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The Verdet constant is obtained from the measurement at 52 G.
The simulation reproduces all the observed features of the imped-
ance as a function of temperature, including the maximum in the
modulation at T=TC � 0:415, H � 101 G, and the minimum at
T=TC � 0:415, H � 152 G, which con®rms that the Faraday period
is proportional to 1/H. The simulation also produces the ®ne-
structure oscillations in the impedance near the points labelled 908
and 2708. The ®ne structure is observed when the polarization
rotates by an odd multiple of 908 upon a single round trip in the
cell. Then waves that traverse the cell twice are 1808 out of phase
relative to the source wave, and consequently the period of the
impedance oscillations is halved. The amplitude of the oscillations is
substantially reduced because of attenuation over the longer path-
length. This structure provides proof that impedance oscillations
are modulated by the Faraday effect for propagating transverse
waves. The impedance data from our experiments were analysed to
obtain the spatial period for rotation of the polarization, and were
found to be in agreement with the theoretical prediction8 for the
Faraday rotation period. The theoretical results for the period can
be expressed in the form

¤ � K

�������������������
T=T� 2 1

p
gH
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for ®elds H p 1 kG and temperatures above and near the extinction
point B. The temperature T+ corresponds to the extinction of
transverse sound by resonant excitation of Cooper pairs with
J � 2, mJ � �1, at a slightly higher temperature than the B
extinction point in zero ®eld as shown in Fig. 2 (for example, at
H � 100 G, T� 2 TB < 1 mK). The magnitude of the Faraday rota-
tion period depends on accurately known super¯uid properties,
contained in the parameter K; it also depends on one parameter
that is not well-established, the LandeÂ g-factor, g, for the Zeeman
splitting of the Cooper-pair excited state with J � 2.

Movshovich et al.21 analysed the splitting of the J � 2 multiplet in
the absorption spectrum of longitudinal sound, ®nding a value of
g � 0:042. In that experiment it was not possible to resolve the
splitting except for ®elds above 2 kG. At these high ®elds, the
nonlinear ®eld dependence due to the Paschen±Back effect22,23

becomes comparable to the linear Zeeman splitting24,25, which
makes it dif®cult to determine the LandeÂ g-factor accurately. We
have analysed our measurements of the acoustic Faraday effect to
determine the g-factor with high accuracy at low ®elds, which
eliminates the complication of the high-®eld Paschen±Back effect.
We ®nd g � 0:020 6 0:002. We interpret our signi®cantly smaller
value of the LandeÂ g-factor as meaning that there are important
L � 3 (`f-wave') pairing correlations in the super¯uid condensate,
about 7% of the dominant p-wave interactions26. M
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Quantifying the dynamics of research activities is of considerable
current interest, not least because of recent changes in research
and development (R&D) funding1±9. Here we quantify and analyse
university research activities, and compare their growth dynamics
with those of business ®rms10±14. Our study involves the analysis of
®ve distinct databases, the largest of which is a National Science
Foundation database of the R&D expenditures in science and
engineering for a 17-year period (1979±95) in 719 United States
universities. We ®nd that the distribution of growth rates displays
a `universal' form that does not depend on the size of the
university or on the measure of size used; and the width of this
distribution decays with size as a power law. These ®ndings are
quantitatively similar to those of business ®rms10±14, and so are
consistent with the hypothesis that the growth dynamics of
complex organizations are governed by universal mechanisms.
One possible explanation for these similarities is that the combi-
nation of peer review and government direction leads to an
outcome similar to that induced by market forces (where the
analogues of peer review and government direction are, respec-
tively, consumer evaluation and product regulation).

In the study of physical systems, the scaling properties of
¯uctuations in the output of a system often yield information
regarding the underlying processes responsible for the observed
macroscopic behaviour15,16. Here we analyse the ¯uctuations in the
growth rates of university research activities, using ®ve different
measures of research activity. The ®rst measure of the size of a
university's research activities that we consider is R&D expenditure.
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The rationale for using this as a measure of research activity is that
research is an expensive activity that the university ®nances with
external support.

We ®rst analyse a database containing the annual R&D expendi-
ture for science and engineering of 719 US universities17 for the 17-
year period 1979±95 (,12,000 data points). The expenditures are
broken down by school and department. The annual growth rate of
R&D expenditures is, by de®nition, g�t� [ log�S�t � 1�=S�t��,
where S(t) and S�t � 1� are the R&D expenditures of a given
university in the years t and t � 1, respectively. We expect that
the statistical properties of the growth rate g depend on S, as
it is natural that the ¯uctuations in g will decrease with S.
Therefore, we partition the universities into groups according
to the size of their R&D expenditure (Fig. 1a). Figure 1b
suggests that the conditional probability density, p(g|S), has the
same functional form, with different widths, for all S.

