ,r !5

~z11 !sz

~ar !2m̃(z11)
2~bM B!(2m̃/dB)(z11)

. ~14!

Then

^s~M B ,r !&5E
(bM )2m̃/dB

(ar)2m̃

sP~suM B ,r !ds

5

z11

z12
~ar !2m̃

12F ~bM B!1/dB

ar G2m̃(z12)

12F ~bM B!1/dB

ar G2m̃(z11)
.

~15!

Thus as M B goes to infinity, ^s(M B ,r)& decreases asymp-
totically to a constant as

^s~M B ,r !&;
z11

z12
~ar !2m̃F11F ~bM B!1/dB

ar G2m̃(z11)G .

~16!

By considering the asymptotic dependence of ^s(M B ,r)&
on M B , we can reasonably fit the simulation results by
choosing the parameters a and b in Eq. ~15! to be 0.9 and 6,
respectively. Using these values for a and b, we plot in Fig.
2~a! ^s& from Eq. ~15! for multiple values of r and find that
agreement with the simulation results improves with increas-

ing r. For large r, the curves for the simulation results and
the curves for the theoretical results are coincident at large
M B . The poor results for small r are due to corrections-to-
scaling not being included in our derivation ~e.g., for small r,
there are significant corrections-to-scaling for the relations
s;r2m̃ and M B;rdB @17#!.

Equation ~15! can be recast in terms of the scaled variable
x[M B /rdB as

^s~x ,r !&5

z11

z12
~ar !2m̃ f ~x !, ~17!

where

FIG. 4. Distribution of shortest paths between A and B. ~a!

P(l uM B ,r), the probability that the length of the shortest path
between two points separated by distance r is l for a given back-
bone mass, M B . All plots are for r51, for values of M B of 6
~squares!, 96 ~diamonds!, 1536 ~circles!, and 24 576 ~triangles!.
The plots for the various M B differ by the points at which they cut
off. ~b! P(l uM B ,r) for r51 ~squares!, 4 ~diamonds!, and 16
~circles! for a single backbone size of 24 576. ~c! When scaled by
rdmin, the plots collapse. The dashed line is constructed to have a
slope of 21.7; see Eq. ~8!.
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f ~x !5

12S b

adB
x D 2(m̃/dB)(z12)

12S b

adB
x D 2(m̃/dB)(z11)

. ~18!

In Fig. 2~b!, we plot the average conductance scaled in ac-
cordance with Eqs. ~17! and ~18!. The expected collapse im-
proves with increasing r for the same reason as noted above.

Above the percolation threshold, for backbones of size
larger than the correlation length, the strong correlation be-
tween the conductance and the shortest path breaks down
and we expect the conductance to increase with the mass of
the backbone, as is the case in non-random systems. This is
seen in Fig. 2~c!, where we plot conductance versus back-
bone mass for the bond occupation probabilities p50.56 and
p50.60, which are above the percolation threshold and, for
comparison, conductance at the percolation threshold, p
50.50 @26#. Figure 2~c! shows that for p50.60, all backbone
masses sampled are of size greater than the correlation length
and the conductance increases monotonically. For p50.56,
the smaller backbone masses are of size less than the corre-
lation length and Fig. 2~c! shows that the conductance ini-
tially decreases; for larger backbone masses, however, the
sizes of the backbones are greater than the correlation length
and Fig. 2~c! shows that the conductance then increases.

As in all problems involving strong disorder, fluctuations
are significant. Using Eq. ~14! we can calculate ^s2(M B ,r)&
at p5pc . We find

^s2~M B ,r !&5E
(bM )2m̃/dB

(ar)2m̃

s2P~suM B ,r !ds

5

z11

z13
~ar !22m̃

12F ~bM B!1/dB

ar G2m̃(z13)

12F ~bM B!1/dB

ar G2m̃(z11)
.

~19!

We next calculate the fluctuation of the average conductance,

h~M B ,r !5

A^s2~M B ,r !&2^s~M B ,r !&2

^s~M B ,r !&
. ~20!

In the limit M B→` ,h(M B ,r) increases to its maximum

h~` ,r !5A 1

~z11 !~z13 !
'0.65. ~21!

In Fig. 2~d!, we plot h(M B ,r) from our simulation data and
find that, for large M B ,h(M B ,r) approaches a value of ap-
proximately 0.7 in reasonable agreement with the value of
0.65 in Eq. ~21! and confirms the fact that fluctuations are
large. This is consistent with the broad distribution of short-
est paths ~see Fig. 4! and the strong correlation between the
conductance and shortest path.

VI. DISCUSSION

We have found through simulations that, at p5pc , the
average conductance of percolation backbones—defined by
two points separated by Euclidean distance r of mass
M B—decreases with increasing M B . Our findings are in
contrast to the behavior of homogeneous systems and non-
random fractals. By studying the conductance of the Sierpin-
ski gasket, a nonrandom fractal, we see that this difference is
due to the fact that the shortest path between two points,
separated by Euclidean distance r on the Siepinski gasket,
has a fixed upper bound independent of the size of the gas-
ket, as opposed to the percolation backbone where the aver-
age length of the shortest path increases with the mass of the
backbone.

A derivation, which depends only on the strong correla-
tion between the conductance between two points and the
shortest path between these points, results in a closed form
expression for the conductance, Eq. ~15!. The agreement of
Eq. ~15! with the results of our simulations confirms our
understanding of why the average conductance decreases
with increasing backbone mass: the smaller contributions to
the average conductance from the longer minimal paths pos-
sible in the clusters with larger backbone size cause the av-
erage conductance to be smaller. Our derivation was not spe-
cific to two dimensions, and should also hold in higher
dimensions.

As the bond occupation probability approaches one, the
behavior of the conductance must be that of a homogeneous
system, for which the conductance increases monotonically
for all values of M B . We, in fact, confirmed this behavior
and also identified a crossover regime slightly above pc in
which the conductance first decreases and then increases
with increasing M B .
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@18# M. Barthélémy, S.V. Buldyrev, S. Havlin, and H.E. Stanley,

Phys. Rev. E 60, R1123 ~1999!.
@19# N.V. Dokholyan, Y. Lee, S.V. Buldyrev, S. Havlin, P.R. King,

and H.E. Stanley, J. Stat. Phys. 93, 603 ~1998!; N.V.

Dokholyan, S.V. Buldyrev, S. Havlin, P.R. King, Y. Lee, and
H.E. Stanley, Physica A 266, 55 ~1999!.

@20# M. Porto, S. Havlin, H.E. Roman, and A. Bunde, Phys. Rev. E
58, 5205 ~1998!.

@21# P. Grassberger, J. Phys. A 32, 6233 ~1999!.
@22# R.M. Ziff, J. Phys. A 32, L457 ~1999!.
@23# R. Pike and H.E. Stanley, J. Phys. A 14, L169 ~1981!.
@24# H.J. Herrmann and H.E. Stanley, Phys. Rev. Lett. 53, 1121

~1984!.
@25# H.J. Herrmann and H.E. Stanley, J. Phys. A 21, L829 ~1988!.
@26# Because, above the percolation threshold, the backbone mass

is strongly correlated with the system size, we create back-
bones of a given mass by varying the system size. The simu-
lations of Fig. 2~c! for the plots above the percolation were
obtained choosing L56, 10, 20, 40, 80, 160, and 200.

3440 PRE 61GERALD PAUL et al.