We next calculate the width j(S) of the distribution of growth
rates as a function of S. Figure 1c shows that j(S) scales as a
power law

j�S� ~ S 2 b
�1�

with b � 0:25 6 0:05. In Fig. 1d, we collapse the scaled conditional
probability distributions onto a single curve.

To test if these results for the dynamics of R&D expenditures are
valid for other measures of research activity, we next analyse another
measure of a university's research activities, the number of papers
published each year18±20. We analyse data for the 17-year period
1981±97 from ref. 21, which records the number of papers pub-
lished by the top 112 US universities (,1,900 data points). We ®nd
that the analogue of Fig. 1 holds. We note that the same exponent
value, b � 1=4, is found (Fig. 2a) and that the same functional form
of p(g|S) is displayed (Fig. 2b).

Next, we consider as a measure of size the number of patents
issued to a university22. We retrieve from ref. 23 the number of
patents issued to each of 106 universities each year of the 22-year
period 1976±97 (,2,300 data points). We con®rm that the ana-
logue of Fig. 1 holds, with the same exponent value, b � 1=4 (Fig.
2a), and the same functional form of p(g|S), Fig. 2b.

To test if our ®ndings hold for different academic systems, we
analyse two databases on research funding of English24 and
Canadian25 universities. The same quantitative behaviour is found
for the distribution of growth rates and for the scaling of j, with the
same exponent value (Fig. 2a) and the same functional form of
p(g|S), Fig. 2b. Thus, the analysis of all ®ve databases con®rms that
the same quantitative results hold across different measures of
research activity and academic systems.
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Figure 1 Growth dynamics of research activities at universities. a, Histogram of
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theory10,12. b, Conditional probability density function p(g|S) of the annual growth
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bydifferent shades). c, Standard deviation j(S) of the distribution of annual growth
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We next address the question of how to interpret our empirical
results. We start with the observation that research is an expensive
activity, and that the university must `offer' its research to external
sources such as governmental agencies and business ®rms. Thus, an
increase in R&D expenditures at university A and a decrease at
university B implies that the funders of research increasingly choose
their research from university A as opposed to university B1. This
qualitative picture parallels the competition among different
business ®rms, so it is natural to enquire if there is quantitative
support for this analogy between university research and business
activities. To quantitatively test this analogy, we note that the
results of Fig. 1 are remarkably similar to the results found for
®rms13,14 and countries26±28. We plot in Fig. 2c the scaled con-
ditional probabilities p(g|S) for countries, ®rms and universities,
and ®nd that the distributions for the different organizations fall
onto a single curve.

There is, however, one difference: for ®rms and countries, we ®nd
b < 1=6, while for universities, b < 1=4. We can understand this
difference using a model for organization growth29. In the model,
each organizationÐuniversity, ®rm or countryÐis made up of
units. The model assumes these units grow through an independent,

gaussian-distributed, random multiplicative process with variance
W 2. Units are absorbed when they become smaller than a `mini-
mum size', which is a function of the activity they perform. Units
can also give rise to new units if they grow by more than the
minimum size for a new unit to form. The model predicts
b � W =�2�W � D��, where D is the width of the distribution of
minimum sizes for the units29. For ®rms, the range of typical sizes is
very broadÐfrom small software and accounting ®rms to large oil
and car ®rmsÐsuggesting a large value of D. On the other hand, for
universities, the range of typical sizes is much narrower, suggesting a
small value of D and implying a larger value of b than for business
®rms. This is indeed what we observe empirically.

Business ®rms are comprised of divisions and universities are
made up of schools or colleges, so it is natural to consider the
internal structure of these complex organizations30. We next quan-
tify how the internal structure of a university depends on its size by
calculating the conditional probability density r(y|S) to ®nd a
school of size y in a university of size S (Fig. 3a). The model predicts
that r(y|S) obeys the scaling form29

r�yjS� ~ S 2 af �y=Sa
� �2�
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where f �u� < u 2 t for u p 1, and f(u) decays as a stretched expo-
nential for u q 1. We ®nd t � 0:37 6 0:10 (Fig. 3b), and
a � 0:75 6 0:05 (Fig. 3c). We test the scaling hypothesis (equation
(2)) by plotting the scaled variables r(y|S)/S-a versus y/Sa. Figure 3b
shows that all curves collapse onto a single curve, which is the
scaling function f(u).

Equation (2) implies that the typical number of schools with
research activities in a university of size S scales as S1-a, while the
typical size of these schools scales as Sa. Hence, we can calculate how
j depends on S:

j�S� ~ �S1 2 a
�

2 1=2W�y� �3�

To determine j, we ®rst ®nd the dependence of W on y. Figure 3d
shows that W ~ y2 g with g � 0:16 6 0:05. Substituting into
equation (3) and remembering that the typical size of the schools
is Sa, we obtain j�S� ~ �S1 2 a�2 1=2�Sa�2 g, which leads to the testable
exponent relation:

b �
1 2 a

2
� ag �4�

For a < 3=4 and g < 1=6, equation (4) predicts b < 1=4, in agree-
ment with our empirical estimate of b from the ®ve distinct
databases analysed (Fig. 2a).

Our results are consistent with the possibility that the statistical

properties of university research activities are surprisingly similar
for different measures of research activity and for distinct academic
systems. Moreover, our ®ndings for university research resemble
those independently found for business ®rms10±14 and countries26±28.
One possible explanation is that peer review, together with govern-
ment direction, may lead to an outcome similar to that induced by
market forces, where the analogue of peer-review quality control
may be consumer evaluation, and the analogue of government
direction may be product regulation.

Practical implications of our ®nding of similar growth dynamics
for academic research and business are not obvious, but one
possibility is that there seems to be no need to make academic
research at universities still more like businessÐit already is. Some
may claim that the business sector could be regarded as a yardstick
for organizing academic research. If so, the research departments
already behave like business units and hence are suf®ciently `effec-
tive'. On the other hand, others may maintain that the `economiza-
tion' of academic research has been pushed too far, and that the
research system will become `ineffective' if this continues. M
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Recent studies of the Greenland ice cores have offered many
insights into Holocene climatic dynamics at decadal to century
timescales1±3. Despite the abundance of continental records of
Holocene climate, few have suf®cient chronological control and
sampling resolution to compare with the Greenland ®ndings4.
But annually laminated sediments (varves) from lakes can provide
high-resolution continental palaeoclimate data with secure
chronologies. Here we present analyses of varved sediments
from Deep Lake in Minnesota, USA. Trends in the stable
oxygen-isotope composition of the sedimentary carbonate indi-
cate a pronounced climate cooling from 8.9 to 8.3 kyr before
present, probably characterized by increased outbreaks of polar
air, decreased precipitation temperatures, and a higher fraction of
the annual precipitation falling as snow. The abrupt onset of this
climate reversal, over several decades, was probably caused by a

reorganization of atmospheric circulation and cooling of the
Arctic airmass in summer that resulted from the ®nal collapse
of the Laurentide ice near Hudson Bay and the discharge of
icebergs from the Quebec and Keewatin centres into the Tyrell
Sea. The timing and duration of this climate reversal suggest that
it is distinct from the prominent widespread cold snap that
occurred 8,200 years ago in Greenland and other regions1,5,6. No
shifts in the oxygen-isotope composition of sediment carbonate
occurred at 8.2 kyr before present at Deep Lake, but varve
thickness increased dramatically, probably as a result of increased
deposition of aeolian dust. Taken together, our data suggest that
two separate regional-scale climate reversals occurred between
9,000 and 8,000 years ago, and that they were driven by different
mechanisms.

We retrieved three temporally overlapping sediment cores from
Deep Lake (478 419 N, 958 239 W; Fig. 1), a topographically closed
basin located ,45 km east of the prairie±forest border in north-
western Minnesota. The early Holocene sediments of these cores are
varve couplets consisting of calcite precipitated through photo-
synthesis in summer paired with darker, clastic and organic debris
deposited in other seasons. Annual laminae are easily identi®able
under a low-power microscope, providing a high-quality chron-
ometer. To minimize the accumulative error of varve counting
from the surface, we anchored our varve counts on a reliable
AMS (accelerator mass spectrometry) 14C date of 8;090 6 85 years
(calibrated to 8.986 kyr calendar age7) on a large wood sample8. A
second AMS 14C date of 8; 740 6 60 years, also on a piece of wood, is
supportive of the annually laminated nature of early Holocene
sediments from Deep Lake, but this date is less useful because it is on
a 14C plateau and yields ambiguous calibrated ages7. Varve thickness
was measured, and subsamples from the cores were analysed for
stable isotopes at multi-decadal resolution to reconstruct early
Holocene climate. Our results provide an opportunity to test
whether decadal to century scale climate changes observed in
Greenland ice also occurred near the centre of the North American
continent.

Bulk-carbonate d18O of the Deep Lake core shows distinct
stratigraphic changes between 10.0 and 8.0 calendar kyr before
present (cal. kyr BP; Fig. 2a). d18O increases by ,2½ about 9.5 cal.
kyr BP, re¯ecting the effects of regional climate warming related to
increased summer insolation and the retreat of the Laurentide ice
sheet4, as well as the associated increase in evaporation from Deep
Lake itself and the reduced in¯uence on climate of glacial Lake
Agassiz as it retreated into Canada8,9. Around 8.9 cal. kyr BP, d18O
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Figure 1 Air masses, site locations and lake bathymetry. a, General directions of

the three main airmasses controlling the climate of Minnesota (GOM, Gulf of

Mexico); also shown are the locations of Deep Lake (DL), Greenland ice cores

(GIC), and Hudson Bay (HB). b, Bathymetry of Deep Lake.


